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Lies can have profoundly negative consequences for individuals, groups, and even for societies. Understand-
ing how lying evolves and when it proliferates is therefore of significant importance for our personal and societal
well-being. To that effect, we here study the sender-receiver game in well-mixed populations with methods of
statistical physics. We use the Monte Carlo method to determine the stationary frequencies of liars and believers
for four different lie types. We consider altruistic white lies that favor the receiver at a cost to the sender, black
lies that favor the sender at a cost to the receiver, spiteful lies that harm both the sender and the receiver, and
Pareto white lies that favor both the sender and the receiver. We find that spiteful lies give rise to trivial behav-
ior, where senders quickly learn that their best strategy is to send a truthful message, whilst receivers likewise
quickly learn that their best strategy is to believe the sender’s message. For altruistic white lies and black lies,
we find that most senders lie while most receivers do not believe the sender’s message, but the exact frequencies
of liars and non-believers depend significantly on the payoffs, and they also evolve non-monotonically before
reaching the stationary state. Lastly, for Pareto white lies we observe the most complex dynamics, with the pos-
sibility of both lying and believing evolving with all frequencies between 0 and 1 in dependence on the payoffs.
We discuss the implications of these results for moral behavior in human experiments.

Introduction

There are arguments and data in favor of the statement that
we live safer, richer, and healthier than ever before [1, 2].
But the gap between rich and poor is currently growing out
of all reasonable proportions. And it is difficult to look away
from the armed conflicts, hunger, and poverty without think-
ing that we ought to be able to do better. While we try our best
to be compassionate, civilized, and social, and while there is
an abundance of technological breakthroughs and innovations
that make our lives better, many human societies are still seri-
ously failing to meet the most basic needs of millions around
the world [3]. We are also dangerously depleting natural re-
sources, our industries and ways of life are changing the cli-
mate, and we have fallen victim to echo chambers and mis-
information, to the point that it is often impossible to discern
truth from lies [4, 5].

Although the above-outlined issues are diverse and multi-
faceted, they do share one common property. Their solutions
require cooperation. And we do cooperate – in fact, we are
champions of cooperation, to the point that we exercise “Su-
perCooperation” [6]. But since natural selection in all of bi-
ology favors the fittest and the most successful individuals,
there is still an innate selfishness in us that greatly challenges
our cooperative drive. Cooperation is costly, and exercising
it weighs down on individual well-being and prosperity. We
therefore often succumb to the Darwin within, and we forget
about less privileged others, and about future generations, and
the health of our climate, and about many related issues that
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would require large-scale cooperation to be improved. Not
surprisingly, understanding and promoting cooperation in hu-
man societies has once been declared one of the grandest chal-
lenges of the 21st century [7], and scholars from disciplines
as diverse as economics, psychology, sociology, biology, and
anthropology have explored what factors favor people’s coop-
erative behavior [8–19].

Methods of physics, in particular the Monte Carlo method
and related approaches in statistical physics and network sci-
ence [20–25], have also emerged as being very useful for
studying many social phenomena. Statistical physics of social
dynamics [26], of evolutionary games in structured popula-
tions [27–30], of crime [31], of gossip [32], and of epidemic
processes and vaccination [33, 34], are all examples of this
exciting development, with human cooperation being no ex-
ception [35, 36]. However, empirical work has shown that
cooperation is only one kind of a more general class of be-
haviors – moral behaviors [37]. This suggests that the same
methods could be applied effectively to study the evolution of
other types of moral behaviors as well [38].

Using this as motivation, here we use methods of statistical
physics to study the evolution of lying, or deception. Why de-
ception? Deception has significant negative impacts on gov-
ernment, companies, and the society as a whole. For exam-
ple, tax evasion costs approximately 100 billion a year to the
US government alone [39], whereas, still in the USA, insur-
ance fraud costs about 40 billion a year to insurance compa-
nies [40]. More recently, research has also focused on the
spreading of fake news and misinformation [5], which, by
favouring the emergence of inaccurate beliefs about the real
state of the society, may represent a serious threat to democ-
racy [41]. Thus not surprisingly, studying dishonesty has a
long history of interest among social scientists [42–56], with
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the sender-receiver game being a popular theoretical paradigm
to measure (dis)honesty [57].

In what follows, we re-introduce the sender-receiver game
in a way that is appropriate to use with the Monte Carlo
method, and we determine the stationary frequencies of liars
and believers for four different lie types in well-mixed popu-
lations. In particular, we consider altruistic white lies, black
lies, spiteful lies, and Pareto white lies, and we study in detail
the dynamics that emerges as a result. As we will show, with
spiteful lies in play senders and receivers both quickly learn
that their best strategy is to send a truthful message and be-
lieve it, respectively. But for other types of lying, the dynam-
ics becomes more nuanced. For example, for altruistic white
lies and black lies, we will show that most senders lie while
most receivers do not believe the sender’s message, while for
Pareto white lies, we will show that both lying and believing
can evolve with any frequencies between 0 and 1. Our re-
search thus adds a theoretically rigorous quantitative compo-
nent to studying dishonesty, which has important implications
for better understanding moral behavior in general, as well as
provides pointers for devising innovative human experiments
to test the theory.

The sender-receiver game

Behavioral scientists have invented several tasks to mea-
sure people’s (dis)honesty. The more popular ones are the die-
rolling-paradigm [56], the matrix task [42], the Philip Sidney
game [58], and the sender-receiver game [57]. In this work,
we focus on the sender-receiver game, which is particularly
suitable for the application of the Monte Carlo method, be-
ing a game with two players and (practically) two strategies,
whereas the die-rolling-paradigm and the matrix task are both
decision problems, with no strategic component, in which one
person has to decide whether to lie for their benefit, or not.
Moreover, the sender-receiver game allows us to study four
different types of lies (black lies, spiteful lies, altruistic white
lies, and Pareto white lies), whereas the Philip Sydney game,
although strategically similar to the sender-receiver game, per-
mits to study only black lies. In particular, we focus on the
variant of the sender-receiver game introduced by Erat and
Gneezy in [53].

The game is as follows. There are two potential alloca-
tions of money between the sender and the receiver, Option
A and Option B. The sender rolls a six-face dice and is the
only one who sees the outcome. After looking at the out-
come, the sender chooses a message to send to the receiver
among six possible messages: “The outcome was i”, with
i ∈ {1, 2, 3, 4, 5, 6}. After receiving the message, the receiver
has to guess the true outcome of the dice roll. If the receiver
guesses the true outcome, then Option A is implemented as a
payment; if the receiver fails to guess the true outcome, then
Option B is implemented.

Although, in principle, this game has six strategies for each
player, it can be reduced to a game with two strategies for each
player in an obvious way. The sender has indeed essentially
two strategies: he either tells the truth to the receiver about the

outcome of the dice, or he lies. Similarly, also the receiver has
essentially two strategies: she either believes the message sent
by the sender, or not: if the receiver believes the sender, she
reports the same number as the one sent by the sender; oth-
erwise, if the receiver does not believe the sender, she draws
randomly a number from the remaining five numbers of the
dice.

Therefore, we can write the payoff matrix of the sender-
receiver game as follows. Let A = (aR, aS) and B =
(bR, bS) be the payoffs associated to Option A and Option B,
respectively, where S stands for the sender and R stands for
the receiver. If the number chosen by the receiver is equal to
the actual outcome of the dice, the sender gets the payoff aS ,
and the receiver gets the payoff aR. Conversely, if the number
chosen by the receiver is not equal to the actual outcome of
the dice, the sender gets the payoff bS , and the receiver gets
the payoff bR.

Without loss of generality, we can reduce the number of
parameters from four to two by setting aS = aR = 0. Finally,
by setting s = bS and r = bR, we can rewrite the game in a
2× 2 matrix form, as follows

B N
T 0, 0 s, r

L s, r 4
5s , 45r

where T stands for “Truth”, L stands for “Lie”, B stands for
“Believe”, and N stands for “Not Believing”. The ratios 4

5
come from the fact that, when the sender lies and the receiver
does not believe the message sent by the sender, then the re-
ceiver does not guess the true outcome of the dice with prob-
ability 4

5 .
Following the taxonomy introduced by Erat and

Gneezy [53], we distinguish four types of lies, depend-
ing on the consequences in payoffs:

• Pareto white lies are those that benefit both the sender
and the receiver: r, s > 0.

• Altruistic white lies are those that benefit the receiver at
a cost to the sender: r > 0, s < 0.

• Black lies are those that benefit the sender at a cost to
the receiver: r < 0, s > 0.

• Spiteful lies are those that harm both the sender and the
receiver: r, s < 0.

We conclude this section by reporting the equilibrium anal-
ysis. If r, s < 0, there are two equilibria in pure strategies,
(T,B) and (L,N), and one equilibrium in mixed strategies
(T/6+5L/6, B/6+5N/6) – that is, the sender plays T with
probability 1/6 and plays L with probability 5/6; analogous
for the receiver. If sr < 0 (i.e., if r > 0 and s < 0 or s > 0
and r < 0), then there are no equilibria in pure strategies
and there is one equilibrium in mixed strategies, that is, again,
(T/6+5L/6, B/6+5N/6). Finally, if s, r > 0, there are two
equilibria in pure strategies, (T,N), (L,B), and one equilib-
rium in mixed strategies, again, (T/6 + 5L/6, B/6 + 5N/6).
The cases r = 0 and/or s = 0 are trivial, because the corre-
sponding player/s is/are indifferent between the strategies.
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FIG. 1: Density of liars (left panel) and believers (right panel) in the steady state. In the domain of spiteful lies, all senders are honest and all
receivers believe the sender’s message. In the domain of altruistic white lies and black lies, most senders lie and most senders do not believe the
sender’s message. However, the exact final frequencies depend on the specific parameters. In the domain of Pareto white lies, the steady state
depends significantly on the parameter values. System size used is N = 500, and the results are averaged over 2000 independent realizations.

The Monte Carlo method

We consider the sender-receiver game among N players,
who interact pairwise in a well-mixed population. At each
round of the game, one player acts as a sender, and the other
player acts as a receiver. Each player can assume either role,
which is decided by a coin toss at the start of each encounter.
When acting as a sender, a player can either tell the truth (T )
or lie (L). When acting as a receiver, on the other hand, a
player can either believe (B) the message received from the
sender, or not (N ). This gives rise to four different strategies,
namely (T,B), (T,N), (L,B), and (L,N). Initially, each
player is randomly assigned as either T or L (when she acts as
a sender), and as either B or N (when she acts as a receiver).

We simulate the game using the Monte Carlo method. For a
well-mixed population with N players, the following elemen-
tary steps apply. First, a player x is randomly drawn from the
population. Player x then plays the sender-receiver game with
four randomly chosen other players from the population in
a pairwise manner as described above, thereby obtaining the
payoff πx. Secondly, another player y is also randomly drawn
from the population, and he also plays the sender-receiver
game with four randomly chosen other players from the pop-
ulation, thereby obtaining the payoff πy . Lastly, player y im-
itates the strategy of player x in accordance with the proba-
bility w = {1 + exp[(πy − πx)/K]}−1, where K quantifies
the uncertainty during the strategy adoption process. In the
K → ∞ limit, payoffs cease to matter and strategies change
at random; conversely, in the K → 0 limit, player y imitates
x only if πx > πy; between these two limits, the strategies of
better performing players tend to be imitated, although under-
performing strategies are imitated as well, for example due to
errors in the decision making, imperfect information, and ex-
ternal influences that may adversely affect the evaluation of
the payoff of the other player. Without loss of generality, here
we set K = 0.1, in agreement with previous research that
showed this to be a representative value [36].

The time is measured in Monte Carlo steps (MCS),
whereby one MCS corresponds to executing all three elemen-

tary steps N times. During one MCS, each player changes
strategy, on average, only once. For a systematic numerical
analysis, we have determined the fraction of strategies in the
final stationary state when varying the values of s and r. For
an adequate accuracy, we have used sufficiently large system
sizes, varied from N = 500 to 1000, as well as long enough
thermalization and sampling times, varied from 104 to 106

MCS. To further remove statistical fluctuations, we have also
averaged the final outcome over up to 2000 independent real-
izations.

Results

We considered a well-mixed population and investigated
the final configuration reached by the system once the dynam-
ics has reached its steady state.

Final densities of liars and believers as a function of lie type

As a first step of our analysis, we look at the final densities
of liars and believers, as functions of the type of lie.

Figure 1 shows the final densities of liars (left panel) and
believers (right panel), as functions of the game parameters
(r, s). For each couple (r, s), the corresponding densities are
obtained by averaging over 2,000 independent realizations on
a system of size N = 500. The simulations were conducted
with r, s increasing from −1 to 1, with steps of length 0.08.
We verified that the dynamics has actually reached the final
state.

We start from the case r, s < 0. The left panel highlights
that, in this case, all senders are honest, whereas the right
panel puts in evidence that all receivers believe the message
sent by the sender. This result is not a priori obvious. The case
r, s < 0 corresponds to spiteful lies, in which both the sender
and the receiver are harmed by a lie that is believed. As we
have seen before, in this domain, the sender-receiver game has
three equilibria (T,B), (L,N), and ( 16T + 5

6L,
1
6B + 5

6N).
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FIG. 2: Upper-left panel: Final densities of the pure strategy profile (T,B), which turns out to evolve only in the domain of spiteful lies.
Upper-right panel: Final densities of the pure strategy profile (T,N), which turns out to evolve in three cases, namely, for altruistic white lies,
for black lies, and for Pareto white lies, although with different frequencies depending on the exact parameter values. Lower-left panel: Final
densities of the pure strategy profile (L,B), which also turns out to evolve in the domains of altruistic white lies, black lies, and Pareto white
lies, but with different frequencies depending on the exact parameter values. Lower-right panel: Final densities of the pure strategy profile
(L,N), which turns out to evolve only in the domains of altruistic white lies and black lies, and, in both cases, with very high frequencies.

The simulations show that two of these equilibria are dis-
carded and all agents tend to coordinate on (T,B). A theo-
retical reason for why this happens is that this equilibrium is
the only one that is Pareto optimal in that it maximizes the
payoff for both players. Therefore, (T,B) is the strategy that
has the most chances to be imitated. Also note that, as shown
in this figure (see also the upper-left panel of Figure 2), the
finding that only the (T,B) equilibrium survives in the evo-
lution is robust to changing the payoff parameters, r and s, as
long as they remain in the domain of spiteful lies. In other
words, in the domain of spiteful lies, senders quickly learn
that their best strategy is to report the truth, while receivers
quickly learn that their best strategy is to believe the sender’s
message.

Now, keeping r < 0 constant, we note that, when s in-
creases and overcomes zero, there is a state transition, which
corresponds to the fact that the parameters (r, s) enter the do-
main of black lies, where, assuming that receivers believe the
senders’ messages, it is favorable for senders to lie. This has
the effect that lying tends to spread. However, since, in the
domain of black lies, receiver’s best response to lying (L) is to
not believe the sender’s message (N), while L emerges, also N
emerges. The emergence of N in turn contrasts the emergence
of L among senders, because, in the domain of black lies,
senders’ best response to N is telling the truth (T). This op-
posite dynamics result in a mixed steady state in which most,

but not all, senders lie, and most, but not all, receivers, do not
believe the sender’s message. One might at this point won-
der whether this stationary state is equal to the unique mixed
strategies equilibrium, and, in particular, whether it is inde-
pendent of the parameters (r, s), or not. The answers are neg-
ative. We will show in the next sections that, in fact, the steady
state depends on the parameters (r, s) non-trivially.

A similar logic applies when we keep s < 0 and let r in-
crease from −1 to 1. As soon as r becomes positive, there is
a state transition corresponding to the fact that the parameters
(r, s) enter the domain of altruistic white lies. In this domain,
assuming that receivers believe that senders tell the truth, then
it is favorable for receivers to not believe the sender’s mes-
sage. This has the effect that strategy N tends to emerge.
However, since in the domain of altruistic white lies, sender’s
best response to N is L, the emergence of N is contrasted by
the emergence of L. This opposite dynamics result in a mixed
state state, which, again, depends non-trivially from the exact
parameters (r, s) as we will show in the next sections.

The quadrant in which both r and s are positive is the more
variegate one. These parameters correspond to Pareto white
lies, lies that benefit both the sender and the receiver. The re-
sulting dynamics is quite complex and the steady state highly
depend on the parameters (r, s), and both L and N can span
all possible frequency values from 0 to 1, in a monotonic way:
keeping r constant, the final frequencies of L and B both in-
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crease with s.

Density of the pure strategies

In the previous section, we have reported the final densities
of liars and believers as a function of the type of lie. How-
ever, liars can come in two forms: liars who, when playing in
the role of the receiver, believe the sender’s message and liars
who, when playing in the role of the receiver, do not believe
the sender’s message. Similarly, believers can come in two
forms: believers who, when playing in the role of the sender,
send a truthful message and believers who, when playing in
the role of the sender, send a deceptive message. To gain in-
sights about which strategies are more likely to evolve, in this
section we report and discuss the final densities of the four
pure strategy profiles (T,B), (T,N), (L,B) and (L,N).

The upper-left panel of Figure 2 highlights that the strat-
egy profile (T,B), according to which a player reports the
truth when acting as a sender and believes the sender’s mes-
sage when acting as a receiver, appears in the steady state only
for r, s < 0 (spiteful lies). In all other types of lie, the pure
strategy profile (T,B) never evolves.

Particularly interesting is the strategy profile (T,N), ac-
cording to which a player tells the truth when acting as a
sender, but does not believe the sender’s message, when act-
ing as a receiver. This situation is similar to what Sutter [59]
termed “sophisticated deception”, telling the truth while ex-
pecting to not be believed. The upper-right panel of Figure 2
highlights that this strategy profile appears in a number of
non-trivial cases. When s is negative and r is positive and
close to zero (T,N) appears with high probability, close to
1. This case corresponds to altruistic white lies that have a
very small cost for the sender. Instead, when r is negative
and s is positive (black lies), (T,N) emerges, but it does so
with very small probability. In the domain of Pareto white
lies (r, s > 0), (T,N) almost always emerges (especially for
r ≥ s). In particular, when r gets close to 1 and s is between
0 and 0.5, (T,N) emerges with very high probability, close to
1.

The case (L,B) is symmetric to the case (T,N). The
lower-left panel of Figure 2 shows that this strategy profile
does not emerge at all in the domain of spiteful lies (r <
0, s < 0) and it emerges with small probability in the domain
of altruistic white lies (r > 0, s < 0). In the domain of black
lies (r < 0, s > 0), we note a fast emergence of the strategy
(L,B) for small values of s, close to 0, in which this strat-
egy profile evolves even with probability close to 1. However,
for larger values of s it quickly vanishes. Again, the domain
of Pareto white lies is the more variegate one. Indeed, in this
case, the strategy profile (L,B) emerges with high probability
when s ≥ r, whereas for s < r, its probability is very small.

Finally, the lower-right panel of Figure 2 shows that the
strategy profile (L,N) does not emerge in the domains of
spiteful lies and Pareto white lies, but it does emerge in the
domains of altruistic white lies and black lies, with very high,
although not equal to 1, probabilities.

Sections

We have said earlier that, in the domains of black lies (r <
0, s > 0) and altruistic white lies (r > 0, s < 0), the steady
state depends on the specific values of r and s in a non-trivial
way, and that, in particular, it is not equal to the unique Nash
equilibrium of the game, ( 16T + 5

6L,
1
6B + 5

6N). Here we
show this interesting fact by reporting the dynamics along the
two sections r = ±0.50, as functions of the sole parameter s.

We start by setting r = −0.50. When s < 0, we have
already seen in the previous section that the only strategy pro-
file that survives is (T,B). This is indeed reflected in Figure 3
(left), which puts in evidence that, in this region, the frequency
of (T,B) (green line) is equal to 1, whereas all other frequen-
cies are equal to 0. Then, when s becomes positive, there is
a sudden change of state. Interestingly, liars quickly emerge,
but in a non-symmetric way: the frequency of (L,B) quickly
increases up to almost 1 for s ' 0.01, as shown in the inset
of Figure 3 (left), then it quickly decreases again to 0. On the
other hand, the frequency of (L,N) rapidly increases up to
around 0.9, and then slowly keeps increasing up to reaching
a value near 1. The maximum of the frequency of (L,B) is
rather surprising for its narrowness: the final density of (L,B)
is 0 for s < 0; then it quickly increases for positive but very
small values of s; then it quickly decreases again to 0. To
better understand this peculiar behavior, in Figure 4 we report
the time series of each strategy in the interval of (L,B) dom-
inance. Specifically, the left panel of Figure 4 highlights that
the frequency of (L,B) increases monotonically up to near 1,
while all other strategies tend to appear with very small fre-
quencies, although their evolution is rather different. In partic-
ular, (L,N) evolves non-monotonically, while (T,N) is even
oscillatory. The right panel of Figure 4 reports the evolution of
liars and believers in the same interval of (L,B) dominance.
(More details about the time evolution of the various densi-
ties will be given in the next section.) Regarding truth-telling,
the strategy (T,B), which was the only surviving strategy for
s < 0, in the domain s > 0 completely vanishes. On the other
hand, the strategy (T,N) emerges in a non-monotonic way:
as s > 0 increases, the frequency of (T,N) first increases up
to a value around 0.1, and then slowly decreases to values near
0. Therefore, for r = −0.5 and s > 0, receivers never believe
the sender’s message, while senders lie with high frequency,
but not equal to 1.

The case r = 0.50 is somewhat more articulated, as shown
in Figure 3 (right). When s < 0, liars emerge with frequency
1, however, this does not appear to be due to the emergence of
a single profile of strategies. Indeed, for s < 0 we see a co-
existence of the strategy profiles (L,B) and (L,N), although
the latter one appears to emerge with higher frequency, es-
pecially when s increases and approaches 0, in which (L,N)
reaches frequencies very close to 1. Then, as soon as s reaches
0, there is a change of state: the strategy profile (T,N) ap-
pears with frequency very close to 1; however, as s increases
towards 1, then (T,N) appears with lower and lower frequen-
cies. This decrease of the frequency of appearance of (T,N),
as s increases, appears to be perfectly mirrored by an increase
of the frequency of (L,B).
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FIG. 3: Left panel: Final densities of different strategies as a function of the parameter s, for fixed r = −0.50. When s < 0, only the strategy
(T,B) survives. For s > 0, (L,B) quickly increases to around 0.9 and then it quickly decreases to 0; (L,N) quickly increases up to around
0.9, and then slowly keeps increasing up to reaching values close to 1; (T,B) completely vanishes; (T,N) first emerges for small values of
s, then vanishes; inset: zoom of the interval s ∈ [−0.005, 0.1]. Right panel: Final densities of the different strategies as a function of the
parameter s, for fixed r = 0.50. For s < 0, only (L,B) and (L,N) emerge, although the latter with much higher probability. For s > 0,
(T,N) quickly emerges, but then it slowly disappears, contrasted by the emergence of (L,B). In all cases the system size used is N = 1000
with random initial conditions.
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see Figure 3 (left). The frequency of (L,B) increases monotonically up to near 1, while all other strategies tend to appear with very small
frequencies, although their evolution is rather different. In particular, (L,N) evolves non-monotonically, while (T,N) is even oscillatory.
Right panel: Time series of the frequencies of liars and believers for the same parameter values utilized in the left panel. System of size
N = 1000 with random initial conditions.

Time evolution

We conclude by reporting the time evolution of liars and
believers at the corner of the domain of the parameters (r, s).
We verified the time evolution also for other values of (r, s),
and we found qualitatively similar patterns (as long as r, s 6=
0, clearly).

Figure 5, left and right, highlight that, before reaching the
steady state, the evolution is interesting, being sometimes
monotone and sometimes not. For r = 1 and s = −1
(red line, altruistic white lie), we note that both the behav-
ior of senders and the behavior of receivers evolve in a non-
monotone way. Similarly, for r = 1 and s = 1 (blue line,

Pareto white lie), the behavior of both senders and receivers
evolve non-monotonically. A non-monotone evolution, al-
though less remarked, appears also in the case of black lies
(r = −1, s = 1, green line). Conversely, in the case of
spiteful lies, we see a very quick convergence to the strategy
(T,B), in line with the discussion above that, in this case,
senders quickly learn that their best strategy is to tell the truth
and receivers quickly learn that their best strategy is to believe
the sender’s message.

Figure 6 reports in more detail the time evolution of the four
basic strategies for r = 1, s = ±1, that is, when the densities
of liars and believers evolve non-monotonically. In the case of
Pareto white lies (left panel), we note that the non-monotonic
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FIG. 6: Left panel: Time evolution of the four pure strategy profiles for r = 1 and s = 1 (Pareto white lies). The non-monotonic evolution
of liars is primarily driven by a non-monotonic evolution of the strategy (L,N). The non-monotonic evolution of believers is driven by a
combination of (T,B) and (L,B). Right panel: Time evolution of the four pure strategy profiles for r = 1 and s = −1 (altruistic white lies).
The non-monotonic evolution of liars and believers is mainly driven by a non-monotonic evolution of the strategy (L,B). Systems of size
N = 500 with random initial conditions.

evolution of liars is primarily driven by a non-monotonic evo-
lution of the strategy (L,N), whose frequency first increases
up to about 0.8 and then suddenly decreases of two orders
of magnitudes, to values below 0.01, and then keeps oscil-
lating. Similarly, still in the domain of Pareto white lies, the
non-monotonic evolution of believers is driven by a combina-
tion of (T,B) and (L,B): at the beginning of the dynamics,
the frequency of (L,B) is approximately constant, while the
frequency of (T,B) decreases, giving rise to the initial de-
crease of believers observed in the right panel of Figure 5;
then, between t ' 20 and t ' 100, the frequency of (T,B)
doubles from about 0.4 to about 0.8, where it stabilizes, while
the frequency of (T,B) keeps decreasing. After t ' 100, the
frequency of (T,B) starts alternating. This change in the dy-
namics contributes to the overall non-monotonicity observed
in the evolution of the frequency of believers. A similar line of

reasoning holds in the case of altruistic white lies. As shown
in the right panel of Figure 6, the non-monotonic evolution of
liars and believers is mainly driven by a non-monotonic evo-
lution of the strategy (L,B).

Finally, it is worth noticing that the non-monotonic be-
haviour in time increase with the population size: indeed, for
very large systems (N >∼ 104), in some cases we observe os-
cillations before the densities reach the final state.

Discussion

We have used the Monte Carlo method to explore the evolu-
tion of lying in well-mixed populations, where individuals are
playing the sender-receiver game [53, 57]. We have shown
that the evolution follows non-trivial trajectories. In partic-
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ular, honesty and dishonesty may appear or disappear with
very high probability depending on the particular payoffs of
the game. Similarly, also believing and non-believing can
emerge or vanish with very high probabilities. More specifi-
cally, following Erat and Gneezy’s taxonomy of lies [53], we
distinguished four basic types of lies: black lies, spiteful lies,
altruistic white lies, and Pareto white lies. In the domain of
spiteful lies, senders quickly learn that their best strategy is to
send a truthful message, and receivers quickly learn that their
best strategy is to believe the sender’s message. The cases of
altruistic white lies and black lies are instead characterized by
the fact that, at the steady state, most senders lie while most
receivers do not believe the sender message. However, the
exact proportions of senders and non-believers depend sig-
nificantly on the particular payoffs, and they also evolve in
a non-monotonic way, before eventually reaching the steady
state. The case of Pareto white lies is an even more variegate
one. Here, the steady state depend fully on the payoffs, and
both lying and non-believing can evolve with all probabilities
between 0 to 1.

Previous research has explored the evolution of honesty us-
ing the Philip Sidney game [58]. In this game, the Sender is
initially in either of two states, healthy or needy, with proba-
bility p and 1 − p, respectively. The Sender can either pay a
cost c to signal his state or stay quiet. The Receiver does not
know the state of the Sender, but can observe the signal. After
observing the signal (if sent), the Receiver decides whether
to donate his resource to the Sender. The Sender and the Re-
ceiver are assumed to be related, by a relatedness coefficient
r. Each player’s payoff is the sum of his survival probability
and a fraction r of the other player’s survival probability. Sur-
vival probabilities are defined as follows: the Receiver is sure
to survive only if he does not donate his resource; the Sender
is sure to survive only if he receives the Receivers resource.
This creates a conflict of interests among the Sender and the
Receiver which corresponds to what we called (following Erat
and Gneezy [53]) the “black lie” condition. A classic work
on the Philip Sidney game found that, if the cost of the sig-
nal is sufficiently high, then honest signalling can evolve [60].
See [61] for a review of this “Handicap Principle” and its vari-
ants. More recent research revealed that punishment can pro-
mote the evolution of honesty in cases in which the conflict of
interests among the Sender and the Receiver is moderate and
signalling is cheap or even cost-free [62]. Our work departs
from this line of research along two main dimensions. First,
in the Sender-Receiver game, signalling is cost-free and there
is no punishment. Even in this case, our results indicate that
honesty can evolve in some circumstances (especially in the
case of spiteful lies and Pareto white lies, but also, to some
extent, in the case of black lies). Second, the Sender-Receiver
game allows to study the evolution of honesty not only in the
domain of black lies, but also in the domains of spiteful lies,
Pareto white lies, and altruistic white lies.

Related to our work is also the recent literature on pre-
commitments in social dilemmas. In this context, a social
dilemma is preceded by a pre-play stage in which players can
send messages (commitment proposals) and other players can
accept or refuse the proposal. Proposers can lie about the com-

mitment. For example, after promising that they would coop-
erate, proposers can dishonour their promise and defect. On
the other hand, responders can refuse a commitment proposal
because they do not believe the proposer. Han and colleagues
explored analytically and numerically the evolution of coop-
eration in this type of social dilemmas, both in pairwise [63]
and group interactions [64, 65], and found that cooperation
can evolve under a number of different circumstances, such
as for example when the cost of commitment is sufficiently
small compared to the cost of cooperation. Our work differs
from this line of research in that we focus specifically on hon-
esty and believing, with no consequences on cooperative be-
haviour. This allows us to clearly identify the four classes of
lies (black, spiteful, altruistic, Pareto), and to study the evolu-
tion of lying as a function of lie type.

Statistical physics, and, in particular, the Monte Carlo
method, has proven valuable for the study of the evolution
of cooperation in social dilemmas [36]. Yet, cooperation in
social dilemmas is only one particular instance of a more gen-
eral class of behaviors, moral behaviors [37]. Therefore, it
is time now to move beyond the borders of cooperation and
start applying similar methods to the evolution of other moral
behaviors, such as, indeed, honesty [38]. To the best of our
knowledge, this is the first study using techniques from sta-
tistical physics to study the evolution of lying in the six-dice
sender-receiver game. Of course, some questions remain to
be addressed in future research, such as: What happens for
general n-dice sender-receiver games? What happens on net-
works? What interventions can be done to favor the evolution
of honesty? What if imitation is replaced with other forms
of strategy change? Just to name a few. These are impor-
tant questions, whose answers can greatly contribute to the
improvement of the society we live in, and they can provide
a nuanced quantitative view of honest behavior, as well as in-
form the design of future human experiments with testable
theoretical predictions.

Extending the domain of application of the Monte Carlo
method from cooperation to honesty, our work also suggests
that similar techniques could be applied to study the evolution
of other forms of moral behavior. A recent work by Curry et
al. [66] shows that seven moral rules are universal across so-
cieties: love your family, help your group, return favors, be
brave, defer to authority, be fair, and respect others’ property.
Clearly, not all these behaviors can be studied using simple
games, but some are. For instance, “returning favors” could
be studied using a sequential prisoner’s dilemma or the trust
game; “help your group” could be studied using games with
labeled players, in which individuals come with a label de-
scribing the group they belong to; “fairness” could be stud-
ied through the ultimatum game, as indeed has already been
done [67–77]; respect others’ property can be studied utilizing
games with special frames, as, for example, the dictator game
in the take frame, for which taking turns out to be considered
more morally wrong than giving [78, 79].

In sum, we believe that illuminating if, when, and how tech-
niques of statistical physics can be applied to study the evo-
lution of morality among humans, should be considered as a
primary direction for future research.
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Matjaž Perc was supported by the Slovenian Research
Agency (Grants J4-9302, J1-9112 and P1-0403). Daniele

Vilone was supported by the European Union’s Horizon 2020
Project PROTON (Grant 699824).

[1] S. Pinker, The better angels of our nature: Why violence has
declined, vol. 75 (Viking New York, 2011).

[2] S. Pinker, Enlightenment now: The case for reason, science,
humanism, and progress (Penguin Books, 2019).

[3] Y. Arthus-Bertrand, Human (movie) (Bettencourt Schueller
Foundation, Neuilly-sur-Seine, France, 2014).

[4] R. K. Garrett, Journal of Computer-Mediated Communication
14, 265 (2009).

[5] M. Del Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G. Cal-
darelli, H. E. Stanley, and W. Quattrociocchi, Proceedings of
the National Academy of Sciences 113, 554 (2016).

[6] M. A. Nowak and R. Highfield, SuperCooperators: Altruism,
Evolution, and Why We Need Each Other to Succeed (Free
Press, New York, 2011).

[7] D. Kennedy and C. Norman, Science 309, 75 (2005).
[8] R. L. Trivers, The Quarterly Review of Biology 46, 35 (1971).
[9] R. Axelrod, The Evolution of Cooperation (Basic Books, New

York, 1984).
[10] E. Ostrom, Journal of Economic Perspectives 14, 137 (2000).
[11] J. Henrich, R. Boyd, S. Bowles, C. Camerer, E. Fehr, H. Gintis,

and R. McElreath, Am. Econ. Rev. 91, 73 (2001).
[12] M. Milinski, D. Semmann, and H.-J. Krambeck, Nature 415,

424 (2002).
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