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Abstract 
 

Salmo trutta (Brown trout) is a native salmonid species to the United Kingdom. The 

economy generated via fish farming and eco-tourism has aided isolated communities in 

job creation and tourism income. It is particular true in highland communities in 

Scotland, where parasite infection has threatened the health of Scottish salmonids. The 

work presented in this thesis assessed parasite infection of wild brown trout populations 

in the northwest highlands of Scotland. Initial analysis of fish health screened 

subpopulations within the Gairloch region for infective parasite species. Eye fluke 

Diplostomum spp. was highly prevalent throughout the system with all lochs populations 

harboring infection. Through molecular analysis the species was confirmed as D. baeri 

which, when compared to other European isolates indicated highly diverse species 

complex infecting freshwater fish across the continent, most likely through definitive bird 

host. A cestode species that infected 4 trout subpopulations across the system was the 

medically relevant Diphyllobothrium dendriticum. Using molecular species identification 

techniques, it was the first finding of the parasite within UK freshwater fish populations. 

In response to differential parasite infection adaptive immunogenic traits were also 

observed within trout host subpopulations. The MHC II related gene Satr-DAB 

variability was higher in populations with differential parasite species infection 

suggesting the diversity of infection maintains MHC diversity within the population. The 

evasion of immune recognition to achieve high levels of infection is key to sustained 

parasite infection. The highly infective parasite in the Gairloch system, D. baeri, utilizes 

intracellular antigens Tetraspanins and Venom allergen-like antigenic proteins. These 

antigens were isolated using genomic techniques to highlight potential vaccine targets in 

aquaculture.   The body of work presented here has furthered the knowledge of the highly 

infective D. baeri and provided molecular methodologies to identify medically relevant 

D. dendriticum. Genomic analysis of trout population immunogenics and parasite 

antigenic factors provides key knowledge to further conservation stocking methods and 

sustainable aquaculture practice.    
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1 Introduction  
1.1 Brown trout ecology 
 
Brown trout, Salmo trutta L. 1758 is a salmonid fish indigenous to Europe, North Africa 

and western Asia. Within Europe its northern limits reach as far as Iceland, the northern 

territories of Scandinavia and Russia (MacCrimmon et al., 1970). Introduction has 

occurred in numerous countries outside the trout’s native range, with successful 

introductions occurring within 24 countries outside of its indigenous environment (Louis 

Bernatchez, 2001). Global success stems from its ability to spread and colonize a variety 

of different habitats from small highland streams to large arctic fjords. Adaptation to 

various environments has led to similarly various phenotypic appearance, with more than 

50 different variations of the brown trout being described in early speciation studies and 

with all species of brown trout currently grouped together in a large polymorphic species 

complex (Louis Bernatchez, 2001). Within one population of brown trout, members may 

occupy running water spawning habitats, large lake residential populations, brackish 

water and, in its anadromous form (sea trout, S. trutta trutta), local coastal waters (Neil, 

2013). Few other European fish have this ability to inhabit such a wide variety of 

freshwater habitats, largely enabled by brown trout’s migratory behavior and wide range 

of environmental tolerance (Klemetsen et al., 2003). Riverine trout feed on insect larvae, 

highly dependent on insect hatch time of year and geography (Gíslason and 

Steingrímsson, 2004). As they grow in size their choice of insect prey changes 

concomitantly; juveniles favoring small, surface-dwelling arthropods, larger trout hunting 

insect larvae from larger insect groups such as Plecoptera, Trichoptera and 

Ephemeroptera (Rincon and Lobon-Cervia, 1999). Lacustrine trout populations also 

exhibit age-variable diet, juveniles feeding on shallow water zoo benthos, zooplankton 

and insects of varying size dependent on the size of fish (Keeley and Grant, 2001). 

Brown trout populations are often known to be piscivorous, particularly the phenotypic 

variant of brown trout known as  ‘ferox’ (Jardine, 1835) (L’Abee-Lund et al., 1992). 

Generally, however, trout exhibit highly opportunistic feeding habits depending on 

numerous environmental factors including age and size. Brown trout populations inhabit 
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complex systems with variability in life history and feeding habits key to their adaptation 

to a myriad of different habitats with self-sustaining populations existing worldwide.  

 

  

A 

B 

C 

Figure 1: Detailed diagram of S.trutta morphs existing across Gairloch freshwater system. A Salmo trutta 
fario, lacustrine brown trout. B, Salmo trutta trutta; anadromous sea trout morph of brown trout. C Salmo 
ferox, carnivorous morph of brown trout more commonly seen in deep loch populations of brown trout 
(Raver, US Fish and wildlife, 2012) 
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1.1.2 Brown trout health  
 
Within the environments brown trout inhabit they are linked to many food webs, acting 

as food source for predatory birds and mammals (Neil, 2013). Being both a popular food 

source and highly successful in many climates, brown trout is also an integral part of 

many parasite species life cycles (Criscione and Blouin, 2004; Klemetsen et al., 2003). 

The effect that parasite infection has on host populations of brown trout can vary between 

species of parasite. The cestode genus Eubothrium is widespread in trout populations but 

causes little detriment to overall fish health (Boyce and Yamada, 1977). In contrast the 

monogean parasite genus, Gyrodactilus has caused widespread trout death across 

Scandinavia (Buchmann and Uldal, 1997). In recent years identification of trout parasites 

has garnered attention due to select species’ endangered status including Gila trout, 

Oncorhynchus gilae (R.R. Miller 1950) (Peters and Turner, 2008), Yellowstone cutthroat, 

Oncorhynchus clarkia bouvieri (Jordan and Gilbert, 1883) (Ruzycki et al., 2003) and 

Apache trout, Oncorhynchus apache (R.R. Miller, 1972) (Petre and Bonar, 2017). Brown 

trout is a species of least concern to conservation worldwide, however its use in 

aquaculture and sports angling make the health and stocking practice of 

socioeconomically important populations vital to communities relying on such economies 

(Whitmarsh and Wattage, 2006).  

1.1.3 Brown trout-parasite relationship 
 
Within freshwater environments there are a multitude of potential host species making it 

ideal for parasites to complete full life cycles within a very short geographical area 

(Medel et al., 2010). Taxon present in many freshwater systems are freshwater 

gastropods, with genera such as Bulinus, Lymnaea and Planorbis acting as crucial 

primary hosts in a variety of freshwater digenea parasites (Gíslason and Steingrímsson, 

2004).  Other primary host components of parasite life cycles can include oligachete 

worms and copepods (Gíslason and Steingrímsson, 2004). Brown trout are opportunist 

feeders, with infection frequently occurring through the direct consumption of copepod 

and stickleback primary hosts involved in cestode life cycles. Freshwater trematodes 

instead complete life cycle by utilizing a multitude of freshwater hosts instead of direct 

consumption of parasite by the host. Freshwater trematode lifecycles frequently involve 
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an infected snail hosts releasing a free-living parasitic cercariae that attaches and 

penetrates trout musculature before reaching immunogenically inert infection site. 

Parasite infective potential varies throughout brown trout life cycle, in both temporal 

(Tully et al., 1999) and spatial (Vehanen et al., 1999) facets. The wide variety of 

environments inhabited during the lifetime of a brown trout can drastically vary the 

infective potential of parasites. Trout populations inhabiting slower moving water bodies 

experience increased cercarial presence (Buchmann and Bresciani, 1997), whilst 

populations inhabiting larger, deeper lakes will consume larger prey such as oligachetes, 

are thus frequent hosts of nematodes such as Eustronglyides spp. (Hirshfield et al., 1983).  

Pathogenicity varies between parasite species, however, virulent infection of trout fry can 

lead to wide scale fish death and population decline (Rahkonen et al., 1996).  Cestode 

infection can vary in pathogenicity; Eubothrium spp. are widespread cestode parasites of 

trout, with fish exhibiting even large infection numbers showing little ill effect 

(Hanzelová et al., 2002). Cestode infection are not always benign in nature with large-

scale epidemics of Diphyllobothrium spp. being responsible for killing large numbers of 

trout fry in reservoirs across England (Fraser, 1960).   Nematode infections within trout 

exhibit a similar lifecycle to those of  cestode species with trout infected via direct 

consumption of infected intermediate hosts such as oligachete worms (Eustronglyides 

spp.) and mayfly nymphs (Sterliadochona spp.) (Frimeth, 1987). Unlike cestodes, 

nematode infections in trout are not limited to the intestinal tract, with taxa like 

Contracaecum spp. being found within the atria of rainbow trout in numerous habitats 

with high pathogenic potential (Oscoz et al., 2005.). Due to migratory movements of 

trout, the fish can also become infected by marine nematodes such as Anasakis spp. that 

usually infect sea trout and estuarine populations of riverine brown trout (Wootten and 

Smith, 1975). Freshwater trematodes present a different interaction with trout host 

species with infection frequently involving a behavioral modification (Barber et al., 

2000). Diplostomum spp. are eye flukes that utilize brown trout as an intermediate host, 

residing within the trout’s ocular lens during part of its lifecycle. Pathogenicity in heavy 

infections involves partially blinding the fish and increasing probability of predation 

(Grobbelaar et al., 2015). Tylodelphys spp. infects the brains of freshwater fish, affecting 

their feeding habits and movement (Moody and Gaten, 1985).  Other intriguing parasite 
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species that infects freshwater and anadromous trout are the haemoflagellate species; 

Cryptobias and Trypanosoma species. Both haemoflagellates complete their early life 

cycles within leeches (Hirudinea) and pass the trypomastigotes stage to the fish host 

during blood feed (Ardelli and Woo, 2001). The epidemiology and infection dynamics of 

both parasite species are poorly  understood but hydrology plays an important role in 

leech and fish interaction (Fermino et al., 2015).  

 

As with other aspects within a brown trout’s life history, parasitism exerts influence, not 

only at the individual level, but also at the population level. Many of the differential 

parasite infections occurring between populations of trout are related to host movement 

(Ziętara et al., 2007). The ecological impact of host transplacement can drastically affect 

overall host population health. Invasive trout species can succumb to novel parasite 

infection within new environment adding to the environmental complexity populations of 

brown trout must overcome to thrive (Monzón-Argüello et al., 2014). Alternatively, 

populations can undergo release from pathogenic pressure if they are translocated to 

zones in which parasites/pathogens are absent. 

 

The success of brown trout populations in varied freshwater landscapes makes them an 

ideal host for a parasite infection. Their ability to migrate, survive off multiple food 

resources and their role as prey for multiple definitive host species make completion of a 

parasite life cycle highly probable. Equally, the ability to withstand parasite infection is a 

key factor in maintaining health within brown trout populations.  
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1.2 Diplostomum 

1.2.1 Life cycle and pathology  
 
The oft-parasitized brown trout is infected by a variety of parasites due in part to its 

ability to survive within varied environments. A parasite commonly found in a variety of 

riverine and lacustrine population of brown trout is the eye fluke; Diplostomum spp. 

Trout act as intermediate hosts for the metacercarial stage which resides within the oculus 

of the trout (Betterton, 1974; Lyholt and Buchmann, 1996; Stables and Chappell, 1986a; 

Whyte et al., 1987, 1990, 1991). Infection is achieved via  penetration by free-living 

cercariae, shed by infected freshwater snails (Lyholt and Buchmann, 1996). Snail 

infection occurs through the consumption of sporocysts, shed from definitive hosts into 

the water. Once the sporocyst is consumed, the parasite migrate to the gonads of the snail, 

making the host immunogenically inert, ensuring increased duration of infection and 

prolonged cercarial production (Karvonen et al., 2006).  Released cercariae exhibit a 

free-living life span of approximately 8 hours during which they must attach to the 

mucosal layer of the trout host, with motility directly associated with water temperature 

(Karvonen et al., 2003). Post cercarial penetration Diplostomum migrate through host 

musculature to infection site within the immuno-inert ocular site (Bakal et al., 2005) 

(figure 2). Pathology associated with intermediate host infection is recognizable cataract 

formation (Larsen et al., 2005). Within wild fish populations infection accumulates 

annually due to high cercarial prevalence months, coinciding with warmer water 

temperatures in summer and early autumn (Stables & Chappell 1986; Larsen et al. 2005; 

Turgut and Ozgul, 2012). In severe cases, heavily infected fish suffer from blindness, 

emaciation and death. Histopathology associated with severe ocular damage can include 

exophthalmia, lens dislocation, capsular rupture and retinal detachment. Mortalities 

resulting directly from infection are difficult to ascertain due to death being associated 

with secondary effects from the infection (Kristmundsson and Richter 2009; Larsen et al. 

2005). 
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Figure 2; Life cycle of Diplostomum spp.   
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1.2.2 Taxonomy of Diplostomum 
 
Eye flukes are some of the most ubiquitous infective parasite taxa. Diplostomum 

spathaceum has been found infecting over 100 species of fish worldwide (Chappell, 

1994). The geographic infection range of Diplostomum is wide, found infecting hosts 

within Canada (Brassard et al., 1982; Marcogleise et al., 2001; Galazzo et al., 2002), 

Europe (Buchmann, 1985; Ballabeni, 1994; Pylkko et al., 2006; Georgieva et al., 2013), 

East coast of Africa (Migiro et al., 2012; Ndeda et al., 2013) and the Sub-Arctic 

(Frandsen and Malmquist, 1989; Voutilainen and Taskinen, 2009; Blasco Costa et al., 

2014).One of the main reasons for widespread prevalence is the range of hosts utilized 

within Diplostomum lifecycle, and high mobility of the definitive host species; migratory 

piscivourous bird species (Karvonen et al., 2005). With the parasites widespread infective 

potential investigation into taxonomy and species identification is an important tool to 

ascertain geographical species diversity.  

 

The taxonomic identification of freshwater parasites has become an increasingly 

important aspect of parasitology, particularly in assessing the impact of infection in wild 

populations of host species (Faltýnková et al., 2016; Poulin, 2016; Poulin and Mouillot, 

2003). Early identification of Diplostomum spp. proved problematic providing mixed 

results due to their morphological similarity (Niewiadomska, 1996). Identification 

worldwide has benefitted greatly from incorporation of molecular techniques, which aid 

taxonomic identification of previously ambiguous species, leading to the discovery of 

cryptic species in the genus (Vilas et al., 2005;Blasco-Costa et al., 2014; Kudlai et al., 

2017). 

 

Molecular information has been acquired for 19 species of Diplostomum spp, including 

the previously morphologically identified Diplostomum baeri (Dubois, 1937), 

Diplostomum huronense (La Rue, 1937), Diplostomum spathaceum (Rudolphi, 1819) and 

Diplostomum indistinctum (Niewiadomska, 1984). Molecular taxonomic studies on 

European isolates are relatively recent (Georgieva et al., 2013a; Selbach et al., 2015a; 

Faltýnková et al., 2016; Kudlai et al., 2017a) discovering 12 species across northern 

(Blasco-Costa et al., 2014a), central (Georgieva et al., 2013a; Kudlai et al., 2017a; 
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Selbach et al., 2015a) and southern (Pérez-del-Olmo et al., 2014a) Europe. This included 

the discovery of a species complex structure within D. baeri (Isabel Blasco-Costa et al., 

2016) and D. mergi (Selbach et al., 2015a) isolates. The wide ranging infection of 

Diplostomum is highlighted in the discovery of the species within multiple tropical 

locations; Australasia (Cribb et al., 1993.), South America (Szidat, 1969) and Africa 

(Musiba and Gamba, 2006). As indicated by the dates, these studies were performed early 

in taxonomic identification methodology and based purely on morphological 

differentiation. With the onset of molecular taxonomic techniques a fuller picture of 

Diplostomum taxa is becoming clear. Worldwide it consistently presents as a highly 

speciated parasite, with the ability to infect multiple freshwater fish species. With the 

increase use of molecular identification techniques within varied localities, the true 

estimation of species diversity and global richness can be achieved.  

 

1.3 Evolutionary ecology of the MHC complex  

1.3.1 MHC structure and function  
 
One key mechanism that allows local adaptation of host populations is the adaptation of 

host immunogenetics (Sommer, 2005). Key genes associated with the host immune 

system (Zueva et al., 2014);  the major histocompatibility complex (MHC) plays a vital 

role in host infection defense (Piertney and Oliver, 2006). MHC genes encode for 

proteins that present pathogen-derived antigens to T-cells initiating an adaptive immune 

response (Simpson, 1988) and are amongst the most investigated functional genes in 

vertebrates (Hughes and Yeager, 1998). The MHC gene family encompasses two main 

sub-groups of immunological molecules. Class I molecules are expressed on the surface 

of all nucleated cells and present intracellular derived peptides to CD8+ cytotoxic T-cells. 

The Class I MHC cells are primarily associated with defense against viral and bacterial 

insult (Simpson, 1988) . Class II molecules are present on antigen presentation cells like 

macrophages and lymphocytes and process exogenous antigens to CD4+ T-helper cells. 

Class II molecules are associated with the immune defence of parasites and pathogens.  

To recognize the foreign pathogen MHC structure includes a “basket” receptor called the 

“antigen binding site” (ABS) (Cuesta et al., 2006; Cutrera et al., 2014; Forsberg et al., 
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2007; Medel et al., 2010). The role that the ABS plays in direct interaction with foreign 

pathogens makes it a target of studies focusing on how parasite-driven selection can 

facilitate an adaptive immune response at a genetic level in vertebrate populations 

(Eizaguirre et al., 2012; Lamaze et al., 2014a; Natsopoulou, 2010). Although ABS 

regions do show some degree of specificity a single MHC molecule can recognize and 

bind to multiple pathogen peptides that share particular amino anchor positions (Altuvia 

and Margalit, 2004). Genetically MHC molecules are some of the most polymorphic 

genes in vertebrates with the largest variability being exhibited within the ABS region 

(Schenekar and Weiss, 2017) (Figure 3). Genetic theory suggests that at a population 

level resistance/tolerance of a diverse array of pathogens is associated with high MHC 

diversity across a host population (Sommer, 2005). A large body of empirical data 

indicates selection via contact with pathogens acts on MHC loci to maintain MHC 

diversity within populations (Radwan et al., 2014; Bracamonte et al., 2015: 

Perchouskova et al., 2015; Schuster et al., 2016).  
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Figure 3; MHC II schematic diagram, Antigen binding site (ABS) is labeled within binding cleft, the 
site of direct protein pathogen interaction. TCR and CD4  labels denote regions of MHC II that 
interacts with further CD4+ T-cell receptor to enact further immune cascade (Goodsell, 2013) 
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1.3.3 Salmonid MHC ecology  
 
With wild populations of salmonids under varied conservation status (Waples and 

Hendry, 2008) and their increased farmed fish usage, salmonid health is of high 

socioeconomic importance. Numerous studies have investigated the underlying molecular 

basis of the salmonid immune response to infection (Consuegra and Garcia de Leaniz, 

2008; Zueva et al., 2014). The diversity of salmonid MHC complex is viewed as an 

important factor contributing to overall population health (Miller and Withler, 2004). For 

salmonids genetic variability of the MHC loci has been attributed to a number of different 

factors including; mate choice (Consuegra and Garcia de Leaniz, 2008), embryo and 

juvenile fitness viability (Forsberg et al., 2007) and pathogen infections (Lamaze et al., 

2014a) and, thus, also the long term viability of invasive species or non-native strains 

(O’Farrell et al., 2013a; Schenekar and Weiss, 2017). The negative effects that stocking 

has on MHC diversity within wild systems has also been well documented (Currens et 

al., 1997; Lamaze et al., 2017).  

 Evolution and maintenance of the MHC polymorphism in salmonids in response to 

pathogen infection has proven a major mechanism in local adaptation and population 

fitness (Buchmann and Uldal, 1997; D. J. Fraser et al., 2011; Lamaze et al., 2014a). The 

wide body of MHC-associated research has addressed pathogen-driven selection in 

various pathogens; anemia virus (Mjaaland et al., 2005), Aeromonassalmoncida bacteria 

(Croisetière et al., 2008), Gyrodactylussalaris parasite (Tonteri et al., 2010) and stocked 

vs wild population adaptation (O’Farrell et al., 2013a; C. Monzón-Argüello et al., 2014; 

Schenekar and Weiss, 2017). However studies of the evolutionary response of wild 

populations to specific parasite infection are sorely lacking, with the majority of research 

based primarily on inferred parasite infection rather than parasite screen derived data.  

 

1.3.2 MHC ecology and parasite driven selection  
 
The determination of the relative role that microevolutionary processes play in the 

maintenance of genetic diversity within natural populations has been a major focus of 

pathogen-host interaction studies for years (Eizaguirre et al., 2012; Peters and Turner, 

2008). Since the development of DNA methodologies, the proliferation of studies 
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examining genetic diversity across a broad taxonomic spectrum, in turn has facilitated 

efforts to identify effects of selection on different gene regions (Tonteri et al., 2010; 

Zueva et al., 2014). The pressure to maintain increased loci diversity is associated with 

the requirement of individuals to identify and process a wide variety of infective insults 

(Lamaze et al., 2014a). Decreased diversity of MHC-associated loci raises infection 

potential across populations (Ejsmond and Radwan, 2011). The critical role played by the 

MHC in immune recognition means that the complex may be associated with a number of 

behavioral traits linked with the fitness of host populations (Consuegra and Garcia de 

Leaniz, 2008).  

 

Two potential theories have been put forward to explain mechanisms that maintain MHC 

diversity. The first is denoted as “MHC heterozygote advantage” indicating heterozygous 

individuals display greater fitness due to a perceived ability to recognize a wider variety 

of parasite alleles increasing disease resistance (Doherty and Zinkernagel, 1975). 

Empirical data does give weight to the theory, within increased disease resistance of 

heterozygotes in murine models infected with Salmonella enterica (Penn et al., 2002), 

Chinook salmon, Oncorhynchus tsawytscha (Walbaum, 1792) infected with 

haematopoietic necrosis virus (Evans and Neff, 2009) and Gila topminnows, Poeciliopis 

occidentalis (Baird and Girard, 1853) infected with Gyrodactilus (Hedrick et al., 2001). 

The efficacy of the mechanism acting on wild populations has received skepticism 

associated with the significant increase in health between the healthiest homozygous 

individual and heterozygous (De Boer et al., 2004).  The second theory put forward to 

explain parasite-driven selection is the frequency-dependent selection hypothesis. 

Initially proposed as a purely mathematical model, the theory suggests a cyclical 

adaptation of host to most infective parasite allele followed by parasites adaptation to 

host selection (Slade and Macallum, 1992). The theory is backed by limited empirical 

studies deriving from gastrointestinal nematode (Osteragia circumcincta) infection in 

Scottish black face sheep, Ovis aries (Davies et al., 2006)and MHC allele-specific 

resistance to Aeromonas salmonicida bacteria in captive bred at Atlantic salmon (Salmo 

salar Authority) (A. Langefors et al., 2001). Extrapolating the mechanism into wild 

populations presents temporal drawbacks. Alpinus et al. (1997) indicated that a 
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deleterious MHC allele would take 1000 generations to decrease from 1% to 0.1% within 

a population, with any long term study having to address convoluted timeframes to reach 

significant outcomes. So, although empirical data suggest that positive, parasite-driven 

selection underlies MHC variation the exact mechanism behind positive selection is still 

under debate (Sommer, 2005; Piertney and Oliver, 2006; Zhang et al., 2015a). 

 

1.3.3 Functional variation of amino acid sequence within antigen binding site  
 
Whilst MHC diversity goes part way towards maintaining population health, the 

successful infection of a parasite must require it to evade the MHC-dependent immune 

response. One factor that contributes to this is the amino acid sequence within ABS 

region, affecting final binding motif and rendering recognition ability of MHC void. 

Common mechanisms of parasite infection avoidance are; antigenic variation of parasite 

(Zambrano-Villa et al., 2002), changes to the cell surface binding glycoprotein (Cowman 

and Crabb, 2006) and impaired T cell function (McSorley et al., 2013).  Within infective 

models of avian malaria the variation present within just one amino acid within the ABS 

allows of the  parasite to evade the host’s  immune system (Radwan et al., 2012). The 

nematode infection of Malagasy mouse lemurs (Microcebus murinus) denotes 

susceptibility to nematode infection with highly specific arginine placement within amino 

acid motifs within antigen binding sites (Schad et al., 2005). To date molecular 

interactions between parasites and host immune cells are not well understood within wild 

populations. The current picture of host-parasite MHC relationships has relied heavily on 

studies done within controlled infection environments (Borghans et al., 2004; GoüY De 

Bellocq et al., 2008; Eizaguirre et al., 2011; Dunn et al., 2013). Investigating the 

intricacies of host-parasite relationships in the wild must encompass a multi-faceted 

approach. With the amino structure being so crucial to MHC efficacy, methodology 

design cannot focus only on MHC genetic diversity in response to parasite infection.  
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1.4 Host-parasite infection dynamics  

1.4.1 Host-parasite molecular interactions 
 
Freshwater trematodes frequently have complex life cycles utilizing multiple hosts within 

the freshwater environment before achieving definitive host infection (Criscione and 

Blouin, 2004). The parasite undergoes a significant transformation from free-living 

cercariae to blood-borne stage of infection within fish host (Curwen et al., 2012.). 

Migration of the parasite through blood vessels requires combating a litany of host 

immunogenic responses. Defense against parasitic insult requires deployment of varied 

immunogenic countermeasures (Nordling, 1998; Sorrentino et al., 2002) Immunogenic 

response is broadly divided into two systems. The innate immune system is an immediate 

response to infection, utilizing direct binding of MHC molecule to pathogen initiating a 

T-cell immune cascade response (Maizels, 2009). The second form of immune reaction is 

the adaptive immune response involving pathogen-specific antibodies, which travel 

throughout the blood stream. These antibodies of the host recognize pathogenic insult in a 

highly specific manner to begin a complement-driven immune response (McSorley et al., 

2013).  The capacity of freshwater trematodes to modulate and evade both aspects of the 

host immune response underpins invasion success and infection longevity within host 

populations.  

 

1.4.2 Parasite tegument and surface antigens  
 
The immune evasion of trematode parasites has been associated with the tegumental 

surface layer of the intermediate parasite stage (Coakley et al., 2016). This tegumental 

surface is a syncytium that covers the entire worm bounded by a bilayer apical 

membrane, which interacts directly with host immune cells (Skelly and Wilson, 2006). 

The tegument is a folded unicellular membrane covered in micro-triches to increase 

overall surface area (Skelly and Wilson, 2006). It is, thus, a major canvas for scientists to 

isolate and investigate potentially immunomodulatory-important antigens used in 

trematode infection. One of these surface antigens frequently investigated is the 

Tetraspanins protein family. Tetraspanins are a large superfamily of evolutionarily-

conserved cell surface antigens found throughout the natural world (Huang et al., 2005). 
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A total of 37 Tetraspanin proteins were isolated within Drosophila melanogaster (Garcia-

España et al., 2008) implicated in a multitude of biological processes including; oocyte 

fertilization, infection susceptibility in mammalian parasites, cell-cell communication and 

immune cell interaction (Hemler, 2001).  One of the most significant roles Tetraspanins 

have is in the action of cell adhesion in antibody binding processes, initiating changes in 

phosphorylation patterns within the cell-to-cell interface (Braschi et al., 2006). To 

achieve immune-modulation tetraspanins proteins modulate crucial interactions of 

immune cells including adhesion, migration and synapse formation of membrane 

signaling complexes (Levy and Shoham, 2005a). The complex role that these proteins 

play in cell-cell processes is due to the structure and function of the proteins on the cell 

surface. The common structure of tetraspanins consists of four transmembrane domains. 

Transmembrane domains 1 and 2 flank a small extracellular loop with 3 and 4 flanking a 

larger extracellular loop. Within this second larger loop resides a distinct cysteine-

cysteine-glycine (CCG) domain conserved across all tetraspanin proteins regardless of 

species (Hemler, 2003) (Figure 4A). This distinct tetraspanin structure is associated with 

specific functions; extracellular loops mediate specific protein-protein interactions with 

the intracellular regions associated with cytoskeletal strengthening of the tegument 

(Rubenstein, 1998). Specific immune functions affected by tetraspanins proteins have 

been narrowed down to; disruption of signaling marker for B cells (Tarrant et al., 2003) 

and disruption of T-helper cell response (Mittelbrunn et al., 2003). The disruption of T-

helper cellular response has been implicated with the tetraspanins involvement in 

trematode infection. Decline in T-cell titer during blood stage infection of Schistosoma 

mansoni (Lewis and Wilson, 1981) and decreased T-cell recognition in Fasciola hepatica 

(Robinson et al., 2009). Through its direct involvement with the immune system 

tetraspanins proteins have been highlighted as potential vaccine targets for 

Schistosomiasis. Although investigations are still in their infancy, TSP-2 knockdown 

studies have seen an increased egg clearance rate within murine models (Tran et al., 

2006).  
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Figure 4; Two potentially immunomodulatory proteins utilized in freshwater trematode invasion. 
A, Tetraspanin intracellular protein with distinctive double extracellular loop (Kaesler et al., 2012). 
B, Venom allergen-like protein, one of many proteins released within blood-borne infective stage 
that down regulates immune cell action of host (Kelleher et al., 2014) 
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There are further proteins released as an immunomodulatory cocktail during parasite 

blood stage infection. Included among these is the Venom-Allergen Like (VAL) family 

of proteins(Chalmers and Hoffmann, 2012). VAL proteins are a large superfamily of 

proteins all containing a conserved 3-layer α-β-α sandwich tertiary structure (Hewitson et 

al., 2011) (Figure 4B). Using a combination of genomic and proteonomic analysis the 

VAL family can be divided into two distinct groups, Group 1 VALs (VAL1, 

2,3,4,5,7,8,9,10,12,14,15,18,19,20,21,22,23,24,25,26,27,28) are thought of as signal 

peptides with 3 conserved disulphide bonds. Group 2 VALs (VAL6, 11 13, 16, 17) do not 

possess these bond groups (Curwen et al., 2006). There is growing evidence to suggest 

that group 1 VAL proteins are an excretory product in trematode species as disulphide 

bond indicates an increased protein-protein binding potential. Investigations have 

discovered group 1 proteins within S. mansoni, S. japonicum  (Curwen et al., 2006) and 

O. viverrini (Young et al., 2014). Immunomodulatory actions were observed causing a 

depleted IgG response during S. mansoni murine infections (Pleass et al., 2000) and 

reduced T-helper efficacy during host migration (Jenkins and Mountford, 2005). 

Information regarding group 2 proteins is sparse; the one exception is VAL 6 protein 

being extensively expressed throughout host invasion and infection of S. mansoni 

(Hansell et al., 2008). Due to the large variety of VAL proteins isolated, studies into the 

efficacy of using them as drug or vaccine targets remain scarce (Hemler, 2003).  
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Freshwater trematodes have adapted varied immuno-evasive tools to match the multi-

armed host defense response. Genomic-based research has allowed for the annotation of 

specific proteins that affect the effectiveness of infection. With both of the above proteins 

playing crucial roles in infection, it is natural that they should be highlighted as potential 

targets for vaccine design. Although genomic-based investigations have been based on 

medically-relevant parasites Schistosoma and Fasciola, focusing future research on 

aquatic trematodes such as Diplostomum may provide targets for vaccines that can be 

used in aquaculture practices, decreasing the overreliance on antihelminthic drugs in the 

fish farming industry.  

 

1.5 Rationale and aims  

1.5.1 Study area 
 
Populations of S. trutta (brown trout) have existed in self-sustaining populations in the 

northern Highlands of Scotland since the retreat of last Scottish ice sheet (Late 

Devensian; 17,000 – 13,000 years ago) (McKeown et al., 2010).  They present as 

anadromous (sea trout), lacustrine (brown trout) and carnivorous (ferox trout) morphs. 

The lacustrine brown trout is known to populate the many hill lochs, estuaries and rivers 

that populate the Scottish Highland environment (Neil, 2013). Demonstrated in numerous 

fish health screens, UK brown trout exhibit high levels of parasitism and are frequently 

infected by various species of  cestode, nematode and trematode (Byrne et al., 2002; 

Hartvigsen and Kennedy, 1993; Molloy et al., 2014). Brown trout inhabiting the Gairloch 

region of Scotland populate an assortment of isolated freshwater hill lochs and sub-alpine 

streams in this region. Populations of trout in the region have not undergone substantial 

stocking of non-native species, unlike many salmonids populations across Eurasia 

(Schenekar and Weiss, 2017).With sub-populations of native brown trout existing 

alongside parasite  
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Figure 5; Gairloch hill loch system within the northwest Scottish Highlands. The study area presented numerous elevated 
lochs and sub-alpine burns all inhabited with self-sustaining brown trout populations. Map was created using ggplot R 
packages (Wickham, 2016).  
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Fauna in isolation, it makes the region a model area to study the long term effects of 

parasite presence on trout immunogenetics (Figure 5).  

 

As highlighted within this review, genomic data (remember data is plural) surrounding 

host-parasite relationships within the aquatic environment are sorely lacking. Salmonid 

aquaculture has eased some population pressure on wild fish stocks, however the 

continued reliance on pharmalogical intervention to decrease parasite infection (and other 

factors) has led to a severe negative impact on wild populations of salmon and trout.  The 

understanding of the infection dynamics and population genetics of aquatic parasites 

could aid in future control methods within aquaculture industry and conservation 

practices. This study will seek to highlight the importance of genetic species 

identification and utilizing genomic techniques to understanding molecular factors 

associated with parasite resistance and susceptibility within populations of salmonids. 

The overarching aim will be achieve through the completion of these key objectives: 

 

 

Objective 1: To perform a full parasite screen of brown trout subpopulations across the 

Gairloch hill Loch system within varied locations and water bodies.  

 

Objective 2: To carry out characterization key parasites species infecting brown trout 

across the Gairloch system. Species level identification will be performed utilizing 

molecular markers associated with species delineation to provide accurate depiction of 

species infecting subpopulations of brown trout. 

 

Objective 3: To carry out a population-wide analysis of the antigen binding site in MHC 

class II resulting data with differential parasite infection between trout populations  

 

Objective 4: To carry out a genomic study of antigenic properties of Diplostomum spp. 

affecting infective success across Gairloch system. This process will include the genomic 

annotation of key antigens associated with immunomodulation of the parasite.  
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2 Survey of parasites infecting wild brown trout in 
a highland hill loch system  
 

2.1 Introduction  
 

Brown trout is an indigenous salmonid species in Europe, North Africa and western Asia 

(L Bernatchez, 2001), it exists in three phenotypic morphs; the anadromous sea trout (S. 

trutta trutta) and lacustrine form (S. trutta fario) (A Klemetsen et al., 2003). They live in 

brackish estuaries, streams and lakes and spawn in fast-flowing streams (Cucherousset et 

al., 2005). To inhabit a variety of environments residential brown trout are eclectic 

predators.  Their main food source is littoral zoo benthos, however populations adapt to 

particular food item when specific to habitat and at times can become largely 

piscivorous/carnivorous (L’Abée-Lund et al., 1992). Diet changes within a population are 

influenced by development rate and size of the fish within the habitat. Smaller brown 

trout are primarily surface feeders near the shore, with larger fish more inclined to exploit 

pelagic waters offshore, feeding on zooplankton, copepods and small fish. Trout food  

choice can increases likelihood of parasitic infection due to intermediate host 

consumption (Byrne et al., 2002).  

 

2.1.1 Brown trout health in Scotland  
 
The original populations of brown trout in Scotland occupied the isolated lochs, streams, 

and highland lochans immediately after the retreat of the European/Scandinavian ice 

sheet approximately 12,000 years ago (L Bernatchez, 2001). Salmonid species in 

Scotland have received recent attention due to the substantial decline of anadromous and 

estuarine populations along the west coast of Scotland over the last 20 years (Bjørn et al., 

2001; Krkosek et al., 2005). The dramatic population decline across anadromous 

populations is a likely consequence of expansion of offshore fish farming across the west 

coast of Scotland the, with the concomitant increase in Lepeophtherirus salmonis (salmon 

lice) infecting annual sea trout runs (MacKenzie et al., 1998). Equally, the occurrence of 

parasite infection within freshwater fish has received considerable attention over the last 
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30 years (Nachev and Sures, 2016; Sheath et al., 2015; Siwertsson et al., 2016). There are 

two schools of thought when examining the occurrence and predictability of parasite 

fauna within resident fish species. One theory explains that the infection of parasites 

within freshwater species is wholly stochastic with chance colonization of parasite host 

species (Kennedy 1978, Valtonen et al., 2001). In contrast, to this theory is the 

supposition that rare species of parasite exhibit predictability in their occurrence, which 

is, facilitated by specific environmental factors. Such a case might be the Norwegian 

brown trout populations in isolated lakes where individual rare parasite species occur in 

specific locations, owning to snail host presence (Hartvigsen and Halvorsen, 1993; Byrne 

et al., 2000). Populations of brown trout frequently act as the intermediate hosts of 

numerous helminth species (Hartvigsen and Kennedy, 1993), are infected by trematodes 

(Moody and Gaten, 1982), Cestodes (Dorucu et al., 1995), Nematodes (Xiong et al., 

2013)  and Acanthacephala (Nabi et al., 2016). The complexity of many parasite 

lifecycles means that transmission success rate depends on host availability and size of 

water body (Kennedy, 1985). Summer months represent a time period of higher infection 

rate for many parasite species, warmer water allowing extended parasite survival times in 

free living forms. Within higher latitude regions the reduction in warm month duration 

constrains the infective capability of freshwater helminthes (Hakalahti et al., 2006; 

Marcogliese, 2008; Zbikowska and Nowak, 2009). Intestinal parasites make up the 

majority of infective load in trout populations. Cestode (Diphyllobothrium spp.) and 

Nematode (Eustonglyides spp.) infections have significant pathogenic impact in fry but 

minimal pathogenic effects on adult brown trout (Dorucu et al., 1995; Riitta Rahkonen et 

al., 1996) . Extra-intestinal helminth infection sites in brown trout include; swim bladder 

(Cystidicola farionis) (Siwertsson et al., 2016), eyeball (Diplostomum spp. and 

Tylodelphus) (Stumbo and Poulin, 2016),  gills (Ergasilus sieboldi) and mucosal 

epithelium (Pisciola, Hemiclepsis and Gyrodactilus) (Buchmann and Uldal, 1997; Loch 

and Faisal, 2014). Freshwater Digenea represent an important parasitic agent in trout, 

with indirect pathogenic effects on the host. The eye flukes Diplostomum and 

Tylodelphus metacercarial infective stage may blind the fish in heavy infection loads, 

making the fish vulnerable to increased predation, and have been associated with 
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increased fish deaths in farmed (Larsen et al., 2005) and wild populations (Blasco-Costa 

et al., 2014b).  

2.1.2 Parasite identification  
 
Delimiting species of parasite is often difficult due to their limited morphological 

characteristics. Additionally, many parasites recovered from host samples may be larvae 

or eggs. Thus genetic identification of parasite species is quickly becoming the most 

utilized application in species identification in parasitology. Parasite screening of host 

samples involves thorough dissection procedures and the removal of parasites residing 

within host. Identification of fish parasites is important for the monitoring of disease 

transmission and fish health screening within a freshwater system; it is particularly 

important because many parasites are pathogenic to humans (Wicht et al., 2010; Fang et 

al., 2015). Many fish parasites share morphological characteristics, making accurate 

identification of a large dataset difficult and exacerbating public health issues associated 

with, and requiring accurate identification of, such parasites. 

 

DNA barcoding offers a widely regarded method to provide initial taxonomic 

identification of parasite species compared to previously used morphometric practices 

(Hebert et al., 2003). The amplification of the cytochrome oxidase gene via parasite 

tissue sample offers a DNA-based ‘barcode’ of the parasite to provide an initial 

delineation of parasite species. This is particularly helpful in ascertaining parasite fauna 

of freshwater fish species (de León and Choudhury, 2010; Xiong et al., 2013) with 

morphometric analysis provides a time consuming and inaccurate way of identifying 

parasites of similar morphology (Hajibabaei et al., 2007; I. Blasco-Costa et al., 2016). 

One particular strength of DNA barcoding techniques is its ability to process a large 

amount of samples relatively quickly, allowing for large-scale identification of screened 

parasite data from host populations (I. Blasco-Costa et al., 2016; de León and 

Choudhury, 2010; Hajibabaei et al., 2007).  The identification of the gene sequence is 

performed when compared against similar sequences using blastn algorithm (Ye et al., 

2006). The algorithm uses the heuristic search criteria to match sections sequences in a 

stepwise manner to provide similar sequences revealing species identity (Ye et al., 2006).   
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Parasites are an important influence upon wild brown trout, both in terms of their 

conservation in the wild and in their role as proxies for studying socioeconomically 

important salmonids in aquaculture. This, coupled with the rising incidence of fish 

parasites within human populations (Kuchta et al., 2013) means that the recently-

acquired ability to carry out molecular characterization of the incidence and interactions 

of brown trout and their parasites at the  population level offers opportunities to examine 

questions that have been hitherto difficult to address.  This study takes advantage of this 

opportunity. 

 

2.2 Study Area  
 
The study area consists of 12 lakes (lochs) in the Gairloch hill loch system on the north 

west coast of Scotland (Figure 1). The entire highland region of Scotland underwent 

dramatic deforestation in the last 300 years; this removed much of the native plant fauna 

from the highlands and Gairloch in particular (Dickson, 1977). Along with the removal of 

native forests, large predator removal has also occurred in the region, with the complete 

extinction of large mammal predators; the Eurasian bear (Ursus arctos arctos) and the 

Eurasian Wolf (Canis lupus lupus) (Nilsen et al., 2007) and a drastic reduction in birds of 

prey species; the Osprey (Pandion haliaetus) and White-tailed eagle (Haliaeetus 

albicilla) (Whitfield et al., 2004). Deforestation has proven to be a major factor in the 

reduction of nutrients in the environment, leading to species extinction and has been 

exacerbated by removal of apex predators from the system, drastically reducing the 

motility of nutrients through local food webs and local habitat (Innes, 1983). The 

investigation of parasitic species infecting the brown trout in the area would provide a 

database of parasites infecting an important salmonids species in the UK and monitor the 

presence of any rare species, or particularly virulent species of parasites. The parasite 

screen would also provide population and community dynamics of species across an 

oligotrophic loch system with a diminished definitive host presence.  
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2.3 Materials and Methods 

 

2.3 Sample protocol 
 
The sampling sites of wild brown trout are shown in Fig 1. A total of 210 individuals 

were sampled across the Gairloch hill lochs within 14 populations (Fig 1). Anglers using 

hook and line through the years 2012-2015 donated the collections of whole trout 

samples. Collection periods were during high parasite months of July – August; this 

regime was repeated during 2012, 2013, 2014 and 2015.  

 

Fish were caught and dissected fresh within 1-3 hours after capture, with dry weight and 

fork length of fish taken for each fish. All fish underwent complete necropsy according to 

fish health screen protocol (Environment agency, 2011). The parasitological investigation 

of the trout began with an external inspection of the skin, fin, gills, and mouth cavity for 

the detection of possible ecto-parasites. Once exterior is thoroughly examined blood was 

extracted from heart to examine potential protozoa infection.  The body cavity was 

opened, particularly the liver, gonads, kidneys, and external surface of the digestive tract. 

Stomach and intestines was opened and potential infecting parasites removed. The 

parasites were isolated, removed carefully and prepared for identification mostly to the 

species level. Investigation of removed parasites was performed using comprehensive 

microscopy analysis for protozoan and metazoan parasites. All parasites were preserved 

in 70% alcohol and stored for later identification. Individual parasites were stored in 

individual 1.5ml micro centrifuge tubes to reduce the chance of cross-species molecular 

contamination.  
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Table 1; Sample site location properties. Coordinates of sample sites in congruence with Ordinance survey 
map coordinates. Weight and Length denote standard deviation of average dry weight and fork length of 
brown trout caught in each location  

Map Sq. North East Elevation (m) Weight Length 
Lochen nam Breac NG 785 813 79.6 38.4±15.1 149.5±20.6

Loch Feur NG 783 806 72.3 40.6±17.3 144.6±26.3
Loch Coire na-h-Arigh NG 784 804 79.9 43.3±17.3 152.8±25

Loch Gharbe Doire NG 792 796 84.2 68±59.9 175.9±52.9
Loch Airigh Mi-Craidh NG 827 768 219.8 63.1±9.6 144.8±15.1

Loch Airigh a'Phuill NG 846 755 232.9 65.1±30.1 175.3±33.2
Loch na Feithe Mugaig NG 745 856 302.3 40.7±17.3 161.4±29.2
Loch Doire na h-Airigh NG 741 874 271.2 90.7±29.5 206±24.3
Loch nam Buainichean NG 736 854 203.1 63.5±36.3 171.4±35.3
Lochan Dubh nam Biast NG 736 859 218.8 214.5±38.1 128.8±64.2

Loch na h-Oidche NG 668 884 387.6 154.8±19.1 47.2±13.5
Lochan Fada NG 685 648 310.1 215.5±27.1 207±44.5

Loch a' Mhadaidh NG 788 799 168 213.3±23.2 177±24.6
Alt a' Glinne NG 843 753 229 75.5±9.7 119±44.7

Lochan Sgeireich NG 786 800 127 155.5±29.5 162±44.8
Flowerdale estuary NG 843 748 6 215.5±27.5 136±74.9
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Figure 6: Map of sampling regions within Gairloch system abbreviations are used for specific loch sub-
populations: LNO; Loch na h-Oidche,  LFM; Loch na Feithe Mugaig, LDA; Loch Doire na h-Arigh, LAP; 
Loch Arigh a’Phail, LMC; Loch Arigh Mhic Criadh, LFE; Loch Feur, LNB; Lochen nam Breac, LCA; Loch 
Coire na-h-Arigh, LGD: Loch Gharbe Doire and LFD; Loch Fada. Triangles denote direction of loch not 
fitting on map (osmaps online, 2018)  
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2.3.1 Molecular identification  
 
Total genomic DNA was extracted using protocol of QiagenTM Blood and Tissue 

extraction kit. Primers were designed using previously published species-specific primers 

and using primer-BLAST software from NCBI (www.ncbi.nlm.nih.gov/tools/primer-

blast/). Primer sequences, fragment size and published reference are contained on table 2 

primer design table.  Initial species identification was performed using light microscopy 

to sort species before PCR procedure.  

 

PCR reactions were performed for each gene fragment using 12.5 µl hot start taq 

polymerase; Thermo–StartRPCR master mix (0.625 Units of Taq DNA polymerase, 1X 

reaction buffer, 0.2 mM of each dNTP and 1.5 mM MgCl2) Reactions were performed 

using a Techne Prime 96 well thermal cycler (TechneTM) and 5 µl of each amplicon was 

visualized in 1 % agarose gels stained with SafeView nucleic acid stain 

(nbsbiologicalsTM) under UV using Licorgel documentation system. The remaining 20 µl 

PCR products were sequenced using Sanger sequencing protocol at the DNA sequencing 

facility of the Natural History Museum, London, using the PCR primers with Fluorescent 

Dye Terminator Sequencing Kits (Applied BiosystemsTM); sequencing reactions were run 

on an Applied BiosystemsTM 3730XL automated sequencer. 

 

Identification of amplified fragments was analyzed using nucleotide blast database as part 

of the NCBI online suite of nucleotide analysis software 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). The setup up of blast analysis was to last 

sequences against “Nucleotide collection (nr/nt)” ncbi database, utilizing blastn algorithm  

To ensure the most thorough analysis of similarity between acquired amplicons and 

known nucleotide database collection.  

 

 

 

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.3.2 Data analysis  
 
Indices of the prevalence and mean abundance were calculated for each parasite species. 

The normality of the data series was tested using Kolmogorov-Smirnov test as part of 

Minitab v13 statistical analysis program. The Core-satellite species hypothesis is one that 

explains the occupancy patterns of species across a landscape. Core species are typically 

broadly distributed and abundant within the region studies. Satellite species are less 

broadly distributed and typically denoted as rare within the study region  (Hanski, 1982; 

Gibson et al., 2005). Analysis of parasite community and the investigation of core and 

satellite species involved the measurement of the prevalence within individual population 

in comparison to entire dataset; >60% = core species, 41-60% = secondary species, 6 – 

40% = satellite species and <6% = rare species. The handling of the number of parasites 

and distribution was split into three different categories: 

 

Prevalence: it is intended as a descriptive statistic for the presence or absence of parasite 

species infection. It is commonly displayed as a percentage when used descriptively 

(Burns et al., 2007)  

 

Prevalence = Total number infected x 100 
Total number of fish 

 

Table 2: Table of cox1 primers designed to identify parasites infecting populations within the Gairloch system. Newly 
designed primers are denoted in yellow  boxes. 
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Abundance: Abundance is a number denoted as the number of individuals that are 

infected by the particular parasite within the sampled population (Burns et al, 2007).  

 

Abundance = Total number of parasites recovered within sub-population 
Total number of fish examined within the sub-population 

 

Raw parasite number: This is denoted as the number of parasites recovered within the 

sample subpopulation within mean incidence of the species across the sub-population 

denoted the incidence of individual parasite (95% confidence interval) (Burns et al., 

2007).   

 

 

2.4 Results 
 

The total parasite fauna consisted of 6 taxa including three species of cestodes 

Diphyllobothrium dendriticum (Nitzsch, 1824), Eubothrium crassum (Bloch, 1779), 

Eubothrium salvelnini (Schrank, 1790) one species of digenea (Diplostomum baeri.), one 

species of nematode (Eustronglyides spp. (Jagerskiold, 1909)) and one species of 

acanthacephalan (Neoenchinorhynchus saginatus (Stiles and Hassall, 1905)). Resulting 

blastn analysis of sequences revealed high similarity of cestode species D. dendriticum 

(ident 98%, E value =0.0), E. crassum (ident 97%, E value=0.0), E. salvenini (ident 97%, 

E value=0.0). The lowest blastn scores were within digenea D. baeri (ident 93%, E 

value=0.0) and acathocephala N. saginatus (ident 89%, E value 0.0) (Table 3).  

 

The E value is fully named the ‘Expect value’, and is a parameter that describes the 

number of hits that is expected to match per chance when searching the Blast database. It 

decreases exponentially as the similarity score increases, essentially explaining the 

amount of ‘background noise’ hits that occur when the blast algorithm matches the 

sequence. The closer the E value is to zero, the more significant the match is with zero 

background matches occurring as part of the output.  As the entire test of E values (Table 
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3) were 0.0 indicating all retrieved sequences were significantly matched to the 

corresponding cox1 sequence of Blast match.  

 

 

 

 

 

 

 

 

 

Species presence was divided between localities; 4 sites displayed cestode infection 

Lochan nam Breac, Loch Feur, Loch Coire na h-Airigh and Loch Gharbe Doire (fig 4). 

The only taxon that infected all sites was the digenean, Diplostomum baeri. with a 

prevalence of 81% across the study area. The nematode taxa Eustronglyides spp. occurs 

only in two lochs. Diplostomum baeri dominated the brown trout parasite community and 

represented the core species both overall and in every locality.  Brown trout parasite 

infracommunities consisted of 1-6 species with 12% being completely uninfected across 

the sample site (Hanski, 1982; Gibson et al., 2005). Single species infracommunity 

infection prevailed across the entire sample site with of all fish being infected by one 

Species name  Query cover  Identical % E value  

Diphyllobothrium dendriticum 100% 98 0 

Eubothrium crassum 100% 97 0 

Eubothrium salvenini 100% 97 0 

Diplostomum baeri 98% 93 0 

Neoechinorhynchus saginatus 90% 89 0 

Eustronglyides spp 99% 97 0 

Table 2; Results table from blastn algorithm search on NCBI genbank database. Matching identical % 
includes average identical value across populations of parasite with standard deviation of mean identical % 
score.   
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species (98% being Diplostomum baeri). Multiple species infection occurred 

predominantly within the low-lying lochs; Lochen nam Breac, Loch Feur, Loch Coire na-

h-Arigh and Loch Gharbe Doire (fig 5), with all trout (47) sampled showing co-infection 

by more than one species of parasite, 60% being infected by 3 species and 32% being 

infected by 4 or more species. As the most dominant parasite Diplostomum baeri 

indicated an increased tendency to be associated with infra-community infection in all 

populations sampled compared to other infective species.  

 

The community classification (Hanski, 1982; Gibson et al., 2005) of the parasites in the 

system saw all cestode and nematode species being classified as secondary species (D. 

dendriticum 2.21%, E. crassum 9.75%, E. salveini 3.23% and Eustronglyides spp. 

7.68%), with Acanthacephala being considered rare species (N. saginatus 0.69%) and the 

core species across all populations being Diplostomum spp. (76.41%) (fig 5). The parasite 

taxa that showed the highest mean abundance was Diplostomum baeri, with consistent 

high infection numbers of host across the entire dataset. Three sub-populations indicated 

increased abundance of an alternative species to D. baeri ; Loch Coire na-h Arigh (E. 

crissum), Loch Feithe Mugaig (Eustronglyides spp.) and the highland burn Alt a’Glinne 

(E. crassum). Eubothrium crassum was the second most abundant parasite with Loch 

Coire na-h Arigh showing the highest abundance, with 10 fish from the sample 

population being infected with the parasite. Alt a’Glinne demonstrated the highest degree 

of E. crassum prevalence at 83% the only sub-population sampled that had did not have 

D. baeri as the most prevalent parasite. Eustronglyides only was present within two sub-

populations sampled however within the Loch Feithe Mugaig population, the parasite 

showed similar abundance and prevalence to the most dominant parasite within the 

system, D. baeri.  
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Figure 7: Parasite prevalence mapped across the system using percentage prevalence of each of the six species mapped alongside the 
sample sites  
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2.5 Discussion  
 
Molecular identification of parasites is increasingly being used for species determination. 

An open-source online platform using blastN analysis makes rapid species identification 

easy to perform, matching input sequence with previously published marker sequences 

within library.  In this case, identification of parasites within the Gairloch Hill Lochs 

formed a preliminary analysis carried out in order to gain an overview of parasites 

infecting brown trout in the system.  

 

All parasites infecting brown trout within the Gairloch hill lochs were representative of 

European fauna and no invasive parasite taxa were recorded. In total six parasite species 

(table 2) were characterized in the study, greatly extending the knowledge of parasite 

infection in lacustrine brown trout in Scotland. Previously the only been extensively 

studied morph was the anadromous form (S. trutta  trutta) (Dorucu et al., 1995; 

MacKenzie et al., 1998). Results from anadromous parasite screen revealed an increase 

in parasite infection diversity. Anadromous forms saw infection from all parasites found 

in this freshwater screen, however the increased diversity of cestode infection; 

Cyathocephalus truncates (Pallas, 1781) and Diphyllobothrium ditreum (Creplin, 1825) 

and nematode infection (Capillaria salvelnini (Polyanskii, 1952), Raphidascaris acus 

(Bloch, 1779) and Cystidicola farionis (Fischer, 1798)) was evident in sea trout parasite 

screens (Dorucu et al., 1995). Substantial copepod infective presence (Lepeophtheirus 

salmonis (Kroyer, 1837) and Caligus elongatus (Von Nordmann, 1832)) has also been 

indicated in numerous sea trout parasite screens on the west coast of Scotland (Johnson 

and Albright 1991; Piasecki and MacKinnon, 1995; Mackenzie et al., 1998). Substantial 

copepod infection has not as of yet been discovered within lacustrine brown trout 

populations and has not been the case in this investigation. Copepod presence would have 

greater infective potential on brown trout residing within estuarine populations of 

residential brown trout. Freshwater localities are often characterized by the differences in 

parasite communities infecting fish host that inhabit them (Hartvigsen and Kennedy, 

1993; Molloy et al., 1995; Valtonen et al., 2001; Nelson and Dick, 2002). In many cases 

the parasites infective capability is limited by suitable host presence. This is particularly 

true in the case of parasites with more complex life cycles where host density is crucial in 
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successful transmission of the parasite’s infective stage. Environmental factors play a key 

role with the presence or absence of host species being crucial for a parasite species to 

maintain infection in a freshwater body. 

 

Parasite abundance as a quantitative parameter of parasite infections is considered to be 

multifactorial in nature, as a function of parasite spatial variation it can be a function of a 

multitude of abiotic and biotic factors (Poulin, 2007). The aggregation of a parasite 

within a system can be considered as a highly variable species attribute, which is 

dependent on the intrinsic to the biology of the parasite, host species and environment 

(Arneberg, 2002; Poulin and Mouillot, 2003; Kutz et al., 2009; Beldomenico and Begon, 

2010). The variability of the parasite abundance and prevalence is important from an 

ecological point of view, a potential regulator of parasite populations and influencer of 

spatial structures (Morand and Guegan, 2000; Smith, 2001). It also demonstrates 

importance from an epidemiological point of view, where the importance of parasite 

abundance in the spread of parasitic diseases amongst host populations is a stressed 

subject   

 

In this study Diplostomum baeri indicates a higher infective level than other parasites 

species, with trout sampled from all lochs indicating eye fluke infection to varying 

degrees. Within Scotland, the parasite exists at high levels within farmed populations 

(Stables and Chappell, 1986a) with this being the first study to see wide-spread infections 

in the wild. Piscivourous bird host has been isolated as a principle cause for broad-scale 

geographical infection presence mirroring studies in of the St Lawrence river in Canada 

(Locke et al., 2010). For parasites with complex life cycles that utilize sequentially more 

than one intermediate host species an overlap of host species is vital for successful 

transmission (Wilbur, 1980; Prugnolle et al., 2005; Louhi et al., 2010). The distribution 

of the parasite across the Gairloch environment indicates sufficient snail host density to 

perpetuate infection level. One factor in regarding high infection levels is annual 

accumulation of parasites during the high infectivity summer months (Hakalahti et al., 

2006). Sub-populations with higher infection rates may correlate with an increased age of 

individuals within the population, accurate aging comparisons between subpopulations 
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are needed to ascertain correlation between fish age with increased presence of 

Diplostomum. 

 

Differential parasitism is present between sampled lochs in the Gairloch system. 

Discriminant analysis of the parasitism of brown trout in the lower-lying lochs (Lochen 

nam Breac, Loch Coire nah-Airigh, Loch Gharbe-Doire and Loch Feur) revealed 

increased number of cestode infection. Only trout in these lochs were infected with 

Diphyllobothrium dendriticum, Eubothrium crassum, Eubothrium salvenius and the 

acathocephalan species Neoenchorynchus saginatus. The discovery of cestode infection 

within these subpopulations was of increased importance because D. dendriticum is 

responsible for the food-borne tapeworm disease, Diphylobothriasis. The co-infection 

with other cestode species would point to an increased copepod presence within the low-

lying lochs. The ingestion of infected copepods is a transmission route of cestode 

infection in brown trout. The presence of three-spine stickleback (Gasterosteus 

aculeatus) is also implicated as a direct factor in cestode infection within a freshwater 

body. A survey of possible stickleback presence may confirm this as a possible factor 

within these specific cestode infected lochs. Human intervention is another factor 

influencing host presence in the vicinity of cestode infected locales. The Gairloch 

recycling center is located near the low-lying lochs (latitude; 57.738481, longitude; -

5.660867) provides a food source for scavenger birds such as the black-headed gull 

(Chroicocephalus ridibundus) and the common gull (Larus canus). Both species are 

definitive hosts for freshwater cestodes, in particular D. dendriticum. With the Gairloch 

system being highly oligotrophic, it is difficult to ascertain the tangible pathogenic effect 

of parasite infection. Behavioral feeding habits affects parasite infection communities in 

salmonids. Artic charr displays a richer parasite infective community in sympatric 

populations with brown trout, primarily due to the increased likelihood of zooplankton 

and copepod consumption (Knudsen et al., 2008).  The presence of cestode infection due 

dietary adaptation of Gairloch subpopulations is in accordance with Kennedy et al. 

(1986) and Holmes (1990), who suggested that fish hosts with potential for the broadest 

dietary range would have an increased diversity of food transmitted parasites. The 

presence of the parasite Diphyllobothrium dendriticum and Eubothrium crassum in 
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particular indicates piscivorous feeding habits, with D. dendriticum having the ability to 

establish infection within prey fish compared to the primarily zooplankton based D. 

ditreum (Halvorsen and Wissler 1973; Curtis, 1981; Scholz, 2003).  

 

 

The hill lochs within the Gairloch system offer variations in parasite-host interaction. The 

low lying-cestode infected lochs are smaller than larger elevated lochs. Smaller water 

bodies change the dynamic, which host and parasite can interact. Density of cercariae 

increases drastically within smaller volumes of water with little water movement creating 

a more viable transmission environment, in particular, Diplostomum eye flukes and other 

freshwater trematodes. Trout from larger lochs in the system had very little cestode 

infection, with the nematode Eustronglyides the only infecting parasite other than 

Diplostomum baeri. Nematodes in general display increased infection within larger fish 

populations compared to smaller populations. The nematode presence within these larger 

populations may reflect an increased number of larger sexually mature trout. Feeding 

habits of sexually mature trout are predominantly more aggressive than juvenile feeding 

on faster moving prey, increasing consumption potential of oligochaete worm species, an 

often-utilized paratenic host of Eustronglyides (Haugen et al., 2008 Oscoz et al., 2008). 

Factors associated with the exposure of trout hosts to parasites through feeding habitat 

and dietary behavior seem to be a very important structuring force of helminth 

communities in trout sub-populations.  

 

Subpopulations of brown trout across the Gairloch system indicate a varied landscape of 

diversity in parasite infection. Primarily associated with host presence, different species 

exist within finite environments within the system. Diplostomum baeri shows an 

overwhelming presence across sub-populations of trout, accounts for the majority of raw 

parasite samples removed from Gairloch brown trout. Its high prevalence within 

freshwater fish populations has been seen worldwide, infecting not only brown trout but a 

multitude of freshwater fish species (Bakal et al., 2005; Larsen et al., 2005; Blasco-Costa 

et al., 2014b; Gendron and Marcogliese, 2017). Within the UK mainland only limited 

research has been performed to explain the high prevalence of this parasite in fish 
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populations (Stables and Chappell, 1986a; Whyte et al., 1991) exacerbated by the lack of  

molecular identification techniques to ascertain genetic diversity and true species within 

UK freshwater fish populations. With the molecular-based research being performed on 

European (Georgieva et al., 2013b) and north American (S. A. Locke et al., 2010a) fish 

populations, this is a prime opportunity to expand the knowledge of Diplostomum species 

richness and diversity within UK trout populations.   
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3. Diversity of Diplostomum. spp infecting Salmo 
trutta in Scottish Highland hill loch system.  
 

3.1 Introduction  
 
Early attempts to understand Diplostomum taxonomy produced conflicting results; 

Yamaguti (1958) placed the genus within the class Trematoda and order Digenea whilst 

Bykhovskaya-Pavlovska et al (1966) placed Diplostomum within the class Trematoda 

within the order Strigeidae. Because larval stages have simple morphologies and different 

life cycle stages have been the focus of separate taxonomic treatments (Valtonen and 

Gibson 1997) taxonomic placement on basis of morphological identification is difficult. 

Current methods of morphology-based identifications of eye flukes have attempted to 

utilize; site occupied, metacercarial morphology and infected host species as criteria to 

enable species characterization (Niewiadomska and Laskowski, 2002). More recently, 

approaches utilizing commonly-applied molecular markers have accelerated recognition 

of host-parasite associations and elucidated complex parasite life cycles of many 

freshwater digeneans (Blasco-Costa et al., 2014a; Georgieva et al., 2013a; T H Le et al., 

2000; S. a. Locke et al., 2010; Moszczynska et al., 2009a) 

 

The inability to identify larval infective stages has been a major impediment in assessing 

their role within wild fish populations (Sangster et al., 2004) and evolutionary aspects of 

their host-parasite associations (Kalbe and Kurtz, 2006). Recent molecular studies within 

Europe and the Americas have provided significant evidence to characterize 24 species-

level lineages of Diplostomum including three species complexes previously recognized 

as single species (Locke et al., 2010a) in Canada and twelve more in hosts from multiple 

life cycle stages in Europe (Georgieva et al., 2013b). Although limited in the geographic 

extent of the study area, these studies made use of use of nuclear markers (ITS1-5.8s-

ITS2) to indicate a previously unrecognized diversity in mainland Europe, North America 

and within Arctic regions. The most recent comprehensive molecular analysis of 2000 

newly acquired and published Diplostomum mitochondrial sequences taken from around 

the world indicated a total of 52 species (Locke et al., 2015). Only 33 of this 52 have 
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been identified in previous studies (Niewiadomska and Laskowski, 2002; Haarder et al., 

2013; Perez-del-Olmo et al., 2014). A population genetic study using both nuclear (ITS1-

5.8s-ITS2) and mitochondrial genetic markers (cox1, NADH, cytb etc.) along with 

samples derived from a variety of geographical isolates would present a more complete 

phylogeography of the parasite and its true species richness worldwide. Moszczynska et 

al. (2009) used Diplostomum specific markers to build a comprehensive barcode library 

(58 linked ITS and 306 cox1 barcode sequences) of North American species of 

Diplostomum. Their study of the St. Lawrence River in Canada revealed high species 

diversity compared to previous morphology-based studies (Locke et al., 2010a, b).  

Along with the extensive research being performed within North America, more recent 

molecular, field=derived investigations have been based upon infections within Europe. 

Integrated ITS and cox1 sequence data from within fish intermediate hosts in Germany 

(Georgieva et al., 2013) and Spain (Perez-del-Olmo et al., 2014) demonstrated genetic 

difference in nuclear marker sequences whilst still showing high morphological 

similarity, highlighting the need for molecular-based taxonomic studies.  

 

Within the United Kingdom molecular identification of species of Diplostomum spp. has 

not taken place despite the presence of infection within wild fish (Wootten and Smith, 

1980; McKeown and Irwin, 1997; Barber, 1997) and farmed salmonid populations 

(Mcguigan and Sommerville, 1985; Stables and Chappell, 1986; Whyte et al., 1987). The 

increasing reliance on fish farm production, particularly within Scotland, makes the 

accurate and repeatable identification of one of the most ubiquitous parasites integral to 

understanding worldwide species richness and providing a potential tool for disease 

control methods.   

 

3.2 Methodology  

3.2.1 Sample collection  
 
Molecular methods were used to characterize  60 parasite isolates dissected from eyeballs 

of whole Salmo trutta caught from 6 different lochs from the Gairloch region of North 

West Scotland (centered approximately 57o43’20.59”N, 5o38’6.85”W) and donated by 
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anglers (2013-2016 inclusive). Dissection and removal of all parasites were in accordance 

with Environment Agency fish health check protocol (Environment Agency, 2008). 

Extracted parasites were stored in 70% ethanol. Each collection site was represented by 

10 metacercariae isolates from 10 different infected fish. These site were denoted as Loch 

na Feithe Mugaig (North; 745, East; 856), Loch Airigh a’ Phuill (North; 846, East; 755), 

Loch Doire na h-Airigh (North; 741, East; 874), Lochan nam Breac (North; 785, East; 

813) and Loch na h-Oidche (North; 668, East; 884).  

3.2.2 PCR amplification  
 
Total genomic DNA was extracted using protocol of QiagenTM Blood and Tissue 

extraction kit. For the amplification 410bp of the cytochrome c oxidase gene (cox1) and 

780bp of Internal transcriber spacer (ITS1-ITS2) region primers were designed using 

primer-BLAST software from NCBI (www.ncbi.nlm.nih.gov/tools/primer-blast/). Partial 

cox1 fragments were amplified using the diplostomid-specific PCR primers 

(Moszczynska et al., 2009): mplatCOX1df (forward; 5’-TGT AAA ACG ACG GCC 

AGT-3’) and MplatCOX1dR (reverse; 5’-CAG GAA ACA GCT ATG ACT-3’). In 

addition to primers used for PCR amplification, specific primers were designed to aid in 

specificity and accuracy in association with further sequencing technologies, these were 

MplatCOX1SEQdF (5’-TGTAAAACGACGGCCAGTTTWCITTRGATCATAAG-3’) 

and MplatCOXSEQdR (5’-

CAGGAAACAGCTATGACTGAAAYAAYAIIGGATCICCACC-3’). The ITS1-5.8S-

ITS2 cluster was amplified for a subset of isolates from each cox1 derived lineage using 

the primers of Galazzo et al. (2002) MplatdiploITSF (forward; 5’-AGG AAT TCC TGG 

TAA GTG CAA G-3’) and MplatdiploITSR (reverse; 5’-CGT TAC TGA GGG AAT 

CCT GGT-3’).  

PCR reactions were performed for each gene fragment using 12.5 µl hot start taq 

polymerase; Thermo–StartRPCR master mix (0.625 Units of Taq DNA polymerase, 1X 

reaction buffer, 0.2 mM of each dNTP and 1.5 mM MgCl2) and 1–2 ng/µl of DNA. The 

template PCR program used for all isolates was: 95° for 15 minutes; 40 cycles at 95°C, 1 

min; 55-58°C; 72°C, 1 min; 72°C for 7 minutes.  Annealing temperatures were optimized 

on the primer set with platydiploITS using 57°C and platydiplocox1 52°C. Final reactions 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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were made up to 25 µl with PCR-grade water. Reactions were performed using a Techne 

Prime 96 well thermal cycler (TechneTM) and 5 µl of each amplicon was visualized in 1 

% agarose gels stained with SafeView nucleic acid stain (nbsbiologicalsTM) under UV 

using Licorgel documentation system. The remaining 20 µl PCR products were 

sequenced using Sanger sequencing protocol at the DNA sequencing facility of the 

Natural History Museum, London, using the PCR primers with Fluorescent Dye 

Terminator Sequencing Kits (Applied BiosystemsTM); sequencing reactions were run on 

an Applied BiosystemsTM 3730XL automated sequencer. 

3.2.3 Alignments and Data analysis 
 
All sequences analyzed in the dataset were sampled from the intermediate metacercarial 

stage of the life cycle. All sequences from the Gairloch data set represent Diplostomum 

from a single infected individual, the dataset including individuals from 6 different loch 

subpopulations with 10 samples in each loch. 

Both published and the newly generated cox1 and ITS sequences were aligned using 

Clustal W implemented in BioEdit software. Both cox1 and ITS alignments were 

examined using 60 newly-acquired sequences derived from Gairloch isolates and 

previously published sequences retrieved from Genbank 

(https://www.ncbi.nlm.nih.gov/genbank/) from European and north American isolates of 

D. baeri, D. spathaceum, D. pseudospathaceum, D. mergi and an outgroup of 

Tylodelphys clavata.  

To deal with heterozygous sites arising from direct sanger sequencing PHASE analysis 

package as part of DNAsp software (Librado and Rozas., 2009) was utilized to generate a 

dataset arising from heterozygote alternative sequences and initial sequence. Prior to 

phylogenetic tree construction, partitioning of sequence within BEAST software package 

(Bouckaert et al., 2014) ignores ambiguous sites within heterozygous sequences. The 

removal of heterozygous sites within a sequence will result in the data set with less 

homoplasy. However entering heterozygous sites, as part of the alignment will affect 

branch support for each allele in a clade, with artificial site diversity lacking 

autapomorphies within true sequence.  

https://www.ncbi.nlm.nih.gov/genbank/
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Species boundaries were inferred using via Maximum likelihood (ML) method using 

Bayesian inference criterion (BIC) in Beast 2.0 software (Bouckaert et al., 2014) using 

general time reversible models including estimates of site-rate heterogeneity (GTR+G) 

for the cox1 dataset and the Kimura-2 parameter model including estimates among-site 

rate heterogeneity and invariant site (K2P+I+G). Heuristic stop criteria for ML searches 

were fulfilled after 120 (cox1 dataset; best tree 1,234,43) and 110 (ITS1; best ML tree 

1,493,54). Additional saturation analysis was performed on the cox1 phylogeny. The 

accuracy of phylogenetic reconstruction depends on the correct identification of 

homologous sites by sequence alignment and the presence of substitution saturation. The 

divergence that is present in a sequence can be neither too conserved nor too diverged to 

experience substitution saturation. Saturation decreases the phylogenetic information 

contained in sequences leading to problems in the trustworthiness in phylogeny. DAMBE 

(Xia, 2001) is a GUI-Windows based program used to measure the frequency of 

transitions and transversions across a sequence alignment against corrected genetic 

distance. This gives confirmation of accuracy of mitochondrial trees in particular, where 

the rapid accumulation of mutations across mitochondrial genes can lead to saturation.  

Diversity data were acquired through the use of DNAsp software package (Librado and 

Rozas, 2009), developed for comprehensive analysis of DNA polymorphism data. The 

genetic diveristy profile is defined in 5 parameters;  

• S; segregating sites, this values denotes the amount of ambiguities that exist in a 

pairwise comparison between the sequences and is taken into account in 

construction of division of haplotypes, in network construction  

• h; Haplotype number, denotes the number of haplotypes that exist in the dataset, 

this refers to the SNP mutations that are shared within a select group of 

sequences.  

• K; this denotes the average number of nucleotide differences that occurs in a 

pairwise comparison of alignments within a dataset (Tajima, 1983). This is 

computed in response to stochastic variance (Tajima, 1993 equation 14), 

Sampling variance (Tajima, 1993 equation 15) and Total variance (Tajima 1993 

equation 13) for no recombination parameters. Stochastic variance (Tajima, 1993 

equation 17), Sampling variance (Tajima, 1993 equation 18) and Total variance 
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(Tajima, 1993 equation 16) for free recombination parameters, hence K is denoted 

as ‘average’ number of nucleotide differences.  

• Pi; Nucleotide diversity, the average number of nucleotide substitutions per site in 

a pairwise comparison across the dataset (Nei, 1987). Unlike K, Pi, is adjusted 

through the use of Jukes-Cantor (1969) correction. The correction is performed in 

a stepwise manner in each pairwise comparison and Pi estimate values are 

obtained as an average of the values in all compared sites. 

• hd; Haplotype diversity is a measure of the uniqueness of a particular haplotype 

within a given population sample. It can be described as Pi with pairwise 

comparison existing between haplotypes rather than individual sequences. The 

haplotype diversity is computed as: 

  
Where x is the relative haplotype frequency existing of haplotype grouping in the 

sample and N is the sample size.  

Haplotype network analysis was performed using PopArt Haplotype network (Leigh and 

Bryant, 2015), distance was computed using minimum spanning network analysis to 

provide iteration data between haplotypes. A minimum spanning network is a contructed 

network where the total weight of variance in the edge points is as small as possible. This 

increases the likelihood of network joining particularly for clonal organisms. The 

principal exists in a distance based method, first a matrix network of pairwise differences 

among haplotypes is built and then the shortest paths that link the observed haplotypes is 

found where the length of connection is determinant on the number of pairwise 

differences  (Kurksal, 1956).  
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3.3 Results 

3.3.1 Phylogenetic analysis  
 
ML analyses based on the cox1 indicated all eye flukes from Gairloch system brown trout 

belonged to the Diplostomum baeri multi-lineage species complex. Analysis of the 

phylogenetic relationship of Scottish-derived samples and European-derived sequences 

reveal that Diplostomum baeri exhibits a multi-lineage species complex within Scotland. 

According to both nuclear (Fig 2) and mitochondrial (Fig 1) genetic markers, samples 

collected from the Gairloch hill loch system reside within the same clade as previously-

published sequences of D. baeri. Scottish isolates were placed alongside isolates of D. 

baeri from Icelandic and German freshwater systems.  

The first D. baeri lineage described was made up entirely of Canadian-derived samples 

representing samples infecting intermediate host species Sander vitreus, Salvelinus 

alpinus and Salmo trutta, thus representing the North American clade of D. baeri (Fig 1). 

Samples deriving from Lineage 2 represented the first clade including samples from the 

investigation in Gairloch system. This comprised entirely salmonid-derived samples 

including Scottish and Icelandic Salmo trutta and Icelandic Salvenius alpinus. The make 

up of Lineage 3 is entirely made up of metacercariae infecting Perca fluviatilus within 

Lake Constance, Germany. Lineage 4 is made up of a diverse mix of isolates from mixed 

localities including Icelandic, German and Scottish locations, within this clade all the 

metacercariae have derived from S.trutta host species.  

The phylogenetic hypothesis inferred through the ITS1-5.8s-ITS2 dataset differed from 

the mitochondrial phylogenetic analysis (Fig 2). The phylogenetic reconstruction 

indicated a collapse of lineages displayed in the mitochondrial tree. The use of nuclear 

markers show diminished diversity compared to mitochondrial markers. Comparisons of 

the nuclear markers to previously sequenced European samples were few with the 

majority of published sequences being from mitochondrial markers (ITS-5.8s-ITS2: 22 

and cox1: 121 (https://www.ncbi.nlm.nih.gov/nuccore). Phylogenetic relationships still 

placed the majority of the Gairloch derived samples within the D. baeri barring samples 

LAP 51, LNB 03 and LNB 16, however BLAST during construction of alignments these 

samples shared 98% similarity with both previously published D. baeri and D. 

pseudospathaceum sequences.  
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In comparison to the mitochondrial tree, species specificity does not play a role within 

defined clades. Lineage 3 and 4 in COI ML tree indicated species specific Salmo trutta 

and Perca fluviatilus clades, ITS markers placed both Perca fluviatilus and Onchorynkus 

mykiss infecting metacercariae with Salmo trutta infecting D. baeri. Published data from 

mainland Europe indicated a majority shared ITS haplotype, Scottish samples were 

unique haplotypes with no shared haplotypes with mainland continental European 

samples.  

 

Phylogenetic construction using cox1 genetic marker was corroborated using Ts/Tv plot 

to test for mutational saturation within the marker. The plot has tested the presence of 

multiple substitutions occurring at the same degenerate codon position, which was tested 

on 3rd codon. The data presented here does show negligible saturation of transitions with 

the line not demonstrating a strict straight line. The result of potential saturation existing 

within the third codon of the cox1 dataset could negate the use of 3rd codon within deeper 

phylogenies build using the D. baeri cox1 gene (Figure 10).  
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Figure 8; Phylogeny from maximum likelihood derived 
analysis of the cytochrome c oxidase subunit 1 sequence 
alignment (376 bp, 146 sequences). The analysis 
included sequences from Iceland, Germany and North 
America. Scottish samples have freshwater bodies 
abbreviated; LAM: Loch Arigh Mhic Criadh, LAP: Loch 
Arigha’Phuill, LDA: Loch Doire na h Arighe, LFM: 
Loch na Feithe Mugaig,  LNB: Lochan nam Breac, 
LNO: Loch nah-Oidhche.   Scottish isolates are 
highlighted within the blue boxes.    
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Figure 9; Phylogeny from maximum likelihood derived analysis of 
the nuclear marker (ITS1-5.8s-ITS2) sequence alignment (736 bp, 
89 sequences). The analysis included sequences from Iceland, 
Germany and North America. Scottish samples have freshwater 
bodies abbreviated; LAM: Loch Arigh Mhic Criadh, LAP: Loch 
Arigha’Phuill, LDA: Loch Doire na h Arighe, LFM: Loch na Feithe 
Mugaig,  LNB: Lochan nam Breac, LNO: Loch nah-Oidhche.  The 
Scottish isolates are highlighted in blue      
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GTR Model  

Figure 10: DAMBE plot for saturation test. X axis represents genetic distance according to phylogeny used in tree 
reconstruction. Y axis represents Ts/Tv number as genetic distance increases, tested across the 3rd codon within cox1 alignment.  
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3.3.2 Diversity indices of cox1 and ITS and haplotype network analysis  
 

Haplotype network construction of cox1 haplotypes (Table 5 and Figure 8) showed 

complex inter-specific relationships between lineages across mainland continental 

European and North American derived isolates. Segregation site number between 

haplotypes was low across the entire lineage data set compared to geographic lineage 

genetic diversity (table 3). Salmonid-infecting lineages possessed increased numbers of 

unique haplotypes compared to perch-infecting lineage (3), lineage 2 (27) and lineage 4 

(45) had the highest number of haplotypes compared to all other lineages, however the 

increased number of hapylotypes was not mirrored in the genetic diversity existing 

between haplotypes with haplotype diversity being the lowest (0.489). Similar patterns 

appeared within the ITS dataset (Table 6 and Figure 8) with low diversity being 

demonstrated across the entire dataset. In particular lineage 3 where the largest amount of 

haplotypes, however the large amounts of haplotypes do not show an increased level of 

intra-clade haplotype diversity. The increased number of haplotypes within the Gairloch 

system compared to the other locality isolates may not be representative in terms of 

nuclear genetic diversity. With an overall lack of published nuclear sequences in other 

papers the increased diversity of Gairloch isolates is most likely due to the number of 

samples used compared to other localities.    

 

The genetic diversity profile generated from Diplostomum baeri sequence dataset 

demonstrated genetic diversity between different sampling sites within the study area. 

The cox1 dataset shows the location with the highest number of individual haplotype and 

the greatest haplotype diversity being Loch na h-Oidche outflow (LNO) (H; 9, HD; 

0.978) and Loch Arigh a’Phuil (LAP) (H;8 and HD 0.963) this is mirrored in the average  

amount of nucleotide diversity per site, with both sites having the highest K value in the 

dataset (LNO; 14.486 and LAP; 14.822). The lowest amount of haplotype diversity is 

Loch na Feithe Mugaig (LFM) (H;4 and HD; 0.711), this is the same for the lowest 

overall diversity in the location (Pi; 0.00414).  

Within the ITS dataset the two locations which were the most genetically diverse were 

the same locations indicated using mitochondrial markers; LAP and LNO indicating the 
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highest number of individual haplotypes (LAP; 9 and LNO; 9), haplotype diversity (LAP; 

0.955 and LNO; 0.988) and high diversity per site (LAP; 20.067 and LNO; 20.003). The 

sites also display the highest overall nucleotide diversity (LAP; 0.0209 and LNO; 0.031). 

The location that displays the lowest amount of nucleotide diversity was Loch na Feithe 

Mugaig (LFM), which had the lowest haplotype number (6), lowest haplotype diversity 

(0.907) along with the lowest K value (15.333) and Pi value (0.01589).  
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ITS  S h K Pi hd 
Lineage 1 24 6 10.14286 0.00912 0.988 
Lineage 2 24 10 6.77856 0.05607 0.567 
Lineage 3 87 21 15.99878 0.18999 0.493 

      

cox1      

Lineage 1 6 5 1.55556 0.00515 0.511 
Lineage 2 21 27 6.15508 0.04561 0.618 
Lineage 3 9 11 5.73331 0.07789 0.412 
Lineage 4 87 45 15.9987 0.08642 0.489 

  
ITS       
Site n  S h K Pi hd 
LAM 10 24 6 8.089 0.02186 0.844 
LAP 10 41 8 14.822 0.04006 0.963 
LDA 10 3 4 1.533 0.00414 0.778 
LFM 10 44 4 4.222 0.06541 0.711 
LNB 10 4 4 1.956 0.00529 0.773 
LNO 10 28 9 14.486 0.01213 0.978 

       

cox1       

       

LAM 10 63 6 16.5 0.01728 0.933 
LAP 10 79 9 20.067 0.0209 0.955 
LDA 10 63 8 16.822 0.01743 0.956 
LFM 10 57 6 15.333 0.01589 0.907 
LNB 10 60 9 17.267 0.01795 0.977 
LNO 10 70 9 20.003 0.031 0.988 

Table 4; Displaying evolutionary properties between populations within Gairloch Diplostomum dataset using DNA barcoding 
markers (cox1) and nuclear marker (ITS1-5.8s-ITS2).S - Number of segregating sites, Pi – nucleotide diversity, K – average 
number of nucleotide differences per site, h – number of haplotypes, hd– diversity between haplotypes observed. Lineage 1-3 
of cox1and 1-3 in ITS are in correlation with the lineage described and highlighted within respective phylogenies.  

Table 5; Displaying evolutionary properties between populations within Gairloch using nuclear markers (ITS1-5.8s-ITS2) and 
mitochondrial markers (cytochrome oxidase 1).S - Number of segregating sites, Pi – nucleotide diversity, K – average number 
of nucleotide diversity per site, h – number of haplotypes, hd– diversity between haplotypes observed.  
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Figure 11; Haplotype network analysis of ITS1-5.8s-ITS2 for 77 isolates using TCS spanning network. Isolates are 
divided using geographical locations of isolates from North America, Poland, West Baltic, Ruhr River, Lake Constance 
and Gairloch. Segregating sites are denoted via hatch marks between haplotypes, the number of individuals with shared 
haplotype are indicated via size of the individual pie charts. 



 68 

  
Figure 12; Haplotype network analysis of cytochrome c oxidase subunit 1 for 146 isolates us TCS spanning 
network. Individual haplotype charts represent geographical isolates from Iceland, River Ruhr, Lake 
Constance, and Gairloch. Segregating sites are denoted via hatch marks upon adjoining lines between 
haplotypes, the number of individuals with shared haplotype are indicated via size of individual pie charts. 
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3.4 Discussion  
 
This study is the first to provide estimates of species diversity of Diplostomum utilizing 

molecular methods within a United Kingdom fresh-water ecosystem. It is also the first 

analysis of purely Brown trout-infecting metacercariae and the phylogenetic analysis and 

genetic diversity within a hill loch environment. Within the hill loch system, diversity 

would be directly correlated by the system’s greater or lesser ability to support specific 

intermediate host species, presenting varying levels of life-cycle bottleneck in relation to 

the transmission of certain species of Diplostomum directly influence levels of infection 

in intermediate fish host.  

Gairloch presents a unique natural setting to study the effects of geographic isolation of 

populations on digenean diversity. The northwest Highlands of Scotland are isolated 

uplands with a history of extreme human intervention in landscape management 

culminating in almost complete deforestation with consequent removal of nutrients from 

the loch system and surrounding area. Previous studies carried out in elevated latitude 

environments indicated an underestimation of species richness and overall genetic 

diversity of infective eye fluke species (Kristmundsson & Richter, 2009; Blasco-Costa et 

al., 2014). Compared to Icelandic lake populations (Blasco-Costa et al., 2014a; 

Kristmundsson and Richter, 2009), Scottish brown trout revealed significantly lower 

species richness of Diplostomum spp. Elsewhere within Palearctic freshwater systems 

brown trout hosts three species of Diplostomum whilst central European populations host 

two. The Gairloch study area had more sampling sites (14) than cited Icelandic and 

German studies, with six freshwater sites revealing a lower level of species diversity 

compared to the Icelandic study (4 sites) (Blasco-Costa et al., 2014a) and German Study 

(2) (Georgieva et al., 2013a; Selbach et al., 2015a).  

Although taxonomic identification of metacercariae indicated lower species diversity 

than previous studies within brown trout the D. baeri found within the Gairloch study 

area did present as a “multi-lineage species complex” with multiple lineages of the 

parasite within Gairloch. (fig 7 & 8). The term ‘multi-lineage species complex’ is used in 

taxonomy as a way of describing phylogenetic placement in 3 discerning statements; the 

group of species may represent more than one species (Mills et al., 2017), this cannot be 

discern by morphological or molecular means (Blasco-Costa  et al., 2014)  and that 
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grouped species within the complex are related in some way (Fontaine et al., 2015) 

Within the world of parasitology the term species complex is utilized to explain 

taxonomic topology resulting from numerous hypothetical assumptions e.g., the high 

probability of genomic introgression (Webster et al., 2013; Fontaine et al., 2015) , recent 

rapid radiation (Bush et al., 2018) and definitive host movement (van Paridon et al., 

2017; Rosenkranz et al., 2018). With respect to Diplostomum both D. baeri and D. mergi 

have been described as presenting a multi-lineage species complex topology (Blasco-

Costa et al., 2014a; Georgieva et al., 2013a; Locke et al., 2010; Locke et al., 2013). 

Diplostomum baeri was first described in Europe demonstrating species-specific ‘trout’ 

and ‘perch’ lineages (Behrmann-Godel, 2013). Species specificity has been a driver in 

speciation between other species of freshwater trematodes (Trieu et al., 2015; Pinto et al., 

2016; Pinto et al., 2018). Species specificity may also be a speciation driver within D. 

baeri where host specific lineage may become increasingly reproductively isolated 

leading to eventual speciation. To examine the delineation between lineages that 

currently exists in within Diplostomum phylogeny marker choice could provide a useful 

tool. Nuclear markers used within this study do show significantly less diversity between 

samples compared to mitochondrial markers. Although it does show increased diversity 

compared to other localities, this may be due to the number of samples used in the 

Gairloch study, with a scarcity of ITS nuclear samples found in other studies. The use of 

more diverse mitochondrial markers may be better utilized to investigation multi-lineage 

relationships. Lactate dehydrogenase (nad1, nad4 and nad5) have been used to elucidate 

taxonomic relationship within freshwater trematode species Orientobilharzia 

turkestanicum (Li et al., 2008), Clonorchis (Park, 2007) and Fasciola (Hu-qui et al., 

2009). Lactate dehydrogenase markers present as some of the most divergent markers 

within mitochondrial genomes of trematodes (Le et al., 2002; Shekhovtsov et al., 2010; 

Liu et al., 2014; Brabec et al., 2015a). Although the large number of mutations that would 

accumulate within lactate dehydrogenase genes may prove problematic when using the 

marker on deeper phylogenies, the rapidity of their accumulations of mutations may 

make these markers useful for the delineation of closely related taxa.  
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The current state of molecular taxonomy indicates that the D. baeri multi-lineage species 

complex is divided into eight molecularly-characterized species lineages, five recorded 

within North America, two lineages shared between Europe and Iceland and one in 

Iceland only. Phylogenetic analysis of the D. baeri complex within Gairloch show that 

unlike in Iceland and North America there is no true ‘Scottish lineage’ of D. baeri that 

resides within Scotland.  The panmitic admixture of haplotypes infecting the Gairloch 

populations of brown trout could in part be due to its placements within the Atlantic 

migratory bird pathway (Elphick, 2007). Transitory bird populations of the piscivorous 

Gavia arctica (black-throated diver) and Gavia stellata (red-throated diver) inhabit the 

northwest highlands during summer months, with around 17,000 G. stellata wintering in 

the UK and 1,600 permanent mating pairs. The relatively rare G. arctica has 560 pairs of 

UK wintering birds and 250 permanent mating pairs residential in the UK (O’Brien et al., 

2008).  UK populations of both birds are entirely located within the Northwest Highlands 

of Scotland and Northern Ireland, and utilize elevated hill lochs to feed and reproduce 

(Mudge et al., 1998). The migration of piscivorous birds provides a major route for the 

spread of Diplostomum in a country- and continent-wide fashion. With the parasites’ 

adult stage residing in the definitive bird host, infected birds will disseminate eggs into 

freshwater locales. In the case of migratory birds, infection can be spread across great 

distances with parasites being trans-placed between wintering and breeding grounds.  

 

Infective dynamics of Diplostomum within Gairloch represents similar characteristics 

associated with genetic diversity between water bodies. The sampling site with the 

greatest number of haplotypes and diversity between the haplotypes was LNO (Loch na 

h-Oidche), the site represented the only one which was a riverine environment. Brown 

trout within riverine environments have increased immune gene heterogeneity compared 

to lacustrine populations, probably because of a wider variety of pathogens being 

encountered within riverine environments (Fraser et al.,2011). This is in part due to 

riverine environments providing a more diverse habitat for varied intermediate snail host 

species, which would, in turn, suggest the likelihood of more genetically diverse 

cercaerial infective stages being present. Also riverine populations are more diverse 

population genetically than lacustrine (Hindar et al., 1991). Diplostomum baeri shows a 
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high infective success, with the ability to utilize a wide range of freshwater fish species as 

intermediate host, part of its ability to infect such a wide range requires it to successfully 

evade a wide variety of individual host immune systems, selectively increasing the 

diversity of successfully-infective haplotypes of D. baeri. When compared with European 

isolates in haplotype network analysis (fig 10) hill loch mitochondrial markers show a 

diversity of haplotypes across all sampled areas with isolated haplotype clusters 

associated with host species infected and not geographic isolation. All salmonid-infecting 

species had shared haplotypes across all geographic isolations. 

 

3.5 Concluding remarks 
 
In conclusion, findings within Scottish Highland hill loch system suggest a low level of 

biodiversity of Diplostomum infecting brown trout hosts inhabiting the Gairloch hill 

lochs. The low level of species richness of Diplostomum could in part be due to the 

highly oligotrophic nature of the loch system acting as a life cycle bottleneck upon 

intermediate gastropod and salmonid host species. Diplostomum baeri represents the 

most prevalent parasite within the loch system and is the most widespread species of 

Diplostomum within salmonids worldwide. The presence of multiple lineages within the 

species complex suggests its infective success is, at least in part, related to its within-

taxon diversity. Although the species shows high level of speciation, definitive host 

movement is probably sufficient to ensure that true reproduction isolation of geographic 

haplotypes and thus full speciation of lineages is unlikely to occur.  

 

D. baeri was the most prevalent parasite infecting brown trout within the Gairloch hill 

loch system. In-depth genetic analysis allowed accurate parasite identification and 

diversity analysis. Use of both mitochondrial and nuclear markers confirmed 

Diplostomum baeri species identification. Mitochondrial DNA has proved to be suitable 

for barcoding parasite species in highly informative phylogenetic and phylogeographic 

studies (Hendrich et al., 2010; S. A. Locke et al., 2010a; Kudlai et al., 2017b). 

Nevertheless using both nuclear DNA and mitochondrial DNA improves the power of 

phylogenetic and phylogeographic tests significantly and highlights the limitations of 
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studies relying purely on mt DNA markers. A phenomenon known as mito-nuclear 

discordance (Morales et al., 2015; Patten et al., 2015; Payseur and Rieseberg, 2016; Perea 

et al., 2016) (Toews and Beresford, 2012) resulting in; incomplete lineage sorting 

(Lawton et al., 2017), adaptive introgression of mtDNA (Ziętara et al., 2007), hybrid-

zone geography (Moné et al., 2015), frequent male population crash (Jiggins, 2002) and 

parasite host rapid radiation (Webster et al., 2013). Multiple gene analyses are strongly 

recommended for both phylogenetic and phylogeographic studies of parasites in general 

(Wiemers and Fiedler, 2007; Kodandaramaiah et al., 2013), to avoid such pitfalls, 

particularly when studying such a prevalent parasite as Diplosotomum.  

 

The impact of Diplostomum infection within the wild environment is difficult to 

ascertain, however on farmed trout populations epidemics may become problematic. 

With infected fish becoming less likely to feed, overall farming yield will eventually 

diminish. The farming of salmonids has proven lucrative in recent years making the 

understanding of parasites infecting oft-farmed species of salmonids crucial to continued 

farming success and for the many isolated communities relying on them.  The 

identification of Diplostomum species can not only expand the understanding of the 

species diversity and richness worldwide, but also provide methodology to accurate 

identify salmonid parasites. The identification of freshwater parasites can aid in future 

monitoring and mapping of parasites throughout a system not just for Diplostomum  but 

also for the varied parasitic fauna that infect residential and anadromous trout.  

 

 

 

 
  



 74 

4. Molecular characterization of Diphyllobothrium 
dendriticum infection in UK populations of Salmo 
trutta 
 

4.1 Introduction  
 
Human diphyllobothrosis is a fish-borne zoonotic disease distributed worldwide caused 

by cestodes belonging to the genus Diphyllobothrium (Scholz et al., 2009). The life cycle 

of Diphyllobothrium involves two intermediate hosts including planktonic copepods and 

freshwater fish (Scholz and Kuchta,. 2016). Second intermediate host species include; 

perch (Perca spp.) (L. 1758), salmonids (Salmo spp.) (Cuvier, 1816), pike (Esox lucis) 

(L. 1758) and pikeperch (Sander lucioperca) (L. 1758) (Anderson et al., 1987), within 

which the parasite matures into plerocercoid stage of the lifecycle. Definitive hosts, such 

as carnivores, cetaceans, birds and humans become infected after ingesting the fish 

intermediate host. Adult worms attach to the intestinal wall causing abdominal pain and 

diarrhoea with chronic infections leading to B12 deficiency and pernicious anaemia (Von 

Bonsdorff, 1958).  

Areas exhibiting high prevalence of diphyllobothriasis occur predominantly within cold 

climates with human pathogenesis distribution closely linked to cultural eating habits of 

populations (Scholz et al., 2009) The increasing mainstream popularity of sushi, sashimi, 

carpaccio and ceviche increases the risk of infection considerably. Concomitant with 

increased migration of food culture within the western world (Scholz and Kuchta, 2016) 

Diphyllobothrium latum and Diphyllobothrium dendriticum represent the most prevalent 

human infective fish tapeworm within northern Europe. The original distribution of D. 

dendriticum worldwide human infection is circumboreal, with a further spread of 

infection into South America (Santos and Faro, 2005; Mercado et al., 2010). D. 

dendriticum tends to predominate within Scandinavia (Kuhn et al., 2016; Borgstrøm et 

al., 2017) and alpine European regions (Dezfuli et al., 2012.) utilizing primarily 

salmonids and coregonids (Bylund and Curtis 1991) and as intermediate fish hosts. North 

America represents another endemic area, with infections found in Inuit populations of 
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Alaska and Canada (Mudry and Anderson, 1977). Despite an increase in food health 

regulations across the European Union, (Murrell and Cross, 1997) re-emergence of 

infection has occurred, with reports of increased infection prevalence within the alpine 

region of Italy, France and Switzerland (Peduzzi and Boucher-Rodoni, 2001; Yera et al., 

2006) where surveys of human infection numbered 200 reported cases within the time 

period of 1987 to 2002 and 330 between 2002 and 2007 (Scholz, 2009; Wicht, 2009) 

A total of 14 out of 50 species of Diphyllobothrium are pathogenic to humans (Kamo, 

1978; Scholz et al., 2009). Accurate identification of parasite species is a pre-requisite to 

understanding disease epidemiology and focus potential control measures, especially 

when identifying parasites which have a wide intermediate host range and a medical risk 

(Guo et al., 2012). Most morphological differentiation is based around the shape and 

variability of the scolex of the adult worm, which has been shown to vary not only 

between but also within species, (Anderson et al., 1987; Mercado et al., 2010), making 

accurate species identification problematic. Molecular-based taxonomic identification has 

become essential to identify cestode species (Yamasaki and Kuramochi, 2009; Wicht et 

al., 2010; Thanchomnang et al., 2016). Molecular techniques have also been used to help 

understand the re-emergence of Diphyllobothriasis and newly acquired species infections 

within previously non-infected regions (Peduzzi and Boucher-Rodoni, 2001; Wicht et al., 

2008, 2010; Fang et al., 2015). 

In an attempt to resolve taxonomic knowledge of Diphyllobothrium and improve the 

accuracy of diagnostic identification procedures a number of molecular markers have 

been utilized. Markers include the use internal transcriber spacer regions ITS1 and ITS2 

(Wicht et al., 2010; Pastor-Valle et al., 2014;) the lactate dehydrogenase gene NADH 

(Yera et al., 2006, 2008) and cytochrome oxidase cox1 (Yera et al., 2006; Guo et al., 

2012; Thanchomnang et al., 2016). Of these, the mitochondrial marker cox1 has been 

primarily used in molecular diagnostic identification of adult worm infections around the 

world. Nuclear markers ITS1 and ITS2 have been used primarily to identify the 

intermediate infective plerocercoid stage within fish.  Phylogenetic relationships within 

Diphyllobothrium are not fully understood due to most published sequences derive from 

medically important species. These have however demonstrated that there exists a close 
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relationship between Diphyllobothrium dendriticum, Diphyllobothrium nihonkaiense, 

Diphyllobothrium latum and Diphyllobothrium ursi (Kim et al., 2007; Year et al., 2008) 

Within the United Kingdom the first reported Diphyllobothrium infection in fish was in 

Loch Morar, Inverness-shire (Chaloner, 1912). Since then large-scale intermediate host 

infections have been seen in South Wales (Duguid and Sheppard, 1944) where large 

numbers of infected fry died.  Although only a few parasite surveys have taken place in 

the UK, morphological identification of the plerocercoid stage of D. ditreum and D. 

dendriticum has been isolated within UK Rainbow, Brown and Sea trout (Thomas, 1964; 

Urquart et al., 2010). Both species were also identified using molecular techniques in a 

small sample of varied freshwater fish species in Scottish Lochs (Scholz, 2009).  

 

Despite the relative importance of D. dendriticum little is known about its epidemiology 

and distribution across Europe. Previous studies of parasite movement throughout Europe 

have isolated ungulate migration as a key factor in the eastward movement of 

Orientobilharzia turkestanicum, now maintaining infective levels in Hungarian 

populations (Lawton and Majoros, 2013). The eastward movement of ungulates has also 

been proven to increase the overall parasite diveristy that existes within ungulates 

throughout Eurasia (Teitelbaum et al., 2018). The ancient east-ward migratory movement 

of animals throughout Europe could also play a role in D. dendriticum transplacement 

within the continent. Other species of Diphylobothriid have isolated carnivourous 

mammals as crucial hosts in maintatining the parasite life cycle within habitats in Canada 

(Gau et al., 1999; Yamasaki et al, 2012) and eastern Russia (Arizono et al., 2008). The 

eastern movement of Ursus arcos (Gray, 1867) (brown bear) has already been confirmed 

through dating of mitochondrial genome sequences as an eastward moving mammal with 

Estonian and Finnish populations deriving from Russian populations (Saarma et al., 

2007). The ancient eastern movement of extinct Ursus spelaeus (Rosenmuller, 1794) 

(Cave bear) was also proven through the molecular dating of mitochondrial sequences of 

eastern most UK and Anodran populations deriving from populations in the Carpathian 

and Ural Mountains (Stiller et al., 2014). Molecular clock analysis has previously been 

used on estimating divergence times between Spirometra and Diphyllobothriidae 

developing robust methodologies for mitochondrial mutation rate occurring within 
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cestode parasites (Zhang et al., 2016). In this study, molecular clock studies will be used 

alongside molecular p-distance to estimate divergence times between geographically 

specific isolates of D. dendriticum. Using this method can estimate divergence times 

between European populations, revealing trends in the transplacement of parasite species 

throughout region. With salmonid populations being frequently trans-located, studying 

the ancient movement of the parasite may reveal correlations between D. dendriticum 

presence and salmonid transplacement particulary within new world environments such 

as South America where the parasite is present within populations of O.mykiss (Torres et 

al., 1981; Torres et al., 1993; Mercado et al., 2010; Rozas et al., 2012). The study would 

also reveal the involvement that the eastern movement of carnivorous mammals has had 

in transplacing the parasite across mainland Europe and the British Isles mirroring trends 

seen in previously discussed parasites.  

 

In this current study DNA barcoding techniques were used to accurately identify species 

of Diphyllobothrium, and the efficacy of cox1 and ITS2 sequences as markers for the 

identification of Diphyllobothrium was compared to inform future studies regarding 

species identification of plerocercoid infecting intermediate fish host. The second part of 

the study will concentrate on the phylogeographical existence of Diphyllobothrium 

dendriticum within the Gairloch region. Haplotype network construction will concentrate 

on the ascertaining whether Diphyllobothrium isolates are geographically specific, with 

molecular clock analysis seeking to understand the reason for the transplacement and 

maintenance of endemic infective regions of the species throughout Europe and into 

South America.   

 

4.2 Materials and methods  

4.2.1 Sample collection 
 
A total of 12 plerocercoid cestode larvae isolates were molecularly characterized from 

dissection of whole brown trout donated by anglers from 2013-2016. Parasites were 

obtained from 3 different lochs from the Gairloch region of North West Scotland 

(centered approximately latitude: 57o43’20.59”N, longitude: 5o38’6.85”W). Each 
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collection site of infected fish were denoted as; Lochan nam Breac (latitude: 

57°44’2597”N, longitude: 5°40’2979”W) Loch Feur (latitude: 57°44’20, 13”N, 

longitude: 5°40’57.7308”W) and Loch Coire nah-Airigh (latitude: 57°44’29.7348”N, 

longitude: 5°41’26.2464W). 

 
 

4.2.2 DNA extraction, amplification and assembly of cox1 and ITS2 fragments 
 

Tissue snips were taken from 12 plerocercoid worms. Snips were homogenized in ATL 

buffer (Qiagen Inc.), total genomic DNA was extracted using protocol of QiagenTM 

Blood and Tissue extraction kit. For each specimen, partial cox1 fragments were 

amplified using the cestode-specific PCR primers: BW3 (forward; 5’-TTT TTG GCC 

ACC CCG AAG TAT AT-3’) and BW4.5 (reverse; 5’-TAG TGA CAT TAC ATA GTG 

GAA GTG-3’) (Wicht et al., 2007) and the ITS2 marker was amplified using the primers 

of Logan et al. (2001) FLO1 (forward; 5’-GAG CGC AGC CAA CTG TGT G-3’) and 

ITSII (reverse; 5’-CGG TGG ATC ACT CGG CTC-3’).  

PCR reactions were performed for each gene fragment using 12.5 µl Thermo–StartRPCR 

master mix (0.625 Units of Taq DNA polymerase, 1X reaction buffer, 0.2 mM of each 

dNTP and 1.5 mM MgCl2) and 1–2 ng/µl of DNA. The template PCR program used for 

all isolates was: 95° for 15 minutes; 40 cycles at 95°C, 1 min; 55-58°C; 72°C, 1 min; 

72°C for 7 minutes.  Annealing temperatures were customized on the primer set with 

FLO 1/ITSII using 57°C and BW3/BW4.5 52°C. Final reactions were made up to 25 µl 

with PCR-grade water. Reactions were performed using a Techne Prime 96 well thermal 

cycler (TechneTM) and 5 µl of each amplicon was visualized in 1 % agarose gels stained 

with SafeView nucleic acid stain (nbsbiologicalsTM) under UV using U: Genius Syngene 

gel documentation system. The remaining 20 µl PCR products were sequenced at the 

DNA sequencing facility of the Natural History Museum, London, using the PCR primers 

with Fluorescent Dye Terminator Sequencing Kits (Applied BiosystemsTM); sequencing 

reactions were run on an Applied BiosystemsTM 3730XL automated sequence 

4.2.3 Identification of species and phylogenetic reconstruction  
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DNA sequences of cox1 and ITS2 were assembled and edited using Geneious v 8.5 

(Kearse et al., 2012), with BLAST searched being performed through NCBI GenBank 

sequence database for initial identification of worms (Table 1). The BLAST search also 

was used to ensure that there was no contamination from other organisms during DNA 

extraction process. Initial results of BLAST search revealed sequences generated in this 

study exhibited high similarity to D. dendriticum.. To deal with heterozygous sites arising 

from direct sanger sequencing PHASE analysis package as part of DNAsp software 

(Librado and Rozas., 2009) was utilized to generate a dataset arising from heterozygote 

alternative sequences and initial sequence. Prior to phylogenetic reconstruction using 

MrBayes, ambiguity needs to be set within the original nexus datablock. The discounting 

of ambiguous sites is done using ‘{heterozygous base position}’ within the data block 

itself, this requires editing from original full data block generate via Mesquite program 

(Maddison and Maddison, 2018).  Heterozygous sites along with indels were ignored, 

Indels within nuclear marker were deleted within the alignment, removal is done to 

ensure that hypervariable or repeated regions do not affect the final phylogenetic signal 

within nuclear constructed  phylogenies.  

To construct phylogenetic trees, published sequences were acquired via NCBI Genbank, 

newly generated cox1 and ITS2 sequences were aligned using Clustal W implemented in 

BioEdit software (Hall, 1999).  

Phylogenetic tree reconstruction was performed using MrBayes 3.2.6 (Ronquist et al., 

2012). Markov Chain Monte Carlo (MCMC) were run for 10 000 000 generations, 

sampled every 100 generations. Bayesian posterior probability values representing 

proportion of samples recovering set clades were estimated after the initial 1000 trees 

were set as burn-in. Final tree was viewed using FigTree 1.4.3 (Rambaut, 2003).  

4.2.4 Assessment of molecular diversity   
 
Diversity data was acquired through the use of DNAsp (Librado and Rozas, 2009), for 

comprehensive analysis of DNA polymorphism data. The genetic marker cox1 has been 

indicated as a marker that can successfully differentiate between geographical lineages in 

other species of cestode (Haukisalmi et al., 2016; Kinkar et al., 2016). The cox1 marker 
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is utilized provide insights into the evolutionary relationships between populations of 

Diphyllobothrium sampled in this study and previously published Eurasian isolates.  

Sequences from cox1 amplifications were aligned using the same methods as described in 

phylogenetic construction methods. Molecular diversity within the alignment group was 

calculated using haplotype analytical methods, with number of haplotypes (h) and 

haplotype diversity (Hd) being considered within DNAsp (Librado and Rozas, 2009). 

PoPArt software (Leigh and Bryant, 2015) was used to further visualize haplotype 

diversity across the D. dendriticum dataset through building graphical haplotype 

networks. To compare molecular characteristics of cox1 and ITS and assess their use as 

markers for species identification and molecular diversity DnaSP 5 (Librado and Rozas, 

2009) software was used. The measures of generic nucleotide diversity were calculated 

on alignment set including number of segregating site (S), nucleotide diversity (Pi) and 

average pair wise divergence (K). 

4.2.5 Divergence times  
 
Approximate divergence times between isolates of D. dendriticum were estimated with 

an uncorrelated lognormal relaxed-clock model using software BEAST 2.3.6 (Drummond 

and Rambaut, 2007) (Table 2). Divergence time trees were calibrated using the molecular 

clock scale with set divergence times based on 0.0225 (Zang et al., 2015) substitutions 

per site per million years. Molecular clock was not rejected as the likelihoods were high 

and p was not significant (InL– 3128.87; p<1.00) supported with strong posterior values 

(ESS; 432). Relaxed molecular clock was used as it showed a greater level of statistical 

certainty with a higher likelihood (InL- 3128.87) and low values of HDP (95% highest 

probability density).  

4.3 Results  

4.3.1 Phylogenetic species identification  
 
The cox1 sequences produced an alignment of 389bp without gaps. ITS2 sequences 

produced an alignment of 470bp editing was performed to compensate for length 

variation and potential sequencing error. Phylogenetic reconstruction produced similar 

topologies within cox1 (fig 12A) and ITS2 alignments (fig 12B). Newly derived cox1 
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isolates from Gairloch were all placed alongside D. dendriticum samples from Russia 

(JQ245479-JQ245481) and Chile (JN152993-JN153005) (fig 12A). All published 

samples within the D. dendriticum clade derived from plerocercoid stage infecting 

salmonid intermediate hosts. In total the cox1 indicated three clades within D. 

dendriticum populations. As discussed in Kuchta et al.’s previous (2013) phylogenetic 

construction of Diphyllobothrium species trees cox1 is unable to delineate Chilean D. 

dendriticum samples (JN153004, JN153996, JN153995, JN153994, JN153993, 

JN153005) and Canadian D. ursi (AB605762, AB605763), forming a distinct lineage 

apart from the remaining D. dendriticum clade.  

Regarding the phylogenetic relationship of D. dendriticum using cox1 marker (fig 12A), 

samples fall into four sub clades. Sub clade 1 consists of sequences deriving from 

Holland, Czech Republic, Switzerland and Lake Baikal in Russia. Sub clade 2 

represented sequences deriving from plerocercoid infective stages from Chilean 

salmonids, with the third large clade deriving from the Gairloch study area. The fourth 

clade represented mixed geographical sample locations, with isolates deriving from 

Scandinavian, Russian and Scottish fish host populations.  There was a clear division 

between Eurasian and South American isolates of D. dendriticum, however no clear 

country-specific geographical relationship within Eurasian clade. 

Phylogenetic construction deriving from ITS2 (fig 12B) sequences corroborated with the 

placement of Gairloch samples alongside samples of D. dendriticum. Unlike the cox1 

species tree, ITS2 indicated an overall lack of species delineation of D. dendriticum and 

D. ditreum (AY549515, AY549514 and DQ386128) isolates. The phylogenetic 

reconstruction also demonstrated substantially lower bootstrap values and branch lengths.   
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Figure 13; Phylogenetic reconstruction of genus Diphyllobothrium utilizing mitochondrial cox1 DNA barcoding 
marker and D. dendriticum only tree using cox1 DNA barcoding marker. Worldwide tree (A) was constructed using 
TN93 model conditions; tree indicated a placement of Gairloch study-derived samples alongside D. dendriticum 
isolates. D.semmacephalum clade is highlighted in grey, D.ditreum/D.latum clade is highlighted in blue, 
D.nihonkaiense and D.klebanovskii clade is highlighted in green D.latum clade is highlighted in navy blue,    
D.dendriticum is highlighted in purple  Gairloch derived isolates are highlighted in yellow.   
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Figure 14; Phylogenetic construction of D. dendriticum-only isolates were created using HKY model conditions and showed a distinct 
Gairloch isolate-specific clade of D. dendriticum.  Phylogenetic construction of Diphyllobothrium genus using nuclear ITS marker under the 
TN93 model conditions. D. pacificum is highlighted in grey, D. latum is highlighted in blue, D.ditreum is highlighted in red, D.dendriticum is 
highlighted in purple and Gairloch derived isolates are highlighted in yellow.  
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4.3.2 Evolutionary relationships between geographical isolates of D. dendriticum 
 
Cox1 alignments consistently displayed greater nucleotide diversity and divergence 

across 13 plerocercoid samples within the Gairloch loch system compared to samples 

from mainland Russia, Norway and Chile (Table 7). The cox1 Gairloch isolates displayed 

increased genetic diversity relative to all other clades with the 16 samples being 

represented via 11 haplotypes and a haplotype diversity value of 0.985 (Table 7A). 

Pooled samples from European isolates in Holland, Czech Republic and Switzerland 

represent the mainland Europe clade, demonstrated distinctively higher genetic diversity-

related values with pi; 0.01688 and 10 segregating sites from only 3 samples. Gairloch 

isolates demonstrating considerably higher molecular diversity (S; 10 and pi; 0.13) and 

divergence (K; 5.13636). Geographical isolates showing least genetic diversity derived 

samples from Lake Baikal, these showed no genetic diversity sharing one haplotype 

between the 3 samples (Figure 13).  
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Site  S  Pi  K h Hd 

Chile  6 0.00331 1.30769 5 0.692 

Scotland 2 0.00517 2 2 1 

Norway  2 0.00506 2 2 1 

Russia  0 0 0 1 0 

Gairloch  16 0.013 5.13636 11 0.985 

Europe  10 0.01688 6.666 2 0.667 

 1 2 3 4 5 

Chile       

Europe  0.052504     

Gairloch  0.050505 0.03588    

Scotland 0.052083 0.036616 0.026199   

Norway  0.044508 0.02904 0.020833 0.007576  

Russia  0.043624 0.028283 0.021023 0.012879 0.008333 

Table 6; A Diversity indices across worldwide isolates of D. dendritcum S; segregating sites between cox1 genes, Pi  
pairwise diversity, K average diversity within sub set, h; number of haplotypes in sub set and Hd; pairwise diversity 
between sub set haplotypes. B P-distance between geographic isolate sub-sets in Chile, Loch Lomond, Gairloch, 
Scotland (other), Norway and Russia. 

B 

A 
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Figure 15; Haplotype network analysis constructed using cox1 DNA barcode data indicating geographic-specific 
haplotypes within Chilean, Gairloch, Scotland and Dutch geographic isolates. Shared isolates were only found 
between isolates found in the Czech Republic and Switzerland and between Russian and Norway- derived isolates.  
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4.3.3 Estimation of divergence time between Scottish and European lineages  
 
As shown in Fig 13 geographical isolates of D. dendriticum reveal numerous temporal 

segregations in response to relative geographical isolation. The early branching of 

Chilean isolates (JN152993-JN152005) from Eurasian samples have an estimated most 

recent common ancestor (TMRCA) of 0.9874 (SD 0.00833) indicating a divergence from 

Eurasian isolates 987,400 years ago (Table 8, Figure 14). The large Eurasian clade 

reveals distinct division from mainland European isolates and isolates deriving from 

Scotland, with TMRCA of the two clades being 0.3821 indicating an approximate 

divergence time of Scottish isolates from mainland European occurring 382,100 

(SD.00479) years ago. Within the mainland European clade divergence between clade 

including Norwegian and Russian isolates and central European clade including samples 

from Czech republic, Switzerland and Holland revealed to have occurred 498,100 years 

ago (TMRCA 0.4981; SD 0.00331). The molecular clock analysis implemented in 

BEAST indicated that a relaxed molecular clock provided a more reliable estimation of 

divergence between clades when compared with the output of strict molecular clocks 

under Yule speciation model conditions, molecular clock calibrations were not rejected 

due to high likelihood values and non-significant p values (InL:–3128.87; p : 1.00). The 

ESS values (table 2) for each TMRCA was consistently higher under the relaxed clock 

conditions in comparison to strict molecular clocks, therefore data deriving from strict 

molecular clock was rejected in favor of relaxed model outputs.  

 

 

  
Table 7; Parameters separating lineage ancestor groupings of different D. dendriticum isolates.  Mean ± SD; 
likelihood divergence parameters, scaled up (103) to achieve TMRCA (The most recent common ancestor) between 
clades of molecular clock tree. ESS; Effective sample size, effective sample size of trees sampled in Markov chain 
posterior analysis 95% HPD; indicates 95% confidence interval that exists according to variance.  

Parameter N Mean (SD) ESS 95% HPD (upper/lower)

Likel ihood (tota l ) 35 -907.3573 845.998 -1814.525

TMRCA (Chi lean) 12 0.9874 (SD0.00833) 708.332 1.2231/0.7517

TMRCA (Norway/Russ ia) 7 0.4981 (SD0.00331) 900.886 0.5832/0.413

TMRCA (Hol land/Swiss/Czech republ ic) 3 0.3481 (SD0.00212) 887.549 0.4474/0.2488

TMRCA (Scotland/Gairloch) 13 0.3821 (SD0.00479) 901 0.462/0.3022
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Figure 16; Maximum Likelihood tree calibrated with the use of estimated cestode evolutionary rates of 0.0225 
substitutions per MYA (Zhang et al., 2015) in cox1 in order to assess time of divergence between isolates deriving 
from geographic localities. The cox1 phylogeny was constructed using MrBayes, with molecular clock performed on 
phylogeny using BEAST v2 and was shown to be evolving in a clock-like progression under the hypothesis testing 
values of (InL – 3128.87; p : 1.00). There appear to be three main clades within D.dendriticum one which contains 
exclusively Chilean isolates, one including exclusively Scottish isolates and finally one mainland European clade 
including isolates from Holland, Switzerland, Czech republic, Norway and Russia. Initial divergence appears to have 
occurred between a basal Eurasian clade and South American clade with further divergence of central European and 
Scottish isolates from Russian/Scandinavian isolates.  

 

KM605259 Spirometra erinaceieuropaei 

 

382,100 years ago  
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4.4 Discussion  
 
An important outcome in the investigation was the confirmation that Diphyllobothrium 

dendriticum was present within the populations of S.trutta studied.  This conclusion was 

reached in conjunction with the placement of Gairloch-derived samples alongside D. 

dendriticum samples in phylogenetic construction of both cox1 and ITS2 species trees. 

The ITS region however did present as problematic marker to be used for accurate 

identification of D. dendriticum. Having been highlighted as a conserved genomic target, 

ITS2 markers seemed to lack the ability to discern clearly between D. ditreum and D. 

dendriticum (Skerikova et al., 2006). Analysis of cox1 genetic markers proved to be most 

accurate at species level identification, providing differentiation between D. ditreum and 

D. dendriticum isolates. Nuclear markers proved inconclusive due to the inability to 

differentiate between D. ditreum sequences (DQ768180, DQ768179, AY549507, 

AY549515 and DQ386128), sequences derived from current study and Chilean isolates 

(JN153006-KN153015). The ability to differentiate between both species is of high 

importance because D. dendriticum is human pathogenic; both species share the same 

geographic areas of infection (Holarctic) and intermediate fish host (coregonid and 

salmonid), increasing the likelihood of intermediate host infection in the same water 

body. The construction of mitochondrial cox1 tree indicated the placement of D. ursi 

alongside Chilean isolates, bringing into question the correct identification of D. ursi 

being D. dendriticum or Chilean samples of D. dendriticum being misidentified as D. 

ursi. This issue has been highlighted in previous phylogenetic tree construction (Scholz et 

al., 2009). The high polymorphism of mitochondrial DNA is well known among species 

of cestodes (Miyadera et al., 2001; Van Steenkiste et al., 2015) with nuclear DNA 

markers exhibiting a more conserved target for identification.  

Several studies have stressed the importance that molecular taxonomy plays in 

delineation of species of Diphyllobothrium genus (Yera et al., 2006; Wicht et al., 2007; 

Rozas et al., 2012), however there is a lack of consensus regarding the correct marker to 

employ. Investigations have included the use of ITS2 (Logan et al., 2004; Skerikova et 

al., 2006), with the difficulty of using ITS2 sequences for phylogenetic analysis primarily 

attributed to the low levels of variation between the closely- related species of D. 

dendriticum and D. ditreum. The cox1 markers show greater discrimination between 
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closely related species of Diphyllobothrium more effectively than using ITS2 (Year et al., 

2006). This characteristic has been consistently noted within cestode species (Villas et 

al., 2005) with studies indicating a preference for cox1 identification of plerocercoid and 

proglottid stages of the Diphyllobothrium life cycle. Thus, because both  cox1 and ITS2 

markers were easily amplified from parasite tissue, based on the nodal support, 

phylogenetic tree reconstruction and uncorrected p-distance estimates of divergence, cox1 

should be preferably used over ITS2.  

 
Phylogenetic tree construction revealed three divergent clades between South American, 

Northern Europe/Russian and mainland Europe/Gairloch isolates. Intra-clade distance 

analysis revealed that sites within mainland Europe differed by 3.5% and that the 

extended geographic distance between Chilean isolates and isolates from mainland 

Europe does not correlate with large genetic differentiation with only a 5.2% distance 

observed between mainland European clade and Chilean clade of D. dendriticum. 

Without knowing specific locations from which Chilean stocked trout were derived, it 

seems likely that movement of salmonids to South America has trans-placed European 

haplotypes of D. dendriticum. From phylogenetic analysis it is clear that Chilean 

Diphyllobothrium isolates are genetically divergent from its European ancestors, 

however, not to the extent that they constitute a different South American species.  

 

Observations of the Scottish clade of Diplyllobothrium dendriticum through phylogenetic 

and haplotype analysis make it clear that Gairloch isolates are genetically divergent from 

mainland European isolates. With Scotland no longer supporting populations the required 

definitive host carnivorous mammals, the historical movement of definitive host species 

may explain the parasites presence in the Gairloch system. Definitive host movement can 

explain the presence of many species of parasites in select habitats and localities 

(Kennedy, 1993; Gortazar et al., 2007). In the case of Diphyllobothrium the movement of 

the definitive Ursid (Bear) definitive host (Frechette and Rau, 1978; Yamasaki et al., 

2012) is the most likely host involved in the trans-placement of the parasite through-out 

Europe (Loreille et al., 2001; Taberlet and Bouvet, 1994). Divergence dating indicates 

that an ancient lineage is present of Diphyllobothrium within mainland Europe with 
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divergence between European and Scottish isolates being potentially associated with 

latitudinal movement of ursid species (Valdiosera et al., 2007; Markova et al., 2010). Ice 

sheet formation and recession during Pleistocene glacial period would allow for  isolation 

of Ursid species within the British Isles with evidence indicating potential chalk bridge 

collapse residing in the Dover straight 400,000 years ago (Gupta et al 2017). Along with 

presence within Europe there is also a clear ancient lineage of D. dendriticum within 

Chilean freshwater fish, with salmonids being trans-located to Chile in the 1900's the 

ancient presence of the tapeworm within the region is most likely related to infected 

definitive host presence within South America with the native Tremarctos ornatus 

(Spectacled bear) being a potential carrier maintaining the infection within Chilean native 

freshwater fish species (Torres et al., 2004) before the arrival of salmonids in the late 

1900's (Krause et al., 2008). Whilst molecular clocks provide potential reasoning 

associated with parasite infection spread across regions, the timeframe and potential 

variables make any conclusions somewhat tentative. Also due to the analysis done purely 

using mutation times of cestodes (Zhang et al., 2016) rather than the use of fossil data, 

the analysis provides a snapshot of the potential trans placement of Diphyllobthorium 

dendriticum within the UK rather than provide an in-depth systemeatic review of the 

evolution of the species.  Increased field sampling methods with additional definitive and 

freshwater host sampling could provide evidence to establish more concrete conclusions. 

 

4.5 Conclusion   
Molecular identification of parasite species is the only truly reliable method of species 

identification as cestode morphology continues to prove to be problematic in species 

delineation. Molecular approaches present an extremely powerful tool in fish health 

analysis and the identification of human infective species, however a detailed 

understanding of the taxonomic and phylogenetic construction power different molecular 

markers present and which marker presents the best option to use. As with other 

freshwater cestode species mitochondrial cox1 markers and nuclear ITS2 markers have 

the ability to discern between species of Diphyllobothrium, with cox1 proving to be more 

accurate in phylogenetic species delineation. The use of cox1 marker is shown to be 

useful for providing tentative evolutionary insights into the population biology and 
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historical movements of Diphyllobothrium. Molecular approaches to accurate taxonomic 

identification of medically and veterinary important parasite species can be extremely 

important in monitoring infection dynamics and possible control of food-borne 

tapeworm-associated disease. Currently there are few data regarding Diphyllobothrium 

presence in the UK, and a limited understanding of the species in Eurasia (the majority of 

isolates collected within Europe are from within central European alpine regions and 

Scandinavia). Consequently, only through further molecular-based studies of 

Diphyllobothrium will a more complete story of the broad fish tapeworm be achieved.  

Thus, within this chapter and the previous chapter use of multiple genetic markers has 

highlighted the importance of proper methodology in using molecular techniques to 

identify parasite species in salmonids. Moreover, although it has emphasized the 

importance of genetic identification because of the pathogenic nature of some parasites 

within humans, it also permits elucidation of potential historical movement of the species 

throughout Europe.  

Brown trout within the Gairloch system exist under parasite infective insult with a varied 

milieu of parasite infection throughout isolated host populations. With brown trout 

surviving in a diverse infection environment, the host’s immune system is under a 

constant and varied attack throughout the system, with a clear dichotomy between single 

parasite infection populations and isolated populations with a multitude of parasite 

infections. This division in differential parasitism makes the host populations a model 

system for the investigation of evolutionary and functional effects differential parasitism  

presents to a host immune system within a freshwater environment.  
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5. Role of parasite-driven selection maintaining 
MHC diversity within wild populations of UK 
salmonids  
 

5.1 Introduction  
 
The adaptation of salmonid fish across geographic ranges occurs in response to local 

selective pressures acting to maximize population fitness within local environment (D J 

Fraser et al., 2011; Junge et al., 2011; Primmer, 2011; Gharrett et al., 2013). Fish 

populations become locally adapted due to a variety of selective pressures; differential 

hydrology (Crossin et al., 2004), change in food resource (Jonassen et al., 2000), predator 

presence (Cousyn et al., 2001) and parasite insult (Bernatchez and Landry, 2003). 

Parasites are considered to be among the strongest selective force acting on population 

(Lamaze et al., 2014b; Seifertová et al., 2016; Zueva et al., 2014). The ease of which host 

populations can adapt to a novel parasite infection is crucial, to survive hosts must 

acquire resistance (Lymbery and Thompson, 2012; C Monzón-Argüello et al., 2014), or  

undergo possible extinction (Thieltges et al., 2009).  

One key host response is immune gene adaptation to parasites within the immediate 

environment (Sommer, 2005; Zueva et al., 2014) and a vital set of genes involved in this 

adaptation of response is the major histocompatibility complex (MHC). MHC molecules 

are expressed in two different classes; MHC class I acts as an intracellular immune 

response initiator recognizing viral or bacterial infections whilst MHC class II recognizes 

extracellular proteins (Simpson, 1988). The recognition site of the MHC II includes a 

“basket” receptor denoted the “antigen binding site” (ABS) (Cuesta et al., 2006; Cutrera 

et al., 2014; Forsberg et al., 2007; Medel et al., 2010)which directly interacts with 

parasite proteins (Figure 15) (Eizaguirre et al., 2012; Lamaze et al., 2014a; 

Natsopoulou, 2010). Genes that encode MHC II are some of the most polymorphic genes 

in vertebrates with increased variability within the antigen binding site (Schenekar and 

Weiss, 2017). Genetic theory suggests that at population level the resistance/tolerance of 

an array of parasites is associated with high MHC II diversity (Sommer, 2005).A large 



 95 

body of empirical data that varied pathogen presence acts on MHC loci maintaining 

MHC diversity within populations (Radwan et al., 2014; Bracamonte et al., 2015: 

Perchouskova et al., 2015; Schuster et al., 2016). Recent studies suggested positive 

association between MHC II diversity and parasite diversity within human (Prugnolle et 

al., 2005) and salmonid (Dionne et al., 2007) models. 

 

Due to salmonids’ varying conservation status worldwide (Waples and Hendry, 2008) 

and increasing reliance on aquaculture, salmonids have been targeted in numerous 

investigations regarding health and welfare of wild and farmed populations (Grimholt et 

al., 2003; Zhang et al., 2015b).  To advance the understanding of fish health, numerous 

investigations have taken aim at molecular processes underlying infection resistance and 

susceptibility (Grimholt et al., 2003; Mjaaland et al., 2005; Dionne et al., 2009; 

Consuegra and Garcia de Leaniz, 2008; Zueva et al., 2014). Genetic diversity of 

salmonid MHC II complex attributes to increased population fitness (Dionne et al., 2007; 

Lamaze et al., 2014a; Miller and Withler, 2004). The diversity of MHC II is linked to a 

number of different factors such as; mate choice (Consuegra and Garcia de Leaniz, 

2008), embryo and juvenile fitness viability (Forsberg et al., 2007) and population history 

of pathogen infections (Lamaze et al., 2014a).  

Genetic variation of salmonid MHC II genes is an evolutionary response to parasite 

infection and contributor to increased fitness of fish populations (Buchmann and Uldal, 

1997; D. J. Fraser et al., 2011; Lamaze et al., 2014a). Two main hypotheses have been 

used to explain parasite-driven selection; the Over-dominance hypothesis (Penn, 2002) 

and Negative frequency dependent selection hypothesis (Piertney and Oliver, 2006). The 

over-dominance hypothesis proposes that heterozygous individuals exhibit greater fitness 

due to increased tolerance to a broader array of parasite antigens compared to 

homozygous individuals (Hansson and Westerberg, 2002). The negative frequency-

dependent selection hypothesis states that rare host MHC-associated alleles are 

advantageous due to a limited co-evolutionary response of parasite (Koskella and Lively, 

2009). Empirical data supporting the specific role that either process play in wild 

populations is currently lacking (Apanius, 1997). A wide body of research based on 

parasite-driven selection in salmonids has been aimed at MHC associations in; anaemia 
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virus (Mjaaland et al., 2005), Aeromonas salmoncida bacteria (Croisetière et al., 2008), 

Gyrodactylus salaris (Malberg, 1957; Tonteri et al., 2010) and stocked vs wild 

population adaptation (O’Farrell et al., 2013a; Schenekar and Weiss, 2017). There is a 

paucity of studies based on parasite-driven selection within wild salmonid populations, 

with methodologies currently based on hypothesized parasite presence (Cohen, 2002; D. 

J. Fraser et al., 2011) or comparisons within immunogenically naïve stocked fish (Byrne 

et al., 2002; Milot et al., 2013; Schenekar and Weiss, 2017).  

 

 

 

  

Figure 17; 3D structure of MHC II protein, purple and green structure denote Antigen binding site with yellow 
structure denoting pathogen protein (Castellino, 1997) 
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Populations of brown trout have survived in the northern Highlands of Scotland since the 

retreat of last Scottish ice sheet (Late Devensian; 17,000 – 13,000 years ago) (McKeown 

et al., 2010). Numerous fish health screens of Scottish brown trout indicated high levels 

of parasite infection, with the species acting as an intermediate host in various cestode, 

nematode and trematode life cycles (Byrne et al., 2002; Hartvigsen and Kennedy, 1993; 

Molloy et al., 2014). Brown trout in the Gairloch region of Scotland inhabit an 

assortment of isolated freshwater hill lochs and sub-alpine streams. Unlike many 

populations of Eurasian brown trout, freshwater bodies in this region have not undergone 

population expansion through non-native fish stocking or fish movement (Dick et al., 

1987; Ferguson, 1989; Byrne et al., 2002; Kohout, 2013). With host sub-populations 

undergoing long-term exposure to local parasite infection the region is ideal for 

investigating effects that parasite-driven selection has upon host immunogenetics. 

Previous parasite screening  (Chapter 2) indicates that Gairloch trout populations show 

parasite taxon diversity inversely associated with trout habitat isolation.  
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5.1.1 Aims and Objectives  
 
This study sequenced specific MHC class II locus (Satr-DAB in S.trutta) in 14 wild 

Scottish brown trout sub-populations to assess the adaptive genetic variation in response 

to differential parasite infection throughout each sub population. Choices of populations 

were based upon parasite infection diversity of host individuals. Key subsets were; 

Elevated lochs, only single parasite species infecting brown trout and Western lochs, 

where hosts were infected by a variety of parasite species. The study addressed three 

specific questions: 

 

 

1. Does immunogenetic MHC II variation exist within the Gairloch system within 

brown trout populations? 

2. Does spatial genetic population structuring occur within the Satr-DAB gene in the 

Gairloch system brown trout populations? 

3. Does parasite infection exert selective pressure on the MHC II to maintain genetic 

diversity in the Satr-DAB gene within these populations? 

 

Study data will provide insights into the role that parasite infection plays as a selective 

pressure in wild populations and, additionally, may increase ecological benefit and 

sustainability of future captive breeding strategies and conservation measures associated 

with socioeconomically important salmonid species.  
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Figure 18; Map of sampling regions within Gairloch system abbreviations are used for specific loch sub-
populations: LNO; Loch na h-Oidche, LB; Loch Buinachien, FES; Flowerdale estuary, AAG; Alt a’Glinne, 
LFM; Loch na Feithe Mugaig, LDA; Loch Doire nah-Arigh, LAP; Loch Arigh a’Phuil, LMC; Loch Mhic 
Criadh, LL; Loch Laraig, LFE; Loch Feur, LNB; Lochan nam Breac, LCA; Loch Coire na h-Arigh, LGD: 
Loch Gharbe Doire, LNU; Nursery Lochan and LFD; Loch Fada. Division of elevated and western loch 
populations are done with red dots for elevated loch populations and yellow for western loch populations. 
(Google maps, 2018)  
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5.2 Methodology  

5.2.1 Sample populations and parasite screen   
 
Whole fish samples were collected from 2011-2014, via angler donation in conjunction 

with the Wester-Ross Fisheries Trust. Tissue extracted from 210 whole Brown trout was 

used for the PCR amplification of Satr-DAB gene. Tissue samples were taken from 

internal musculature to ensure no cross contamination whilst under direct contact during 

field sample study conditions, and were stored within individual 1.5ml microcentrifuge 

tubes within 70% ethanol before DNA extraction (Figure 16).  

Parasite acquisition was via full internal parasite screen across trout obtained from all 

sampled populations and was according to fish health screen protocol (Environment 

agency, 2011). One key aspect of sample population segregation is done using parasite 

screen data deriving from previous fish health screen analysis (Chapter 2). To investigate 

the potential effects of parasite-driven selection those trout screened for parasitic 

infection were divided into two sub-sets; those infected by only one parasite taxon and 

those infected by more than one. In the event, this division was also reflected in their 

geographic distribution; those with only one parasite taxon tended to be located in 

‘elevated’ lochs (eastern, high altitude) and those with more than one parasite taxon 

located in the ‘western’ lochs (western, low altitude) 

 

5.2.2 MHC II βsequencing  
 
The initial step was to amplify the specific antigen-binding site (ABS) of the MHC II 

encoded by exon 2 of the MHC II gene which exists as a single copy in salmonids. Total 

genomic DNA was extracted using protocol of QiagenTM Blood and Tissue extraction kit. 

A 252 bp fragment of exon 2 of the MHC II locus (Jacob et al., 2010), was amplified and 

sequenced. The primers used were CL007 5’-GAT CTG TAT TAT GTT TTC CTT CCA 

G-3’ (Olsen et al., 1998) and the self-designed reverse primer 5’-CAC CTG TCT TGT 

CCA GTA TG-3’. PCR reactions were performed for each gene fragment using 12.5 µl 

hot start Taq polymerase; Thermo–StartRPCR master mix (0.625 Units of Taq DNA 

polymerase, 1X reaction buffer, 0.2 mM of each dNTP and 1.5 mM MgCl2), 5 ng/µl of 

DNA and 3.5 ng/µl of each primer. The template PCR program used for all isolates was: 
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95° for 15 minutes; 40 cycles at 95°C, 1 min; 55°C; 72°C, 1 min; 72°C for 7 minutes.  

Annealing temperatures were optimized on the primer set as 52°C.  

 

5.2.3 Selection and recombination of the MHC II β 

 
The most commonly applied methods for detecting the long-term effect of positive 

selection is the dn/ds ratio (Hughes and Nei 1988). The rationale of this ratio test is that 

synonymous mutations are essentially neutral because they do not result in an amino acid 

replacement within the translated protein. Nonsynonomous mutations that result in amino 

acid change are more likely to affect selection via expressed polypeptide changes. Thus if 

the there are situations where mutations are deleterious the dn/ds would be >1. If, 

however, positive selection is significant then the dn/ds ratio is <1.Selection occurring on 

the protein coding level of the Satr-DAB was evaluated using the ratio of 

nonsynonymous substitutions per site (dN) to the substitutions per synonymous site (dS). 

This ratio was calculated using DnaSP software (Rozas, 2009), using Jukes-Cantor 

correction ratio for potential multiple hits. A codon-based Z-test was implicated using 

Hyphy population genetics software (Pond and Frost, 2005) to test for positive selection 

on codons, using 1000 bootstrap replicates for accuracy. The estimation of individual 

codon-specific dN/dS ratio was performed using program CODEML that is part of the 

PAML 4.7 bioinformatics software package (Yang 2007). The MHC within salmonids is 

polymorphic, with additional allele analysis needed to reconstruct haplotype data from 

raw chromatograph data; this was performed using PHASE haplotype analysis software 

(Stephens and Scheet, 2003). Further allelic analysis of expected and observed 

heterozygosity was performed using ARLEQUIN software (Excoffier et al., 2005).   

 

5.2.4 Phylogenetic analysis  

 
Phylogenetic tree construction was utilized to investigate potential presence of 

geographic lineage sorting throughout the Gairloch system. Construction of phylogenetic 

trees was performed using Mrbayes Bayesian analysis software with additional model 

selection using software add-on bModeltest within the software suite. The likelihood 
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settings corresponded to the HKY + I model with the parameter values estimated from 

the data; priors were set to default values. Four Markov chain Monte Carlo were run for 1 

* 106 generations and sampled every 1000 generations. The first 10% of trees were 

discarded as burn-in, resulting in 900 sampled trees. To calculate the posterior probability 

of each bipartition, the majority-rule consensus tree was computed from these 900 

sampled trees.  

As part of testing the efficacy of phylogenetic analysis, a test for saturation will be 

carried out on the alignment of Satr-DAB. With the gene being highly polymorphic in 

nature, they can succumb to mutational saturation which would affect the reliability of 

the phylogenetic reconstruction. To perform test for the presence of mutational saturation 

within the gene dataset DAMBE analysis software is used (Xia and Xie, 2001) to map 

phylogenetic distance vs number of transitions and tranversions per polymorphic site 

within the alignment. 
 

 

5.2.5 Demographic variation and correlation of spatial variation with Satr-DAB 

population structuring   

  

Historical movement of populations can lead to expansion events within sub-populations 

leading to an uneven distribution of genetic diversity. This uneven mismatch distribution 

can skew potential genetic diversity across populations. In the case of this study it is used 

to provide evidence of presence or absence of parasite-driven selection occurring within 

the Gairloch system.  To infer potential historical population expansion events, the 

measure of pairwise genetic difference distribution analysis is conducted across Satr-

DAB isolate dataset. This mis-match distribution analysis was performed using DnaSP v5 

software, which plots the frequency of pairwise differences between observed and 

expected mismatch distribution. This calculation is performed over 1000 iterations, with 

the raggedness (r) statistic being an eventual measure to support any significant departure 

from expected unimodality. The mismatch distribution analysis is supported by further 

Fu’s F and Tajima’s D, also calculated using DnaSP v5, both calculations are used to 
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support outcome with P value used to identify any significant departure from expected 

neutrality.  

A Mantel test was performed to investigate potential correlation between geographic 

separation and Satr-DAB diversity. A Mantel test is analysis to investigate spatial genetic 

population structuring. This is used to compare genetic distance (p-distance), Fst, and 

nonsynonomous mutations in relation with geographic distancing between the 

populations. The Mantel test was performed using APE: Analyses evolution package 

(Paradis et al., 2004) as part of the R statistical software suite; R-3.5.2 (Ihaka and 

Gentleman, 1996).  To generate slope to calculate potential significance of relationship 

linear model within R package was used with n of repetitions set to default (999), test for 

significance was based on a null hypothesis of 0.01 significance (Smouse et al., 1986).  

5.2.6 Host-parasite diversity correlation 
 
Because Diplostomum is the most prevalent parasite within the Gairloch system it is 

likely to exert a significant selective pressure on MHC II of S.trutta hosts. Not only is 

Diplostomum the most prevalent parasite, it is the only one infecting most sub-

populations within the overall dataset. In order to measure potential selective pressure 

exerted by genetic diversity of Diplostomum acting on Satr-DAB, nucleotide diversity 

(pi) of cox1 and ITS markers from 7 different sub-populations of Diplostomum were 

analyzed alongside genetic diversity (pi) of Satr-DAB. To infer any possible relationship 

existing between parasite genetic diversity and Satr-DAB diversity, regression analysis 

was performed using genetic diversity data (pi) deriving from previous Diplostomum 

molecular analysis (Chapter 3) and Satr-DAB analysis across select lochs populations 

where sufficient Diplostomum molecular data was obtained. Genetic data was collected 

from cox1 markers for D. baeri and regression analysis was performed using Minitab v13 

statistical software package. Four sample populations of Diplostomum were used were 

LAM, LNO, LFM and LDA, these sample populations were used due to the 

Diplostomum being the only parasite found within the populations during parasite screen 

(Chapter 2). 
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5.2.7 Satr-DAB visualization  
 
To fully assess the importance of genetic diversity within Satr-DAB the implications of 

the positive selection and genetic diversity on the final amino structure is important. With 

the antigen-binding site being the primary interaction site between MHC II and parasite 

protein any conformational or structural changes could affect binding potential between 

the two proteins. Thus, 3D modelling was used to investigate the potential impact of 

amino sequence variation on the final ABS protein structure and highlight differential 

structural factors in response to differential parasite-driven selection within western and 

elevated loch datasets. The reference Satr-DAB LFD 13 was submitted to SWISS-

MODEL (Biasini et al ., 2003). The model used was murine MHC II with which Satr-

DAB LFD 13 showed 59% similarity. The returned Protein Data Bank (PDB) files were 

loaded into the supplied SPDV DEEPVIEW (Guex and Peitsch, 1997) program for three-

dimensional visualization, graphical manipulations, and the plotting of codons under 

different selective pressures. SPDV DEEPVIEW was used to output files for the 

rendering software POV-RAY (Plachetka, 1998), which produces very high quality 

graphics of the protein. Consensus amino profile divided into two separate groups for 

means of selection profiling. The first denoted consensus sequences derived from 

‘singular’ parasite infection populations LAM; Loch Arigh mi-criadh, LAP; Loch arigh 

a’Phuill, LDA; Loch doire na-h arigh and LFM; Loch feithe mugaig. The other group 

used for comparison of dN/dS data was denoted ‘Western’, these consisted of LNB; 

Lochan nam Breac, LCA; Loch Coire na-h Arigh, LGD; Loch Gharbe Doire and LFE; 

Loch Feur.   

 

5.3 Results  

5.3.1 Diversity of S.trutta MHC II in the Highland environment 

It is important to remember, throughout the analysis of the dataset, that there was a broad 

division deriving from findings of field sampling analysis (Chapter 1). The elevated lochs 

is a broad term for lochs within which brown trout are infected by only one parasite; 
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Diplostomum baeri. The western lochs are lower lying marshland lochs within which 

brown trout sub-populations are infected with numerous parasite taxa; the cestodes 

Diphyllobothrium dendriticum and Eubothrium crassum, nematode; Eustronglyides spp., 

trematode; Diplostomum baeri and acanthocephalan; Neoenchorhyncus spp.  

 

First analysis describes diversity indices of Satr-DAB gene within each subpopulation 

(Table 9). The subpopulation presenting the highest overall diversity is Lochan Fada 

(LFD; K:18.133). It also possesses the highest number of segregating sites (S; 46). The 

loch with both the lowest diversity observed across Satr-DAB (K: 5.2176) and the lowest 

number of segregating sites in pairwise comparison of subpopulation sequences (S: 17) is 

Loch na h-Oidche (LNO. Lochs falling within the elevated single species infected sub-

populations had the following diversity indices Loch na Feithe Mugaig (LFM) (K: 

6.94545, S: 18 and Pi:0.046), Lochan Fada (LFD) (K: 18.133, S: 46 and Pi 0.12001), 

Lochan Dubh nam Biast (LDB) (K: 9.96429, S: 28, Pi:0.65009) and Loch Airigh 

a’Phuil(LAP) (K: 6.55789, S:29 and Pi: 0.04343). The subpopulations that fell into the 

category of multiple species infection (western lochs) had the following observed 

diversity indices Loch Feur (LFE) (K: 12.01606, S: 36 and Pi: 0.07266), Lochan nam 

Breac (LNB) (K: 14.0757, S: 42 and Pi: 0.09322), Loch Coire nah-Airigh (LCA) (K: 

9.67949, S: 30 and Pi: 0.0641) and Loch Gharbe Doire (LGD) (K: 10.1758, S: 30 and Pi: 

0.06739). Sub-populations with multiple species infections demonstrated higher average 

diversity within population (K; 11.4867) compared to elevated single species infected 

lochs (K; 10.4001). Also the western loch sub-populations displayed a larger amount of 

segregating sites between alignments of Satr-DAB (S: 34.5) compared to single species 

infected lochs (S: 30.25).  
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The second summary of diversity indices from the loch system addressed the 

heterozygosity and number of alleles within individual subpopulations of the loch system. 

Table 10 describes the observed and expected heterozygosity of Satr-DAB gene within 

each subpopulation. Because the gene is inherited in a multi-allelic fashion, multiple 

alleles can be seen within F1 trout, these allelic counts at first can be isolated in original 

chromatographs of raw reads to give allele number, with further downstream analysis to 

show the observed and expected heterozygosity within sub-populations. Once again, data 

are divided into singular and multiple parasite infection lochs, this division of data allows 

Site Length S hap Hd K Pi 

LFD 243 46 9 0.97778 18.133 0.12009 

LDB 243 28 7 0.96429 9.96429 0.06599 

LNU 243 33 5 1 15.7 0.10387 

TWA 243 23 7 1 8.52381 0.05645 

LMD 243 28 9 1 9.55556 0.06328 

AAG 243 24 9 0.96364 7.8 0.05166 

LCA 243 30 9 0.97165 9.67949 0.0641 

FES 243 23 6 1 10.6 0.0702 

LAP 243 29 17 0.98421 6.55789 0.04343 

LGD 243 30 11 0.95604 10.17582 0.06739 

LFE 243 36 12 0.96884 12.01606 0.07266 

LNB 243 42 10 0.95455 14.07576 0.09322 

LFM 243 18 6 0.8 6.94545 0.046 

LNO 243 17 9 0.87179 5.21795 0.03456 

Table 8; Diversity data associated with Satr-DAB gene across Scottish hill loch populations n –number of 
alleles,  S- Number of segregating sites, Pi – nucleotide diversity, K – average number of nucleotide diversity 
per site, hap – number of haplotypes, hd– diversity between haplotypes observed. 
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conclusions based on parasite infection diversity affecting heterozygosity and allele 

number within the sub-populations. Across all subpopulations, observed heterozygosity 

was greater than the expected heterozygosity. All subpopulations showed a greater 

number of alleles observed within the population than in samples, indicating that Satr-

DAB exists in a heterozygous manner more than homozygous across all populations. 

Lochan Fada (LFD) indicated the greatest deviation from expected heterozygosity 

(0.39707) compared to observed (0.50001) (difference: +0.10294), with the loch 

indicating the least deviation Loch dubh  na Biast (LDB) (difference: +0.01077). In terms 

of comparison between the two data sets, singular species-infected elevated loch 

subpopulations showed a greater average differential between observed and expected 

diversity (+0.188) compared to multiple species-infected western loch sub-populations 

(+0.04647) (Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Population  Sample  Na He Ho 

Western      

LFE 10 20 0.3971 0.5 

LNB 10 20 0.2431 0.2539 

LCA 12 24 0.3023 0.3581 

LGD 10 16 0.5053 0.5855 

     
Elevated     

LFD 10 20 0.3804 0.4287 

LDB 10 18 0.3299 0.3689 

LMD 12 22 0.3001 0.3678 

LB 10 16 0.442 0.4729 

Table 9; Summary statistics of genetic variability for sequenced MHC Satr-DAB locus within single and multiple species 
infected populations: Na; number of alleles, He observed heterozygosity and Heexpected heterozygosity.   
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Results indicated differential heterozygosity characteristics and genetic diversity across 

the Gairloch system between the two designated grouping of subpopulations. 

Phylogenetic analysis was performed to investigate lineage sorting according to 

geographical separation according to subpopulations and differential parasitism. Overall 

the final tree (Figure 17) construction showed little to no association to either factor. 

Topology showed next to no geographic-specific clades, with the only distinct population 

lineage within Loch a’Mhadaidh (LMD). Clade topology was not related to parasite 

specific species infection. With no general lineage sorting according to the western loch 

sub-populations (LNB, LCA, LGD, LFE) undergoing multiple species infection and 

elevated loch populations (LMD, LFD, LDB, LAP) (Figure 17). Bayesian tree 

construction is supported through strong nodal posterior values. 
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Figure 19; A detailed phylogeny using Bayesian inference of the Satr-DAB sequence alignment (252bp, 210 sequences). 
Lineages of Scottish samples have freshwater bodies abbreviated; LAM: Loch Atrigh Mhic Criadh, LAP: Loch Airigh 
a’Phuil, LDA: Loch Doire na h-Airighe, LFM: Loch Feithe Mugaig,  LNB: Lochan nam Breac, LNO: Loch nah-Oidche.  
LNU; Nursery Lochan; LAM; Loch Arigh Mi Criadh; LFD; Loch Fada, LGD; Loch Gharbe a’ Doire, AAG; Alt a’ Glinne, 
LFE; Loch Feur, LB; Loch Buinachein, LCA; Loch Coirena h-Arigh, LDB; Loch Dum na Biast,, TWA; Talladale river, 
FES; Flowerdale estuary, LMD; Loch a’Mhadaidh and LSG; Lochan Sgeireach 
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Figure 20: TV/TS graph according the GTR distance in correlation with number of transistions and 
transversions occurring per site across the gene alignment  
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From the initial diversity analysis of Satr-DAB, the gene presents as a highly 

polymorphic gene across populations, with an increased level of heterozygosity across 

the system. The overall pattern of diversity indices across the Gairloch system indicates 

an increased heterozygosity and genetic diversity occurring within the western loch 

populations, i.e. those infected with multiple parasite species. This sub-group displayed 

consistent increased average diversity per loch population (K) and an increased 

propensity for individuals to be heterozygous compared to elevated loch subpopulations. 

Although there is a deviation between diversity characteristics between the two sub-sets, 

this hasn’t translated in phylogenetic cladal separation between sub-sets of populations or 

overall geographic lineage sorting across the complete dataset. 

Resulting analysis from the DAMBE mutation saturation graph supported that the 

alignment did not present as mutationally saturated. This assumption can be made due to 

the positive linear result of the graph presented (Figure 20).  

 

5.3.2 Divergence between Loch sub-populations in Satr-DAB 
 

Across the Gairloch system, different levels of genetic diversity exist between 

subpopulations. Within systems of disparate sub-populations there is an expectation that 

through reproductive isolation, extended geographic isolation will correlate with a greater 

degree of genetic differentiation existing between sub populations of greater distance 

than those closer together. To determine whether this is present within the dataset a series 

of Mantel linear plots were used to analyze the role geographic separation plays in spatial 

genetic diversity between individual loch sub-populations. The first analysis addressed 

the potential genetic population structuring of Satr-DAB existing across the dataset in 

relation to geographic distance. This relationship was non-significant (p = 0.190 (>0.01), 

r2= -0.092238) (Figure 18a). The second analysis was associated with the genetic 

diversity of Satr-DAB versus geographic distance between subpopulations. This was also 

non-significant  (p = 0.724 (>0.01), r2= -0.698122). As a consequence of these two 

analyses it may be surmised that there is no significant relationship between geographic 

isolation and genetic diversity seen in Satr-DAB (Figure 18b). The third regression 

analysis quantified the relationship between geographic distances versus the number of 
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nonsynonomous differences existing between subpopulations. In contrast this regression 

analysis showed a significant relationship between nonsynonomous mutations and 

geographic distancing in accordance to P value (0.0098 (<0.01) r2= 0.678152), this 

indicates that with increased distance between subpopulations there is a significant 

increase in nonsynonomous mutation number between subpopulations (Figure 18c). 
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Geographic distance (Km) 

Figure 21: Mantel linear analysis of the relationship 
between genetic diversity and geographic distance 
between populations. A represents the relationship 
between distance (km) between populations and the 
pairwise comparison of diversity between 
populations. B represents the relationship between 
distance (km) between populations  and the 
proportional population diversity (Fst). C regression 
analysis showing relationship between geographic 
distance (km) and number of nonsynonomous 
mutations (dN) across the Gairloch system.  

Geographic distance (Km) 
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5.3.3 Demographic history of Satr-DAB in S.trutta 
 
As a gene, Satr-DAB has proven to be diverse throughout isolated populations of the 

Gairloch region. Definitive host movement throughout the loch system could provide one 

possible explanation for the maintenance of diversity of the gene across the population. 

With recent expansion events taking place within a locality, immune gene diversity can 

increase initially because new alleles enter a population creating an initial spike in 

genetic diversity followed by a gradual plateau as gene frequencies equilibrate under 

consequent change. Any deviation from this expected trend is shown as a near-bimodal 

distribution indicating no recent expansion in the population and is considered stable. To 

test this statistical significance of any deviation from expected distribution, statistical test 

Tajima’s D and Fu’s F is used to test neutrality of the gene. The third statistical test if a 

raggedness value; used to test deviation of observed and expected mismatch of diversity 

data.  

Initial analyses were performed on the entire population with Tajima’s D and Fu’s F. 

These showed no significant deviation from neutrality. The alignment representing all 

sequences across Gairloch populations-presented Tajima’s D was negative -1.32785 

overall and significant p = 0.041 Fu’s F calculations presented a similar pattern which 

was -3.8852 and a highly significant p value of p= 0.011, p<0.001. This value suggests 

that recent demographic population fluctuations such as expansion or retraction may have 

given rise to a large number of low-frequency haplotypes. The pairwise mismatch 

analysis across the entire dataset appeared bimodal in distribution, comparisons with the 

raggedness value; r = 0.01326, P = 0.0001 (Figure 19A) indicating a stable population. 

With different diversity indices between the elevated and western population subsets 

demographic movement analysis may go part way to explain potential differential 

diversity characteristics between the two species.  

Western loch demographic analysis indicated no significant deviation from neutrality 

through Tajimas’s D and Fu’s F calculation. Tajima’s D was negative overall -0.8252 

with a p-value indicating a rejection of null hypothesis (p<0.05). Tajima’s D negative 

value suggests an increased number of observed mismatched diversity compared to 

expected, indicating a recent expansion event, however, the negative Tajima’s D value is 

not supported by its p value indicating a lack of significance in the result.  Fu’s F 
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indicated no significant deviation from neutrality with an F value -12.529 and a rejection 

of null hypothesis (p<0.05). The pairwise mismatch analysis across the elevated lochs 

showed no recent expansion event occurring within the western loch populations with a 

bi-modal trending curve, r = 0.02860.  

Elevated loch populations mirrored the lack of deviation from neutrality through 

Tajima’s D (-1.28251) and Fu’s F calculations (-20.108). Elevated loch data suggest a 

less demographic movement with similar bi-modal trending curve and a significant 

difference from expected and observed mismatch analysis (r= 0.0207).  

Thus analyses of Satr-DAB do no support the model of host movement within 

subpopulations in either the elevated or western loch populations. As indicated in 

previous chapter (5.3.2) maintenance of diversity across the population may not lay 

within standing genetic diversity but the type of mutation occurring within the gene and 

the selection acting on the gene in subpopulations. 
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Figure 22; Mismatch analysis graphs to demonstrate historical demographic movement and potential 
population expansion events occurring across Gairloch population. An Entire population dataset, B 
elevated loch populations, C western loch population 
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5.3.4 Detection of selection in Satr-DAB 
 

The diversity that is maintained in Satr-DAB genes is not associated with geographic 

distance between subpopulations or recent invasion/expansion events across the 

freshwater system. There is, however there is a clear relationship between diversity and 

number of nonsynonymous mutations between subpopulations. 

MHC II as an immune gene is potentially under a great deal of selective pressure from 

pathogen insult, the presence of positive selection can be tested by testing the ratio of 

nonsynonomous mutations (dN) and synonymous mutations (dS). With dN mutations 

contributing to the eventual translated amino acid, the accumulation of dN mutations 

within a gene is denoted as being under “positive selection” with a dN/dS ratio >1, where 

the gene is under purifying selection the ratio is <1. Across the entire dataset in all sub-

populations exhibit positive selection values (Table 3) with all dN/dS values for each 

subpopulations being >3.  
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Across all populations Satr-DAB is undergoing positive selection with dN mutations 

being associated with variation in the final protein construction. It suggests that further 

investigations should shift emphasis onto the final protein sequence rather than gene 

sequence variation. The functional aspects of the ABS are crucial to ensure sufficient 

binding potential with parasite antigen. Positive selection not only acts on the entire gene 

but also can be examined on a codon-to-codon basis, investigating specific translated 

proteins for degree of positive selection acting on that protein. In order to test this the 

consensus Satr-DAB protein was constructed using likelihood amino construction of 

Satr-DAB genes for both differential subsets of Western and Elevated lochs. This was 

performed to analyze positive selection occurring on individual codons within 

populations experiencing differential parasitism.  Within both the first 18 amino sites 

Site length dN dS dN/dS 

LFD 243 120.65 38.35 3.146 

LDB 243 125.83 39.17 3.2124 

LNU 243 124.43 37.57 3.3119 

TWA 243 117.21 38.79 3.0216 

LMD 243 117.13 35.87 3.2654 

AAG 243 116.14 33.86 3.43 

LCA 243 111.45 32.55 3.4239 

FES 243 116.81 36.19 3.2276 

LAP 243 113 34 3.3235 

LGD 243 156.02 39.96 3.9044 

LFE 243 159.85 39.07 4.054 

LNB 243 158.22 38.56 4.1647 

LFM 243 118.2 37.8 3.1269 

LNO 243 118.79 37.21 3.1924 

LB 243 112.88 32.2 3.4947 

Table 10; Table displaying selective values across Gairloch subpopulations. Length; length of Satr-DAB gene, 
dN; number of nonsynonymous mutations across the subpopulation, dS; number of synonymous mutations 
across subpopulations and dN/dS; ratio of dN/dS total.  
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showed no evidence of experiencing any form of selection according to the CODEML 

analysis; within section from 18 to 67 only 10 sites were experiencing no form of 

selection (27,28,31,33, 35,36,46,57,58,63,64,65). According to dN/dS ratios the elevated 

loch populations contained 6 codons under positive selection (21,23,24,34,52,67) 

compared to 10 under positive selection in western loch populations 

(22,23,29,32,37,40,41,47,50,51). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Amino length per codon  

dN/dS 

Figure 23; Codon-specific dN/dS ratio on the MHC II from PAML (CODEML) analyses. The dN/dS ratios are based 
on model M8 for all-haplotypes within divided dataset. Dataset was divided based upon populations infected with 
multiple species of parasite against populations infected with only singular parasite species. Colour coding denotes 
dataset western dataset highlighted in blue and elevated loch populations highlighted in red. 
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Across the two subsets selection is acting on the final translated amino sequence. The 

western lochs have demonstrated an increased numbers of codons under positive 

selection compared to the elevated loch populations. Three dimensional mapping of the 

ABS indicated increased level of selection acting upon codons translates to a variable 

amino sequence motif within the final translated protein. In this case, ABS 3-D design 

was mapped using a murine model (Wieczorek et al., 2017). Murine immune genes and 

MHC II structures have been subject to sufficient research to enable construction of such 

a model whilst those of salmonids have not. Even so, it was deemed that such a non 

taxon-specific model was still likely to be informative. A consensus protein 3-D was 

constructed using likelihood models and adjusted dN/dS values for each codon within 

consensus modelling. The elevated loch population demonstrates lower proportions of 

proteins under positive selection (supplementary table 1) compared to western loch 

consensus proteins (supplementary table 2). Additionally the increases presence of 

Lysine and Arginine across the ABS of western loch populations indicate an additional 3 

hypothesized hydrogen bonds within the ABS binding site, indicating a region of 

increased binding potential within western loch subset (Figure 21).  
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Figure 24; 3D protein structure translation of Satr-DAB MHC II exon 2. Colours denote dN/dS value outcome of 
protein codon; yellow; neutral, red; dN/dS<1, blue; dN/dS>1 and green; hydrogen bonds on protein. Structure 
denoted ‘A’ is consensus protein structure under singular parasite species infection pressure (elevated), structure 
denoted ‘B’ is consensus protein structure under multiple species infection presence (western).  
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5.3.5 Association between MHC variation and infection  
The comparative observations between the two subsets indicate differential 

characteristics in terms of effects of positive selection and ABS binding amino motif. As 

described in previous sections western loch populations are undergoing differential 

parasite infection compared to elevated loch populations (chapter 1). So far outcomes 

from Satr-DAB analysis reveal an increase in nonsynonomous mutations occurring 

within Satr-DAB in western loch populations, with these indicating an increased level of 

binding potential within ABS protein structure. Selection is acting in a differential 

manner within the two populations, with the only variable between the two being parasite 

infection diversity.  

The regression analysis utilized parasite infection prevalence data within the loch system 

to analyze the relationship between parasite infection level with diversity indices and 

selective properties within Satr-DAB. Parasite load within host can exhibit direct 

correlation with individual host health and overall population health. The first regression 

plot (Figure 22A) shows relationship between Satr-DAB diversity and parasite load, with 

an overall lack of statistical relationship (P=0.139, >0.05). 
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B A 

C Figure 25; Regression analysis of 
Satr-DAB diversity indices in relation 
to parasite load in three separate 
regression analyses. A; Satr-DAB vs 
Parasite load, B; Satr-DAB Hd vs 
Parasite load, C; Satr-DAB dN vs 
Parasite load  
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This is not true for the third regression analysis (Figure 22C) with nonsynonomous 

mutation level across subpopulations showing significant statistical relationship with 

Satr-DAB diversity (P= 0.014, P>0.05). Satr-DAB haplotype diversity (5B) shows no 

significant relationship with parasite load (P=0.829,) 

 

The second set of analysis investigating parasite infection diversity investigates parasite 

diversity data within each subpopulation (chapter 1). Diversity values are placed upon 

subpopulations according to the diversity of parasites present within host populations 

within individual lochs. Diversity figures are calculated using Shannon diversity 

equations to denote diversity number per population. Shannon diversity values are used 

to compare the relationship between parasite infection diversity and Satr-DAB diversity, 

nonsynonomous mutation and Satr-DAB haplotype diversity. The first regression plot 

reveals no statistical relationship between Satr-DAB diversity (pi) and Shannon diversity 

values (P=0.779,) (Figure 23a), this is also the case with Satr-DAB Haplotype diversity 

(P=0.397,) (Figure 23b). However, a statistical relationship exists between the 

accumulations of nonsynonomous mutations within Satr-DAB in response to diversity of 

parasite infection (P=0.048,) (figure 23c), adding significance to previous selection 

analysis of ABS, with an increased number of codons under positive selection within 

western lochs undergoing a more diverse parasitic insult.  
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Figure 26; Regression plots to 
investigate the relationship between 
parasite infection diversity and Satr-
DAB diversity (pi) A, haplotype 
diversity B and nonsynonomous 
mutation number C 

A B 

C 
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The final set of analysis looking at the relationship of Satr-DAB and parasite infection 

investigates the effects of the most prevalent parasite within the system, Diplostomum 

baeri, upon MHC II diversity. The diversity indices of Diplostomum are taken from 

previous chapter (chapter 3) and use genetic diversity (pi), haplotype diversity (Hd) to 

investigate possible parasite-driven selection occurring from widespread Diplostomum 

infection. First regression plot shows no significant statistical relationship existing 

between Satr-DAB diversity and diversity of Diplostomum. spp across the entire dataset 

(P = 0.342, P > 0.05) (Figure 24a). There is also no significant relationship existing 

between the haplotype diversity of Satr-DAB and diversity of Diplostomum spp (P = 

0.269, P> 0.05).  
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A B 

Figure 27; Regression plots investigation the 
relationship between A; Diplostomum spp 
genetic diversity (pi) and Satr-DAB diversity 
(pi) and B; Diplostomum spp haplotype 
diversity and Satr-DAB haplotype diversity. 
Genomic data deriving from Diplostomum all 
derive from cox1 genetic markers. C 
Diplosotmum spp diversity vs Satr-DAB dN 

C 
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5.4 Discussion 
 

The investigation found signals of positive selection within the Satr-DAB gene across all 

sampled populations of brown trout with values associated with genetic diversity of Satr-

DAB indicating clear inter-population differentiation. One constant throughout the 

Gairloch system was the strong signal of positive selection acting on the MHC IIβ, with 

all lochs showing dN/dS>3 on Satr-DAB gene. The dN/dS values were corrected for 

using p value; with normalized dN/dS mean being 3.3. It is reasonable to assume immune 

system genes   would be under strong selective pressure. Positive selection indicated 

through elevated dN/dS values have been demonstrated in numerous other taxa (Radwan 

et al., 2014; Zueva et al., 2014;Wezner et al., 2016) these studies have emphasized the 

importance of parasites as selective influences acting upon the MHC gene complex.   

 

Phylogenetic reconstruction revealed little to no geographic structuring of different 

populations across the region suggesting that although selective pressure is strong, it has 

not lead to significant differentiation in terms of topology. Many broad-scale studies have 

attempted to elucidate phylogenetic outcomes of salmonid species utilizing MHC II 

genes (Grimholt et al., 2003; Mjaaland et al., 2005; Kjøglum et al., 2006; Croisetière et 

al., 2008; Lamaze et al., 2014b; Ciborowski et al., 2017; Schenekar and Weiss, 2017). 

Multiple studies elucidated phylogenetic population structuring correlating with specific 

bacterial infection presence (Grimholt et al., 2003b; Kjøglum et al., 2006; Croisetière et 

al., 2008). Phylogenetic structuring was also observed when comparing stocked brood vs 

wild brood fish within freshwater systems (Mjaaland et al., 2005; Lamaze et al., 2014a; 

Schenekar and Weiss, 2017).  In reference to diversity indices of Satr-DAB within the 

Gairloch hill loch system the gene presents as highly polymorphic, not providing 

sufficiently conserved alignments to elucidate phylogeography such as that found within 

brown trout inhabiting river catchments in north west Spain A study by Thomas and 

Turner, 2008, also observed population structuring of MHC II within 10 Arizona 

populations of endangered Gila trout (Oncorhynus gilae gilae). Wider phylogeographic 

investigation indicated global population structuring in salmonid MHC II including 

Salvenius alpines (Arctic charr) (Conejeros et al., 2008) and Salmo salar (Atlantic 
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salmon) (Langefors et al., 2001). Within the Gairloch system this has not occurred, with 

trout populations not showing evidence of long-term stability of MHC II haplotype. 

Although with signals of positive selection exist across Gairloch subpopulations, it is 

functional adaptation or nonsynonomous mutation that promotes differentiation rather 

than traditional lineage sorting across populations.  

 

The wild brown trout populations within the study are highly fragmented and found 

within isolated locations with wholly different environmental characteristics in respect to 

hydrology, fauna and potential pathogenic infection. Gairloch system brown trout need to 

adapt to differential parasitism exhibited between hill loch populations via differential 

MHCII allele frequencies. Such differentiation, therefore, may be considered evidence of 

differential fitness advantage in response to varying parasitic milieu; i.e. increased 

parasitic selection pressure positively associated with increased heterozygosity. The 

current study demonstrated all sites exhibited positive selection acting upon MHC 

antigen binding sites, this indicates that selection rather than recombination exhibits a 

much stronger force in maintaining the diversity of MHC II. This result concurs with data 

from German and Irish populations of wild brown trout whose MHC I locus 

demonstrated higher allelic heterozygosity compared to farmed conspecifics (O'Farrell et 

al., 2013; Schenekar and Weiss, 2017). 

 

The genetic structure of populations is the product of gene flow, genetic drift, selection 

and mutation. The analysis of ecologically important genes such as MHC II holds great 

promise for studying natural selection and local adaptation. The genetic structures of 

riverine populations have frequently been affected by genetic flow (Hindar et al., 2004). 

Studies have recently given empirical evidence that salmonid population gene flow 

present in a asymmetric manner, moving from larger populations in a system to small 

populations within the natural setting (Hansen et al., 2002; Manier and Arnold, 2005) 

This form of gene flow frequently structures salmonids into differentiated populations 

(Palstra et al., 2007; Gomez-Uchida et al., 2009) but this feature does not exist within the 

Gairloch system in relation to Satr-DAB. On the genomic level adaptive divergence 

between populations is not present, with a lack of geographic topology existing across the 
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Gairloch region. Genetic drift does not play a role in the evolution of Satr-DAB within 

the Gairloch populations; this is in stark contrast to previous findings of brown trout 

populations in northern Spain. Campos et al (2006) performed a study into the population 

structure of brown trout within nine isolated riverine populations within single river 

drainage; genetic variation occurred in correlations between MHC diversity and 

microsatellite markers throughout populations in the system suggesting that genetic MHC 

variation observed seems to have been shaped by neutral forces such as genetic drift, 

rather than selection. However, the study does not take into account differential factors 

affecting the MHC diversity. Because all populations studied within the northern spainish 

rivers were infected by only singular species of pathogen, neutral forces may have had a 

greater impact on MHC diversity compared to adaptive measures against a diverse 

pathogen milieu, such as Gairloch trout populations.  

 

Tests at the genomic and protein level indicated the presence of strong positive selection 

within Gairloch trout populations. These signals were more pronounced within western 

populations, which were infected by multiple parasites species and thus possessed a 

larger proportion of codons under positive selection. This pattern of increased selection 

within the ABS can be interpreted as a result of pathogen-driven selection leading to high 

levels of intra-population diversity associated with increased diversity of pathogenic 

insult. The individual codon analysis supported a number of codon positions under strong 

levels of selection compared to other codons. Even though parasite-driven selection of 

MHC alleles has been demonstrated in numerous ‘hatch stock’ vs. wild populations in 

brown trout (Schenekar and Weiss, 2017), sea trout (Byrne et al., 2002), Gila trout 

(Peters and Turner, 2008) and Atlantic salmon (Mjaaland et al., 2005), wherein there is 

consistent increase in heterozygosity in wild populations compared to stocked/farmed 

populations (Byrne et al., 2002; Lamaze et al., 2014a; Mjaaland et al., 2005; Taylor, 

1991), this is the first study to elucidate differential parasite-driven selection acting on 

MHC II within wild brown trout populations. Importantly, these results indicate that such 

farmed vs. wild comparisons do reflect operation of selection processes occurring 

between wild populations rather than purely reflecting processes resulting from the 
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artificiality of aquacultural systems. This has implications for the acquisition and 

maintenance of salmonids for aquaculture and for salmonid population conservation.   

 

One constant throughout the system was the high level of Diplostomum infection. 

Typically, genetic diversity of a highly prevalent parasite can contribute significant 

selective pressure on host MHC allelic diversity (Kalbe et al., 2006; Fraser & Neff, 

2009). A selective sweep of an allele conferring greater infective success across 

populations of Diplostomum spp. would lead to an effective host immune response, thus 

maintaining adaptive MHC diversity. Although not previously tested within salmonid 

species, selective pressure exerted by Diplostomum spp. can initiate a hereditary immune 

response in Gasterosteus aculeatus (three-spine stickleback) (Kalbe and Kutz, 2006). 

Within the Gairloch system no statistical relationship has been proved between 

Diplostomum diversity and Satr-DAB diversity. Although results indicate no statistical 

significance it does not discount the biological significance that parasite infection 

presence exerts on MHC maintenance.   

 

5.5 Conclusion  
 

Data acquired within this study suggest adaptive immunogenic traits of wild brown trout 

allow isolated populations to habituate to pathogen presence within their immediate 

environment, with a direct selection bias to differential infection presence between two 

isolated groups of fish undergoing diverse parasitic insult. These results are the first of 

their kind and have implications, not only for the trans placement of wild populations of 

brown trout but would also suggest that exposure of non-native stocked brown trout to 

novel pathogens is inadvisable when trying to boost numbers of wild resident salmonids. 

Understanding the way salmonids adapt to minimize potential adverse fitness affects 

posed via parasite infection should also be considered with both the potential stocking 

procedures of non-native fish and ensuring sustainable practice in aquaculture.  

 

 



 132 

Isolated populations of brown trout utilize immunogenic adaptive traits to co-exist with 

long-term parasite insult, with a diversity of infective potential acting to maintain crucial 

genetic diversity within host MHC genes. Even with MHC genes adapting to parasite 

diversity, infective presence especially Diplostomum baeri, still persists within host 

populations, the continued infective success of D. baeri indicates its continued successful 

evasion of the host immune system. The molecular basis for immune evasion in 

freshwater trematodes is predominantly due to intracellular antigens down-regulating 

immune response mechanisms (Maizels, 2009). Genomic techniques have highlighted 

said antigens within multiple trematode species (Hemler, 2003; Levy and Shoham, 

2005b; Chalmers and Hoffmann, 2012), however the presence of such 

immunomodulatory antigens have not yet been confirmed in D. baeri. Intracellular 

antigen presence within D. baeri could, thus, be a factor in the species’ high prevalence 

within Gairloch brown trout populations.  
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6 The construction and annotation of the 
Mitochondrial genome of Diplostomum baeri 
6.1 Introduction  

6.1.1 Parasite genomics  
The advent of genomic-based studies of parasites has allowed expansion of knowledge 

associated with interactions between parasite and host (Tarleton and Kissinger, 2014). 

Basic PCR-based analysis has allowed identification of parasite species through genetic 

markers and functional genes throughout host populations within endemic areas. A 

relatively recent form of genomic technique has been Next-generation sequencing; its 

introduction has now provided multiple ways to utilize parasite genomics and large-scale 

biological data to give insights into comparative transcriptomics and proteonomics 

between populations (Preidis and Hotez, 2015).  Even though parasite genomics now 

provides a fast and accurate method to investigate parasitic disease, the majority of 

parasite genomic information has been obtained from human-infecting parasites. The 

open source genetic databank “genbank” (https://www.ncbi.nlm.nih.gov/nuccore) holds 

over 172,046 annotated sequences and chromosomes for the causative agent of African 

sleeping sickness; Trypanosoma cruzi and 159,115 for Schistosomiasis causing; 

Schistosoma japonicum, however the highly pathogenic fish ectoparasite Gyrodactylus 

salaris is only represented by 2282 annotated genes. With the continued reliance upon 

aquaculture and fisheries to supply food, jobs and economic input to communities there is 

a clear need to ensure primary fish stocks are kept healthy (Piasecki et al., 2004; 

Whitmarsh and Wattage, 2006). The expanded use of NGS technologies on freshwater 

parasites would increase knowledge regarding species delineation but also aid in 

highlighting potential vaccine and drug targets as seen in the case of Dirofilariaimmitis 

(heartworm) (Godel et al., 2012) and Fasciola hepatica (Dalton et al., 2003).  The 

increased knowledge of genomics associated with aquatic parasite infection dynamics 

could aid in the maintenance of farmed fish health, via improving long-term fish 

immunity rather than an over-reliance upon pharmacological intervention. It would not 

only be the aquaculture industry that would benefit from increased aquatic parasite 

genomics research, conservation efforts could become significantly more efficient when 

understanding potential parasitic diseases affecting high value stocked fish and 

https://www.ncbi.nlm.nih.gov/nuccore
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preserving endangered fish species.   

6.1.2 Mitogenomics and molecular epidemiology  
 
Since the initial studies of parasite molecular epidemiology the mitochondrial genetic 

marker cytochrome oxidase 1 (cox1) has been used to aid in delineating between species 

of closely- related parasites (Moszczynska et al., 2009b). In an effort to increase the 

accuracy of species identification between closely related species research has utilized 

many forms of genetic markers including repeat motifs of micro satellite markers 

(Criscione and Blouin, 2005; Keeney et al., 2006) and nuclear markers (Georgieva et al., 

2013c). In recent years another potential sources of molecular markers in parasites has 

been mt genomes. Despite a multitude of potential mitochondrial genes being isolated as 

potential markers (Roy, 2014) few authors have considered alternative mt sequences for 

studies, with the majority of molecular investigations of parasites relying on the cox1 

barcoding region. A comparative mitogenomic approach could identify potential genetic 

targets which would have highly variable characteristics needed to investigate species 

identification in closely related subpopulations. With many molecular-based studies 

(including chapter 2) (Galazzo et al., 2002; Selbach et al., 2015a), revealing varied results 

from using varied genetic markers, the potential of utilizing mt genomes for the discovery 

of novel and potentially more accurate markers should present a well-recognized 

prospect. The structural content mitochondrial genomes of trematodes include 22 transfer 

RNA’s, 12 protein coding genes, to ribosomal genes and vary between 13-17,000 bp in 

length (Brabec et al., 2015b; Littlewood et al., 2006; Ma et al., 2016). Current 

evolutionary studies between species have outlined the arrangement of genes and tRNA 

throughout the length of the mt genome which has been a significant factor in delineating 

between species (Telford et al., 2000). As with many parasite genomic studies, the 

majority of parasite mt genomes have been isolated within medically-relevant parasites 

(T. H. Le et al., 2000; Littlewood et al., 2006; Ma et al., 2016) and agricultural 

(Shekhovtsov et al., 2010) but not from freshwater parasites. Diplostomum represents an 

interesting model genus for population genetics analysis due to its species’ wide 

distribution and complex asexual and sexual life cycles (Georgieva et al., 2013). To 

overcome potential hurdles in Diplostomum species delineation there is a need to 
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supplement and analyze new potential markers to aid in molecular identification. 

Characterizations of mitochondrial genomes have advanced identification techniques of 

many other medically important trematode species (Brabec et al., 2015; Le et al., 2000; 

Littlewood et al., 2006; Shekhovtsov et al., 2010), with advances in NGS sequencing 

technologies allowing for the acquisition high quality of genomic data from which 

mitochondrial genomes can be readily identified for further downstream analysis. One 

example where such analyses have occurred to aid in the accurate identification of 

Diplostomum species, mitochondrial genomes have been constructed of two common 

species D. spathaceum and D. pseudospathaceum with tissue samples from adult worms 

infecting definitive host; Larus ridibundus (black-headed gull) (Brabec et al., 2015), 

however with most pathogenic impact exerted via Diplostomum infection within host 

intermediate fish populations the data acquired from metacercarial genomic studies 

would further advance  understanding of the crucial intermediate stages of Diplostomum 

species. 

6.1.3 Aims and objectives  
 
The genomic investigation of Diplostomum was performed in a two-part study. The aim 

of the first part of the study was to construct and analyze mitochondrial genome of 

Diplostomum baeri. This was followed by the development and assessment of molecular 

markers for epidemiological studies using mitochondrial markers. The objectives were: 

• Construction and annotation of protein coding genes, tRNA ribosomal genes of 

Diplostomum baeri mt genome  

• Comparison of mt genome across Diplostomum species for size, overall content and G-

C richness and gene order  

• Potential efficacy for mt genome to advance species delineation within Diplostomum  

 

 

 

 

 



 136 

 

6.2 Methods  

6.2.1 DNA extraction  
 
The metacercarial stages of Diplostomum baeri were acquired from the optical lens of 

Salmo trutta (brown trout) from Loch Fada, Scotland (Lat; 57.6755201, Long; -

5.2926635). DNA was extracted from 10 metacercariae of D. baeri using a DNeasy blood 

and tissue extraction kit (Qiagen). Samples were pooled to ensure adequate concentration 

of DNA was available and ensure downstream library preparation and further NGS 

procedures were performed using the highest quality and quantity of Diplostomum DNA. 

Elution of total DNA was isolated and quality checked using NanodropTM 2000 

spectrophotometer, yielding 1.8ng/ul of total DNA in final DNA elution.  

 

6.2.2 Whole genome sequencing  
 
Whole genome sequencing was carried out using Illumina MiSeq at the Natural History 

Museum, London. Initial library preparation was performed using TruSeq Nano DNA 

Preparation Kit and run using MiSeq Illumina sequencer, amplifying 250bp long paired-

end reads. The MiSeq next-generation sequencing technology uses fluorescent terminator 

dyes to detect bases during sequencing. Pooled sample was sequenced 4 separate times to 

improve overall genome coverage and data was combined into a single data set.  

 

6.2.3 Sequence quality control and trimming  
 
Initial raw read data was handled using Qiagen CLC genomics workbench to clean, trim 

and analyze data generated. The failed and low quality reads were removed based on 

quality filters and discarded with quality scores retained in the output. The quality scores 

associated with read quality on CLC genomics workbench are denoted using ‘phred 

scale’ this is a calculation based on error probability across the raw read dataset to inform 

the user of the based that have been trimmed.  Sequences are timed on quality (=0.01), 

ambiguities (0) and length (<50). Trimming parameters were selected through scaling 
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algorithms to identify the most appropriate maximum coverage parameters whilst 

maintain the quality of final genome construction. Sequences over 50bp within read 

dataset are more likely to be unique within the genome, the ‘uniqueness’ of these 

sequences and denoted as K-mer ratio (Schatz et al., 2010). After trimming a quality 

report of the data is constructed for the user to examine overall quality of construction. 

During MiSeq procedures adapters are attached to cleave DNA inserts that are being 

sequenced. If DNA is shorter than the defined prearranged sequence length then universal 

adapters are attached to aid in the sequencing of the whole genome, these adapters must 

be trimmed during the quality control phase. 

 

Adapters used: 

 

TruSeq Universal Adapter;  

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT

CCGATCT 

Truseq Adapter, Index; 

5’GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCC

GTCTTCTGCTTG 

Sequences were trimmed of adapters with alignment scores of; mismatch = 2 and gap 

cost = 1. These match scores provided most accurate results when checking discarded 

sequences once adapters were removed from the final dataset.  

 

6.2.4 De novo mapping of reads 
 
The de novo mapping of the Diplostomum baeri genome was performed using CLC 

genomics workbench. The assembly of reads into final de novo genome was performed 

using de Bruijn assembly algorithm graphs (Zerbino et al., 2009). The paired distance 

estimation is enabled to allow the mapping of paired reads at first into contigs sequence 

and then resolving larger repeats into scaffolds. Final summary of de novo efficacy is 

presented within nucleotide distribution analysis and contig length distribution within 

final mapping report.    



 138 

 

6.2.5 Mitochondrial genome assembly and annotation  
 
Downstream annotation to provided information on positioning of mt protein and tRNA-

coding regions were performed utilizing a multitude bioinformatics software analysis 

programs. Initial mt protein-coding gene placement was revealed via the use of MITOS 

(http://mitos.bioinf.uni-leipzig.de/index.pyt) online genome annotation tool, tRNA genes 

were annotated onto D. baeri using tRNAscan-SE (http://lowelab.ucsc.edu/tRNAscan-

SE/) online web server along with ARWEN tRNA gene prediction tool (Laslett and 

Canbäck, 2008). Placement of annotations was performed using Geneious MAFFT 

alignment plugin (Katoh and Standley, 2013) along with verified published genomes 

Schistosoma japonicum (NC_002544) and Fasciola hepatica (NC_002546). Alignment 

of mitochondria within the Diplostomidae was also performed using MAFFT alignment 

algorithm, along with the whole length of mitochondrial genomes of D.spathaceum, 

D.pseudospathaceum and D. baeri.  

 

6.2.6 Mitochondrial genome phylogenetic analysis  
 
Individual annotated genes of the mt genome were translated using Geneious v8.5 

(Kearse et al., 2012) and resulting concatenated amino acid sequences of D. baeri were 

aligned manually using published genomes of Digenea. These included Diplostomidae; 

D. spathaceum (KR269763) and D. pseudospathaceum (KR269764), Schistomidae; S. 

Japonicum (NC002544), S. spindale (DQ157223) and S. haematobium (DQ157222) 

Echinostomatidae; Hypoderaeum sp. (KM111525), Fasciolidae; F. hepatica (NC002546), 

F. gigantica (KF543342). The cestode Diphyllobothrium was included as an outgroup. 

All alignments created using MAFFT 7.122, with poorly aligned sites with extensively 

divergent regions being eliminated using Gblocks Server v.0.91b 

(http://molevol.cmima.csic.es/castresana/Gblocks_server.html). The tree construction 

was performed using Bayesian inference in Beast software v2.46, the evolutionary model 

used for analysis was GTR+I+G selected via bModelTest (Bouckaert, Heled and 

Kuhnert, 2014). Markov chain parameters were run for 10,000,000 MCMC generation’s 
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sampled trees every 1,000 generations with 25% discarded as burn-in. Final Phylogenetic 

tree visualization was performed using FigTree v1.42 . 

6.3 Results  
6.3.1 Whole genome sequencing  
 
The total number of paired end sequences was 19,829,002 before QC and after trimming 

produced 6,824,680. The total number of nucleotide sequences was 2,003,995,037 before 

QC and 1,734,130,204 after trimming and quality control sequence removal measures.  

The genome size was estimated at 379-384 Mb by the program GenomeScope (Vurture et 

al., 2017). The program fits a model of negative binomial distributions to the k-mer 

profile. The sequence data was assembled into 4,346 scaffolds with an N50 of 198kb 

(table 12).   

6.3.2 Sequence quality control and trimming 
 
Different quality score values were assessed across sequence and per base within the 

genome to maximize the quality of the final data set. The length distribution within the de 

novo construction describes the distribution of sequence length for the genome; the 

Diplostomum baeri sequence construction sequence lengths indicated lengths ranging 

from 50-300bp. After trimming the genomes retained no sequences below the length of 

50bp (Figure 25). For each genome the G-C content remained similar post trimming with 

final content being around 38%. The G-C content per base indicated fluctuations across 

the reads within the first 80 bases, after trimming the G-C per base value improved in 

consistency, with an increase in G-C content in the first 10bp along with an increase per 

base score within 250-280bp across reads. The analysis of quality distribution across the 

genomes ranged from 14 to 39 PHRED score before trimming, after trimming and QC 

procedures this score rose to 25 to 39. The contributions of nucleotides to complete 

genome indicated a large fluctuation before and after trimming within the first 80 bases 

of each sequence, after trimming consistency of bases within beginning of each 

sequences increased with dips in guanine and adenine within latter portions of each 

sequence across read dataset.  The over representation analyses of enriched primers 

calculates the ratios of observed and expected penta-nucleotides in the genome, this was 
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represented as an over representation of AAAAA within the 55-75bp portion of initial 

datasets, mainly owing to adapter sequences and sequencing errors, these decreased from 

19% to below 1% after trimming and QC measures.   

 

 

 

 
Figure continued … 
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Figure  27; Resulting graphics from CLC genomics quality control workflow, graphs are divided between before and 
after trimming procedures and QC measures. The graphs are divided into; A: distribution of sequence lengths, B: GC 
content across sequences, C: PHRED average score across sequences, D: per base coverage %, E: Nucleotide 
contributions per base, F: per base PHRED score distribution, G: enriched 5mers across sequences.   
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Assembly criterion  D. baeri 
  
Estimated genome size (Mb) 379-384 

GC content (%)  33.6 
Repeat rate (%) 35.11 

  
Contig stats   

Total base pairs  358.3 
Number of contigs  19 759 
N50 length (kb) 108 

Length of largest contig (kb) 188.3 
Mean contig size (kb) 15.7 

  
Scaffold statistics   
Number of scaffolds 4 111 

N50 length (kb) 197.5 
Largest scaffold (Mb) 339.1 

Number > 1kb (% of assembly) 4,222 (100%) 
Number > 10kb (% of assembly)  3,799 (99%) 

Number > 100kb (% of assembly) 931 (66%) 
Mean scaffold size  76.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12: Approximate characteristics of genome assemblies of D. baeri genome, constructed from 10 pooled 
metacercariae 
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6.3.4 Mt genome content and annotation organization  
 
The complete mitochondrial genome of D. baeri was a total of 14,480bp long, which 

contains 36 total genes being transcribed, 12 protein-coding genes, 22 tRNA genes and 2 

rRNA genes (Table 1), consistent with findings in other species of digenea D. baeri lacks 

atp8 gene(Olson et al., 2003). There is one NCR region within the D. baeri mt genome 

consistent with annotations of D. pseudopathaceum, however not consistent with D. 

spathaceum, which has two.  

The arrangement of genes in D. baeri mt genome is similar to that of other published 

Diplostomidae genomes with NCR regions falling between rrnS (9764-10495) and cox2 

(10525-11118) and the second falling between tRNAG (13598-13668) and cox3 (1-651) 

(Fig 1).  In comparison to other species of Digenea the mt gene order is similar to 

Echinostomatidae, Heterophyidae and Opisthorchiidae, but distinct from species of 

African Schistosoma (T. H. Le et al., 2000). The nucleotide composition of D. baeri 

indicates a clear A-T bias, with 71.6 % of the entire genome regarded as A-T rich. The 

content of C is low (10.49%) and T is high (46.96%), the nucleotide composition is 

consistent with that of D. spathaceum and D. pseudospathaceum (Fig 26). 

The tRNA genes of D. baeri ranged in size from 60 to 70 bp in length, indicating similar 

structure compared to of Diplostomidae (Brabec et al., 2015b) (supplementary figure 2). 

The large ribosomal RNA gene (rrnL) were located between trnaT (8636-8703) and cox2 

(10525-11118) and separated by trnaC (9696-9762), with the length of rrnL 973bp and 

rrnS 734bp. The non-recombining region (NCR) is located between trnaG and cox3 

(Supplementary table 1). 
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Figure  28; Circular visualization of mitochondrial genome with placement of labeled tRNA’s, protein coding genes and 
ribosomal subunits.   
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Species  A T G C G-C Length (bp) 
       

D. spathaceum  22.3 47.1 20.1 10.6 30.5 14,764 
D. pseudospathaceum 22.4 47.9 19.8 9.9 29.5 14,099 

D. baeri  23.7 46.9 18.9 10.5 29.4 14,480 

Figure  29; Comparison of mitochondrial genome between published Diplostomum species, A; table denoted percentage of 
A,T,C,G constitution of mitochondrial genomes across species. B; graphical chart in comparison of base percentage across 
Diplostomum species  

A. 

B. 
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6.3.5 Genetic divergence of Diplostomum Mt genome  
 

The total difference between mitochondrial genomes across genus Diplostomum was 

14.81% (2860 bp), which was comparable to the nucleotide difference between D. baeri 

and D.pseudospathaceum at 14.71% (1996 bp) and the nucleotide difference between D. 

baeri and D.spathaceum 16.13% (2189 bp) (supplementary table 2). Comparison of 

tRNA structure indicated variation in structure and RNA folding of 

Q,E,D,N,K,W,V,L2,E,G across D. baeri, D.spathaceum and D.pseudospathaceum. 

At the protein coding level, differences between coding regions ranged from 7.89% to 

19.09% between species D. baeri and D.pseudospathaceum. Comparisons between D. 

baeri and D.spathaceum showed slightly greater divergence with nucleotide differences 

across protein-coding genes falling within the range of 13.15% and 20.18% (Figure 27A). 

Analysis into specific gene conservation between Diplostomum species illustrated the 

most diverse genes were nad2 (82.07% conserved), nad4 (81.78% conserved), nad5 

(81.29% conserved) and atp6 (82.36% conserved). The most conserved genes between 

across the genus were cox1 (88.42% conserved), cox2 (88.96% conserved) and cytb 

(86.98% conserved) (Fig 27B). These diversity characteristics were mirrored in other 

species of Digenea; Echinostoma, Schistosoma and Fasciolidae (Littlewood et al., 2006; 

Liu et al., 2016; Ma et al., 2016). 
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gene S Pi K position 

cox3 106 0.1557 73.333 181 

cob 199 0.13169 138.66667 751 

nad4l 50 0.13856 35.3333 1863 

nad4 285 0.19101 204 2192 

atp6 106 0.17955 74.3333 3696 

nad2-0 226 0.18171 157 4153 

nad1 183 0.15485 126.66666 5312 

nad3 58 0.17749 41 6571 

cox1 245 0.1117 167.6667 6860 

cox2 5 0.05464 3.333 10525 

nad5 278 0.18179 198.3333 12044 

nad6-1 61 0.20344 43.3333 13338 

Figure 30; Divergence data across protein coding genes within Diplostomum mt genomes. A; Genetic divergence table S; 
segregating sites across Diplostomum species, Pi; observed diversity values, K; Average diversity existing per site.  B; 
Graphical representation of divergence occurring across entire length of mitochondrial genomes between protein coding genes.  

B 

A 

           cox3 cob nad4l nad4 nad2-0 nad1 nad3 cox1 cox2 nad5 nad6-1 

Diversity (Pi) 
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6.3.6 Phylogenetic analysis of mitochondrial genomes  
 

The phylogenetic analysis across select Digenean mitochondria was performed on dataset 

of all 12 mt proteins. The mitochondrial genome amplified and annotated in this 

investigation grouped alongside two other Diplostomum- derived genomes, forming a 

Diplostomidae clade (Fig 28). The placement of this clade is flanked alongside the 

Plagiorchiida species and Schistosoma clade, in accordance to previously investigated 

evolutionary relationships between digenea (Olson et al., 2003) (Figure 29). Nodal 

support was supported with strong posterior values in accordance with Bayesian 

inference  
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Figure 31; Phylogenic construction of protein coding genes in mitochondrial genomes across trematode species in 
accordance with Bayesian likelihood phylogenetic construction parameters. Highlighting of D. baeri within the phylogenetic 
construction is in purple 
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6.4 Discussion  

6.4.1 Mitochondrial genome of D. baeri 
 

This has been the first application of the NGS approach to completely characterize the 

mitochondrial genome of Diplosotmum baeri which has added to the limited genomic 

knowledge currently available regarding a widespread group of fish pathogens. The 

recent application of molecular techniques when studying Diplostomum has led to the 

discovery of an  array of previously unrecognized species and species complexes existing 

within the genus (Blasco-Costa et al., 2014b; Georgieva et al., 2013c; Selbach et al., 

2015a). The cox1 barcode marker presented as problematic exhibiting low divergence 

within the D. baeri (Blasco-Costa et al., 2014b), D. huronese (Galazzo et al., 2002)and 

D. mergi (Pérez-del-Olmo et al., 2014b) species. The molecular resources provided via 

this study can significantly improve the future aspects of molecular analysis using 

coalescent-based approach to species delimitation, particularly within the ‘highly 

speciated’ D. baeri species complex (Georgieva et al., 2013c; Selbach et al., 2015a). 

Finally directly corroborating with previous mitochondrial studies of D.spathaceum and 

D.pseudospathaceum (Brabec et al., 2015b), this study has also shown that the cox1 gene 

is one of the most conserved protein-coding genes across the mitochondrial genome, 

having already been shown multiple species of parasitic flatworms (Le et al., 2002) and 

Diplostomum (Brabec et al., 2015b). Comparison of mt genomes of Diplosotmum species 

revealed that the least conserved markers are the dehydrogenase associated nad4 and 

nad5, with a high level of genetic divergence between the three closely-related species of 

D. baeri, D.spathaceum and D.pseudospathaceum. Use of the markers could enhance the 

efficacy of phylogenetic studies and enhance the ability to resolve some key problems in 

current Diplostomum taxonomic studies. The use of nad4 and nad5 markers may be 

advantageous for simultaneous species delimitation.. Within recent years the use of large 

scale environmental DNA (eDNA) (Bass et al., 2015) and coalescent NGS biodiversity 

studies (Preidis and Hotez, 2015) have allowed for the genetic identification of parasites 

that utilize freshwater stages within their life cycles. The genomic resource provided for 

D. baeri in this study provides short highly divergent DNA sequences which can be 
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utilized when amplifying bulk samples acquired from field-derived parasite samples and 

also free-living larval stages of the parasite through eDNA identification.  

 

Mitochondrial data acquired from the study made it able to infer phylogenetic 

relationships of the order Diplostomida along with Plagoriorchiida which make up two of 

the largest clades within the order Digenea. The phylogenetic construction of 

mitochondrial genomes s infers the family Diplostomidae exists as a sister clade to the 

basal Plagorichiddae, this differs from the earlier phylogenies which saw a reversal of 

this, also current rDNA-based constructions (Olson et al., 2003). This can only be 

confirmed using limited mt genomes currently published and available, however if this is 

the case that Diplostomidae is an early diverging lineage from Plagiorchiidae, then the 

seemingly synapomorphic life history trait of cercarial penetration shared throughout 

Diplostomidae may be viewed as pleisiomorphie within the subclass Digenea. However 

addressing life history trait questions regarding Diplostomum would require additional 

genomic data, particularly within earlier divergent lineages, including; Spirorchidae, 

Brachylaimoidae and Clinostomidae). In terms of placement of D. baeri, it is placed 

alongside other published mt genomes of D.spathaceum and D.pseudospathaceum. Gene 

order comparisons of D. baeri within the neighboring Plagiorchiida clade see a minor 

alteration with a switched position of trnP and trnN. In comparison to neighboring 

Schistomidae, comprehensive gene order alterations are described, with variation in atp6 

and nad2 along with multiple trn (V,M,W,S,N,I,K,A) positions, contrary to the minor 

alterations exhibited between Diplostomidae and Plagiorchiida reflected in phylogenetic 

reconstruction. The use of entire mt genomes in phylogenetic analysis can present 

important insights into the patterns and processes affecting mt genome evolution, 

however its use for species identification within large-scale population genetic studies 

still remains difficult in light of nuclear ribosomal and mitochondrial protein conflicts in 

phylogeny.  
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6.5 Conclusions  
 
The present investigation to determine the complete mt genome of the important fish eye-

fluke D. baeri reveals a close relationship between three species of Diplostomum. 

Comparisons of mt genomes across the genus has allowed for the identification of 

previously un-used mitochondrial markers that may give further answers to phylogenetic, 

biological and epidemiology questions, in Diplostomum and other freshwater trematodes.  
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7 Genomic mining for D. baeri antigenic vaccine 
targets  
 

7.1 Introduction  
 

7.1.1 Trematode parasite blood-stage infection  
 
Freshwater trematode species frequently have complex life cycles utilizing multiple hosts 

within the freshwater environment before achieving definitive host infection. A key part 

of freshwater digenean life cycle is the successful invasion and infection of intermediate 

host (Criscione and Blouin, 2004). The parasite undergoes a significant transformation 

from free-living cercariae to attachment, penetration and blood vessel infection within an 

intermediate fish host (Curwen et al., 2012.). In the case of Diplostomum the parasite 

must reach the immunogenetically inert optical region, however to migrate to this region 

an extended period of time is spent within the host blood vessels (Brant et al., 2006). 

Migration of the parasite through blood vessels means it has to withstand a litany of host 

immunogenic responses. For the host to efficiently defend against parasite insult immune 

responses present a varied array of immunogenic counter measures. Immunogenic 

response is broadly divided into two systems, the innate immune system; an immediate 

response to infection utilizing “antigen presentation” a process by which the direct 

binding of MHC molecules to pathogen enacts a host immune response through multiple 

immune response cascades (Akira et al., 2006). The second form of immune reaction is 

the adaptive immune response involving pathogen-specific antibodies, which travel 

throughout the blood stream of the host recognizing pathogenic insult in a highly specific 

manner (Cooper and Alder, 2006).  The capacity of freshwater parasites to modulate and 

evade both aspects of the host immune system underpins their infective success and 

longevity within a host population.  
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7.1.2 Diplostomum molecular host-parasite interaction  
 

With its widespread infective ability within varied environments and intermediate fish 

species (Blasco-Costa et al., 2014; Grobbelaar et al., 2015; Kudlai et al., 2017; 

Moghaddam, 2015; Sultanov et al., 2014) Diplostomum could utilize some degree of 

immunomodulation to achieve such a high rate of infection (Betterton, 1974; Karvonen et 

al., 2003, 2006; Voutilainen et al., 2009). This tegumental surface layer is a host-

interactive surface of the parasite, a syncytium that covers the entire worm bounded by a 

bilayer apical membrane, which acts as an interface between parasite and host immune 

response (Skelly and Alan Wilson, 2006). Primarily investigated within medically 

important Schistosoma species, this membrane has been highlighted as an important 

aspect of trematode survival whilst migrating through host blood vessels (Haas et al., 

2007). The tegument has a large invaginated surface area populated by numerous 

secreted proteins performing a variety of essential functional interactions with the host 

such as nutrient uptake, environmental sensing and immune cell down-regulation (Skelly 

and Alan Wilson, 2006). One family of cell surface proteins implicated in the down-

regulation of the host immune response is tetraspanins, a large superfamily of membrane-

bound proteins present within all metazoans. Structurally they exist in a large 

extracellular loop that exists in a transmembrane state along the parasite’s tegument 

(Hemler, 2001, 2003; Coceres et al., 2015). The membrane bound nature of tetraspanin 

superfamily proteins would include the involvement in disrupting any binding measures 

employed by host immune system such as MHC binding (Levy and Shoham, 2005b). 

This disruption of MHC binding would render the innate immune system impaired to 

parasite attack with MHC molecules being the initiating molecule of many innate 

immune cascades. Membrane-bound antigens can counteract direct binding immune 

cells, predominantly factors of the innate immune system, however to, counteract-blood 

bound specific antigens, freshwater digenean have a cocktail of secreted immune 

modulatory proteins to dampen parasite-specific antibodies. Included among these 

proteins is the Venom-Allergen-Like (VAL) family of proteins, these are members of the 

SCP (sperm coating protein) superfamily, which contains numerous commonly secreted 
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immunoregulatory proteins during, for example, Schistosoma invasion (Chalmers et al., 

2008a) and gastrointestinal nematode infection (Hewitson et al., 2011). Venom allergen-

like proteins are a large superfamily of proteins secreted by endo parasites during host 

invasion, the specific roles of which are poorly known. They are thought to play a role in 

immunoregulation. The proteins can be divided into two groups; group 1 are secretory 

proteins, released upon invasion into the host blood vessel, group 2 are structurally 

different with significantly less polarized sites within the amino sequences indicating the 

potential use as structural proteins within the membrane tegument (Chalmers and 

Hoffmann, 2012).  With such a varied response by parasites to mitigate the host immune 

response there has, in recent years, been particular focus on the mediators released by 

parasites and the analysis of how these products may be responsible for successful 

parasite infection  

 

7.1.3 Trematode antigen trans-membrane vaccine targets  
 

Genomic study of membrane-bound antigenic products released by Digenea has now 

provided a more comprehensive catalogue of potential immunolomodulators which are 

involved in the critical interaction between parasite and host immune system (Hamilton et 

al., 2009). Identification of specific proteins involved in immune evasion mechanisms 

may help to develop vaccines to defend against Digenean infection. With their crucial 

role in host-parasite immune system interaction within the vascular system, tetraspanin 

proteins have been investigated as potential vaccine targets with polymorphic tetraspanin 

2 (sm-TSP-2), being associated with reduced egg burden in Schistosoma mansoni 

infected mice (Loukas et al., 2007).  By comparison, VAL proteins vaccine studies are 

still in their infancy (Chalmers and Hoffmann, 2012), primarily because of the large 

variety of proteins isolated but its direct IgE interaction has been confirmed in murine 

models (Abath and Werkhauser, 1996; Alba et al., 2014). Although antigens mentioned 

above have not been investigated within Diplostomum the action of immune evasion via 

blood stage parasite to increases survivability would be shared across freshwater 

Digenean parasites blood-vessel infective stage. With the high level of infective success 

demonstrated by various species of Diplostomum the characterization of antigens that 
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may increase efficacy of host invasion will be an important factor in understanding the 

infection dynamics of a widely prevalent parasite in freshwater systems. The genomic 

analysis of antigens may also allow for the discovery of potential vaccine targets within 

Diplostomum to be utilized within salmonid aquaculture.  

 
 
 

 

7.1.4 Aims and objectives  
 
 
The second part of the study was based on the genomic isolation of antigens within 

Diplostomum. This was performed utilizing in silico techniques to assess antigens as 

potential vaccine targets.  The discovery and characterization of D. baeri membrane-

bound antigens will also expand knowledge on structure and function of these peptides 

how they play a role in immune system interaction. The objectives in the second half of 

this study Includes: 

• The genomic mining of TSP and VAL within D. baeri genome  

• Translation of extracted antigen genes and structural analysis of TSP and VAL proteins  

• Antigenic analysis of TSP and VAL proteins to find presence of direct binding sites of 

antigenic protein and host immune response complexes 

 
 

7.2 Methods  
 

7.2.1 Identifying antigens within Diplostomum baeri sequence  
 
An exhaustive gene search was conducted to identify all tetraspanin (TSP) and venom 

allergen like (VAL) genes within draft genomes sequences of Schistosoma mansoni 

(assembly ASM23792v2). The position corresponding to the TSP and VAL locus was 

used to retrieve loci of the Diplosotmum genes. A two round BlastN search was 

performed using CLC genomics blast suite with cutoff E value of 10-15 was used against 



 157 

the genome sequences. In the first round sequences of 10 TSP genes and 14 VAL genes, 

the extracted sequences were the only non-overlapping sequences given by the best hit 

(lowest E value). If the retrieved sequence was aligned with query sequence without any 

frame shifts or premature stop codons in the sequence and had proper RSS, the sequence 

was regarded as a potentially functional VAL or TSP gene. Once putative Diplostomum 

baeri antigens were obtained further scaffold BLASTn procedure was performed using 

the EXONERATE (https://www.ebi.ac.uk/about/vertebrate-

genomics/software/exonerate) command line program to manually verify and edit 

automated annotation procedures. The removal of indels from sequences was performed 

using GENEWISE (https://www.ebi.ac.uk/Tools/psa/genewise/) amino to nucleotide 

alignment program.  

 

 

7.2.2 Functional analysis and modeling of trans-membrane antigen 
 

Post annotation analysis was performed on translated sequences of Diplostomum baeri 

VAL and TSP antigen (Table 1). Structural analysis of exposed regions of antigen was 

done using BepiPred 2.0 (Jespersen et al., 2017) using epitope binding threshold of 0.5 

and Exposed/Buried threshold according to NetsurfP threshold analysis. Potential 

Immunogloublin binding sites were discovered using IgPred server analysis (Tong et al., 

2006), the protein was scanned using variable length parameters in 20 step-wise window 

analyses. To ascertain regions of the antigen that indicated increased potential for Major 

Histocompatibility Binding, translated sequences were analyzed using NetMHCII 2.3 

software analysis (Jensen et al., 2018), using MHC II binding template from Murine H – 

2 MHC-II molecules revealing MHC II-specific binding regions along exposed sections 

of trans-membrane antigen protein.   

3D Amino homology models were created using SWISS-MODEL (Biasini et al., 2014) 

protein structure server, with optimization performed using MODELLER 9.1 (Eswar et 

al., 2006) and visualized and produced using MacPyMOL (Delano, 2007) software. 

 
 

https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate
https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate
https://www.ebi.ac.uk/Tools/psa/genewise/


 158 

7.3 Results 

 

7.3.1 Gene identification and annotation  
 

The total number of tegument-associated antigens found within the D. baeri genome 

mapping was 7, these included 3 tetraspanin-like antigens (TSP) and 4 Venom allergen-

like antigens (VAL) (Table 12). The annotation of TSP antigens within the Diplostomum 

genome were checked using BlastN analysis in NCBI Blast suite with Diplostomum 

genes showing similarity to previously annotation TSP antigens within Schistosoma; D. 

baeriTSP-2; 85% ident score S. mansoni TSP-2 (Accession AAN17276) E value: 7e-138, 

D. baeriTSP-23; 76% ident score S. mansoni TSP-23 (Accession AGA82197) E value: 

1e-67 and D. baeriTSP-31; 80% ident score S.haematobiumTSP-31 (Accession 

XP012795895) E value: 2e-53. The D. baeri genes that show similarity to previously 

annotated VAL antigens within Schistosoma; D. baeri VAL-5; 85% ident score 

S.mansoniVAL-5 (Accession XP01864402) E value 2e-145, D. baeriVAL-11; 87% ident 

score S.mansoniVAL-11 (Accession XP018650104) E value 0.0, D. baeriVAL-27; 79% 

ident score S. haematobium VAL-27 (XP012798637) E value 6e-102 and D. baeriVAL-

18; 71% S. mansoni VAL-18 (Accession XP018652917) E value 2e-76. B 
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7.3.2 D. baeri Venom allergen-like protein analysis  
 
7.3.2.1 VAL protein structure  
 
The VAL protein sequences annotated from D. baeri genome varied in structure with, 

Venom allergen-like antigens are broadly divided into 2 groups, one of the VAL proteins 

extracted from D. baeri present variable cysteine residue within the C-terminal regions. 

Table 11; Description of putative antigen genes annotated and extracted from D. baeri genome. Epitope; defines the 
immunological binding potential of “MHC II” domains and “Immunoglobulin” domains. Amino Seq:  denotes raw sequence of 
protein that exhibits increased potential to bind with immunological factor. Binding site; represents positioning of binding 
domain within protein.  
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Group 1 VAL-18 protein indicated trematode specific ‘M’ group ligand existing within 

terminal region. In all VAL proteins extracted for D. baeri ‘trematode’ specific cysteine 

group was present before the first helix and within the C-terminal (Cys26-Cys195) 

(Figure 30), this group is confirmed as trematode-specific across multiple species of 

parasites (Chalmers et al., 2008b). Consensus group 1 VAL protein construction revealed 

increased cysteine presence within group 1 3D construction (Figure 7A) with 8 cysteine 

groups within the amino sequence compared to only 3 in group 2 D. baeri VAL proteins.  
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Figure 32; Diversity of structural domains between group 1 VAL Diplostomum (27,5,11)consensus protein structure with exposed 
cysteine motifs within structure highlighted in yellow. (A) Homology model of Group 1 Diplostomum VAL proteins, group 1 C-
terminal region is highlighted in yellow exposing potential disulphide bonds across protein structure. C-terminal regions are arrowed 
and annotated across structure (B) Homologous structure of VAL-11 in D. baeri, reduced C-terminal regions are highlighted in 
yellow and labelled across structure  
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7.3.2.2 VAL protein phylogenetic construction  
 
A total of 74 trematode VAL domain amino acid sequences were aligned, with 

phylogenetic construction revealing divisions between trematode members of group 1 

and group 2 VAL proteins (Figure 31). D. baeri VAL proteins placed alongside 

respective members of similar VAL proteins with S.mansoni VAL 18, 11, 27 and 5.. 

With Group 1 proteins displaying a lack in resolution within clades containing VAL-5, 

15, 26 and 28, D. baeri VAL-5 protein is placed alongside a mixed VAL-5 and VAL-15 

clade. Group 2 VAL proteins placed alongside other group 1 proteins throughout 

phylogenetic tree construction including D. baeri VAL-11 deriving from D. baeri 

genome.  Bootstrapping supports remained consistent throughout the phylogenetic 

construction maintaining well-supported clade division.  
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 Figure 33:  Phylogenetic construction of venom allergen-like (VAL) proteins across trematode species Schistosoma 
mansoni, Clonorchis sinensis and Diplostomum baeri. The VAL proteins specific to Diplostomum baeri are 
highlighted on the tree as VAL-27, VAL 11, VAL 18 and VAL 5  
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7.3.2.3 Antigenic propensity of VAL proteins  
 
All VAL proteins annotated from D. baeri exhibited regions of the protein indicating 

antigenic propensity. Antigenicity graphs have been combined with epitope analysis to 

show potential binding epitopes of immunoglobulin binding domains and MHC class II 

potential binding domains. All VAL proteins showed regions that could indicate potential 

epitope binding regions. D. baeri VAL-5 predicted MHC binding domain within 

extracellular region 118-137 (GFQRWLNEYKNWDFFNRLC), immunoglobulin epitope 

binding domain was located between 211-230 amino sequence 

(YVKQRCNHTNERQLNRTPA) (Figure 32A). D. baeri VAL-11 predicted MHC 

binding domain within extracellular region 226-246 (ISPDGHLVDNSKKLQESIHS) and 

immunoglobulin predicted binding domain between 172-192 amino domain 

(RGFSDNTDDKGKNKKLYVGQ) (Figure 32B). D. baeri VAL-27 predicted MHC 

binding between 97-124 amino domain (WAGAKDIQSWLAEYLKNYDFYTRTCRG) 

and immunoglobulin binding domain predicted between 41-59 amino domain 

(SEVRNGQLFGQPRAVSIK) (Figure 32C). D. baeri VAL-18 was the only VAL protein 

to indicate similar epitope binding domains of both MHC and immunoglobulin. The 

predicted VAL-18 MHC binding location between 161-179 amino domain 

(QPYESRPHDRGDDGDGAVY) and immunoglobulin-binding domain 153-173 

(AEVDKQPYESRPHDRGDDGDGAV) (Figure 32D).   
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Figure 34; Epitope binding plot denoting structural extracellular propensity, Red line indicates out membrane, 
Green line represents intracellular membrane. Immunogenic epitope binding domain is highlighted with Orange for 
Immunoglobulin binding domain and yellow for MHC II binding domain. Graphs are labelled A; VAL-5, B; VAL-
11, C; VAL-27, D; VAL-18.  
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7.3.3 D. baeri Tetraspanin protein analysis  
 
7.3.3.1 Tetraspanin structural analysis  
 
Tetraspanin superfamily proteins annotated from D. baeri genome consisted of putative 

TSP-2, TSP-23 and TSP-31 (Table 1). Structural analysis of TSP proteins indicated the 

consistent presence of extracellular loop structure across all three TSP types in D. baeri; 

this is a shared structural motif amongst TSP proteins. Another conserved aspect of TSP 

proteins is the presence of a cysteine-cysteine-guanine (CCG) region within the 

extracellular loop (Figure 33), the CCG region is conserved across all studied TSP 

proteins and is present within D. baeri putative TSP structure. Charge analysis across the 

3D structure of the TSP proteins is highlighted within colored regions of the 3D structure 

of all D. baeri TSP (Figure 34), this analysis consistently indicated the presence of 

charged amino regions being located on the extracellular loop domains, with the 

extracellular loop being the primary binding point between parasite tegument and the host 

immune system an increased charged amino potential within this domain would enhance 

binding likelihood.  

 

  

Figure 35; Multiple translated sequence alignment of TSP proteins from S.mansoni, S.japonicum, S.haematobium, 
S.bovis and O.viverrini. Highlighted yellow region denotes ‘CCG’ conserved region across TSP proteins.  
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Figure 36; Graphical representation of 3D matrix reconstruction of the extracellular loop from protein alignment of TSP 
2,23 and 31 from D. baeri genome. All protein structures are rotated 90 and 180 degrees with N and C terminal regions 
of the proteins labelled on diagram. Highlighted colours represent polarity of individual amino,  using red for negative 
charge and blue for positive charge.  
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7.3.3.2 Phylogenetic construction tegumental proteins 
  

Phylogenetic construction of tetraspanins (TSP) proteins (Figure 35) was supported via 

strong posterior values with strong nodal support. D. baeri derived TSP proteins placed 

alongside respective S.mansoni (TSP-2 and TSP-23) and S. haematobium (TSP-31) 

previous putative matches using nBLAST workflows. All D. baeri TSP proteins 

presented as sister group alongside Schistosoma main clade not indicating high enough 

similarity to place within the main clade of TSP-2, TSP-23 and TSP-31.  
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Figure 37; Phylogenetic construction of tetraspanins (TSP) proteins across trematode species Schistosoma mansoni, 
Clonorchis sinensis and Diplostomum baeri. The tetraspanins specific to Diplostomum baeri are highlighted on the tree as 
TSP-2, TSP-31 and TSP-31. 
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7.3.3.3 Antigenic propensity of TSP proteins  
 
All TSP proteins annotated from D. baeri annotation exhibited regions of the protein 

indicating antigenic propensity. Antigenicity graphs have been combined with epitope 

analysis to show potential binding epitopes of immunoglobulin binding domains and 

MHC class II potential binding domains. D. baeri TSP-2 had a total length of 240 aminos 

with the epitope binding region for MHC II being located 157-173 domain 

(PKDYGENPPTSCSKDG) and the region exhibiting increased immunoglobulin binding 

located between 145-165 (GENPPTSCSKDGVQFTQGC) (Figure 36A). D. baeri TSP-

23 was a total of 223 aminos in length with the MHC II epitope binding region located at 

106-132 (MTGALDKPTRVITEFMDL) and the immunoglobulin-binding domain being 

located between 21-41 (AREAIIVVGVIILIVSFLGCCG) (Figure 36B). D. baeri TSP-31 

has a total length of 110 aminos in length with the region exhibiting MHC II binding 

propensity located between 34-52 (AGCPPCLALCCCFTPDCE) and the 

immunoglobulin-binding domain being located between 7-27 

(KDDLLPSDPAGCPPCKLAK) (Figure 36C).   
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Figure 38; Epitope binding plot denoting structural extracellular propensity, Red line indicates out membrane, Green line 
represents intracellular membrane. Immunogenic epitope binding domain is highlighted with Orange for Immunoglobulin 
binding domain and Yellow for MHC II binding domain.  Graphs are labeled: A; TSP-2, B; TSP-23, C: TSP-31 
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7.3.3.4 Extracellular modeling of TSP proteins  
 
Modelling of D. baeri tetraspanins was performed using Moddeller protein-modelling 

software to predict intra and extracellular regions of tegumental proteins. All D. baeri 

TSP proteins indicated both extracellular and intracellular regions, with TSP-2 and TSP-

23 having the one small extracellular loop followed by a larger second extracellular loop 

(Figure 37). TSP-31 showed only a partial extracellular loop with only one end embedded 

within the membrane, this may mean only a partial protein sequence was extracted from 

D. baeri genome or TSP-31 may only be utilized differently within the TSP tegumental 

web than TSP-2 (Figure 37A) and TSP-23 (Figure 37B). Both TSP-2 and TSP-31 (Figure 

37C) had an N-glyco motif within the TSP structure. Epitope binding domains examined 

in previous epitope binding graphs showed a MHC II and Immunoglobulin potential 

binding domains are located within extracellular regions of TSP-2, TSP-23 and TSP-31.   
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  A B 

C Figure 39; transmembrane protein 
structure of annotated tetraspanin from 
D. baeri genome. A. Putative TSP-2 
protein, B.  Putative TSP-23 protein, C. 
Putative TSP-31 protein.  
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The use of next generation sequencing technology has allowed for a rapid increase in the 

knowledge of parasitic genomic processes and to help understand biology of certain 

parasitic organisms. DNA microarrays, proteonomic technologies and whole-genome 

construction have allowed the discovery and downstream comparisons of numerous 

proteins and genes associated with pathogenic capabilities of parasites. Most of the 

studies have aimed to identify membrane-bound target proteins within the parasite 

tegument with numerous studies implicating them as potential vaccine targets (Loukas et 

al., 2007; McManus and Loukas, 2008; Pérez-Sánchez et al., 2008). The advent of high 

volume throughput and computational analysis has aided the annotation of genes of new 

parasites. Here the manual annotation of antigens within one of the most widespread 

freshwater parasites in the world has provided potential markers for future studies in 

host-parasite infection and freshwater molecular epidemiology. This study has been the 

first to identify and annotate sequences for tegument-bound proteins within the D. baeri 

genome. Tetraspanin-like proteins within Diplostomum show conservation in structure 

compared to Schistosoma counterparts, with extracellular loop-like proteins exhibiting 

similar “CCG” structural domains, a trademark in the amino profile of tetraspanin 

proteins. This may exhibit a crucial component in the structure of tetraspanin proteins 

with the motif located on the extracellular loop, the most likely point of host interaction. 

3D structural protein construction displayed increased polarity of individual extracellular 

amino acids that would indicate the increased antigenic propensity of these regions to 

interact with extracellular components of the host immune system. The discovery of 

multiple tetraspanin-like proteins within the Diplostomum indicates that the proteins 

facilitate infection in similar ways to those associated with other digenea. During parasite 

invasion into intermediate host tetraspanins interact with one another to form a ‘web’ 

where the partnering of tetraspanin proteins can provide a more efficient interaction 

surface with extracellular proteins (Levy and Shoham, 2005a). The interactions of 

tetraspanins within the infective stage of Diplostomum is not limited to self-self 

interactions, epitope binding prediction plots indicate specific sections of the proteins 

where host proteins can interact with TSP genes. One of the crucial host-parasite 

molecular relationships discovered on the Diplostomum TSP proteins include MHC II 
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potential binding domain on the antigen. As part of the analysis into the modeling of the 

antigenic protein (Figure 35), indicates potential binding epitope sites as being within the 

tegumental membrane. It is not the case that immunoglobulin or MHC binds to these 

points on the antigen however by nature the tegument is shedding and reformed as the 

parasite blood stage passes through the blood stream of its host (Simpson et al., 1981; 

Kruger and Joubert, 1990; Van Hellemond et al., 2006). The shedding of the parasite 

tegument can expose intracellular antigens to further immune cell binding and 

interaction, making the parasite increasingly susceptible to destruction if recognized by 

the immune system. The tegument is not a smooth surface; the bilayer exists with 

vesicles and invaginations (Simpson et al., 1981; Gobert et al., 2003; Pérez-Sánchez et 

al., 2008) to increase the surface area and therefore increasing the antigen repertoire. This 

means that intracellular antigen modeling can only be consider hypothetical-

computational modeling of genomic mined tetraspanins, with binding epitopes predicted 

through computational analysis.  

 

The MHC is a vital part of the recognition and initiation of the innate immune response 

system that can recognize extracellular domains of pathogens to enact T cell host 

response (Simpson, 1988; Borghans et al., 2004). The Immunoglobulin binding domain  

is present on all TSP genes analyzed with epitope prediction showing clear binding 

potential within the extracellular domains of the TSP protein. Epitope prediction 

highlights the direct interaction that TSP proteins have with proteins associated with host 

response indicating the potentially vital role in successful infection.  

The newly identified D. baeri specific VAL proteins indicated conserved structural 

characteristics in comparison with other members of trematode class. The 4 VAL 

proteins annotated within D. baeri were named due to similarity in matching with VAL 

proteins in other species. One VAL protein is classified as sharing pairwise similarity 

with group 1 VAL protein (VAL 18 Diplostomum), group 1 modeling has indicated that 

it is expressed at high levels during host invasion and that it may play a key role in the 

disruption of the host innate immune defence mechanisms such as the complement 

pathway.   With intriguing symmetry a different set of ‘group 1’ proteins have been 

implicated in miracidia/sporocyst parasitism correlating with VAL 27 discovered in D. 
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baeri and VAL 5 associated with adult egg secretions with definitive host (Kelleher et al., 

2014). Extraction of VAL proteins from the D. baeri genome revealed substantially less 

genes than Schistosoma counterparts. Venom allergen-like proteins are unlike 

Tetraspanins in the sense some of the family are actively secreted and do not reside 

purely within the tegument of the parasite, however the protein still exhibits potential 

binding domains with immunoglobulin. The epitope-binding domains associated with 

immunoglobulin within this study represent potential domains that show increased 

propensity for immunoglobulin binding.  

Human hosts of Digeneans display a great diversity of immunoglobulin with 9 classes 

however salmonids have only three immunoglobulin classes (IgM, IgG and IgT) 

Salmonid Ig compounds are involved in differential aspects of host immunity; IgD and 

IgT have been associated with mucosal tissue immunity, with IgT demonstrating up-

regulation in response to pathogen infections and could be implicated as protective 

against D. baeri infection. There is strong proteomic evidence to suggest that group 1 

VAL’s are secreted by several trematode species during parasite invasion, with the 

presence of group 1 protein within D. baeri genome (VAL 18) the potential use of VAL 

18 could be implicated as a major aspect of D. baeri invasion.  
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8. General Discussion  

 
8.1 Introduction  

 
Research into the parasitic infection of salmonids has gained ground as an area of 

research in recent years due to increasing global reliance of fish farming. Although 

farmed salmonid production is seeing an increase worldwide the conservation status of 

wild populations of salmonid remains varied. Within select UK communities, the health 

of salmonid populations is of great importance. As discussed at length throughout this 

thesis one of the major factors affecting salmonid health is parasitic infection, imparting 

varying degrees of pathogenicity on host populations. Recent technological advances 

have allowed for the accurate identification of aquatic parasites to monitor the potential 

presence of highly virulent species, to minimise detrimental impact on fish populations.  

Ascertaining immunogenic response to parasite infections is one of the key factors in 

understanding resistance or susceptibility of populations to infection. Recent studies 

utilizing genomic analysis have allowed for the quantification of immunogenic response 

cascades post parasitic invasion of host, leading to isolation of potential vaccine targets 

and important parasite proteins contributing to immunomodulation.  

 

This body of work sought to advance the understanding of host-parasite relationships 

within brown trout populations. Initial parasite screen was the first molecular prospecting 

study of the species Diplostomum spp. within the United Kingdom, updating previous 

assessments of species richness and identification of Diplostomum spp infecting brown 

trout in the UK. The second study relating to species identification involved the 

medically important Diphyllobothrium dendriticum infection; once again this was the 

first study to utilize molecular techniques to identify a medically re-emergent parasite 

infecting UK brown trout. The study area provided an excellent transferable freshwater 

environment to model the evolutionary properties that maintain immunogenic diversity 

within salmonid MHC genes. The isolated populations highlighted specificity of parasitic 

insult and inter population infection diversity in correlation with immunogenetic 
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diversity, to infer the potential for parasite-driven selection on host populations. With the 

vast infective success demonstrated by Diplostomum baeri within our study area and 

worldwide, there was a clear need for further investigation into potential molecular 

factors contributing to infection dynamics of the species. The study was the first to 

identify transmembrane antigens associated with immune evasion of the parasite and lead 

to continued infective success.    

 

 

8.2 Parasite screen of brown trout within Gairloch freshwater system 

 

As a freshwater system, the Gairloch hill lochs provided numerous populations of brown 

trout existing within varying degrees of isolation. As a study area it shares similar 

characteristics to freshwater and anadromous habitats of trout worldwide. This makes the 

region a suitable model system to extrapolate parasite infection dynamics across similar 

brown trout habitats. The system itself indicated clear differential parasite infection 

across sub-populations. Within the system there was a clear comparative differential 

infection present within populations of lower laying western lochs compared to elevated 

loch sub-populations.  Multiple factors can lead to differential parasitism across localities 

and between freshwater populations of brown trout. One of the factors leading to the 

presence of cestodes infection within the low lying lochs was increased bird population 

within the locality, most likely due to a nearby refuse area. Additionally the potential 

presence of intermediate host Gasterosteus aculeatus may have also lead to the presence 

of tapeworm.  A piscivorous diet switch of brown trout to eating stickleback can be a 

common route of infection for Diphyllobothrium and Eutbothrium.   

 

Across the loch system eye fluke remained the dominant parasite presence throughout 

brown trout populations. Although rarely studied within the United Kingdom 

Diplostomum is a ubiquitous parasite infecting brown trout worldwide (Ndeda et al., 

2013; Blasco-Costa et al., 2014c; Faltýnková et al., 2014; Selbach et al., 2015b). Its 

presence within the system indicates a clear piscivourous bird population, maintaining 

Diplosotomum. The presence of snail intermediate host is also important to sustain 
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infection rate, without performing snail sampling field studies, it is clear that a healthy 

size snail population exists within the system. Nematode infection was low within the 

system; Eustronglyides is a common parasite of brown trout (Hirshfield et al., 1983) and 

was only found within two individuals within the entire dataset. The infected individuals 

are found within larger, deeper lochs. Nematode infective presence within these lochs 

correlates the presence of Oligacaete worms dwelling at greater depths in the water 

column.  

 

A key outcome of the study highlighted the importance of host presence to support 

parasite infection within isolated populations. Overall the study provided one important 

outcome to link to further studies within the body of work, differential parasitism within 

the Gairloch system, provided the framework for further immune-genetic analysis in 

correlation with differential infection.  

 

Moving forward, analysis of fauna in freshwater systems would be enhanced by sampling 

in a longitudinal manner rather than a singular multi-population sampling method. The 

longitudinal monitoring of freshwater fish populations would allow for the analysis of 

temporal fluctuation in parasite prevalence and diversity. Temporal variation in parasite 

prevalence could be due to a multitude of factors including seasonal temperature 

variations and definitive host movement. Although parasite presence was consistent 

throughout the system, the actual pathogenic affect of parasite infection is still yet to be 

determined. A study of parasite infection load alongside growth-rate and age may help in 

determining the potential detrimental affects that parasite infection is having on trout 

populations. A study like this would be particularly impactful due to the as yet 

misunderstood pathogenic-nature of Diplostomum infections in freshwater systems, 

despite being seen as a highly virulent parasite within them.  
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8.3 Species richness and diversity of D. baeri infecting a hill loch system 

 

The infective level of Diplostomum spp. was high across the dataset, which prompted 

further analysis of species identification and genetic diversity. Using cox1 and ITS 

genetic markers the species identified as Diplostomum baeri. D. baeri indicates a 

continued high prevalence across freshwater salmonids and Percidae worldwide. Its 

presence within the United Kingdom has been identified before within farmed (Stables 

and Chappell, 1986b)  and wild (Stables and Chappell, 1986a) populations. The study 

provided the first molecular evidence of D. baeri infecting UK brown trout. The 

discovery of only a single species of Diplostomum infecting UK brown trout confirmed 

by both cox1 and ITS markers shows a deviation from precious Palearctic studies of the 

species; with 3 species of Diplostomum (D. baeri, D.spathaceum and 

D.pseudospathaceum) discovered infecting brown trout within Icelandic population of 

brown trout (Blasco-Costa et al., 2014c) and 4 (D. baeri, D.mergi, D.spathaceum and 

D.pseudospathaceum) infecting German populations of brown trout (Georgieva et al., 

2013b). The reasoning for single species infection within Gairloch populations may be 

associated with a “lifecycle bottleneck” within only a single molluscan host infection 

existing within the loch system maintaining Diplostomum baeri infection within the 

system. Although D. baeri was the only species present within the system, it presented as 

a highly speciated complex with multiple lineages present across the dataset, the D. baeri 

species complex is not only present within this dataset but also across north American (S. 

A. Locke et al., 2010b) and Icelandic (Blasco-Costa et al., 2014c) D. baeri infected 

localities. The genetic diversity of D. baeri is most likely due to definitive host mobility 

within local geography of Gairloch. The region is host to a large transitory bird presence 

every summer with annual southern migration of Gavia artica and Gavia stellata, 

piscivorous birds with known a known breeding habitat surrounding elevated hill lochs. 

Through geographic specific haplotypes confirmed the presence of an admixture of 

Icelandic and mainland European isolates alongside Gairloch specific isolates infecting 

brown trout in the system. The study provided the first evidence of D. baeri infection in 

the UK backed by mitochondrial and nuclear species identification. It also confirmed the 

increased diversity of the D. baeri species complex present infecting freshwater fish, 
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isolates deriving from Gairloch place alongside salmonid specific clade in phylogenetic 

analysis, indicating potential host-specific species complex existing within D. baeri a key 

evolutionary mechanism that may go part way in explaining such a wide spread infection 

of freshwater fish.  

 

With Diplostomum baeri demonstrating comparative increased diversity compared to 

other species of Diplostomidae in this study and within other publicized studies (Locke et 

al., 2010b; Georgieva et al., 2013b; Blasco-Costa et al., 2014c) future genetic analysis of 

the species in the UK trout should be based around the underlying factors affecting 

genetic diversity of D. baeri. One factor that may affect the genetic diversity within the 

system may be the continued annual presence of transitory definitive host species. A 

longitudinal study of Diplostomum baeri genetic diversity after seasonal presence of bird 

species would go part way to explain the potential impact the transitory bird presence has 

on genetic diversity of Diplostomum baeri. With populations of brown trout existing in 

varying hydrologic ally diverse water bodies in the Gairloch system; hydrological 

dynamics such as water depth and velocity may play in a role in genetic diversity of 

Diplosotmum infecting intermediate host. The diversity of cercariae infecting freshwater 

hosts has already been observed within Schistosoma (N’Goran et al., 1997), Echinostoma 

(Combes et al., 1994) and Diplostomum (Karvonen et al., 2003) where slow moving 

waters indicate a higher level of trematode infection and an increased level of genetic 

diversity infecting freshwater hosts. With Gairloch brown trout populations inhabiting 

lochs and burns with varying hydrological dynamics, a focused sampling effort taking 

these dynamics into account would allow for the comparison of cercarial diversity within 

differing water bodies to take place.  
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8.4 Molecular characterization of re-emergent fish tapeworm infection within 

Scottish populations of Salmo trutta 

 

The identification of fish parasites is of high importance to monitor and control of food 

born diseases. Diphyllobothriasis is considered a current re-emerging fish tape worm 

disease across Europe, with the spread in popularity of raw fish dishes the disease is 

seeing a steady increase in across Europe within the last 20 years. Identification of the 

parasite within freshwater fish is crucial in delineating between medically relevant 

species and non-human infecting species. The study was based on samples removed from 

the musculature and intestinal tract of S.trutta within select lochs in the Gairloch system 

revealing. Both cox1 and ITS genetic markers were used to identify the plerocercoid 

larval stage as the human pathogenic D.dendriticum. Comparisons between the two 

markers revealed that cox1 was more accurate in species identification, with ITS marker 

placing D.dendriticum samples alongside D.ditruem samples. D.ditreum is a non-

pathogenic species that also infects salmonids; meaning delineation between the two 

samples is crucial. Further analysis using this cox1 marker also proved to be useful in 

inferring evolutionary insights into the historical movements of Diphyllobothrium. The 

movement of carnivorous mammal species across Europe is primarily responsible for the 

trans-placement in reaction to the progression and recession of European ice sheet. 

Currently there is a significant lack of knowledge on the role the parasite plays in the UK 

in both medical relevance and its affect on the health of fish populations. 

Diphyllobothrium is currently considered as a re-emergent food borne disease, molecular 

data could allow for the effective tracking and monitoring of pathogenic species 

throughout Europe. Correct genetic marker use to discern potentially pathogenic species 

of Diphyllobothrium is a crucial tool for public health monitoring. The majority of 

D.dendriticum infections currently derives from imported Chilean salmon to Europe 

(Wicht et al., 2008; Kuchta et al., 2013) the use and implementation of genetic testing on 

imported whole fish would improve food safety standards of imported fish products.  
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The discovery of D.dendriticum within the system is important due the pathogenic nature 

of the parasite in humans. Due to its importance, the monitoring and detection of the 

tapeworm within freshwater bodies should be considered. One such measure may be the 

development of eDNA methodologies to detect crucial stickleback or copepod primary 

host presence within a loch. This would allow for the detection of Diphyllobothrium to 

specific localities, minimising impact on fish stock use for the monitoring the parasite 

presence. With the parasite being one of very few medically relevant parasites within the 

UK, its continued long term monitoring must be considered, particularly within areas 

such as Gairloch where angling based tourism is so prevalent.  

 

8.5 Insights into the evolution of salmonid major histocompatibility complex across 

wild populations of S.trutta under differential parasite infection  

 

Wild brown trout frequently exist in isolated lacustrine populations within the Scottish 

highlands. Brown trout must adapt to the environmental factors to establish sustainable 

long-lasting population within them. One key factor that populations must address is the 

response mechanism to parasite infection within local habitat. A key immunogenic 

response mechanism to parasitic insult is the Major Histocompatibility complex (MHC). 

As part of the extracellular pathogen immune response the maintained genetic diversity 

of MHC correlates directly with population fitness. Within the Gairloch system, the 

varied isolated loch populations allowed for the direct inter population investigation into 

the host-parasite relationship existing between parasite diversity and MHC response 

mechanism. The results indicate an adaptive immunogenic response from brown trout 

populations to habituate to parasite infective presence within immediate environment. 

Throughout the dataset positive selection exists within the antigen-binding site across 

brown trout sub-population. Further analysis was based on understanding the underlying 

reasoning behind positive selection on MHC. Parasite-driven selection indicated a 

potential role in maintaining MHC diversity within sub-populations. With sub-

populations undergoing differential infection potential exhibited greater degree of 

selective pressure acting on final amino acid motif of ABS. The functional adaptation of 
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host species to diverse parasite selection highlights the role that parasite infection plays in 

maintaining genetic diversity of the antigen-binding site in the MHC.  

 

Brown trout populations existing in water bodies with parasitic insult deriving from 

varied species have adapted immunogenic recognition to counteract the varied infective 

potential. The result of this study not only has implications for the trans placement of fish 

for stocking measures but also would mean the stocking of non-native fish species. The 

stocking of non-native species of salmonids have previously been indicated immunogenic 

naivety could lead to non-viability of stocked populations (O’Farrell et al., 2013b; C. 

Monzón-Argüello et al., 2014; Lamaze et al., 2014c). Outcomes from this study agree 

that fish exposed to a limited parasite milieu may display characteristics of immunogenic 

naivety. However, in time of stocked populations of salmonids can show adaptive traits 

to proliferate under natural parasite infection levels. The understanding of the adaptive 

traits of salmonids affects both conservation practices but also can help ensure that 

salmonid aquaculture practice can be more sustainable in the future with decreased 

reliance of pharmalogical measures to prevent parasite infection.  

 

This research has been the first research based on UK MHC diversity of salmonids.  

Now with the understanding gained from the work presented here, future work should 

focus more on the anadromous populations of salmonids that exist within the system. A 

debate regarding speciation between sea going and residential brown trout has always 

been at the forefront of speciation studies of salmonids (Gyllensten, 1985; Hindar et al., 

1991; Jonsson and L’Abee-Lund, 1993; Schluter, 1996). The MHC has been highlighted 

as a potential gene that contributes to speciation processes in fish (Sato, 2003; Matthews 

et al., 2010; Malmstrøm et al., 2016; Kaufman, 2018). With ferox, sea and residential 

morphs of brown trout all existing within the Gairloch system, a cross-morph analysis of 

MHC diversity may expand the understanding of the MHC’s role as a speciation gene 

within a singular system. In terms of the host-parasite interaction, immunogenetic 

analysis may have to go beyond the MHC alone. The immune response to parasite 

infection involves a multitude of potential immune cascades being made up of multiple 

immune cells. Further studies could concentrate on the adaptation of other parts of this 



 186 

cascade including; mucosal epithelium (Micallef et al., 2012) or the innate immune 

system (Alvarez-Pellitero, 2008). Utilizing other factors of the salmonid immune system 

will give a more complete picture into the true immunogenetic adaptation of salmonid 

populations to the parasites within its habitat.  

 

8.6 The construction and annotation of Diplostomum baeri mitochondrial genome  

 

Diplostomum is currently is one of the most prevalent parasites infecting populations of 

salmonids worldwide. However information regarding molecular factors underlying the 

parasites infective success is sorely lacking. The current DNA barcode marker cox1 has 

been the primary marker used for the identification and genetic analysis in field studies of 

Diplostomum spp. Within this body of work mitochondrial and nuclear markers have 

been used to identify the species D. baeri infecting Gairloch system trout. With such a 

close relationship existing between all species of Diplostomum there is a clear need to 

explore alternative genetic markers displaying increased diversity to allow delineation of 

closely related parasites. Diplostomum baeri in-particular exists as a large highly diverse 

species complex, infecting multiple intermediate fish host species (Blasco-Costa et al., 

2014c).  The construction of the mitochondrial genome of D. baeri revealed a close 

relationship existing between D.spathaceum and D.pseudospathaceum in terms of gene 

order, overall size and phylogenetic relationship across Diplostomidae. Also the 

comparison of pairwise diversity across the genus highlights potentially more efficacious 

markers nad4 and nad5 from the mitochondrial dataset.  

 

The annotation and construction of the mitochondrial genome of D. baeri has allowed for 

comparison across the previously annotated mitochondrial genomes of D.spathaceum and 

D.pseudospathaceum. One way in expanding the work now we have robust 

methodologies in the construction and annotation of mitochondrial genomes of 

Diplostomum would be to increase the depth and breadth of the study. With genome 

skimming now being an oft-utilised method in the extraction of hundreds of 

mitochondrial genomes of mammals (Malé et al., 2014), insects (Kocher et al., 2015) and 

pathogens (Denver et al., 2016). A similar workflow could be used on Diplostomum 
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metacercariae within trout populations of Gairloch to gain insights into the diversity of 

the species in a more robust barcoding approach, instead of relying on the frequently used 

cox1. It would also increase the knowledge of potential effectiveness in single 

mitochondrial marker use in assessing closely related species of Diplostomum.  

 

8.7 Genomic mining of intracellular vaccine targets in the fish eye fluke 

Diplsotomum baeri  

 

The infective success of D. baeri exists as a complex relationship between host and the 

parasite. During the blood stage of infection the parasite is under a barrage of immune 

cells in response to invasion, with a varied cocktail of adaptive and innate immune 

response cascades utilized to defend the host. However, with such a high level of 

prevalence within the Gairloch system D. baeri must possess certain immunomodulatory 

capabilities. Across other species of freshwater trematode sharing similar complex 

freshwater life cycles, the transmembrane proteins tetraspanins (Huang et al., 2005) and 

Venom allergen-like antigens (Chalmers and Hoffmann, 2012) are presented on the 

tegument outer layer to provide an immunomodulatory characteristics ensuring parasite 

avoids host immune system recognition. Using genomic annotation and proteonomic 

modelling these antigens were discovered within D. baeri also. The proteins could be 

implicated as a factor in the infective success that is demonstrated by D. baeri, also 

indicating a conserved immunomodulatory response within freshwater Digenea. D. baeri 

being so ubiquitous within freshwater fish populations, isolating potentially important 

antigenic proteins could provide vaccine targets for further evaluation to be used to 

control the disease within wild populations and the farmed trout setting.  

 

The discovery of the tegumental antigens in this study is an important discovery. 

However the actual investigation into the importance of these antigens in Diplosotmum 

baeri has yet to be confirmed. For the antigens to be treated as potential aquaculturally 

important vaccine targets has yet to be determined. To do so would require gene 

knockdown studies, antigen titration studies and protein expression studies within the 

migrating parasite, which are all a long way off in terms of vaccine development. The 



 188 

tetraspanin’s in particular represent an interesting marker to be examined in terms of 

population genetics across parasite populations. Measuring the genetic diversity of the 

tetraspanin antigens across different populations has been done before within S.mansoni 

populations (Sealey et al., 2013). Now that antigenic sequences have been mined from 

the genome, region specific oligos can be designed to study the antigens on a population 

level.  The study would compare and contrast populations that see increased levels of 

Diplostomum infection to gain insight into the impact that antigen diversity would have 

on the virulence of Diplostomum within a freshwater fish population. With the annotation 

of epitope binding domains on tetraspanins, regions could be selected that interact 

directly with the host-immune system such as the extracellular loop, increasing the 

likelihood that regions of the gene studied could directly impact the affectiveness of 

immunoevasion within the host.  

 

8.8 Limitations  

 

The work was performed using a sample archive, with the sampling areas being extensive 

and varied in terms of geography and hydrology. However with all wild fish studies the 

conclusions you draw from the study could become more concise with both an increased 

sample site number and increased population number. With the study attempting to 

answer population wide questions the increase in the size of the sample populations could 

have provided stronger statistical support than currently obtained. The other limitation is 

the cost of Next-generation sequencing, with the procedure being quite costly the study 

could only manage enough sequencing runs for one complete D. baeri genome. With the 

further amplification of multiple D. baeri genomes from different localities in the study 

area, could have provided tegumental protein comparisons of different locations of 

Diplostomum to allowing deeper understanding of the roles played by TSP and VAL 

antigenic proteins in parasite infection.  
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Population  Tajima's D Fu's F Raggedness  

AAG -0.59475 -2.365 r= 0.01326 

FES -0.55609 -0.14829 

 LAM -1.25847 -0.716 

 LAP -1.08655 -8.045 
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LAS -0.67905 -0.1 

 LB -1.96925 -1.506 

 LCA -0.81643 -0.512 

 LDB -1.2069 -0.508 

 LFD -0.49027 -1.57 

 LFE -0.18319 -0.19117 

 LFM -0.61857 -0.409 

 LGD -0.20664 -0.401 

 LMD -0.14354 -6.882 

 LNB -0.32024 -2.723 

 LNO -0.83027 -1.906 

 LNU -0.43673 -1.406 

 TWA -0.61142 -0.477 

 
    Overall  -1.32785 -3.8852 

 P value  0.041 0.011 

 
    
    

 
Tajima's D Fu's F Raggedness  

    Elevated Loch system  -1.28251 -20.108 0.0207 

 

P = 0.90  

  
    Western Loch  -0.8252 -12.529 0.0286 

 

P = 0.883 

   
Supplementary table 3; Tajima’s D and Fu’s F calculation results for each population with overall figure, the 
overall output from both equations are tested using P values for significance of Tajima’s D and Fu’s F output. 
Further calculation output of Raggedness calculation: r value.  
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Supplementary Table 4:  Summary table of the mitochondrial protein coding genes in D. baeri including 

position start, stop, and length of predicted gene and terminating codon.  
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Supplementary Table 5: Summary data of mt genome organization of the D. baeri mt genome in 

comparison with previously published D.spathaceum and D.pseudospathaceum, comparisons include; 

position, sequence length and terminating codons across all annotated genes in all three mt genomes   
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Supplementary figure 1: Linearized construction of D. baeri mitochondrial genome with protein coding genes, 

trna and rrna order.   
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Supplementary figure 2: tRNA modeling within Diplostomum genomes columns denoted with species; left 
D. baeri, centre D.spathaceum, right D.pseudospathaceum. Construction of RNA was performed using RNA 
fold server 
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