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Abstract
Fractal encoding method becomes an effective image compression method because of its high
compression ratio and short decompressing time. But one problem of known fractal compression
method is its high computational complexity and consequent long compressing time. To address
this issue, in this paper, distance clustering in high dimensional sphere surface is applied to speed
up the fractal compression method. Firstly, as a preprocessing strategy, an image is divided into
blocks, which are mapped on high dimensional sphere surface. Secondly, a novel image matching
method is presented based on distance clustering on high dimensional sphere surface. Then,
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the correctness and effectiveness properties of the mentioned method are analyzed. Finally,
experimental results validate the positive performance gain of the method.

Keywords : Fractal Image Compression; Sphere Surface; Distance Clustering.

1. INTRODUCTION

Image compression is important for storing and
communicating image data, which is the basis of
video and other multimedia services. With the
increment of image quality and resolution ratio,
image size increases quickly and becomes the bot-
tleneck in real-world applications. The increment of
image size needs larger space to store and larger
bandwidth to transfer. How to decrease image size
becomes an important research subject in image
processing.

Two fundamental ways of compression are redun-
dancy and irrelevancy reduction.1 Redundancy
reduction aims at removing duplication from the
signal source. Irrelevancy reduction omits parts of
the signal that will not be noted by the signal
receiver, such as the Human Visual System (HVS).

There are many classic methods and interna-
tional standards of image compression and encod-
ing. As we know, discrete cosine transformation
(DCT),2 Huffman coding,3 wavelet image coding,4

etc., are all classical image compression and encod-
ing methods. BIG, JPEG, H.263, MPEG, etc., are
all classical international standards.

The above-mentioned classical methods analyze
the correlation between pixels to remove spatial
redundancy or spectral redundancy in order to
compress images. However, the compression ratio
reaches the bottleneck now. Thus, in order to reach
higher compression ratio, it needs new information
redundancy reduction method of image.

Fractal is researched for the non-classical geome-
try since 1980s.5,6 As we know, artificial object usu-
ally has a regular and smooth form that can be
processed by traditional geometry and geometrical
form of natural object is usually rough and anoma-
listic. However, the self-similarity may be found in
natural object when research is conducted on its
rough and anomalistic form.

For years, self-similarity is used to study the
properties of natural objects like galaxies, lasers and
waves.7–9 Then, fractal thinking applies to image
compression by contractive affine transformation

(CAT), which constrains iteration uncompressing
convergent by Banach fixed point theorem.10,11 The
fractal compression applies self-similarity of blocks
with different sizes in compressing image and stores
the parameters of transformation instead of classi-
cal compression method, which stores color, posi-
tion and other information of pixels. In fractal
compression, only quantization parameters of CAT
needs to be stored. This is because Banach theorem
proves the convergence of iteration of CAT. In other
words, all blocks of original image can be recon-
structed with some black blocks that need not be
stored.

This novel image compression method is named
as fractal image compression and it is also an image
encoding method. In fractal compression, it first
extracts the self-similarity between large and small
parts of images. Then it stores the quantization
parameters of CAT as a compressing file. So the
compressing file is much smaller than the original
image. In this case, it can reach higher compressing
ratio.

Fractal method has many benefits in the domain
of image compression. For example, fractal com-
pression method with same parameters reaches
fixed compression ratio for all images with same
size. Also, because affine iteration is existent and
unique, iteration will reach the original image bet-
ter with more iteration times. The original image is
the ultimate limit of the iteration.

But fractal compression method is restricted by
its high computational time. The high computa-
tional time mainly appears in the iterating com-
parison between range and domain blocks. Thus, if
comparison results can be recycled, computational
time will be decreased.

This paper presents a novel fractal compression
method. Firstly, we pre-process using the classi-
cal fractal compression method. In this case, a dis-
tributed fractal compression method is proposed.
Then, we proved its correctness and analyze its
effectiveness in theory. Finally, experiments using
several classical images are performed to validate
our conclusion.

1740004-2

Fr
ac

ta
ls

 2
01

7.
25

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
ID

D
L

E
SE

X
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/2
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

May 31, 2017 10:17 0218-348X 1740004

A Novel Fast Fractal Image Compression Method

The remainder of the paper is organized as fol-
lows. Related works are presented in Sec. 2. Then,
we present pre-processing method and a novel frac-
tal compression method in Sec. 3. Further, strict
proof of correctness and effectiveness are presented
in Sec. 4. Furthermore, experiment and analysis are
presented in Sec. 5. Finally, Sec. 6 summarizes the
whole paper.

2. RELATED WORKS

Thinking of fractal compression was first presented
by Barnsley and Jacquin.11 They provided iterated
function systems (IFS). Then, Jacquin fused CAT
and IFS, the first presented fractal compression
method.12 Meantime, Bedford et al. applied frac-
tal compression method into monochrome images.13

Further, Kim et al. applied vector quantization into
fractal compression for image and Kim et al. applied
fractal compression into video sequence process-
ing.14,15 These were all the basic researches and
applications for fractal compression.

Afterwards, fractal compression research was
widely improved for image processing. Chang et al.
designed domain pool for an iteration-free fractal
compression method.16 Tong et al. presented a frac-
tal compression method with adaptive search of
domain and range blocks.17 Lai et al. presented
a kick-out model for fractal image compression
method in zero contrast condition.18 Distasi et al.
introduced a fractal image compression method
by applied error approach in range and domain
blocks.19 Wang et al. provided no-search fractal
image compression method for fitting plane and
gray-level transform.20,21

Recently, there were more researches in the
domain of fractal compression. Respectively, Jeng
et al. and Lu et al. presented fractal image com-
pression method based on Huber loss function.22,23

Wang et al. provided fractal image compression
scheme based on correlation between range and
domain blocks.24 Bhavani et al. applied fractal com-
pression into medical image compression.25 Wang
presented a fractal image compression method by
using applied discrete wavelet to classify range
blocks.26 Our team also researched on fractal and
fractal compression theory and application.27–31

This paper extends classical fractal image com-
pression method of Refs. 22–24 with novel think-
ing of distance in high dimension. References 22–24
applies statistical theory into fractal compression
method to decrease the comparison between range

and domain blocks. This paper transfers fractal
compression method into high dimension space.
Then the comparison is researched by analyzing
distances between range and domain blocks. This
decreases more computational time than the above
mentioned references.

3. A NOVEL FRACTAL
COMPRESSION METHOD
BASED ON DISTANCE
CLUSTERING

3.1. Theoretical Basis

First, Banach fixed point theorem is provided in
Lemma 1 as a theoretical foundation for fractal
compression method. It can be applied to research
CAT in Definition 2, which is directly applied into
fractal image compression method. In Lemma 1 and
Definition 2, we have that R is the set of elements
and ρ is a defined distance (computation) in R, T
is a transform (mapping from R to R), r1

i , r2
i , d1

i ,
d2

i , s, a1i, b1i, bi ∈ R, AT means transposition of
matrix A.

Lemma 1. Assume that (R, ρ) is a complete metric
space, there exists only one r ∈ R that makes Tr = r
if in Eq. (1) is tautology.

ρ(Tx, Ty) ≤ θρ(x, y), s.t. 0 ≤ θ ≤ 1, x, y ∈ R.

(1)

Definition 2. W = (
[ a11 a12

b11 b12

]
, [ b1

b2
]) is called a

CAT in a Euclid space (R, ρ), where In Eq. (2) is
tautology.

ρ(Rn+1,Dn+1) ≤ s · ρ(Rn,Dn), where

Ri = (r1
i+1, r

2
i+1)

T , Di = (d1
i+1, d

2
i+1)

T ,

Rn+1 = W · (Rn, 1)T , Dn+1 = W · (Dn, 1)T

and 0 ≤ s < 1. (2)

In this way, the compression problem can be
described in Eq. (3), where E means a matrix with
all elements 1, ‖ ‖ means the vector norm (usu-
ally 2-norm in fractal compression), Ri means a
determined range block R, Dj means a determined
domain block D, besti means serial number of the
best Dj of Ri, s means scaling of R, o means offset
of R in an affine mapping and T means transforma-
tion of D which contract size of D to size of R. In
addition, the compression file consists of s, o and
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the corresponding position (x, y).

‖R − (s · T (Dbesti) + o · E)‖k

= min
j

{
min

s,o∈R,|s|<1
‖Ri − (T (s · dj) + o · E)‖k

}
.

(3)

But in fact, Eq. (3) needs large computational
time that cannot be applied. In real application,
Eq. (4) is applied to instead of Eq. (3). So, in
application, Eq. (4) is usually applied to find affine
parameters of best mapping from domain block to
each Ri with minimum loss.

min
j

{
min
s,o∈R

‖Ri − (s · T (Dj) + o · E)‖k

}
= min

s,o∈R
‖Ri − (si · T (Dmi) + oi · E)‖k. (4)

The transformation iterates convergently when
this transformation conforms to Definition 2, which
means the final iteration can be iterated by any orig-
inal input. In this way, only parameters of CAT are
needed to be recorded as final compression file when
CAT can be found in an image. When a series of
CAT parameters stored the transformation param-
eters of all pixels of compressing image, the original
image can be constituted with sub-images iterated
by all CAT parameters in the uncompressing pro-
cess. This is fractal image compression method. The
process of fractal image compression is presented
in Fig. 1 and Algorithm 1. Fractal uncompressing
method is presented in Algorithm 2.

In Algorithms 1 and 2, I means original image,
n means the size of I is n × n, r means the size of
range image is r × r (r|n), p = n/r, d means the
size of domain image is d× d (d > r), F means the
compressing file, s means the scaling of luminance, o
means offset of luminance, (x, y) mean the starting
position of affine transformation, direction means
the eight types of equilong transformations (with
transformation angle nπ

4 n = 0, . . . , 8), T means the
iterating time, D means the uncompressing images.

From Fig. 1 and Algorithm 1, we find that in
the fractal image compression method, compressing

Fig. 1 Processes of fractal image encoding.

Algorithm 1 Classical Fractal Compression
Method.
Input: I(n × n); r; d
Output: F

1: To find every segmented block Rk of I (k =
1, 2, . . . , p2), where ∀ i, j | i �= j → Ri ∩ Rj = ∅

and ∪1≤i≤dRi = I, Meanwhile, ∀ i, j | scale of
Ri =scale of Rj = r × r.

2: Find all part-repeatable Dp in I. The size of all
Dp is d.

3: for every Rk do
4: Find the best affine transformation of Rk in

Dp, and store it as a vector in the affine trans-
formation table.

5: Output r, d together affine transforming table
as compression file F .

6: return F

Algorithm 2 Classical Fractal Uncompressing
Method.
Input: F
Output: D

1: To extract r, d and affine transforming table
from F . Apply a blank image as R.

2: while The affine transforming table is not fin-
ished do

3: To extract the kth vector from affine trans-
forming table, which is the best affine transfor-
mation of Rk. To locate Dk with position (x, y)
in R. To iterate Rk by Dk with size d × d by
stored corresponding sk and ok. Then, to pro-
cess equilong transformation by stored direc-
tion.

4: To collage all rectangular areas to an image D.
Then, let R = D, iterating step 2 until iterating
time = T .

5: return D

image is first segmented to non-overlapping range
blocks with the same size. Then, in order to reach
the best match, all domain blocks with larger size
are contracted to the same size with every range
block. Usually, domain blocks are contracted by
means of neighbor pixels to match the size of range
blocks because domain blocks have double size to
range blocks.

Though fractal compression method has high
compression ratio and well uncompressing result,
the bottleneck is high compressing time. So, in this
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paper, a novel fractal compression method is pro-
vided to speed up the compressing time.

3.2. Distance Clustering in High
Dimension

In one space with high dimension Sn, where n
denotes dimension of the space, an original circle C
is a circle where the distance is unit 1 between orig-
inal point O and every point P in its surface C∗. It
means that we can construct n− tuple (α1, . . . , αn)
for every point P in C∗ where αi denotes angle
between OP and the ith axis of dimension. Radius
is not needed because C∗ is surface of original circle.

Then, a clustering method is presented based
on a given threshold T . Defining a point on
surface P (α1, . . . , αl) and another point P ′(α1 +
∆α1, . . . , αl + ∆αl), distance D(P,P ′) between
these two points are computed as follows:

D(P,P ′) =

√√√√ l∑
i=1

(cos(αi + ∆αi) − cos αi)2. (5)

Further, applying Eq. (6) in Eq. (5), we reach
Eq. (7).

cos(αi + ∆αi) − cos αi

= −2 sin
(

αi +
∆αi

2

)
sin
(

∆αi

2

)
, (6)

D(P,P ′) = 2

√√√√ l∑
i=1

sin2

(
αi +

∆αi

2

)
sin2

(
∆αi

2

)
.

(7)

Without any constraint, we compute partial
derivative ∂D

∂αi
= 0 of D to reach its extremum,

which implies the relationship between ∆αi and D.

∂D

∂αi
=

sin2
(

∆αi
2

)
sin(2αi + ∆αi)√∑n

i=1 sin2
(
αi + ∆αi

2

)
sin2

(
∆αi

2

) = 0.

(8)

Then, assuming that ∆αi = ε �= 0 for all
i = 1, . . . , n, it is admittedly that sin(∆αi

2 �= 0
and sin(2αi + ε) = 0. In this way, we have that
αi = kπ−ε

2 . Further, with consideration of ∂2D
∂α2

i
,

we have Eq. (9). Intersection between solutions of
Eqs. (8) and (9) is the maximum of Eq. (5).

∂2D

∂α2
i

= sin2
( ε

2

)
· 2 cos A · F (αi) − sin A · F ′(αi)

F 2(αi)

= sin2
( ε

2

)

· 4 cos A · F 2(αi) − sin2 A · sin2( ε
2)

F 3(αi)
< 0,

where A = 2αi + ε. (9)

Solution of Eq. (9) can be solved by cos(2αi +
ε) < 0 when assuming sin2( ε

2 ) < 0. The solution is
|αi + ε

2 | ∈ (kπ+ π
4 , kπ+ 3π

4 ). So intersection between
solutions of Eqs. (8) and (9) is presented in Eq. (10).

αi = kπ +
π − ε

2
. (10)

Applying Eq. (10) into Eq. (7), we have

max argαi
D(P,P ′) = 2

√
l sin

(
∆αi

2

)
≈

√
l∆αi,

which means D(P,P ′) <
√

l∆αi when ∆αi is pos-
itive for any αi. Further, D(P,P ′) approximately
equals

√
l∆αi when ∆αi is tiny enough.

3.3. A Novel Fractal Compression
Method

In this case, classical fractal compression method
can be preprocessed to speed up the compressing
time. In fact, this novel method preprocesses the
segmented range blocks in high dimension first.

After range blocks are segmented as classical
fractal compression method, corresponding range
blocks are linear transformed. In mathematical
words, defining a range block R = (r1, r2, . . . , rk)
where ri = (r1i, r2i, . . . , rki) in linear transformation
space, a linear transformation R′ = (r′1, r′2, . . . , r′k)
where r′i = (r′1i, r

′
2i, . . . , r

′
ki).

So if R′ can be computed easily, R′ can be applied
instead of R when computing the distance between
R and D. Identifying domain blocks D and range
blocks R, Eq. (11) is applied to reach parameters of
CAT between all D and R blocks.

min
s,o

E(R,D) = ‖R − (s · D + o · I)‖p. (11)

In this paper, r′ij is constructed by Eq. (12).

r′ij =




rij if i = j = k,
rij − rkk√

Σk−1
j=1(rij − rkk)2

otherwise. (12)

In order to enhance further computation, one
additional dimension is added in R′. The additional
dimension r∗ = rij

r′ij
, which applies to store parame-

ter of linear transform.
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So, after the preprocessing procedure, transfor-
mation of range block R∗ = (R′, r∗). Then, defining
E′(R′,D′) as loss between R′ and D′, where D′ is
transformation of D. The transformation is similar
to mapping from R to R′.

In this way, we can provide the novel fractal com-
pression method in Algorithm 3.

Algorithm 3 A Novel Fractal Compression
Method.
Input: I(n × n); r; d
Output: F

1: Find every segmented block Rk of I like Alg.1
where size of Rk is r×r. Preprocess Rk to R∗

k =
(R′

k, r
∗
k).

2: Find all part-repeatable Dp in I. The size of all
Dp is d × d. Compress Dp to Dp′ by mean of
every square (size 2 × 2) to preprocess Dp′ to
D∗

p′ = (D′
p′ , d

∗
p).

3: for every R′
k do

4: Hashing R′
k to exist unit cambered surfaces

with radius r · ε on half spherical surface, where
ε is a given minimum threshold. Then match-
ing computation for each point is only for those
points on a sub-sphere like Fig. 2a, where the
matching point is in the center round.

5: Add r and d to the affine transforming table
and Output them as compressing file F .

6: return F

Also, we can use sub-sphere like Fig. 2b. Both
Figs. 2a and 2b show plane mapping of the spherical
surface. It is admittedly that both Figs. 2a and 2b
show covering of the plane. In this paper, we use
Fig. 2a as our covering unit. A diagrammatic sketch
of hashing structure is just like Fig. 2c, which shows
mapping from cross-section to semi-sphere in the
three-dimensional space.

3.4. Properties of Presented Fractal
Compression Method

Here, we have the following assumption to compute
and prove properties of the proposed fractal com-
pression method.

In this paper, α = (α1, . . . , αl), β = (β1, . . . , βl)
are two vectors in one-dimensional space (αl ≥ 0,
βl ≥ 0), α′ = (α′

1, . . . , α
′
l) and β′ = (β′

1, . . . , β
′
l)

are mappings of α and β on surface of original unit
circle where α′

i = αi
αsum

, β′
i = βi

βsum
, αsum = ‖α‖p,

βsum = ‖β‖p.

(a) Matching area on surface.

(b) Another matching area on surface.

(c) A sample for three-dimensional space.

Fig. 2 Plane mapping of spherical surface.

Then, applying bivariate function D(α, β) = α−
(s · β + o · I), we have Theorem 3 to research
relationship between solutions of min D(α, β) and
min D(α′, β′).

Theorem 3. Solution of mins,o D(α′, β′) = ‖α′ −
(s · β′ + o · I)‖p is s∗·βsum

αsum
and o∗

αsum
if and only if

solution of mins,o D(α, β) = ‖α − (s · β + o · I)‖p is
s∗ and o∗.

Proof. First, it is assumed that solution of
mins,o D(α′, β′) = ‖α′ − (s · β′ + o · I)‖p is s1, o1

and solution of mins,o D(α, β) = ‖α− (s ·β +o ·I)‖p

is s2, o2.
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Then, applying reduction to absurdity, it is
assumed that s1 �= βsum

αsum
· s2, o1 �= 1

αsum
· o2 and

‖α′−(s1 ·β′+o1 ·I)‖p < ‖α′−(βsum·s2

αsum
·β′+ o2

αsum
·I)‖p.

Then, we have that ‖α − (s1 · αsum
βsum

· β + o1 ·
αsum · I)‖p = αsum · ‖α′ − (s1 · β′ + o1 · I)‖p <

αsum · ‖α′ − (βsum·s2

αsum
· β′ + o2

αsum
· I)‖p = ‖α − (s2 ·

β + o2 · I)‖p, which means s1 · αsum
βsum

and o1 · αsum

makes D(α, β) smaller than s2 and o2. This con-
tradicted the premise that s2 and o2 is solution of
mins,o D(α, β) = ‖α − (s · β + o · I)‖p.

So βsum

αsum
· s2 and 1

αsum
· o2 are the solutions of

mins,o D(α′, β′) = ‖α′ − (s · β′ + o · I)‖p, when
s2 and o2 are the solutions of mins,o D(α, β) =
‖α − (s · β + o · I)‖p.

Then, with similar proof, we have that s2 and o2

are the solutions of mins,o D(α, β) = ‖α − (s · β +
o · I)‖p when βsum

αsum
·s2 and 1

αsum
·o2 are the solutions

of mins,o D(α′, β′) = ‖α′ − (s · β′ + o · I)‖p.
Summarizing all the above, Theorem 3 is proved.

Theorem 3 provide the method to get s and o
of minimum D(α, β) from s′ and o′ of minimum
D(α′, β′). Then we have Theorem 5 to prove cor-
rectness of presented algorithms. First, Definition 4
is presented to describe the nearest between two
vectors.

Definition 4. Vector αi in vector set {αj}j=1,2,...,

is the nearest to vector α if there exists ki ≥ 0, si,
oi ∈ R that makes D(α, ki · αi) is minimum in set
{D(α, kj · αj)}j=1,2,....

Definition 4 defines the nearest where there exists
positive real number ki, real numbers si and oi

makes D(α, ki ·αi) is minimum in all vectors. In this
case, Theorem 5 is presented to prove the property
nearest is static between vectors and unchanged by
modulus of vectors, which confirms the correctness
of presented algorithms.

Theorem 5. A vector αi is nearest to α in set
{αj}j=1,2,..., if and only if there exist ki ∈ R+

that makes ki · αi is nearest to k · α in vector set
{kj · αj}j=1,2,..., for every k ∈ R+.

Proof. Assuming αi is nearest to α in vector set
{αi}i=1,2,..., we have si and oi that makes ‖α −
(si · αi + oi · I)‖p < ‖α − (sj · αj + oj · I)‖p for
all j �= i where sj and oj are the solution of
minsj ,oj D(α,αj) = ‖α − (sj · αj + oj · I)‖p.

Applying reduction to absurdity, it is assumed
that there exists sj, oj, k and kj that make ‖k ·α−
(sj · kj ·αj + oj · I)‖p < ‖k ·α− (s′i · k′

i ·αi + o′i · I)‖p

for all k′
i, s′i and o′i.

Then, we have that k ·‖α−(sj · kj

k ·αj + oj

k ·I)‖p =
‖k · α − (sj · kj · αj + oj · I)‖p < ‖k · α − (s′i · k′

i ·
αi + o′i · I)‖p = k · ‖α − (s′i · k′

i
k · αi + o′i

k · I)‖p =

k · ‖α − (si · αi + oi · I)‖p when let s′i · k′
i

k = si

and o′i
k = 0i. This contradicted the premise that

‖α− (si · αi + oi · I)‖p < ‖α− (sj · αj + oj · I)‖p for
all j �= i.

So there exist ki ∈ R+ that makes ki · αi is the
nearest to k ·α in vector set {kj ·αj}j=1,2,... for every
k ∈ R+.

Then, with similar proof, we have that αi is
the nearest to α when there exist ki ∈ R+ that
makes ki · αi is the nearest to k · α in vector set
{kj · αj}j=1,2,... for every k ∈ R+.

Summarizing all the above, Theorem 5 is proved.

From Theorem 5, we have the correctness of
the presented fractal compression method. Then,
we have Theorem 7 to present the computation
of the proposed fractal compression method. First,
Lemma 6 is applied to present computational time
complexity of the proposed fractal image compres-
sion method.

Lemma 6. Computational time complexity of pro-
posed fractal image compression method is O(n4ε2+
1/ε2).

Proof. We have Fig. 2a to present our matching
area in hashing mapping. It means one vector only
needs to compare its matching vectors in its match-
ing area.

Assuming radius of single circle is r · ε, we have
covering area of Fig. 2a is (π +3

√
3)r2 ·ε2. So, aver-

age covering area of each single circle is (π
3 +

√
3)r2 ·

ε2.
So in Lemma 6, when assuming all vectors are

well distributed in the whole half high dimension
sphere, we have that the vectors’ number in each
unit is nd(π+3

√
3)r2·ε2

πR2 , where R = 1 is radius of
sphere, nd = (n + 1 − 2r)2 is number of patterned
vectors (domain blocks), r2 is number of compo-
nents in each vector. This means the total com-
putational time is ndnr(π+3

√
3)r2·ε2

πR2 for all vectors,
where nr = n2

r2 is number of original vectors (range
blocks). However, total computational time of the
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data structure spent is πR2

(π
3
+
√

3)r2·ε2
for the hashing

structure.
Computational time complexity can be achieved

by using the simplified computational time in
Eqs. (13) and (14).

O

(
ndnr(π + 3

√
3)r2 · ε2

πR2

)

= O

(
(n + 1 − 2r)2

n2

r2
r2ε2

)

= O(n4ε2), (13)

O

(
πR2

(π
3 +

√
3)r2 · ε2

)
= O

(
1
ε2

)
. (14)

So, total computational time complexity is
O(n4ε2) + O( 1

ε2 ) = O(n4ε2 + 1
ε2 ).

Lemma 6 is proved.

Then, when assuming ε = λ/n is inverse propor-
tion of n, we know minimum of total computational
complexity of proposed method is O((n− 1 + r)2 +
n2) = O(n2). So, we have Theorem 7.

Theorem 7. Optimal computational time complex-
ity of proposed fractal image compression method is
O(n2) if and only if ε is inverse proportion of n.

Since computational time complexity of classi-
cal fractal compression method is O(n4), we know
the proposed fractal compression method is a faster
algorithm.

4. EXPERIMENTAL RESULTS
AND ANALYSIS

Here, we present six figures with same size in Fig. 3
as the original images in our experiment, where
Fig. 3a is Lena, Fig. 3b is bird, Fig. 3c is baboon,
Fig. 3d is Barbara, Fig. 3e is pepper, Fig. 3f is fruit.

In our experiment, we use n = 256, r = 4, d = 8.
Then, optimal λ = 0.615 can be computed.

Then, we use the proposed fractal compression
method to compress these original figures. Some
uncompressing results are presented in Fig. 4, where
each left sub-figure is an uncompressing image with
one iterating time, each middle figure is an uncom-
pressing image with five iterating times and each
right figure is an uncompressing image with 10 iter-
ating times.

It is admittedly that the compression ratio of the
proposed method is similar to the classical methods

(a) (b) (c)

(d) (e) (f)

Fig. 3 Original experimental images.

(a) Uncompressing images for image Fig. 3a

(b) Uncompressing images for image Fig. 3b

(c) Uncompressing images for image Fig. 3c

(d) Uncompressing images for image Fig. 3d

Fig. 4 Some uncompressing images of Fig. 3 with one (left),
five (middle) and ten (right) iterating time(s).
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Table 1 Comparing Quality Between Fractal Compression Methods.

Image PSNR (dB)

HFICFP FIEPAE FIENON PFI FICPQ FIEHC

Lena 30.4 26.5 31.3 25.8 30.3 31.7
Bird 31.7 30.6 31.8 26.1 31.1 31.1
Baboon 23.1 22.5 23.3 20.9 21.7 24.3
Barbara 25.1 23.0 25.0 21.2 25.2 25.8
Pepper 29.7 25.6 26.9 27.4 28.9 29.1
Fruit 32.6 30.7 31.4 32.1 32.8 31.5
Average 28.8 26.5 28.3 25.6 28.3 28.9

Table 2 Comparison of Compression Time Between Fractal Compres-
sion Methods.

Image Time (s)

HFICFP FIEPAE FIENON PFI FICPQ FIEHC

Lena 668 659 692 657 665 632
Bird 676 641 711 669 671 617
Baboon 701 668 704 660 652 684
Barbara 685 634 699 641 700 625
Pepper 691 665 695 654 683 659
Fruit 680 657 708 650 646 601
Average 684 654 702 655 670 636

because the proposed method only has one addi-
tional storage unit in each compression unit to store
ratio between original vector and vector in unit
spherical surface. Also, compressing quality of the
proposed method is similar to that of the classi-
cal methods because almost all vectors can be pat-
terned in our experiment. However, the proposed
method shows better performance in compressing
time.

Then, we presented the comparison of compress-
ing quality and time between other respected meth-
ods and our results in Tables 1 and 2, which
are HFICFP,23 FIEPAE,30 FIENON,32 PFI,33

FICPQ34 and the proposed method (FIEHC).
In Table 1, we find that the FIEHC method shows

best average quality for all six experiments. Espe-
cially, FIEHC has better PSNR in figures baboon
and barbara, which are hard to encode with fractal
compression method. It proves FIEHC is an effec-
tive fractal image compression method.

Also, we can find some compressing quality
(PSNR) of our method is lower than others. We
checked it and find it is because of calculation error
in mapping, which is due to the experimental result
not corresponding to theoretical analysis. But this
problem can be solved in computers with higher
computational precision.

In Table 2, we also find FIEHC shows best aver-
age time for all six experiments. However, FIEHC
shows best performance in each figure except figures
baboon and peppers. This is because there are
many range and domain vectors mapping into a few
constructed areas, which increases computational
times.

Also, we find that the computational time is not
lesser than the other methods like the theoretical
analysis. This is because the structure method on
high dimensional sphere surface spent much mem-
ory space and time. But this problem can be solved
if GPU is used in the constructing process.

5. CONCLUSIONS

This paper provided a novel fractal image com-
pression method by using distance clustering on
high dimensional sphere surface. This method was
provided by a novel transformation strategy for
compressing image, which can be mapped in con-
structed structure on high dimensional sphere sur-
face. Then, in order to ensure the correctness
and effectiveness, theoretical proofs for this fractal
image compression method were provided. Finally,
experimental results also verified the conclusion of
this paper.
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Next, it will be necessary to research properties of
image blocks, which can be used to define direction
of segmentation and speed up the distributed
algorithm. Also, further accelerating compression
method will be investigated, such as the one based
on quantum computing.
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