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ABSTRACT
Sense-making with respect to actor-based systems is challenging

because of the non-determinism arising from concurrent behaviour.

One strategy is to produce a trace of event histories that can be

processed post-execution. Given a semantic domain, the histories

can be translated into visual representations of the semantics in

the form of filmstrips. This paper proposes a general pattern for

the production of filmstrips from actor histories that can be imple-

mented in a way that is independent of the particular data types

used to represent the events, semantics and graphical displays. We

demonstrate the pattern with respect to a simulation involving

predators and prey which is a typical agent-based application.

CCS CONCEPTS
• Software and its engineering→ Concurrent programming
structures; Software testing and debugging.
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1 INTRODUCTION
Systems such as smart energy-grids, supply-chain networks and

smart factories can be represented using Multi-Agent Systems

(MAS) [15, 27, 35] where systems are constructed in terms of inde-

pendent goal-directed agents that concurrently engage in tasks both

independently and collaboratively. The benefits of MAS include

resilience [14] and adaptation [3] which are desirable properties

for modern complex distributed heterogeneous systems. MAS can

also be used to develop simulations of systems [16]. An important

reason for using agents for simulation is that the systems of interest

are complex and involve, for example, socio-technical features [26].
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MAS are inherently non-deterministic and exhibit emergent be-

haviour which makes debugging and sense-making challenging

[33, 40]. Recent work on MAS verification has focussed on static

analysis of the communication between agents [34] using interac-

tion protocols [1].

Sense-making incorporates a range of tasks. Such tasks consist

of information gathering, re-representation of the information in

a schema that aids analysis, the development of insight through

the manipulation of this representation, and the creation of some

knowledge product or direct action based on the insight [32]. A

specialised form of sense-making is debugging. Sense-making can

be supported through the use of domain-specific representations of

system execution [33]. Augmenting the temporal aspect by a visual

representation of the execution data gives improved understanding

of systems [2].

Our hypothesis to address these challenges is the use of histories

and their subsequent manipulation to perform sense-making. Each

agent can produce a history that consists of a description of its

local state changes. However, the resulting collection of histories

requires combination in the context of a semantic model in order

to meaningfully represent the history of a complete system. There-

fore, our proposal imposes a semantics on the histories in order to

support sense-making. Furthermore, since it is a history, we would

like to be able to ‘play’ the history forwards and backwards to

understand what happened during the execution traces over time.

The contribution of this paper is a semantics-based filmstrip

pattern that can be used to support MAS sense-making that is in-

dependent of any particular implementation technology. Filmstrips

are generally attributed to D’Souza and Wills in their modelling

method, Catalysis [12]. A filmstrip is a sequence of snapshots (ob-

jects and relationships) describing system state transitions arising

from operation calls in the system. The proposal is evaluated in

terms of an implementation using the actor-based language ESL.

This paper motivates the use of filmstrips as a basis for analyzing

agent-based systems in section 2 using a standard MAS application

involving predators and prey. This is a typical agent-based appli-

cation [13] that is applied to understanding community dynamics

[11], ecology [38], and infectious diseases [37]. The application is

written in an actor language ESL [9] whose semantics is presented

in section 2.2.

The main contribution of the paper is given as an algebraic

pattern in section 3 that can be used to construct filmstrips inde-

pendently of the data types that are used to represent the event

histories and the semantics of the application. The pattern is then

https://doi.org/10.1145/3299771.3299783
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Figure 1: Actor Model of Computation [21]

implemented in section 4 using ESL polymorphic functions to ab-

stract from the implementation data types. The pattern is used to

build predator-prey filmstrips in section 5.

The paper concludes with an overview in section 6 of several

filmstrip implementations using the ESL-based pattern and reviews

related work in section 7.

2 ACTORS AND FILMSTRIP GENERATION
Figure 1 (taken from [21]) shows the key features of the actor-model

of computation. Each actor is associated with a single thread of

control, some state, a mailbox queue and some message handling

methods. Messages are sent between actors asynchronously and

added to the receiver’s mailbox. When an actor is idle, the next

message in the mailbox is inspected and handled to the appropriate

method whose body is performed on the thread.

Since each actor is autonomous, groups of actors are often used

to create simulations of populations in order to observe their be-

haviour. A typical example of this is the predator-prey simulation

[30] where a group of predators (in this case wolves) try to catch

a prey (in this case a sheep). The purpose of the simulation is to

investigate different strategies employed by each category of actor:

predators try to catch the prey who in turn tries to evade them.

Section 2.1 describes an implementation of predator-prey in the

language ESL which is defined in section 2.2. The issues arising

from the use of filmstrips for debugging is described in section

2.3 leading to the definition of sense-making requirements to be

addressed by the pattern defined in the following section.

2.1 Predator Prey Filmstrips
Figure 2 shows an ESL program that implements a simple version

of predator-prey. This section gives an informal description of the

program and section 2.2 provides a formal definition that is neces-

sary to precisely capture the debugging challenge and subsequent

definition of the filmstrip pattern.

ESL combines functional and actor-based programming [8–10]

making it an ideal candidate for the proposed filmstrip pattern.

An ESL program consists of a collection of value, function and

behaviour definitions. Each behaviour has a corresponding type

1 type Predator = Act { Move }
2 type Prey = Act { Move }
3 type Main = Act { Time( Int ) }
4 data Message = PredAt( Int , Int , Int ) | PreyAt( Int , Int );
5 data Pos = Point( Int , Int );
6

7 messages :: [Message] = [];
8

9 act predator(id :: Int ,x :: Int ,y :: Int ) :: Predator {
10 Move → grab(messages) {
11 l e t dx :: Int = randomMove ();
12 dy :: Int = randomMove ()
13 in i f isNearerPrey(id,dx,dy) and canMove(x+dx,y+dy)
14 then {
15 x := x + dx;
16 y := y + dy;
17 messages := messages + [PredAt(x+dx,y+dy)];
18 }
19 }
20 }
21

22 act prey(x :: Int ,y :: Int ) :: Prey {
23 Move → grab(messages) {
24 l e t dx :: Int = randomMove ();
25 dy :: Int = randomMove ()
26 in i f isAwayFromPred(dx,dy) and canMove(x+dx,y+dy)
27 then {
28 x := x + dx;
29 y := y + dy;
30 messages := messages + [PreyAt(x+dx,y+dy)];
31 }
32 }
33 }
34

35 predators ::[Predator] =
36 [ new predator(p,random(width),random(height))
37 | p :: Int ← 0.. numOfPredators ];
38

39 thePrey :: Prey = new prey(random(width),random(height));
40

41 rocks ::[Pos] =
42 [ Point(random(width),random(height))
43 | r :: Int ← 0.. numOfRocks ];
44

45 act main :: Main {
46 Time(n :: Int ) when n < limit → {
47 for p :: Predator in predators do
48 p ← Move;
49 thePrey ← Move;
50 wait (1);
51 }
52 Time(n :: Int ) → {
53 showFilmstrip(messages);
54 stopAll ();
55 }
56 }

Figure 2: ESL Definition Predator-Prey Behaviours

definition listing the messages that can be received by any actor

with the behaviour. Example behaviour types are listed in lines 1–3;

Predator and Prey both define a message Move, and Main defines a Time

message. The latter is key to the ESL semantics which provides all

actors with a message telling them the current time at regular inter-

vals and which can be used to drive the application and eventually

terminate it (line 54).

Line 4 defines a union data type Message that has two alternatives:

PredAt(i,x,y) meaning that a predator with identity i is at position

(x,y), and PreyAt(x,y)meaning that the prey is at position (x,y). The

data value messages on line 7 is a list of messages and is initialised

to the empty list. This will be used as the application history with

all actors posting messages to the end of the list.

The behaviours predator (lines 9–20) and prey (lines 22 – 33) define

what happenswhen an actor with the respective behaviours handles

a Move message. Both behaviours have initialisation arguments that
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grab(v)
v < γ

[E;γ ⊢ grab(v, e)]a →λ [E;γ ,v ⊢ e, release(v)]a

release(v) [E;γ ,v ⊢ release(v)]a →λ [E;γ ⊢ nil]a

fun(a)
[E;γ ⊢ e]a →λ [E

′
;γ ′ ⊢ e ′]a

⟨α , [E ⊢ e]a |µ;γ ⟩ → ⟨α , [E
′ ⊢ e ′]a |µ;γ

′⟩

new(a,a′,E ′,b ′)
⟨α , [E ⊢ R[new(a′,b ′,E ′)]]a |µ;γ ⟩ →
⟨α , [E ⊢ R[nil]]a , (E,E

′ ⊢ b ′)a′ |µ;γ ⟩

term(a,b) ⟨α , [E ⊢ R[]]a |µ;γ ⟩ → ⟨α , (E ⊢ b)a |µ;γ ⟩

rcv(a,v)
⟨α , (E ⊢ b)a |µ, (a ⇐ v);γ ⟩ →
⟨α , [E(FV (b) 7→ v) ⊢ b[nil]]a |µ;γ ⟩

snd(a,a′,v)
⟨α , [E ⊢ R[send(a′,v)]]a |µ,γ ⟩ →
⟨α , [E ⊢ R[nil]]a |µ, (a

′ ⇐ v);γ ⟩

time(t) ⟨α |µ;γ ⟩ → ⟨α |µ, {(a ⇐ Time(t))|a ∈ α };γ ⟩

Figure 3: ESL Operational Semantics

are used as an actor’s state. ESL implements lexical scoping so that

variables are local within the text contained within their defining

occurrence. In addition, variables can be changed by side-effect,

therefore, the variables x and y at line 9 are both private to the

predator behaviour and form the mutable state of any actor with

that behaviour.

Both behaviours handle Move similarly. They grab the history

(lines 10 and 23) providing the actor with exclusive access. Both

behaviours define the movement strategy in terms of some func-

tions that are omitted: predators try to catch the prey and the prey

aims to avoid the predators. In both cases if the receiver decides to

move, the local state is updated and a message is added to the end

of the global list messages.

A list of predators is created in lines 35–37 and a single prey is

created in line 39. A list of rock positions is created (lines 41–43);

the details of keeping predator, prey and rock positions separate is

omitted.

An ESL program starts by creating a single actor with the be-

haviour main defined on lines 45–56. The Time messages drive the

main actor to send Move messages to each of the predator and prey

actors. The messages are sent asynchronously and Actor model

of computation guarantees that the messages will be received and

computationwill be fairly distributed. Once the time limit is reached

(lines 52–55) the application shows a filmstrip constructed from the

history and stops the application. The rest of the paper describes

how the filmstrip is constructed and displayed.

2.2 ESL
Actor-based systems are highly concurrent which makes debugging

them a challenge. This section defines the semantics of ESL based on

a standard actor semantics [29, 31] which is extended with monitors

as used by grab in the previous section. The filmstrip pattern defined

in ESL makes use of polymorphism in order to be independent of

the semantic domain used as a basis for sense-making. This section

also defines a type relation for polymorphic ESL that is suitable for

the filmstrip pattern definitions.

Figure 3 defines the operational semantics of ESL. An ESL con-

figuration is ⟨α |µ;γ ⟩ where α is a set of actors, µ is a multi-set

of pending messages and γ is a set of monitors that are currently

locked. An actor a ∈ α can either be busy or inactive. A busy actor

is represented as [E ⊢ R[e]]a where E is the local state of the actor,

and R is a reduction context filled with expression e that is currently
being executed. An inactive actor is waiting for a message and is

represented as (E ⊢ b)a where b is its behaviour. A message to a
that is pending is represented as a ⇐ v .

The language of ESL actor behaviours is standard (as noted in

[31] and represented by fun(a)), the reduction relation→λ in fig-

ure 3 is therefore not fully defined except for the novel feature of

monitors given by rules grab(v), release(v)where the monitorv is

added to, and removed from, the global set γ . Since the reduction re-

lation→λ is a single-step semantics, adding a monitor toγ provides

exclusive access and causes other actors that concurrently attempt

to grab the same monitor to wait until the monitor is released.

Rule new(a′,E ′,b ′) differs from that given in [31] to note that a

new actor captures both the current context E, but also creates its

own local context E ′. Since ESL supports side effects, this allows

actors to share state that can be managed via monitors.

Rule term(a,b) applies when an actor exhausts its current mes-

sage handler and becomes inactive. Rule rcv(a,v) shows how an

inactive actor starts to process a message and rule snd(a,a′,v)
describes message passing.

Rule time(t) injects Time(t) messages into the actor community.

ESL does not define when these messages occur - they are used to

ensure that otherwise idle actors can regularly perform computa-

tion and are provided with time t in milliseconds since the start of

the application.

The semantic relation→ defined in figure 3 places no further

constraints on the order in which actor execution proceeds. Be-

haviour is highly concurrent and message passing is asynchronous

making it difficult to trace threads of execution.

ESL is a statically typed language that merges features from func-

tional programming and actor-languages. The filmstrip pattern that

is defined in ESL in section 4 is independent of the data type used

to represent the semantic domain used to structure the snapshots.

Figure 4 defines that part of ESL type relation used by the examples

in this paper. The relation is defined as Γ ⊢ t::T where Γ is a set of

type associations for identifiers x :: T , t is a program term and T is

a type.

Of particular interest is the ESL support for universal types and

type application. An identifier can be defined to range over one or

more types, for example:

pair[T](x ::T) ::[T] = [x,x]

that defines a function of type ∀T.(T)->[T]. When the function is

used, the type must be supplied pair[Int](10)::[Int].

A data definition (as shown in figure 2 on line 4 introduces a

union type. Such a type defines a number of constructors; in this

case PredAt and PreyAtwhich are used to inject values into the union

data type. Therefore, PredAt(1,20,30) is a value of type Message. Values
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Syntax:
t ::= terms

x variable
new(t) creation
λ(¯d) t function
act { d̄ h̄ } behaviour
n number
s string
b boolean
grab(x) t lock
if t then t else t conditional
t← t send
case t { ¯h } projection
[t̄] list
t(t̄) application
t[T̄] type application
C(t̄) injection

i ::= d=t initialisation
d ::= x[X̄]::T declarations
h ::= C(x̄)→ t handlers
T ::= types

Int integer type
Bool boolean type
Str string type
∀ X̄ . T universal
X variable
Union { m̄ } union
Act { ¯d m̄ } behaviour
(T̄)→ T function type

m ::= C(T̄) message type

Type Checking:

x :: T ∈ Γ

Γ ⊢ x :: T
T-VAR

Γ ⊢ t :: Act { d̄ m̄ }

Γ ⊢ new(t) :: Act { d̄ m̄ }
T-NEW

Γ, x̄::T̄ ⊢ t::T

Γ ⊢ λ(¯d) t::(T̄)→T

T-FUN

Γ ⊢ act { d̄ m̄ }::Act { d̄ m̄ } T-ACT

Γ ⊢ t1 ::Act { ¯d m̄ }

Γ ⊢ t2 ::Union { m̄ }

Γ ⊢ t1← t2 ::Union { m̄ }

T-SEND

Γ ⊢ n::Int T-INT

Γ ⊢ s::Str T-STR

Γ ⊢ b::Int T-BOOL

Γ ⊢ t::T

Γ ⊢ grab(x) t :: T
T-LOCK

Γ ⊢ t1::Bool
Γ ⊢ t2,t3::T

Γ ⊢ if t1 then t2 else t3 :: T
T-IF

Γ ⊢ case t {m̄1 } :: T
Γ ⊢ case t {m̄2 } :: T

Γ ⊢ case t {m̄1, m̄2 } :: T
T-CASE1

Γ ⊢ t1 :: Union{m̄, C(T̄)}
Γ, x̄ :: T̄ ⊢ t2 :: T

Γ ⊢ case t1 {C(x̄) → t2 } :: T
T-CASE2

Γ ⊢ [] :: ∀X.[X] T-NIL

Γ ⊢ [t̄1] :: [T]
Γ ⊢ [t̄2] :: [T]

Γ ⊢ [t̄1 ,̄t2] :: [T]
T-LIST1

Γ ⊢ t :: T

Γ ⊢ [t] :: [T]
T-LIST2

Γ ⊢ t̄ :: T̄
Γ ⊢ t :: (T̄) → T

Γ ⊢ t(t̄) :: T
T-APP

Γ ⊢ t :: ∀X̄.T
Γ ⊢ t[T̄] :: T[T̄/X̄]

T-TAPP

Γ, C(T̄) 7→ Union{m̄}
Γ ⊢ t̄ :: T̄

Γ ⊢ C(t̄) :: Union{m̄}
T-INJ

Figure 4: ESL Type Checking

of a union type can be projected onto their constituent elements

using a case-expression. Values of a union type are also used as

messages in ESL where the message handlers are used to project

the values.

2.3 Sense-Making Requirements
Our aim is to determine whether or not the ESL program defined in

figure 2 exhibits the behaviour we expect. In general, it is difficult to

achieve this through instrumentation due to the highly concurrent

and non-deterministic nature of actor computation. In principle we

could apply static verification techniques to the program to investi-

gate a required behaviour, however for applications of any size the

state-space explosion makes this approach unusable. Therefore, we

propose to use a post-execution, human-based, machine-assisted

(a) Predators Move In (b) Simple Prey Strategy

Figure 5: Filmstrip

technique where the history of execution is analysed. Consider a

system history for the predator-prey example:

PreyAt (10 ,20) // The prey starts at (10 ,20)

PredAt (1,20,10) // Predator 1 starts at (20 ,10)

PreyAt (9,20) // The prey moves to (9,20)

PredAt (1,19,11) // Predator 1 moves to (19 ,11)

Such a sequence of actions is difficult to interpret because the se-

mantics of any global state is the aggregation of previous actions.

Furthermore, some actions overwrite previous actions: the move-

ment of predator 1 above. In order to make sense of any given

history we propose a filmstrip that can be run forwards and back-

wards.

A filmstrip is a visual semantic description of the system in

terms that allow us to spot issues of interest and to perform some

sense-making analysis. A typical example of a filmstrip is shown

in figure 5 where the sequence of predator-prey messages has been

transformed into a sequence of snapshots displayed via a slider that
can be dragged forwards and backwards to display different points

in time. Figure 5a shows the predators moving towards the prey

and figure 5b clearly shows the prey strategy to be unintelligent

since the move places the sheep in a position that is surrounded by

rocks on three sides.

The use of system visualisation and filmstrips in particular is

a known technique for parallel systems [4, 24] and for MAS [39].

Whilst these approaches acknowledge the need to integrate events,

semantics and displays, none provide a structure for doing so in

the context of MAS. The following features are required to create

such an integrated structure:
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([E], i : E → Int) ([[E]], i : E → Int)

[(D, ⊗,δ )] [(S, ⊕, ϵ)]

σ

γ ∗

ω µ∗

Figure 6: The Filmstrip Pattern

Event History The application must produce a history of events

in a form that can be aggregated to produce snapshots as de-

scribed below.

Semantic Domain The history consists of individual messages

that must be aggregated based on a semantics for the appli-

cation. It is useful if the semantic domain is compositional

since the individual components of the history are produced

by different actors.

State Transitions The history of the application must be mapped

to a sequence of state transitions each of which is defined as a

semantic snapshot.

Display Domain Each snapshot must be mapped to a visual rep-

resentation such as that described in figure 5. The displays

should be designed so as to exhibit behaviour of interest.

3 THE FILMSTRIP PATTERN
This paper proposes a filmstrip pattern that is independent of the

semantic and display domains that are used. The pattern places

conditions on these domains but leaves the details to the particular

applications. This section defines the pattern; section 3.1 provides

some basic definitions, section 3.2 presents the pattern definition,

section 3.3 describes how messages are translated to state transi-

tions, section 3.4 describes how the transitions are translated to

semantic values, section 3.5 describes how semantic values are

translated to displays. The pattern is independent of particular data

types, however section 3.6 states the properties for any data types

that are used.

3.1 Basic Definitions
A monoid (M,m0,+) is a set of values M together with a value

m0 : M and an associative binary operation _ + _ : (M,M) → M
such thatm0 is the left and right identity of +. Given a list of values

xs : [X ] the lists ↑ xs and ↓ xs are defined to be the prefix of xs and
the last element of xs respectively such that ↑ xs + [↓ xs] = xs . The
function [↓] is defined [↓](xs) = [↓xs]. Given a function f : X → Y ,
the function f ∗ : [X ] → [Y ] maps f over a list of type [X ] to
produce a list of type [Y ]. Given an associative binary operator

_ ∗ _ : (Y ,Y ) → Y , and a value y : Y the function \f ,∗,y maps a list

[x1,x2, ...] to produce f (x1) ∗ f (x2) ∗ ... ∗ y. |l | is the length of the

list l .

3.2 Pattern Definition
An actor-based system executes in terms of messages. When a

message is received by an actor it may change state. The state

changes can be recorded as events which, over the duration of an

application, build up a history of execution. Each actor has a unique

identity which can be used to tag the events it produces leading to

a structure ([E], i : E → Int) of event histories.

A filmstrip f : [D] is a sequence of display elements. The displays

represent elements that can be drawn on a screen and have no

knowledge of system executions.Wewould like to define amapping

ω : [E] → [D] from sequences of events to filmstrips that preserves

a semantic structure that we define for the system. The data type

for displays should be defined so that it forms a monoid (D, ⊗,δ )
where δ : D is the empty display and _ ⊗ _ : (D,D) → D composes

displays.

The mapping ω : [E] → [D] from histories to filmstrips is to be

defined in terms of three mappings: σ : [E] → [[E]] that maps event

histories to state transitions; µ∗ : [[E]] → [S] that maps sequences

of state transitions to sequences of semantic values; γ ∗ : [S] → [D]
that maps sequences of semantic values to sequences of displays.

The pattern is defined in figure 6; each of the components are

defined in the rest of this section.

3.3 Producing State Transitions
A system state can be expressed as a collection of facts that de-

scribe the current state of each actor. If the event history contains

a record of the complete state of an actor each time it changes then

a sequence of events can be transformed into a sequence of states

by taking all the prefixes of the history. However, states produced

in this way may contain contradictory facts about a given actor

since the state may change over time. Therefore, we must filter

the prefixes so that the latest state of each actor is retained. The

mapping σ is defined by specifying its inverse σ−1 :: [[E]] → [E]:
σ−1(ess) = es such that the following two conditions hold:

\[↓],+,[](ess) = es (1)

∀j ∈1..#(ess) ↑ essj = [m |m ∈ essj−1, i(m) , id(↓ essj )] (2)

∀j ∈1..#(ess) |essj | = |essj−1 | + 1 (3)

Condition 1 states that the concatenation of the last element of

each state must produce the original history. Condition 2 states

that the prefix of each state must not contain a message whose

id is that of the suffix. Together, these conditions ensure that σ
generates a step-by-step state transition that does not contain con-

tradictory information about any element. Condition 3 requires the

state transitions to be incremental.

3.4 Producing Semantic Values
A key feature of the pattern is the requirement to define a semantic

domain S that is used as the anchor-point of filmstrip production.

The semantics is defined in order to reflect the features of the

domain that wewould like to examine. For example in the case of the

predator-prey scenario, the semantic domain is a world containing

positions of the predators and prey. Other semantic domains may be

more complex, however there is a requirement that the domain can

be expressed as a monoid in order that it has an empty element and

a composition operator. This allow the mapping between sequences

of system states [[E]] and sequences of semantic values [S] to be

defined in terms of a simple mapping e : E → S between events and

semantic values such that: µ = \e,⊕,ϵ and therefore µ
∗
: [[E]] → [S]

as required.
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3.5 Producing Displays
Given that we have defined filmstrips as a monoid over displays it

is possible to define the mapping γ ∗ in terms of a simple display

mapping d : S → D since this can be generalised in the same way

as e above:
γ ([]) = []

γ (ϵ) = δ
γ (s) = d(s)
γ (s1 ⊕ s2) = γ (s1) ⊗ д(s2)

The individual mappings e and d can be composed in order to

translate directly from state transitions to displays:

γ ◦ µ = (\d,⊗,δ ) ◦ (\e,⊕,δ )

= \d◦e,⊗,δ

Giving the following mapping:

(γ ◦ µ)∗ : [[E]] → [D]

3.6 Key Types, Mappings and Filmstrip Laws
The filmstrip production pattern identifies several key definitions

and some laws that the definitions must satisfy. The following key

components must be provided: data types for events E, semantics

S , and displays D. The semantics and displays should be monoids,

and the semantics may include further domain-specific constraints.

The events should provide an identity mapping i that is the basis
for a standard state-transition mapping σ that must satisfy the

specification in section 3.3. The mapping from states to displays

can be constructed from two mappings e and d from events to

semantic values and from semantic values to displays respectively.

The semantic value mapping and the display monoid must satisfy

the equations defined in section 3.5. The next section uses the

language ESL to implement the pattern.

4 PATTERN REPRESENTATION IN ESL
The previous section has defined a filmstrip pattern that is indepen-

dent of any implementation language and the data types used for

events, semantics, and the displays. This section uses polymorphic

functions in ESL to define the pattern in terms of its constituent

mappings: section 4.1 defines the state transition mapping and then

section 4.2 defines ω that expects the pattern component mappings

as arguments.

4.1 State Transitions
State transitions are implemented using a structure ([E], i : E → Int)

and a mapping σ that maps a history of events to a sequence of

state transitions where each state is a sub-sequence of the events.

The ESL definition of σ is shown in figure 7. The function combine

is used to ensure that the specification of σ , as defined in section

3.3, is satisfied.

For example if E = Message then given the following sequence of

messages:

h = [PreyAt (10 ,20),

PredAt (1,20,10),

PreyAt (9,20),

PredAt (1,19,11),

. . . ]

σ [Message](h) produces:

combine[E](i ::(E) → Int ,ids ::[ Int ],h ::[E],m ::E) ::[E] =
case h {

[] → i f member[ Int ](i(m),ids) then [] e l se [m];
hh ::[T] + [mm ::E] →

i f member[ Int ](i(m),ids)
then combine[E](i,ids ,hh,mm);
e l se combine[E](i,ids+[i(m)],hh,mm) + [m];

}

σ [E](i ::(E) → Int ,h ::[E]) ::[[E]] =
case h {

[] → [];
hh ::[E]+[m ::E] → σ [T](i,hh) + [combine[E](i,[],hh,m)];

}

Figure 7: State Transitions in ESL

map[M,N](f ::(M) → N,l ::[M]) ::[N] =
case l {

m ::M;
ms ::[M];
[][M] → [][N];
m:ms → (f(m)):map[M,N](f,ms);

}

foldr[M,N](map ::(M) → N,op ::(N,N) → N,empty ::N,list ::[M]) ::N =
case list {

[] → empty;
h ::M:t ::[M] → op(map(h),foldr[M,N](map ,op,empty ,t));

}

ω[E,S,D]( events ::[E],
i ::(E) → Int ,
e ::(E) → S,
d ::(S) → D,
⊗ ::(D,D) → D,
δ ::D) ::[D] =

l e t m ::(ms ::[E]) ::D = foldr[E,D](d◦e,⊗,δ ,ms)
in map[[E],D](m,σ [E](i,events))

Figure 8: Filmstrip Pattern Implemented in ESL

[[],

[PreyAt (10 ,20)],

[PreyAt (10 ,20),PredAt (1,20,10)],

[PredAt (1,20,10),PreyAt (9,20)],

[PreyAt (9,20),PredAt (1,19,11)],

. . . ]

Theorem 4.1. The definition of σ given above satisfies the require-
ments 1, 2 and 3 given in section 3.3.

Proof: By induction on the length of h.

4.2 Filmstrip Mapping in ESL
The filmstrip mapping ω maps sequences of events to sequences

of displays. It relies on constituent mappings as defined in figure

6 and combines them using foldr (that implements \_,_,_) and map

(that implements _
∗
). Figure 8 shows the definition of the mapping

in ESL.

5 PREDATOR-PREY FILMSTRIPS IN ESL
Given a collection ofmessages generated by ESL actors, the filmstrip

is created as an ESL sequence of display elements by supplying ω
with the messages, mappings and display monoid components:
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filmstrip(messages ::[Message ]) ::[Tree] = ω[Message ,Board ,Tree]

(messages ,id,mapMessage ,mapBoard ,mergeDisplays ,emptyDisplay)

The event history data type Messages has already been defined and

the definition of id is:

id(PredAt(id :: Int ,_,_)) :: Int = id;

id(_) :: Int = -1;

This section provides the ESL definitions of: the semantic domain

Board in section 5.1; the semantic mapping mapMessage in section 5.2;

displays Tree and mergeDisplays in section 5.3; and, the display map-

ping mapBoard in 5.4 which also includes an example translation from

a sequence of predator-prey messages to the resulting filmstrip.

5.1 Semantic Domain
The semantic domain (S, ⊕, ϵ) is used to represent a whole-system

representation of a state. The predator-prey semantic domain is a

board that contains locations. Each location can be empty, a rock, a
predator or a prey. The location elements can be represented as a

single data type and the board is a two-dimensional list:

data Location = EmptyLoc | PredLoc | PreyLoc | Rock;

type Board = [[ Location ]];

The semantic domain should form a monoid. The following is the

empty board:

emptyBoard :: Board =

[[ i f member[Pos](Point(x,y),rocks)

then Rock

e l se EmptyLoc

| x :: Int ← 0.. width]

| y :: Int ← 0.. height ];

The monoid combination operation must be associative and have

emptyBoard as a left and right identity assuming rocks are always in

the same place:

mergeBoards(b1 ::Board ,b2 :: Board) :: Board = [[

mergeLocs(b1[x][y],b2[x][y] | x :: Int ← width] | y :: Int ← height ];

mergeLocs(Rock ,l :: Location) :: Location = Rock;

mergeLocs(l :: Location ,Rock) :: Location = Rock;

mergeLocs(l :: Location ,EmptyLoc) :: Location = l;

mergeLocs(EmptyLoc ,l :: Location) :: Location = l;

mergeLocs(PredLoc ,PredLoc) :: Location = PredLoc;

mergeLocs(PreyLoc ,PreyLoc) :: Location = PreyLoc;

The semantic domain structure for the predator-prey application is

therefore (Board,mergeLocs,emptyBoard).

5.2 Semantic Mapping
The semantic mapping must translate a state into a semantic value.

Since the source and target of the semantic mapping both form a

monoid, the mapping can be generated using a map for a single

event as follows:

mapMessage(m :: Message) :: Board =

case m {

PredAt(_,x0 :: Int ,y0 :: Int ) →
[[ i f (x=x0) and (y=y0)

then PredLoc

e l se
i f member[Pos](Point(x,y),rocks)

then Rock

e l se EmptyLoc

| x :: Int ← 0.. width]

| y :: Int ← 0.. height ];

PreyAt(x0 :: Int ,y0 :: Int ) →
[[ i f (x=x0) and (y=y0)

then PreyLoc

e l se
i f member[Pos](Point(x,y),rocks)

then Rock

e l se EmptyLoc

| x :: Int ← 0.. width]

| y :: Int ← 0.. height]

}

The semantic mapping can be defined as follows:

µ = foldr[Message ,Board](mapMessage ,mergeBoards ,emptyBoard)

and generalised to µ∗ using the definition of map as required. The his-
tory is therefore produced by copying forward snapshot fragments

until an actor causes a change when it processes a message.

5.3 Displays
The filmstrips are represented as sequences of displays. ESL pro-

vides a number of display types that can be used to populate the

filmstrip pattern. The predator-prey example can be displayed as a

two-dimensional board that can be represented as a nested collec-

tion of trees containing horizontal and vertical boxes, shapes and

images:

data Tree =

TreeNode ([Shape]) // A picture made up of shapes.

| VBox([Tree]) // A box of elements arranged vertically.

| HBox([Tree]) // A box of elements arranged horizontally.

data Shape

Rectangle( Int , Int ) // Rectangle(width ,height).

| Circle( Int ) // Circle(radius).

| Line( Int ) // Line(length).

| Image( Int , Int , Str ) // Image(width ,height ,location).

| Text( Str ); // Text(string).

A space can be represented using:

space :: Tree = TreeNode(Rectangle(size ,size));

A simple two-dimensional board representing a predator-prey dis-

play can be represented as follows:

VBox([

HBox([space ,Image(size ,size ,'rock.png ')]),

HBox([Image(size ,size ,'wolf.png '),Image(size ,size ,'sheep.png ')])

])

To comply with the filmstrip pattern, the language of displays must

form a monoid. In the case of a two-dimensional predator-prey

world the empty display is:

VBox([

HBox([space ,space]),

HBox([space ,space])

])

The binary display combination operator is implemented as follows

where l[i] indexes an element in a list:

mergeDisplays(d1 ::Tree ,d2 :: Tree) :: Tree =

case d1,d2 {

VBox(l1 ::[Tree]),VBox(l2 ::[Tree]) →

VBox([ mergeDisplays(l1[i],l2[i]) | i :: Int ← 0..|l1|)]);

HBox(l1 ::[Tree]),HBox(l2 ::[Tree]) →

HBox([ mergeDisplays(l1[i],l2[i]) | i :: Int ← 0..|l1|]);

_,_ when d1 = space → d2;

_,_ when d2 = space → d1;

_,_ when d1 = d2 → d1;

}

Assuming that emptyDisplay is a tree of the appropriate size and

shape that contains only spaces then the displays form a monoid

(Tree,mergeDisplays,emptyDisplay) as required.
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[VBox([
HBox([ TreeNode(Rectangle (30 ,30)),

TreeNode(Image(30,30,' sheep.jpg ')),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30)),
Image(30,30,'rock.png)))])])),

VBox([
HBox([ TreeNode(Rectangle (30 ,30)),

TreeNode(Image(30,30,' sheep.jpg ')),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Image(30,30,'wolf.jpg ')),
TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30)),
Image(30,30,'rock.png)))])])),

VBox([
HBox([ TreeNode(Rectangle (30 ,30)),

TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Image(30,30,'wolf.jpg ')),
TreeNode(Image(30,30,' sheep.jpg ')),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30)),
Image(30,30,'rock.png)))])])),

VBox([
HBox([ TreeNode(Rectangle (30 ,30)),

TreeNode(Rectangle (30 ,30)),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Rectangle (30 ,30)),
TreeNode(Image(30,30,'sheep.jpg ')),
TreeNode(Rectangle (30 ,30))]),

HBox([ TreeNode(Image(30,30,'wolf.jpg ')),
TreeNode(Rectangle (30 ,30)),
Image(30,30,'rock.png)))])]))]

Figure 9: A Filmstrip

5.4 Display Mapping
Since the semantic domain and displays both form monoids, the

display mapping can be generated from a single map from a board

to a tree:

rockIcon :: Tree = TreeNode(Image(size ,size ,'rock.png '));

predIcon :: Tree = TreeNode(Image(size ,size ,'wolf.jpg '));

preyIcon :: Tree = TreeNode(Image(size ,size ,'sheep.jpg '));

emptyDisplay :: Tree = mapBoard(emptyBoard);

mapBoard(b :: Board) :: Tree =

l e t mapRow(row ::[Location ]) :: Tree =

HBox([ case l {

PredLoc → predIcon;

PreyLoc → preyIcon;

EmptyLoc → space;

Rock → rockIcon

} | l :: Location ← row ])

in VBox([ mapRow(b[y]) | y :: Int ← 0.. height ]);

Consider a 3-by-3 predator-prey world with a single rock at

position (2, 2). Given the following messages:

messages = [PreyAt (1,0),PredAt (1,0,1),PreyAt (1,1),PredAt (1,0,2)]

the filmstrip produced by filmstrip(messages) is shown in figure 9.

6 IMPLEMENTATION
ESL source code is translated to an instruction set that is executed on

a virtual machine written in Java. Graphics libraries are integrated

with ESL both in terms of the type system and the run-time in

order to support a range of different displays that can be used to

show the results of actor-based programs. Figure 10 shows example

filmstrips that have been produced by ESL applications.

Figure 10a shows a snapshot of an ESL filmstrip that simulates

a shop consisting of assistants, customers and criminals. The cus-

tomers wait for help while browsing and queue at tills to be served.

Figure 10b shows the event and semantic domains for the shop:

the customer, assistant and till ids are defined to be integers and

a shop state is Shop(o,a,b,h,t) where o are the customers outside

the shop, a are the assistants on the floor, b are the customers who

are browsing, h represents customers waiting for help and being

helped, and t are the tills that may have an assistant serving and

have a (possibly empty) queue of customers.

Figure 10c shows a snapshot of an ESL filmstrip that simulates

traffic flow at a junction. The junction state is shown in figure

10d where Road(left_l,right_l,left_r,j,right_r) contains the current

state of the left and right traffic lights (left_l and right_l) the traffic

flow queuing and leaving the left and right roads (left_r and right_r)

and the car passing the single-track mid-point of the junction j.

Figure 10e shows a snapshot of an ESL filmstrip that implements

the dining philosophers. The state is shown in figure 10f where

Dining(f,p) contains the fork identifiers f and the philosopher states

p where a philosopher state is Phil(i,l,r) where i is the identifier

of the philosopher and l and r are the left and right forks or Nothing

if the philosopher is not holding a fork.

In all cases it is possible to map the events defined in figures 10b,

10d and 10f to their respective semantic data domains. Furthermore,

it should be clear that the semantic domains form monoids based

on an empty value and a binary composition operator.

7 RELATEDWORK
The general notion of sense-making processes originated in the field

of intelligence analysis through the seminal work of Pirolli and Card

[32]. However, there is a growing amount of work that addresses

the problems of the more specialised form of sense-making, debug-
ging of actor and agent-based systems such as [39]. The latter for

example, exhibits many of the characterisation of the Pirolli-Card

sense-making process such as re-representation through multiple

complementary abstractions of the underlying multi-agent system

to identify new insights and actions.

Many of the implementation level concerns of sense-making and

debugging are described in [25]. The tool in [28] produces static

diagrams of agent communication topologies using a society tool.
They support off-line video-style replay facilities with forward and

backward video modes as a powerful sense-making aid, although

the structure of agents seems to be fixed.

The challenges and an approach to source-level agent-based

debugging is described in [22]. Several systems support run-time

instrumentation of actor-based systems, for example [36] and [23]

which monitors a run-time system for semantic properties. Our

work differs from all these approaches since we aim to understand a

system in terms of its solution-domain instead of the implementation-

domain.

The use of system traces to address the challenge of understand-

ing the behaviour of MAS is described by Búrdalo et al. in [6] where

a standard model of trace data and an architecture that supports

trace-processing is presented. The work in [6] does not describe
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(a) Shop Filmstrip

type Cid = Int ;
type Aid = Int ;
type Tid = Int ;
data ShopE = NotInShop(Cid)

| Browsing(Cid)
| Queueing(Cid ,Tid)
| SeekingHelp(Cid)
| GettingHelp(Cid ,Aid)
| OnFloor(Aid)
| AtTill(Aid ,Tid);

data Helping = Help(Cid ,Possibly[AId]);
data Possibly[T] = Just(T) | Nothing;
data Till = Till(Tid ,Possibly[Aid],[Cid]);
data ShopS = Shop([Cid],[Aid],[Cid],[Helping],[Till]);

(b) Shop Event and Semantic Domains

(c) Traffic Filmstrip

type Vid = Int ;
data TrafficLight = Left | Right;
data Colour = Red | Amber | Green;
data RoadE = QueueLeft(Vid)

| QueueRight(Vid)
| Advance(Vid)
| LeaveLeft(Vid)
| LeaveRight(Vid)
| Change(TrafficLight ,Color);

data Road = Road([Vid],[Vid]);
data RoadS = Road(Colour ,Colour ,Road ,Possibly[Vid],Road);

(d) Traffic Event and Semantic Domains

(e) Dining Philosophers Filmstrip

type Pid = Int ;
type Fid = Int ;
type Forks = [Fid];
data Side = Left | Right;
data Philosopher = Phil(Pid ,Possibly[Fid],Possibly[Fid]);
type Philosophers = [Philosopher]
data DinerE = Pickup(Philosopher ,Fid ,Side)

| Eat(Pid)
| DropFork(Philosopher ,Fid ,Side);

data DinerS = Dining(Forks ,Philosophers);

(f) Dining Philosopher Event and Semantic Domains

Figure 10: Filmstrip Examples

how to process the trace data and the pattern presented in this

paper could be incorporated into that work.

Other approaches to sense-making include the interrogation

of system traces and source-level debuggers. The visualization of

Java execution traces in terms of object diagrams and sequence

diagrams is proposed as a means for sense-making in [20]. Our

approach provides a structured framework for defining many types

of diagram including object and sequence. Queries are applied to

AgentSpeak execution histories [41] in order to determine whether

certain behaviours occurred. The ESL language supports similar

queries (described in [10]) which are complementary to the anima-

tions described in this paper.

Model-checking can be used to formally express system proper-

ties of actor-based systems, for example [19] uses a model-checker

called McErlang to check safety properties of Timed Rebeca that

are translated to Erlang. Whilst this approach can be very success-

ful for particular types of properties, we argue that the approach

described in this paper has wider application and is more scalable.

Process event logs can be used as a basis for analysis of complex

business applications. The event logs are similar to the histories

described in this paper. In some cases visualisation has been used to

compare different processes [5, 42], although there is no description

of a general pattern for constructing the visual output.

Filmstrips, first attributed to D’Souza and Wills [12] provide im-

portant visual support for examining histories. In their approach, a

filmstrip is a set of contiguous snapshots that describe how a system

state evolves through a specific scenario. Filmstrips have also been

applied in areas such as functional testing [7]. Efforts to incorporate

filmstrips, include the recent efforts by Gogolla et al. use filmstrip

models for automatic validation of model dynamics of applications

[18]. Gil and Kent, in 1995, proposed the use of filmstrips as an

important component for three dimensional software modelling in

an effort to move away from a topological graph metaphor [17].
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8 CONCLUSION
Actor-based systems exhibit non deterministic behaviour thatmakes

sense-making activities such as debugging challenging. Semanti-

cally based visualisation is a powerful tool in helping understand

such execution. We have described how filmstrips can be used to ex-

amine histories of executions and hence function as a sense making

tool. We have presented a generalisation of the necessary machin-

ery (event histories, domain-independent filmstrip representation

and the operations possible over the event histories) as an algebraic

pattern. The pattern has potential for use in environments where

agent based simulation histories are key output for analysis.

The pattern has been implemented in the open-source language

ESL that supports both actors and polymorphic functions, and

has been used to implement a number of actor-based applications

including predator-prey, shop and traffic simulations, and dining

philosophers.
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