
 information

Article

A Comparison of Reinforcement Learning Algorithms
in Fairness-Oriented OFDMA Schedulers

Ioan-Sorin Coms, a 1,*, Sijing Zhang 2, Mehmet Aydin 3, Pierre Kuonen 4, Ramona Trestian 5

and Gheorghit,ă Ghinea 1

1 Department of Computer Science, Brunel University London, Kingston Lane, London UB8 3PH, UK;
george.ghinea@brunel.ac.uk

2 School of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;
sijing.zhang@beds.ac.uk

3 Department of Computer Science and Creative Technologies, University of the West of England,
Bristol BS16 1QY, UK; mehmet.aydin@uwe.ac.uk

4 Department of Communications and Information Technology, HEIA-FR, CH-1700 Fribourg, Switzerland;
pierre.kuonen@hefr.ch

5 Faculty of Science and Technology, Middlesex University London, Hendon, London NW4 4BT, UK;
r.trestian@mdx.ac.uk

* Correspondence: ioan-sorin.comsa@brunel.ac.uk; Tel.: +44-1895-267422

Received: 29 August 2019; Accepted: 9 October 2019; Published: 14 October 2019
����������
�������

Abstract: Due to large-scale control problems in 5G access networks, the complexity of radio
resource management is expected to increase significantly. Reinforcement learning is seen as a
promising solution that can enable intelligent decision-making and reduce the complexity of different
optimization problems for radio resource management. The packet scheduler is an important
entity of radio resource management that allocates users’ data packets in the frequency domain
according to the implemented scheduling rule. In this context, by making use of reinforcement
learning, we could actually determine, in each state, the most suitable scheduling rule to be employed
that could improve the quality of service provisioning. In this paper, we propose a reinforcement
learning-based framework to solve scheduling problems with the main focus on meeting the user
fairness requirements. This framework makes use of feed forward neural networks to map momentary
states to proper parameterization decisions for the proportional fair scheduler. The simulation results
show that our reinforcement learning framework outperforms the conventional adaptive schedulers
oriented on fairness objective. Discussions are also raised to determine the best reinforcement learning
algorithm to be implemented in the proposed framework based on various scheduler settings.

Keywords: OFDMA; radio resource management; scheduling optimization; feed forward neural
networks; reinforcement learning

1. Introduction

In next-generation wireless access networks, the Quality of Service (QoS) provisioning is more
challenging due to much tighter application requirements and very high heterogeneity of use cases,
services, and functionalities [1]. Although some of the new enabling technologies (i.e., massive
Multiple-In, Multiple-Out (MIMO), mm-Wave communications) are envisioned to be incorporated
into the next generation wireless networks to cope with these challenges, the complexity of the
Radio Resource Management (RRM) will reach a substantial proportion [2]. To this extent, machine
learning-based hybrid solutions are seen as very promising tools that can enable intelligent and
flexible RRM decisions in order to meet the complexity requirements and to enhance the quality of
decision-making for a wide variety of networking conditions [3].

Information 2019, 10, 315; doi:10.3390/info10100315 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/10/10/315?type=check_update&version=1
http://dx.doi.org/10.3390/info10100315
http://www.mdpi.com/journal/information

Information 2019, 10, 315 2 of 28

A dynamic management of radio resources can involve more intelligent mobility policies, adaptive
energy-saving techniques and power allocation schemes, smarter packet scheduling, and resource
allocation algorithms [2]. At each Transmission Time Interval (TTI), the packet scheduler allocates, in
the frequency domain, the user’s packets in order to meet the stringent QoS requirements in terms of
bit rate, delay, and packet loss rate [4]. Among these targets, the fairness performance is an important
objective of QoS provisioning which is not explored properly in the literature. Therefore, delivering
the requested services to mobile users subject to given fairness constraints remains an important aspect
to be investigated [5].

1.1. Motivation

In the context of radio resource scheduling we can identify two types of fairness [5]: inter-class
and intra-class. The inter-class fairness is considered when certain prioritization levels among different
traffic classes must be achieved. The intra-class fairness is adopted among users belonging to the
same traffic class. The inter-class fairness can be measured by using different prioritization schemes
according to the stringency of QoS requirements for each application class [5]. In this paper, the focus
is on intra-class user fairness, which can be measured based on [6]: (a) the amount of resources to be
allocated per user at each TTI and (b) the throughput per user at each TTI. On one side, a random
allocation of radio resources can deteriorate the user throughput since the channel conditions are not
taken into account. On the other side, by using static channel-aware schedulers, some users can be
starved in receiving the requested data rates due to unfavorable channel conditions.

In the frequency domain, the packet scheduler prioritizes user’s packets based on the implemented
scheduling rule that takes the performance indicators per user as input and outputs the priority to
be scheduled at each TTI [5]. Despite various scheduling rules that target various QoS parameters,
one of the most popular channel-aware scheduling rules is the Proportional Fair (PF) that can get
acceptable intra-class fairness performance under limited wireless conditions [6]. However, given a
wider set of networking conditions (e.g., number of users, channel conditions, data rates, etc.), the
intra-class fairness performance can be seriously degraded since the PF scheduling rule cannot adapt
to the current network conditions [7]. To this extent, a parameterizable version of PF scheduling rule
entitled Generalized PF (GPF) could be adjusted according to the momentary networking conditions
to meet a certain intra-class fairness target for more generalized wireless conditions and scenarios [7,8].

1.2. Challenges and Solutions

An important challenge to be addressed is to adopt the performance measures that can evaluate
the user fairness based on a variety of networking conditions. When the user throughput is used to
determine the degree of intra-class fairness, the evaluation methodologies can be divided into two
categories [9]: quantitative and qualitative. In quantitative evaluations, the average throughput for
each active user is used within some formulas to compute given fairness indices. One well-known
example of quantitative evaluations is the Jain Fairness Index (JFI) [10]. Unfortunately, JFI metric
and other quantitative measures suffer from the lack of setting proper fairness constraints that could
be globally accepted under a wider range of networking conditions [4]. Qualitative measures aim
to overcome these drawbacks by considering each user throughput subject to a given constraint
based on the throughput distribution of all other active users [5]. For instance, the Next Generation
of Mobile Networks (NGMN) consortium is proposing a qualitative fairness criterion where a
system is considered fair only if (100− c)% of active users achieves at least c% of each normalized
user throughput, where c is varied from one TTI to another based on the changeable networking
conditions [11]. In the Cumulative Distribution Function (CDF) domain, each normalized user
throughput should respect the NGMN requirement value and the distribution of normalized user
throughput should lie on the right side of the NGMN requirement line [11]. The idea is to implement
adjustable schedulers able to react at each TTI and to respect the NGMN fairness requirement for more
general networking conditions.

Information 2019, 10, 315 3 of 28

A proper parameterization of GPF scheduling rule at each TTI is another important challenge to
be addressed in order to fulfill the NGMN fairness requirement for as long as possible. The best way
would be to map the scheduler states (e.g., traffic load, channel conditions, user throughput, device
models, etc.) to GPF parameterization decisions that meet the proposed fairness requirement. As part
of the machine-learning domain, Reinforcement Learning (RL) is seen as a promising solution that
can interact with the dynamic RRM environment and learn over time such mapping functions [12].
RL is used with great success to optimize different functionalities in various RRM domains such
as self-organizing networks [13], interference management [14], energy saving [15], modulation
and coding scheme selection [16], spectrum access and management [17], and homogeneous and
heterogeneous traffic scheduling [18–20].

In this paper, we propose a reinforcement learning-based scheduling solution that can learn the
GPF parameterization on each momentary state in order to maximize the fraction of time (in TTIs)
when the NGMN fairness requirement is met. The proposed RL framework interacts with the scheduler
environment aiming to improve over time its decision regarding the GPF parameterization scheme
based on a high number of iterations. Since the scheduler state space is multidimensional and
continuous, the fairness adaptation problem cannot be enumerated exhaustively, and then, the
optimum solution cannot be guaranteed. We use feed forward neural networks to approximate
the parameterization solutions on each state. As nonlinear functions, the weights of neural networks
are updated according to the implemented RL algorithm until some error-based convergence criterion
is met. The aim of this paper is to learn nonlinear functions through a variety of RL algorithms and
to propose the best option that can find the GPF parameters efficiently and accurately such that the
NGMN fairness provisioning is maximized.

2. Related Work

The performance of intra-class user fairness is evaluated in both orthogonal and non-orthogonal
5G radio access technologies [21–26]. In non-orthogonal systems [21], different versions of PF
scheduling rule are developed to study the impact in terms of user throughput, JFI fairness, and
system complexity. Scheduler utility maximization under temporal fairness constraints is studied in
Reference [22]. In Reference [23], the GPF parameterization is analyzed for non-orthogonal access
systems while taking into account the joint optimization of power allocation and JFI user fairness.
For schedulers based on orthogonal access, the JFI fairness performance for PF and Maximum
Throughput (MT) scheduling rules is analyzed in Reference [24] for MIMO systems. Since the Quality
of Experience (QoE) and, implicitly, the QoS provisioning are becoming the main differentiators
between network operators when quantifying the fairness performance in RRM [27], an important
aspect is played by the trade-off among other objectives such as system throughput maximization
and meeting the QoS requirements. A trade-off study between system throughput maximization and
fairness assurance is presented in Reference [25]. A two-level scheduler is proposed in Reference [26]
for orthogonal schemes to deal with a fair QoS provisioning. By summarising these systems, the
following conclusions can be drawn: (a) although non-orthogonal access schemes can achieve much
higher throughput in scheduling systems, the fairness aspect remains an open issue to be addressed;
(b) all these schemes do not provide any adaptation facilities, making the fairness provisioning
questionable over more general networking conditions.

In Orthogonal Frequency Division Multiple Access (OFDMA) systems, the GPF scheduling
rule can follow two parameterization schemes in order to adjust the scheduler to the networking
conditions such that certain quantitative or qualitative fairness requirements are met [4]:
(a) Simple-Parameterization or α-based GPF (SP-GPF) and (b) Double-Parameterization or (α, β)-based
GPF (DP-GPF). A predictive scheduler is proposed in Reference [28] for the SP-GPF scheduling scheme.
Basically, each user throughput is predicted based on some probability mass function and α parameter
is adjusted according to the predicted JFI value in the next TTI. Despite of good convergence to certain
JFI constraints, this proposal involves considerable complexity. When the NGMN fairness criterion is

Information 2019, 10, 315 4 of 28

considered, the scheduling scheme proposed in Reference [29] aims to adapt α parameter based on the
distance between the obtained CDF plot and the NGMN requirement. Although this scheme is less
expensive from the computational point of view, the adaptation is achieved at each 1000 TTI, which can
affect the fairness performance in fast-fading channel resource scheduling. Moreover, when adjusting
the SP-GPF scheduling rule, these adaptation schemes take into account only the user throughput,
without any consideration of other networking conditions such as traffic load and channel states.

Reinforcement learning framework is developed to learn the fairness parameters based on larger
and more complex networking conditions. For instance, in Reference [30], Q-learning is used to
parameterize SP-GPF in order to achieve different levels of throughput-fairness trade-off while
considering the aggregate cell throughput and JFI indices as part of momentary networking states.
In Reference [8], the RL framework also considers the traffic load and channel conditions as part of
the algorithm state space. Here, the SP-GPF parameterization is optimized through a variety of RL
algorithms to meet the NGMN fairness requirement. A more complex RL framework to deal with the
double parameterization of DP-GPF scheduling rule is proposed in Reference [7]. This framework
reports gains higher than 6% when compared to other SP-GPF-based RL schemes by monitoring the
number of TTIs when the NGMN fairness requirement is met. When measuring the NGMN fairness
performance, both approaches from References [7,8] use the Exponential Moving Filter (EMF) when
computing the average user throughput. The actor-critic RL frameworks deployed in Reference [5]
consider the Median Moving Filter (MMF) when computing the average user throughput used to
measure the NGMN fairness satisfaction. In this case, RL algorithms behave differently in meeting the
NGMN requirement when varying the filter length.

Reinforcement learning is also used to optimize the scheduling problems oriented on different
QoS requirements. In Reference [31], Actor-Critic Learning Automata (ACLA) RL algorithm is used
to learn the scheduling rule to be applied at each TTI in order to meet the delay, packet loss, and
bit rate requirements for different traffic classes. The same actor-critic algorithm is employed in
Reference [32] to optimize the scheduling problem for 360◦ mulsemedia traffic class (additional human
senses are incorporated alongside conventional 360◦ video content) that is characterized by very high
data rates and very low delay requirements. ACLA algorithm is not always the best option when
optimizing the delay and packet loss objectives for various parameter settings, as stated in Reference
[33]. Moreover, when learning the best scheduling rules oriented on data rate requirements to be
applied at each state, ACLA RL algorithm can get the best performance only for the constant bit rate
traffic while other variants of actor-critic RL schemes such as QV-learning behave the best for variable
bit rate traffic type [34]. In NGMN fairness problems, Continuous ACLA (CACLA) provides gains of
about 4% compared to ACLA by measuring the average time when the scheduler is unfair. To this
extent, it is difficult to set up one RL algorithm that can get the best performance in all scheduling
optimization problems. Thus, it is interesting to evaluate the performance of different RL algorithms
when optimizing the packet schedulers in terms of NGMN fairness objective.

2.1. Paper Contributions

This paper extends the work from Reference [5] and proposes a scheduling framework for
downlink OFDMA systems that meets the NGMN fairness requirement. The proposed framework
adjusts the parameterization scheme for SP-GPF and DP-GPF scheduling rules based on momentary
RRM states at each TTI. Consequently, the contributions of this paper are as follows: (a) RL-based
adaptive OFDMA scheduler learns the best fairness parameters to be used by the GPF scheduling
rules at each TTI in order to maximize the number of TTIs when the NGMN fairness requirement
is met; (b) we evaluate the performance of achieving the NGMN fairness requirement based on a
variety of parameter settings, network conditions, and RL algorithms; (c) each RL algorithm trains a
separate set of neural networks in order to get the best mapping functions that can provide proper
parameterization schemes for SP-GPF and DP-GPF on each momentary scheduler state; and (d) we test

Information 2019, 10, 315 5 of 28

and identify the best RL algorithms that can be employed to train the feed forward neural networks in
scheduling optimization problems oriented on NGMN intra-class fairness provisioning.

2.2. Paper Organization

The rest of this paper is organized as follows: Section 3 presents the optimization problem for
the considered OFDMA scheduling model. Section 4 explains the concept of NGMN fairness and
defines the controlling system. Section 5 deals with the proposed RL framework, introduces the
learning concepts and functions, and provides the details of each RL algorithm. Section 6 presents the
simulation results where, in the first part, a comparison of all RL algorithms is provided, while in the
second part, the performance of the best RL approaches among state-of-the-art dynamic solutions is
analyzed for different settings of MMF filter. Finally, Section 7 concludes the paper.

3. OFDMA Scheduling Model

The OFDMA downlink scheduling system considered in this paper separates the available
bandwidth in equal Resource Blocks (RBs), where an RB represents the minimum radio resource unit
that can be allocated at each TTI. Let B = {1, 2, ..., B} be the set of RBs for a given bandwidth where B
represents the total number of RBs. We consider the variable set of active users Ut = {u1, u2, ..., uUt}
that needs to be scheduled at each TTI t, where Ut represents the maximum number of active users at
TTI t. A user is characterized by homogeneous traffic type, and its state can be changed from active to
idle or vice-versa based on some time-based probability functions.

The role of the OFDMA scheduler is to allocate at each TTI each RB b ∈ B to some users u ∈ Ut in
order to meet the NGMN fairness requirement. As a result of the scheduling process, at TTI t + 1, each
user u ∈ Ut gets a new instantaneous throughput value Tu[t + 1], where (a) Tu[t + 1] = 0 if user u is
not allocated at TTI t and (b) Tu[t + 1] > 0 if user u ∈ Ut gets at least one RB with a premise that its
corresponding data queue is not empty and the allocated sub-channel is errorless. Due to very high
variations of radio channels, the instantaneous user throughput itself cannot be used by the NGMN
criterion to evaluate the intra-class fairness. Instead, the average user throughput can be used by
employing two types of filters:

(1) Exponential Moving Filter (EMF) that makes use of a forgetting factor ψ ∈ [0, 1] to compute
the average throughput Tu[t] for each user u ∈ Ut at each TTI t, as follows:

Tu[t] = (1− ψ) · Tu[t− 1] + ψ · Tu[t], (1)

(2) Median Moving Filter (MMF) that makes use of a time window W to compute the average
user throughput Tu[t] at each TTI t, as follows:

Tu[t] = 1/W ·∑W−1
x=0 Tu[t− x], (2)

where the window W is a parameterized function depending on the number of active users at TTI t,
the maximum number of users Umax that can be scheduled at each TTI, and windowing factor ρ ∈ R+:

W =
[
ρ ·Ut/Umax

]
. (3)

Both approaches can be used to measure the NGMN fairness requirement. When the forgetting
factor ψ takes lower values, the cell average throughput is higher but the impact of the selected fairness
parameters for SP-GPF/DP-GPF scheduling rule in the NGMN fairness criterion is more difficult
to evaluate. Higher values of ψ will involve a higher responsiveness when monitoring the NGMN
fairness criterion at the price of lower system throughput. When computing the MMF-based average
user throughput, lower windowing factors will decrease the throughput and improve the system
responsiveness to the applied RL actions, whereas higher values can involve higher throughput at the
price of much higher oscillations in the obtained results.

Information 2019, 10, 315 6 of 28

We consider the indicator T̂u ∈ {Tu, Tu} as the average throughput of user u ∈ Ut at each
TTI calculated based on EMF and MMF filters. Let us consider the normalized values of these T̂u

being calculated at each TTI as follows: T̃u = T̂u/ ∑u′ T̂u′ . We define the function of NGMN fairness
requirement as ΥR

u (T̃u) : R→ [0, 1]. For each user u ∈ Ut, this function is determined as follows:

ΥR
u (T̃u) =

{
T̃u, if T̃u ≤ 1,

1, if T̃u > 1.
(4)

If Υu : R → [0, 1] is the CDF of normalized throughput T̃u, then the proposed RL framework
should parameterize the GPF scheduling rule such that the vector Υ[t] = [Υ1(T̃1), ..., ΥU(T̃U)] respects
its requirement vector ΥR[t] = [ΥR

1 (T̃1), ..., ΥR
U(T̃U)] at each TTI t.

The level of user throughput achieved at each TTI depends on the scheduling process as well
as on the Channel Quality Indicator (CQI), a vector containing the sub-channel quality of each RB
reported periodically to the base station by each user. Based on the CQI value for each RB, a number
of bits Nbits

u,b [t] can be determined, defining actually the maximum amount of data that could be sent if
RB b ∈ B would be allocated to user u ∈ Ut. Then, the achievable rate for each user u ∈ Ut on each RB
b ∈ B is determined based on Reference [35]: δu,b[t] = Nbits

u,b [t]/0.001. If data is correctly transmitted
and decoded, the throughput Tu[t + 1] is a sum of achievable rates for those RBs allocated at TTI t.

In OFDMA resource scheduling and allocation, active users are competing to allocate each
RB b ∈ B each time. In this sense, the GPF scheduling rule defines a utility function that aims to
quantify the allocation of each RB b ∈ B to each user u ∈ Ut. Utility functions are various and
usually depend on the type of exploited scheduling rule oriented on achieving certain QoS targets [36].
For GPF scheduling rule, we define its utility function as Θp,u,b : R → R, and Θpt ,u,b = δ

βt−1
u,b /Tαt

u ,
where pt = (αt, βt) is the fairness parameterization scheme at TTI t. Under a given parameterization
p = pt ∈ P = {p1, p2, ..., pP}, the utility Θp,u,b takes as input the instantaneous indicators {Tu, δu,b}
and provides the priority of scheduling user u ∈ Ut on RB b ∈ B as output. The scheduling process
selects for each RB the user with the highest priority. At TTI t + 1, the NGMN fairness condition is
verified and the RL framework may decide to update the parameterization scheme in order to improve
the fairness performance. The proposed RL framework aims to parameterize the utility function Θp,u,b
at each TTI in order to maximize the number of TTIs when Υ respects its requirement vector ΥR.

We define the NGMN fairness optimization problem, where alongside the resource allocation
problem, the fairness parameterization scheme has to be decided at each TTI such that the NGMN
fairness criterion is met. The proposed optimization problem can be defined as follows:

max
x,y ∑

p∈P
∑

u∈Ut

∑
b∈B

xp,u[t] · yu,b[t] ·Θp,u,b(T̃u, δu,b) · δu,b[t], (5)

s.t.

∑u yu,b[t] ≤ 1, b = 1, ..., B, (5a)

∑p xp,u[t] = 1, u = u1, ..., uU , (5b)

∑u xp∗ ,u[t] = Ut, p∗ ∈ P , (5c)

∑u xp⊗ ,u[t] = 0, ∀p⊗ ∈ P\{p∗}, (5d)

xp,u[t] ∈ {0, 1}, ∀p ∈ P , ∀u ∈ Ut, (5e)

yu,b[t] ∈ {0, 1}, ∀u ∈ Ut, ∀b ∈ B, (5f)

Υu(T̃u) ≤ ΥR
u , u = u1, ..., uU , (5g)

Information 2019, 10, 315 7 of 28

where xp,u ∈ {0, 1} is the parameterization decision variable revealing that xp,u = 1 when the
parameters p ∈ P are selected to perform the scheduling for user u ∈ Ut and xp,u = 0 otherwise.
Parameter yu,b ∈ {0, 1} is the decision variable used to set yu,b = 1 if RB b ∈ B is allocated to user
u ∈ Ut and yu,b = 0 otherwise. The constraints of Equation (5a) indicate that, for each RB b ∈ B,
at most one user is allocated. The constraints of Equation (5b) reveal that only one parameterization
scheme is selected for each user at each TTI. The set of constraints in Equations (5c) and (5d) denote
that the same parameterization scheme p∗ ∈ P is selected for all users at each TTI. The constraints of
Equations (5e) and (5f) show the combinatorial characteristic of the proposed optimization problem.
Finally, the constraints of Equation (5g) show that, as a result of the scheduling process, the NGMN
fairness requirement must be respected.

The optimal solution in Equation (5) decides at each TTI the best decision variables {xp,u, yu,b} ∈
{0, 1} such that the NGMN fairness criterion is met. Such solutions are difficult to find in real practice
since the optimization problem is combinatorial and constrained to NGMN fairness requirements as
denoted by Equation (5g), that must be met at TTI t + 1 as a result of the scheduling process conducted
at TTI t. However, by using some relaxation methods, the constraints of Equation (5g) could be
integrated as part of the optimization problem [37]. Therefore, the entire optimization problem can be
divided in two suboptimal problems: (a) the first suboptimal problem aims to find the best fairness
parameter scheme for the scheduling process at TTI t such that the best outcome of the NGMN fairness
evaluation would be obtained at TTI t + 1; (b) the second suboptimal problem aims to solve the simple
OFDMA resource allocation problem by using the utility function with the fairness parameters decided
in (a). The solution to sub-problem (b) aims to select for each RB b ∈ B the user that maximizes the
following metric: u = argmaxu′ [Θp,u′ ,b(T̃u′ , δu′ ,b) · δu′ ,b[t]], where u′ ∈ Ut. For the first sub-problem, RL
framework is proposed as a solution to learn based on the networking states the fairness parameters to
be implemented at each TTI.

4. Intra-Class Fairness Controlling System

By setting constant values for the parameterization set p = (α, β) across the entire scheduling
period, some conventional scheduling rules can be obtained, such as (a) when (α = 0, β = 1), we get
the MT scheduling rule that aims to maximize the system throughput and to minimize the intra-class
user fairness; (b) PF scheduling rule is obtained when (α = 1, β = 1); and (c) if (α = 10, β = 1),
then the obtained scheduling rule is Maximum Fairness (MF). The SP-GPF scheduling rule adjusts
only αt at each TTI, and consequently, the parameterization set becomes pt = (αt, 1). As the name
suggests, the DP-GPF scheduling scheme considers both fairness parameters to be adapted over time
and pt = (αt, βt). In general, for a SP-GPF scheme, fairer schedulers can be obtained by increasing
αt. Adaptive DP-GPF scheduling scheme can converge much faster to certain throughput-fairness
trade-off objective and fairer schedulers can be obtained when increasing αt and decreasing βt.

4.1. Throughput-Fairness Trade-off Concept

The trade-off between system throughput and intra-class fairness in terms of JFI metric and
NGMN fairness criterion, respectively, is presented in Figure 1. We consider a downlink SP-GPF
scheduler for a static scenario with a total number of 60 users characterized by full-buffer traffic model
being equally distributed from the base station to the edge of the cell with the radius of 1 km [5].
Figure 1a presents the trade-off between mean user throughput and JFI fairness, in which (a) MT
scheduling rule (red points) maximizes the throughput while degrades seriously the JFI fairness; (b) PF
(blue points) gets a throughput-fairness trade-off applicable for certain networking conditions; and
(c) as expected, MF (light blue points) obtains very low throughput and very high JFI fairness levels.
However, this representation can provide a certain trade-off quantity without any precise intra-class
fairness requirement for general networking conditions.

Information 2019, 10, 315 8 of 28

Figure 1. Trade-off concept of system throughput and user fairness [5]: (a) quantitative evaluation;
(b) qualitative evaluation.

From the perspective of NGMN fairness requirement, a scheduler is considered: (1) unfair, if the
obtained CDF curve crosses the requirement line (oblique line in Figure 1b) on the left side; (2) fair if
the entire CDF curve lies on the right side of the requirement line. As seen from Figure 1b, none of the
conventional scheduling rules (MT, PF, and MF) can be a reliable option when the NGMN fairness is
measured since (a) the CDF curve for the MT scheduling rule crosses the NGMN requirement on the
left side, placing it as an unfair option; (b) PF is fair since the obtained CDF values are located on the
right side but too far from the NGMN requirement, which can degrade the throughput performance
when monitoring the quantitative evaluation; and (c) this over-fairness effect is even more pronounced
in the case of MF scheduling rule. By using the Q-learning algorithm to learn αt to be applied on
each state for this static scenario, the obtained meta-scheduler places its CDF curve (green color) very
close to the NGMN fairness requirement on the right side. When following the quantitative fairness
evaluation in Figure 1a, the Q-learning-based scheduler gains more than 1 Mbps and 4 Mbps when
compared to PF and MF scheduling rules, respectively, while still respecting the NGMN criterion.

4.2. Proposed System

The aim of the proposed system is to meet the NGMN fairness requirement under more
generalized networking conditions that could involve for example, variable traffic load, or different
user speeds with different direction models. In this sense, we need to define a region in the CDF plot
in which the obtained curve should lie at each TTI. We define this zone by considering the second
NGMN requirement (the dotted oblique line from Figure 1b) which is defined as follows:

ΥM
u (T̃u) =

{
ΥR

u (T̃u)− ζ, if T̃u ≤ 1 + ζ,

1, if T̃u > 1 + ζ,
(6)

where the definition domain for this new requirement function is ΥM
u : R→ [0, 1], ΥR

u is the original
fairness requirement, and ζ ∈ [0, 1] is a confidence factor. We define the zone between ΥM =

[ΥM
u1

, ΥM
u2

, ..., ΥM
uU
] and ΥR as the feasible region in the CDF plot where the scheduler should lie at each

TTI. Based on a priori simulations, parameter ζ must be carefully chosen in order to set a proper
trade-off among system throughput, JFI fairness, and the framework ability to localize the feasible
region for enough number of iterations. However, if the CDF curve is localized at the right side of
ΥM, the scheduler is over-fair. In this paper, we compare different RL algorithms by monitoring the
scheduling time when the scheduler is unfair, feasible, and over-fair.

At each TTI, the NGMN fairness achievement must be evaluated in order to grant the
parameterization scheme used in the previous TTI. However, for each user u ∈ Ut, the following

Information 2019, 10, 315 9 of 28

difference is calculated in the CDF domain if T̃u ≤ 1: du = ΥR
u (T̃u)−Υu(T̃u). If there is at least one user

with u ∈ Ut for which du < 0, then the scheduler is unfair. Otherwise, the scheduler is fair. In the latter
case, we determine the maximum difference value of dmax = maxu(du). If this maximum difference is
dmax ≤ ζ, then the scheduler is located in the feasible region. Otherwise, the over-fair state would be
declared. The purpose of the RL framework is to minimize the scheduling time when the scheduler is
unfair and to maximize the number of TTIs when the scheduler is located in the feasible region for
more general networking conditions.

The fairness parameters pt = (αt, βt) must be adapted at each TTI in order to shift the scheduler
in the feasible region and to keep this state as long as possible. According to Figure 1a, if the scheduler
is unfair, then αt should increase and βt should decrease in order to get the feasibility region. On the
other side, when the scheduler is over-fair, αt should decrease and βt should increase. These fairness
values are adapted at each TTI by our controlling framework in order to maximize the time when the
feasible requirement of NGMN fairness is met based on the following recurrence equations:

pt =

{
αt = αt−1 + ∆αt,

βt = βt−1 + ∆βt,
(7)

where {∆αt, ∆βt} ∈ [−1, 1] are the fairness steps that need to be set in each TTI in order to meet the
NGMN feasible region. When SP-GPF is optimized, only αt is adapted at each TTI since β = 1 for the
entire transmission. As shown in Figure 2, the fairness steps are decided by an intelligent controller at
each TTI. In general, the controller makes use of RL algorithm and neural network approximation to
map the scheduler momentary state s ∈ S to proper parameterization steps [∆αt, ∆βt]. The fairness
parameters are adapted based on Equation (7), and the scheduling process is conducted by following
the resource allocation problem: utility calculation, metrics calculation, resource allocation, and MCS
assignment for each allocated user. In the next TTI t + 1, the NGMN fairness evaluation is performed
to reinforce the controller such that its decisions could be improved.

Figure 2. Proposed System.

5. Learning Framework

The purpose of the learning framework is to solve the optimization problem from Equation (5)
by selecting at each TTI the fairness steps that can maximize the time when the NGMN fairness
requirement is respected. As seen in Figure 2, the controller works with the OFDMA scheduler
in iterations. At each TTI, the controller observes a state and takes an action. In the next TTI, the
performance of the action applied in the previous TTI is evaluated based on the NGMN fairness
criterion. A reward value is computed in this sense as a result of matching the obtained CDF plot to
the NGMN fairness requirements, ΥR and ΥM. This value is reinforced and the controller updates the

Information 2019, 10, 315 10 of 28

neural networks in order to improve its decision-making. This process is repeated for a consistent time
period until the given convergence criterion is met.

5.1. Scheduler-Controller Interaction

We define in this subsection the controller states, actions, and rewards for the scheduling
optimization problem that aims at meeting the NGMN fairness requirement at each TTI.

5.1.1. States

We define the continuous and multidimensional scheduler state space as S . At each TTI t, the
controller perceives a momentary state s[t] ∈ S divided in two sub-states s[t] = [sc[t], su[t]], where
(a) sc[t] ∈ Sc is the controllable sub-state that evolves according to the applied action at each TTI and
(b) su[t] ∈ Su is the uncontrollable scheduler state which cannot be predicted. The controllable state
is defined as: sc[t] = [αt−1, βt−1, T̂, d], where T̂ = [T̂u1 , T̂u2 , ..., T̂uU], and d is determined as follows:
(a) if the scheduler is unfair, then d = maxu′(du′), where u′ ∈ Ut are those users with the percentiles
located in the unfair region; (b) if the scheduler is fair, then the distance becomes d = minu′(du′), where
u′ are those users with the normalized throughput of T̃u′ ≤ 1 + ζ. By using the state element d, the
controller is aware of how far or close the scheduler is from the unfair region. The uncontrollable
state is su[t] = [cqi, Ut], where cqi = [cqiu1

, cqiu2
, ..., cqiuU

], representing the vector of CQI indicators
that depends on Ut and the number of RBs B. Since both vectors cqi and T̂ depend on the number of
active users Ut at each TTI t, the dimension of the scheduler state space is variable over time. Then,
we use methods from References [4] and [33] to compress T̂ and cqi, respectively, and get a constant
dimension of the scheduler state space. In the rest of the paper, we are referring to s[t] ∈ S as a
compressed state at TTI t.

5.1.2. Actions

The controller action at TTI t is defined by a[t] = [∆αt, ∆βt] ∈ A = {a1, a2, ..., aA} for DP-GPF
and a[t] = [∆αt] ∈ A when the parameterization of SP-GPF is considered. Most of the existing RL
algorithms (i.e., Q-learning [12], ACLA [38]) work with discrete action space representation and the
fairness steps [∆αt, ∆βt] or ∆αt need to be fixed and a priori determined. In this case, we need a set
of |A| neural networks, where each controller action a ∈ A is represented by one neural network.
At each TTI, the action representing certain fairness steps that corresponds to the neural network with
the highest output is selected to update [αt, βt] or αt and conduct the scheduling process. Some other
RL algorithms (i.e., Continuous ACLA [4]) require a continuous action space A. In this case, only one
neural network is used to take as input the momentary scheduler states s ∈ S and to provide the
continuous fairness steps [∆αt, ∆βt] or ∆αt as outputs.

5.1.3. Reward Functions

The reward value represents the expected goodness of applying action a[t] ∈ A in state s ∈ S [39].
For our purpose, the reward function is computed while being taken into account two aspects: (a) based
on the difference du of user percentiles, we determine if the system is unfair, feasible, or over-fair; (b)
if the scheduler is over-fair or unfair, then the reward should monitor if the applied fairness steps in
the previous state are appropriate options that can drive the system to the feasible regions in next
states. We further consider s[t + 1] = s′ ∈ S and the following notations: (a) s′c ∈ UF if the scheduler
is unfair; (b) s′c ∈ FS when the scheduler is feasible at TTI t + 1; and finally, (c) s′c ∈ OF when the
scheduler is over-fair. The proposed reward function is defined as r : S × A → R and calculated
as follows:

Information 2019, 10, 315 11 of 28

rt+1(s, a) =

ru(s, a), if s′c ∈ UF ,

1, if s′c ∈ FS ,

ro(s, a), if s′c ∈ OF ,

(8)

where the state of controllable elements can be calculated by giving the scheduling transition
function [33]: s′c = f (s, a). The reward functions {ru, ro} are calculated based on the chosen
parameterization model. Let us define {rs

u, rs
o} as the reward functions for the unfair and over-fair

regions, respectively, when the SP-GPF is considered. If the DP-GPF parameterization is preferred,
then we define the corresponding rewards as {rd

u, rd
o} for the unfair and over-fair regions, respectively.

When the unfair region is reached, the applied actions should be able to drive the scheduler back
to the feasible region. For the SP-GPF, this reward function can be computed as follows:

rs
u(s, a) =

{
∆αt, if ∆αt > 0,

−1, if ∆αt ≤ 0.
(9)

which aims that, when αt ≤ αt−1, the scheduler can move much deeper in the unfeasible region and
the afferent action must be punished. For the DP-GPF parameterization, the reward computation is
divided in two components: (a) as long as αt ≥ βt, parameter αt must be increased in order to get the
feasible region; (b) as long as αt < βt, the scheduler aims to increase the system throughput in the
detriment of JFI fairness and, consequently, the unfair region is kept. In this case, the reward function
should be monitored particularly for each fairness parameter, as proposed bellow:

rd
u(s, a) =

∆αt, if αt ≥ βt, ∆αt > 0,

−∆αt, if αt ≥ βt, ∆αt ≤ 0,

−1, if αt < βt, ∆αt ≤ 0, ∆βt ≥ 0,

−0.5 · (1 + |∆βt|), if αt < βt, ∆αt ≤ 0, ∆βt < 0,

−0.5 · (|∆αt|+ 1), if αt < βt, ∆αt > 0, ∆βt ≥ 0,

0.5 · (|∆αt|+ |∆βt|), if αt < βt, ∆αt > 0, ∆βt < 0.

(10)

When the scheduler reaches the over-fair state, the range of fairness parameters must be adapted
accordingly in order to reduce the level of JFI fairness and to increase the overall system throughput.
The proposed reward function for the SP-GPF scheduling rule is computed as follows:

rs
o(s, a) =

{
∆αt, if ∆αt < 0,

−1, if ∆αt ≥ 0.
(11)

which aims that parameter αt must be decreased in order to get the state status of s′c ∈ FS ; otherwise,
the applied fairness steps in the previous state must be punished by setting rs

o = −1. For the double
parameterization scheme, we define two cases: (a) when αt ≥ βt, it is more likely that the scheduler
would be predisposed to reach over-fairness regions in the future and, then, the best practice would
be to decrease αt and to increase βt; (b) when αt < βt, the system can converge a little bit faster to

Information 2019, 10, 315 12 of 28

the desired region by simply increasing the value of βt. The proposed reward function for DP-GPF
scheduling rule when the state is s′c ∈ OF becomes the following:

rd
o(s, a) =

−1, if αt ≥ βt, ∆αt ≥ 0, ∆βt ≤ 0,

−0.5 · (1 + |∆βt|), if αt ≥ βt, ∆αt ≥ 0, ∆βt > 0,

−0.5 · (|∆αt|+ 1), if αt ≥ βt, ∆αt < 0, ∆βt ≤ 0,

0.5 · (|∆αt|+ |∆βt|), if αt ≥ βt, ∆αt < 0, ∆βt > 0,

∆βt, if αt < βt, ∆βt > 0,

−∆βt, if αt < βt, ∆βt ≤ 0.

(12)

At the end of the learning stage, all RL algorithms should be able to maximize the number of
rewards (r = 1) and to minimize the amount of punishment rewards when r < 0.

5.2. Learning Functions

The RL framework aims to learn over time based on the tuple [s, a, r, s′] the best functions able to
map momentary scheduler states to fairness steps. Conceptually, these functions must be learnt based
on some policies π(a | s), where π is the probability of selecting action a[t] = a in state s[t] = s being
defined as follows [39]:

π(a | s) = P
[
a[t] = a|s[t] = s

]
. (13)

If we consider A = {a1, a2, ..., aA} as a discrete set of actions, then one of the most well-known
learning functions that can be developed while following policy π is the action-value function Qπ :
S ×A → R defined under its original form as follows [39]:

Qπ(s, a)stackrel(def)=Eπ

[
∑∞

t=0 γtRt+1|s[0] = s, a[0] = a
]
, (14)

where (a) (γtRt+1; t ≥ 0) is the accumulated reward value being averaged from state to state by the
discount factor γ ∈ [0, 1]; (b) s[0] is considered as random such that P(s[0] = s) > 0 holds for every
state s ∈ S ; and (c) P(a[0] = a) > 0 holds for all fairness steps a ∈ A. Once the learning stage is
completed, in each state s ∈ S , we get a vector of action values [Q(s, a1), Q(s, a2), ..., Q(s, a|A|)], where
the action with the highest function value is selected to conduct the scheduling process. However, the
actor-critic RL algorithms consider an additional state-value function Vπ : S → R that is used to learn
the value of the entire policy π on each state, defined as follows [39]:

Vπ(s)
(def)
= Eπ

[
∑∞

t=0 γtRt+1|s[0] = s
]
. (15)

The state-value function can be learnt to criticise the fairness decisions taken at each TTI based on
Q(s, a). The learning quality of actor-critic RL algorithms can be improved since the potentially good
actions are encouraged to be selected based on the state-value function Vπ .

Both action-value and state-value functions must be updated at each TTI as a result of the
interaction between the OFDMA scheduler and controller. To this extent, we deploy the transition
functions corresponding to Equations (14) and (15) as follows [33]:

Qπ(s, a) = r(s, a) + γ ·Qπ(s′, a′), (16a)

Vπ(s) = r(s, a) + γ ·Vπ(s′), (16b)

where s′ ∈ S is considered the actual state when the state-value and action-value functions can be
updated as a result of applying action a ∈ A in momentary state s ∈ S . These functions are learnt for
a consistent amount of TTIs until given the convergence criterion is respected.

Information 2019, 10, 315 13 of 28

The best practice is to obtain the optimal versions of state-value and action-value functions
when the learning process is finished. We define V∗ : S → R as an optimal state-value function
that represents the highest expected return when the process is started from state s[0] ∈ S and
V∗(s) = maxπVπ(s) [39]. In a similar way, Q∗ : S ×A → R is the optimal action-value function and
represents the highest expected return when the scheduling starts from s[0] ∈ S and the first applied
fairness parameters correspond to action a[0] ∈ A. Once the optimality condition is met, at each TTI,
we aim to select the action with the highest output as follows:

a∗ = argmax
a′∈A

[π(a′ | s)]. (17)

Consequently, the action-value function that follows the policy π(a′ | s) becomes Qπ(s′, a′) =
maxa′′∈AQ∗(s′, a′′) Then, Equations (16a) and (16b) can be rewritten as follows:

Q∗(s, a) = r(s, a) + γ ·maxa′′∈AQ∗(s′, a′′), (18a)

V∗(s) = r(s, a) + γ ·V∗(s′). (18b)

The optimal state-value function can be additionally determined as V∗(s′) = maxa′′∈AQ∗(s′, a′′).
The transition between states for the optimal state-value and action-value functions can keep the same
form as Equations (18a) and (18b), respectively, or alternatively, can be developed as shown bellow:

Q∗(s, a) = r(s, a) + γ ·V∗(s′), (19a)

V∗(s) = r(s, a) + γ ·maxa′′∈AQ∗(s′, a′′). (19b)

As already stated, the multidimensional representation of the scheduler state space makes the
use of look-up tables for Q(s, a) and V(s) an impossible task since the state-action pairs cannot
be enumerated exhaustively. Then, the optimal state-value and action-value functions can be only
approximated. In this sense, we use feed forward neural networks as function approximations in order
to learn the most appropriate fairness steps to be applied on each scheduler state.

5.3. Approximation of Learning Functions with Feed Forward Neural Networks

Let us define Q̄∗ : S × A → [−1, 1] as the approximation of optimal action-value function,
represented by the following nonlinear function:

Q̄∗(s, a) = ha(θa
t , ψ(s)), (20a)

where [ha1 , ha2 , ..., haA] are the feed forward neural networks used to approximate the action-value
function for each action a ∈ A. Additionally, ψ is the feature vector consisting the nonlinear
transformations of neural nodes and [θa1

t , θa2
t , ..., θ

aA
t] is the vector of weights that need to be updated

at each TTI. Based on Equation (20a), the action space is discrete, each action a ∈ A has a separate
neural network ha, and only one set of weights corresponding to θa

t is updated at TTI t if action
a ∈ {a1, a2, ..., aA} is applied at TTI t − 1. If the action space is continuous, then we use only one
neural network to approximate the best fairness steps to be applied on each momentary state s ∈ S .
According to the developed parameterization scheme, the approximation of optimal action-value
function is defined as follows: (a) for the SP-GPF optimization with the momentary action of
a[t] = ∆αt, we define the approximated action-value function as Q̄∗ : S → [−1, 1]; (b) for the
DP-GPF parameterization scheme with continuous a[t] = [∆αt, ∆βt], the approximated action-value
function becomes Q̄∗ : S → [−1, 1]2. Regardless of the type of parameterization, the nonlinear
representation for the approximated action-value function can be written as follows:

Q̄∗(s) = hq(θ
q
t , ψ(s)), (20b)

Information 2019, 10, 315 14 of 28

where hq is one action-value neural network for the continuous action space and θ
q
t is the set of weights

trained to provide the most appropriated actions a[t] = ∆αt or a[t] = [∆αt, ∆βt] on each state.
For actor-critic RL algorithms, the optimal state-value function can be approximated by defining

the nonlinear function V̄∗ : S → [−1, 1] represented by the following:

V̄∗(s) = hv(θv
t , ψ(s)), (20c)

where hv is the state-value neural network and θv
t is the set of weights that are trained to give the

value of certain policy. In general, both neural networks from Equations (20a) and (20c) are updated
at each TTI when the actor-critic RL schemes are performed. However, some actor-critic algorithms
may impose a critic condition to update only those neural networks corresponding to the potentially
good actions.

To summarize, function Q̄∗ is an approximation of optimal action-value function Q∗, while V̄∗

is the approximation of optimal state-value function V∗. Feed forward neural networks are used
to implement both functions Q̄∗ and V̄∗. The idea is to update the weights of neural networks in
the learning stage in order to get good suboptimal solutions of Q∗ and V∗. One way to obtain such
solutions is to monitor and minimize over the learning time the error between optimal values (given
by the target functions from Equations (18a), (18b), (19a) and/or (19b)) and the actual response of
neural networks given by Q̄∗ and V̄∗, respectively. By failing to minimize these errors, the decisions
of neural networks can be inadequate and, consequently, the applied fairness steps fail to localize
over time the feasible fairness region. The calculation of these errors differs from one RL algorithm to
another. Before detailing the types of RL algorithms used to perform the NGMN fairness optimization,
the following subsections present the insights of propagating the errors through the neural networks.

5.4. Training the Feed Forward Neural Networks

The neural networks consist of processing nodes arranged in layers. If we consider a total
number of L layers, then Nl is the number of nodes of layer l ∈ {1, 2, ..., L}. However, the best
set of parameters in {L, Nl}, l = 1, 2, ..., L must be a priori decided before launching the learning
stage. Additionally, as indicated in Equations (20a)–(20c), the neural networks make use of a weights
vector {θa1

t , θa2
t , ..., θ

aA
t , θv

t }, or {θq
t , θv

t } that are used to interconnect the adjacent layers one by one.
The number of weighs that must be tuned between layers l and l + 1 is (Nl + 1)× Nl+1. For the entire
neural network, there is a total number of ∑L−1

l=1 (Nl + 1)× Nl+1 weights that are updated each time.
The neural weights are updated at each TTI as a result of using certain fairness steps when

performing the NGMN fairness based scheduling problem. We consider the actual state s′ ∈ S when
the neural networks are updated based on the applied action a ∈ A in previous state s ∈ S . For a given
neural network (i.e., hv, hq, or ha), a target network value for the applied action a ∈ A in state s ∈ S is
determined based on the reward value r(s, a) received in state s′ ∈ S . The weights are updated based
on two processes: (1) forward propagation when the learnt network value is calculated by forwarding
through the neural network the previous and current states {s, s′} ∈ S ; (2) back propagation, where
the error between the learnt and target values is back-propagated through the neural network and the
weights are updated accordingly layer-by-layer.

5.4.1. Forward Propagation

Let us consider the matrix of weights Wl = {wc,d, c = 1, ..., Nl , d = 1, ..., Nl+1} used to interconnect
layers l and l + 1. The general representation for the nonlinear approximation of optimal state-value
function can be written as follows [40]:

V̄∗(s) = ψL(WT
L−1 · ... · ψl+1(W

T
l · ... · ψ2(WT

1 · s))), (21)

where ψl = [ψl,1, ψl,2, ..., ψl,Nl
] is the vector of activation functions used as nonlinear computations for

each node within each layer. A similar representation is used for the action-value functions when the

Information 2019, 10, 315 15 of 28

set of actions is discrete or continuous. In the case of RL algorithms with discrete action spaces, only
the action-value neural network Q̄∗(s, a) is updated as a result of applying action a ∈ A in state s ∈ S .

The set of weights {θv
t , θa

t } or {θv
t , θ

q
t } are updated based on the corresponding error values

that are reinforced on each TTI. For the state-value function, we define the error function as ev :
[−1, 1]2×|S|+1 → [−1, 1], which is calculated as follows [40]:

ev
t+1(θ

v
t , s, s′) = VT(s)− V̄∗(s), (22a)

where VT(s) is the target state-value function that can be calculated following Equations (18b) or (19b).
The forward propagation of the state-value neural network determines both values {V̄∗(s), V̄∗(s′)}
needed to calculate the error from Equation (22a). When the action space is discrete, we define the error
function for action a ∈ A as ea : [−1, 1]2×|S|+1 → [−1, 1] and the computation formula as presented
bellow [40]:

ea
t+1(θ

a
t , s, s′) = QT(s, a)− Q̄∗(s, a), (22b)

where the target action-value function QT(s, a) is determined based on Equations (18a) or (19a).
Basically, when the RL algorithms make use of discrete action spaces, only two neural networks are
updated at each TTI such as {hv, ha}, where a ∈ A is applied in the previous state s ∈ S . For the case
of continuous action space, the action-value error is defined as eq : [−1, 1]2×|S|+1 → [−1, 1]N , where
N = 1 for SP-GPF and N = 2 for DP-GPF. This error is determined based on the following formula:

eq
t+1(θ

q
t , s, s′) = QT(s)− Q̄∗(s), (22c)

where the target action-value QT(s) is determined based on a given policy π of selecting the fairness
steps in each scheduler state during the learning stage.

5.4.2. Backward Propagation

Once the momentary states {s, s′} ∈ S are propagated and the errors are computed, the
back-propagation procedure aims to calculate for each node the corresponding error and to update
the neural weights from layer-to-layer. If we define for the state-value neural network the vector of
errors ev

l = [ev
l,1, ev

l,2, ..., ev
l,Nl

] at the output of layer l ∈ {1, 2, ..., L}, then these errors are determined by
back-propagating from right to left all error vectors at the output of layer l. From layer l + 1 to layer l,
the vector of errors is back-propagated by using the following equation [40]:

ev
l = WT

l ×4
T(Ψ′l+1, ev

l+1), (23)

where Ψ′l+1 = [ψ′l+1,1, ψ′l+1,2, ..., ψ′l+1,Nl+1
] is the vector of derivative activation functions of layer

l + 1 and 4T(Ψ′l+1, ev
l+1) = [ψ′l+1,1 · e

v
l+1,1, ψ′l+1,2 · e

v
l+1,2, ..., ψ′l+1,Nl+1

· ev
l+1,Nl+1

]. Once the errors are
back-propagated from the output to the input layers by using Equation (23), the matrix of weights
between each adjacent layers can be updated. Individually, the weight wt+1

c,d that interconnects nodes
c ∈ {1, 2, ..., Nl} and d ∈ {1, 2, ..., Nl+1} is updated as follows [40]:

wt+1
c,d = wt

c,d + ηt+1 · sl,c · ψ′l+1,d · e
v
l+1,d, (24)

where ηt+1 is the learning rate at TTI t + 1 and sl,c is the value of the state element propagated to node
c ∈ {1, 2, ..., Nl} of layer l ∈ {1, 2, ..., L}. The error back-propagation for action-value neural networks
follows the same reasoning with the amendment that, when the action space is continuous, the initial
error eq

L is two-dimensional for the DP-GPF parameterization scheme.

5.5. Exploration Types

At the beginning of the learning stage, the weights {θv, θa1 , ..., θaA} or {θv, θq} are randomly
chosen in a certain interval. By only exploiting the neural networks to provide the fairness steps, some
actions could be starved in getting explored properly and the learning performance could be very poor.

Information 2019, 10, 315 16 of 28

Therefore, the learning policy may decide to ignore the neural networks for given time intervals and
to select random actions to be applied in the scheduling process. When the action space is discrete,
a random action that may not correspond to the neural network with the highest value can be selected
to perform the scheduling procedure. When the action space is continuous, random fairness steps
(different from those provided by the action-value neural network) can be used. This stage in the
learning phase when random actions are selected instead of using the values provided by the neural
networks is entitled improvement. On the other side, the evaluation steps aims to exploit what the
neural networks have learnt so far. In the learning stage, the trade-off between improvements and
evaluations is decided by certain distributions such as ε-greedy or Boltzmann [40]. When the action
space is discrete, the ε-greedy policy selects the action a ∈ A to be applied on state s ∈ S based on the
following probability [40]:

π(a | s) =

{
ε
(a)
t εt ≥ ε,

ha[θa
t , ψ(s)] εt < ε,

(25)

where ε
(a)
t is the random variable associated to action a ∈ A, ε ∈ [0, 1] is a parameter that decides

when the improvement or evaluation steps should take place and keeps the same value for all actions,
and εt ∈ [0, 1] is random variable provided each TTI. When ε is low enough, more improvements
are used to perform the fairness-based scheduling optimization problem. However, in both cases
of improvement and evaluation steps, the action a∗ ∈ A to be performed is determined based on
Equation (17). Following the same ε-greedy policy for RL framework with continuous actions spaces,
the action selection is determined based on the following:

a[t] =

{
εt = [ε1

t , ..., εN
t] εt ≥ ε,

Q̄∗(s) = [sL,1, ..., sL,N] εt < ε.
(26)

If ε is small, then an improvement step is performed and the action a takes a random real number
in the range of εt ∈ [−1, 1]N . Otherwise, the output of the neural network is exploited and a[t] = Q̄∗(s).
It is worth mentioning that, when N = 1, we consider the SP-GPF parameterization, whereas when
N = 2, the output of neural network is two-dimensional and sL,1 = ∆αt and sL,2 = ∆βt for DP-GPF
scheduling rule.

The Boltzmann distribution can be used only for discrete action spaces, and it takes into account
the response of neural networks in each momentary state. The actions with higher neural network
values should have higher chances to be selected on the detriment of other actions with lower values.
The potentially better fairness steps to be applied can be detected by following the formula [40]:

π(a | s) =
exp[ha(θa

t , ψ(s))/τ]

∑aA
a′=a1

exp[ha′(θa′
t , ψ(s))/τ]

, (27)

where τ is a temperature factor that decides how greedy the action selection is. When τ is low, the
neural network with the highest value is more likely to perform the scheduling procedure. When τ gets
very high values, then the selection is more random and all policies {π(a1 | s), π(a2 | s), ..., π(aA | s)}
will have nearly the same probability to be selected.

5.6. RL Algorithms

In this subsection, we present a set of RL algorithms used to update the feed forward neural
networks at each TTI. These algorithms are differentiated based on the calculation formulas that are
used to compute the errors and target values for state-value and action-value functions.

Q-Learning [12]: applicable for discrete action space and considers only the action-value neural
networks; the target action-value function QT(s, a) is calculated based on Equation (18a) and the error
to be back-propagated is calculated by using Equation (22b).

Information 2019, 10, 315 17 of 28

Double Q-Learning [41]: makes use of two sets of action-value neural networks (a total of 2A neural
networks): Q̄∗A(s, a), where a = {a1, a2, ..., aA}, and Q̄∗B(s, b), where b = {a1, a2, ..., aA}. The target
action-value functions for these sets of neural networks are determined as follows:

QT
A(s, a) = r(s, a) + γ · Q̄∗B(s

′, a∗), (28a)

QT
B(s, b) = r(s, a) + γ · Q̄∗A(s

′, b∗), (28b)

where a∗ = argmaxaQ̄∗A(s
′, a) and b∗ = argmaxbQ̄∗B(s

′, b). At each TTI, the policy of selecting the
action to be performed follows the following reasoning:

π(a | s) =

{
ε
(a)
t εt ≥ ε,

[Q̄∗A(s, a) + Q̄∗B(s, a)]/2 εt < ε.
(29)

Then, one of Q̄∗A or Q̄∗B is randomly updated by reinforcing the error calculated with Equation
(22b).

SARSA [42] is an on-policy RL algorithm dedicated for discrete action spaces that follows a given
policy π(s, a), and the target action-value functions are determined according to the action decided in
the current state s′ ∈ S as follows:

QT(s, a) = r(s, a) + γ · Q̄∗(s′, a∗), (30)

where a∗ ∈ A is determined based on Equation (17) and the error to be reinforced is similar to
Q-learning algorithm and follows the expression of Equation (22b).

QV-Learning [43] is an actor-critic RL algorithm that works with discrete action spaces and updates
both state-value and action-value neural networks. The target action-value and state-value functions
are determined based on Equations (19a) and (18b), respectively. The errors to back-propagate each
TTI follow the same form of Equations (22b) and (22a), respectively.

QV2-Learning [44] uses a discrete representation for the action space and keeps similar
computation formulas as QV-learning for the target functions and action-value error. The difference is
represented by the state-value error, which is determined as follows:

ev
t+1(θ

v
t , s, s′) = VT(s)− Q̄∗(s, a). (31)

QVMAX-Learning [44] considers the calculation of {ea, ev}, and QT(s, a) similar to QV-learning
(Equations (22b), (22a), and (19a), respectively) while the target state-value function is determined
based on Equation (19b).

QVMAX2-Learning [44] considers the target action-value function QT(s, a) similarly to
QV-learning (Equation (19a)), the target state-value function VT(s) is computed similar to QVMAX
(Equation (19b)), the action-value error ea is based on Equation (22b), and the state-value error ev is
similar to QV2-learning (Equation 31).

Actor-Critic Learning Automata (ACLA) [38] is an actor-critic algorithm that updates the action-value
neural network based on the state-value or critic error. The target state-value function is determined
based on Equation (18b) and the error for state-value function follows the equation from Equation (22a).
If the critic error ev

t+1 ≥ 0, then the action a ∈ A applied in state s ∈ S is a good option and the target
action-value should be maximized. Otherwise, the probability of selecting a ∈ A applied in state
s ∈ S must be decreased. Therefore, ACLA proposes the computation of target action-value function
as follows:

QT(s, a) =

{
1, if ev

t+1(θ
v
t , s, s′) ≥ 0,

−1, if ev
t+1(θ

v
t , s, s′) < 0,

(32)

Information 2019, 10, 315 18 of 28

where the action-value error is back-propagated by using the computation of Equation (22b).
Continuous ACLA (CACLA) [45] is a modified version of ACLA-learning used to deal with

continuous action spaces. For the RL algorithms that make use of discrete action spaces, pre-established
fairness steps are applied in each state where each configuration is characterized by a neural network
approximation. Compared to these approaches, CACLA uses only one neural network for the optimal
action-value approximation that provides the continuous fairness steps to parameterize SP-GPF
or DP-GPF scheduling rules. Similar to ACLA algorithm, the target state-value function and the
state-value error are calculated based on Equations (18b) and (22a), respectively. However, the target
action-value function is QT(s) = a[t], where a[t] is determined based on Equation (26) and the error is
back-propagated by using Equation (22c). We refer to CACLA-1 RL algorithm when we optimize the
SP-GPF and the action-value neural network learns only ∆αt to be applied at each TTI t. CACLA-2 is
used when the DP-GPF parameterization is considered, and a two-dimensional output is provided by
the neural network to represent the temporal [∆αt, ∆βt] fairness steps.

6. Simulation Results

Simulation results are obtained by using the RRM-Scheduler simulator [4], a C++ tool that inherits
the Long Term Evolution Simulator (LTE-Sim) [35] by implementing additional functions such as
advanced state-of-the-art OFDMA schedulers, RL algorithms used in different scheduling problems,
neural network approximation for RL decisions, and CQI compression schemes. To evaluate the
performance of the proposed framework under various RL algorithms, we use an infrastructure of 10
Intel(R) 4-Core(TM) machines with i7-2600 CPU at 3.40 GHz, 64 bits, 8 GB RAM, and 120 GB HDD
Western Digital storage. In the first step, the framework runs the learning stage under different RL
algorithms and various networking conditions to apply the most appropriate fairness steps on each
state such that the NGMN fairness requirement is met. Then, the obtained nonlinear functions for each
RL algorithm are compared based on NGMN evaluations that consider both EMF and MMF types of
filters. Then, the performance of the most promising RL-based nonlinear functions is compared to the
most relevant adaptive scheduling techniques from literature.

6.1. Parameter Settings

Both SP-GPF and DP-GPF scheduling rules are used when evaluating the NGMN fairness
performance. For the SP-GPF parameterization with discrete action space, the following set of actions
is considered: a[t] = ∆αt ∈ {±10−4;±10−3;±10−2;±5 · 10−2;±10−1; 0}. The RL algorithms used
to deal with this discrete action set are Q-Learning [12], DQ-Learning [41], SARSA [42], QV [43],
QV2 [44], QVMAX [44], QVMAX2 [44], and ACLA [38]. The number of neural networks to be trained
at each TTI by each of these RL algorithms is A = 11. For the continuous action space of SP-GPF,
CACLA-1 is used to learn the best approximation of ∆αt to be applied at each momentary state
s ∈ S . For DP-GPF parameterization, a proper setting of the discrete action set is very difficult to be
achieved due to the very high number of actions that would result from the combination of ∆α and ∆β

steps. Therefore, CACLA-2 is used to perform the DP-GPF parameterization for the continuous action
a[t] = [∆αt, ∆βt] ∈ A only.

The learning stage is performed on all RL algorithms with the same networking conditions
(i.e., channel conditions, number of active users, and same quota of data in the queues) for about 3000 s.
Due to poor convergence properties to the given error threshold during this interval, we aim to extend
the learning stage for Q-Learning, DQ-Learning, and SARSA algorithms with Experience Replay (ER)
stage [46] for about 1000 s. For the first 3000 s, the RL controller is fully connected with the scheduler
environment, while in the ER stage, the controller works in autonomous way. When connected with
the scheduler environment, random samples from the unfair, over-fair, and feasible zones are stored
by using the following format: (s[t] = s, a[t] = a, r[t + 1] = r, s[t + 1] = s′, a[t + 1] = a′). In the ER
stage, the stored samples (s, a, r, s′, a′) are randomly revisited in order to improve the generalizations
of feed forward neural networks only for the Q, DQ, and SARSA RL algorithms. In the exploitation

Information 2019, 10, 315 19 of 28

stage, the learnt nonlinear functions for each RL algorithm are evaluated for 200 s while using the same
networking conditions. We aim to evaluate the performance of these policies by monitoring the mean
percentage of TTIs when (a) the scheduler is unfair: p(s ∈ UF); (b) the scheduler is feasible: p(s ∈ FS);
and (c) the scheduler is over-fair: p(s ∈ OF). We compare the proposed RL algorithms with the most
relevant adaptive fairness-based schedulers from literature such as Maximizing Throughput (MT) [28]
and Adaptive Scheduling (AS) [29].

The performance evaluation of NGMN fairness is conducted by using both types of filters when
computing the average user rates. Studies regarding the setting of optimal forgetting factors ψ in
OFDMA scheduling exist. The work conducted in Reference [47] denotes a small improvement in user
throughput when setting values higher than ψ = 0.01. When measuring NGMN performance, lower
forgetting factors translate into significant oscillations in the obtained results, while higher values
can limit seriously the contribution brought by the applied fairness steps in each state. Although the
forgetting factor adaptation could represent an important future work to be addressed, in this paper,
we set the value of this parameter to ψ = 0.01. A very important parameter to set is the windowing
factor ρ used to determine the average user rates with median moving filter. Setting optimal range
of windowing factors is also crucial to other RL-based scheduling problems oriented on bit-rate or
packet-loss requirements [33,34]. We aim at finding the optimal range of windowing factors able to
provide the maximum number of TTIs when the scheduler is feasible by minimizing at the same time
the amount of TTIs when the scheduler is declared unfair. Based on a priori simulations, we set the
confidence factor to ζ = 0.05. Below this limit, the controller is not able to localize the feasible region in
the learning stage. Higher confidence intervals will involve a much fairer schedulers that can induce
lower system throughput.

6.1.1. Network and Controller Settings

We consider a system bandwidth of 20 MHz where the total number of disposable resource
blocks is equal to B = 100. A cluster with 7 cells with the radius of 1 km is considered in our
simulations, where the scheduling performance is evaluated in the central cell while other cells provide
the interference levels. The number of users is varied in the range of Ut = [15, 120] during both
learning and exploitation stages with the optimal number for maximum schedulable users Umax = 10.
In the learning stage, the number of active users is randomly chosen in the range of 15 to 120 at each
1000 TTIs. Each user considers a full buffer traffic model and moves with 120 km/h speed using
a random direction mobility model in both learning and exploitation stages in order to explore a
high variety of CQI distributions. Frequency Division Duplex (FDD) is considered while the CQI
reports are full-band and periodical. We are modeling the Radio Link Control (RLC) layer by using
the Transmission Mode (TM) retransmission model since we are focused more on the performance of
the applied fairness steps for the first transmission. The complete list of parameters for the network
settings is presented in Table 1.

Information 2019, 10, 315 20 of 28

Table 1. Simulation settings.

Parameter Value

System Bandwidth/Cell Radius 20 MHz (100 RBs)/1000 m
User Speed/Mobility Model 120 Kmph/Random Direction

Channel Model Jakes Model
Path Loss/Penetration Loss Macro Cell Model/10 dB

Interfered Cells/Shadowing STD 6/8 dB
Carrier Frequency/DL Power 2 GHz/43 dBm

Frame Structure FDD
CQI Reporting Mode Full-band, periodic at each TTI

Physical Uplink Control CHannel
(PUCCH) Model Errorless
Scheduler Types SP-GPF, DP-GPF, MT [28], AS [29], RL Policies

Traffic Type Full Buffer
No. of schedulable users Umax 10 each TTI

RLC Automatic Repeat reQuest (ARQ) Transmission Mode
Adaptive Modulation and Coding

(AMC) Levels QPSK, 16-QAM, 64-QAM
Target Block Error Rate (BLER) 10%

Number of Users (|Ut|) Variable: 15-120
RL Algorithms Q-Learning [12], Double-Q-Learning [41], SARSA [42],

QV [43], QV2 [44], QVMAX [44], QVMAX2 [44],
ACLA [38], CACLA-1 [45], CACLA-2 [45]

Exploration (learning and ER)/Exploitation 4000 s (1000 s ER)/200 s for Q, DQ, and SARSA
3000 s/200 s for actor-critic RL

Forgetting factor (ψ), windowing Factor (ρ) β = 0.01, ρ ∈ [2; 5.5]

The controller parameterization aims to find the optimal settings in terms of exploration
parameters ε or τ, discount factor γ, and learning rates {ηV , ηQ} for state-value and action-value
neural networks, respectively. The aim would be the minimization of action-value and state-value
errors for a given duration in the learning stage. Based on various tests conducted for a wide range of
parameter configurations for each RL algorithm, Table 2 synthesizes the best parameterization scheme
used for each RL algorithm.

Table 2. Controller parameters.

RL Learning Learning Discount Exploration
Algs. Rate (ηQ) Rate(ηV) Factor (γ) (ε, τ)

Q-Learning 10−3 − 0.99 ε-greedy ε = 10−4

DQ-Learning 10−3 − 0.99 ε-greedy ε = 10−4

SARSA 10−3 − 0.99 Boltzmann τ = 10
QV 10−2 10−4 0.99 Boltzmann τ = 1

QV2 10−3 10−5 0.95 Boltzmann τ = 1
QVMAX 10−2 10−4 0.99 Boltzmann τ = 10
QVMAX2 10−3 10−5 0.95 Boltzmann τ = 1

ACLA 10−2 10−2 0.99 ε-greedy ε = 5 · 10−1

CACLA-1 10−2 10−2 0.99 ε-greedy ε = 5 · 10−1

CACLA-2 10−2 10−2 0.99 ε-greedy ε = 5 · 10−1

6.2. Learning Stage

We run the learning stage for several configurations of neural networks in terms of the number
of layers L and the number of hidden nodes for each layer Nl , where l = 1, 2, ..., L. We keep the
same configuration for action-value and state-value neural networks. The activation functions for the
nodes of the input and output layers are linear. We consider tangent hyperbolic representation for the
nodes belonging to the hidden layer. When higher configurations in terms of L and Nl are used, the
learnt nonlinear functions are more flexible in deciding the fairness steps to be applied in each TTI,

Information 2019, 10, 315 21 of 28

the RL framework learns slower, and the system complexity is higher. When lower configurations
are used in the learning stage, the nonlinear functions are less flexible, the RL framework can learn
faster, and the system complexity is lower. Higher configurations of neural network may involve the
over-fitting of input samples since the learnt nonlinear functions can represent very well the scheduler
state space as well as other noisy data caused, for instance, by the random process of switching the
number of active users at each 1000 TTIs. Lower configurations involve under-fitting since the learnt
functions are inflexible and the overall state space is not very well generalized. According to the
over-fitting/under-fitting trade-off for a learning period of 3000s, the configuration of (L = 3, N2 = 60)
provides constant time-based errors for all RL algorithms.

6.3. Exploitation Stage

In the exploitation stage, we run the learnt nonlinear action-value functions in parallel by using
the same networking conditions for each RL algorithm. In total, 10 simulations are performed and the
mean and standard deviations are evaluated when monitoring the fraction of the time (in subframes
or TTIs) when the scheduler is unfair, feasible, and over-fair.

Figure 3 compares the RL algorithms when the EMF-based average user rates are used to
evaluate the NGMN fairness requirement in terms of mean percentage of TTIs when the scheduler
is unfair p(s ∈ UF), feasible p(s ∈ FS), and over-fair p(s ∈ OF). The static PF scheduling rule
(α = 1, β = 1) is over-fair for almost the entire scheduling session. The QV and QV2 algorithms
aim to ensure acceptable p(s ∈ UF) but provide higher amounts of p(s ∈ OF) in the detriment
of minimizing the time with feasible states. Q-learning, DQ-learning, and QVMAX decrease the
percentage of TTIs with over-fair states, but unfortunately, the percentage of TTIs with unfair states
is higher. QVMAX2 minimizes the drawbacks of previously mentioned RL schemes and improves
the scheduling time when the scheduler is feasible. SARSA and ACLA aim to provide a minimum
percentage of TTIs when the scheduler is over-fair, but a part of this gain is quantified on p(s ∈ UF).
However, CACLA-1 and CACLA-2 provide the best performance by maximizing p(s ∈ FS) and by
minimizing at the same time p(s ∈ UF) and p(s ∈ OF). The trained nonlinear functions with the
following RL algorithms are the best top five options in terms of p(s ∈ UF): CACLA-2, CACLA-1,
ACLA, QVMAX2, and QV2. Figures 4 and 5 present in more details the performances of CACLA-2,
CACLA-1, QV2, and PF scheduling schemes when considering the state elements (d and [αt, βt]) and
the quantitative/qualitative evaluations.

Figure 3. Next Generation of Mobile Networks (NGMN) fairness evaluation based on exponential
moving filter.

Information 2019, 10, 315 22 of 28

Figure 4. Learning performance: (a) max/min distance reported to NGMN requirement; (b) (αt, βt)
evolution.

Figure 5. Fairness and throughput trade-off: (a) quantitative evaluation; (b) qualitative evaluation.

Figure 4a presents a time sequence in the exploitation stage for distance d between the NGMN
fairness requirement and user throughput percentiles for the CACLA-2, CACLA-1, and QV2 algorithms.
QV2 shows much higher distances in the over-fair region of the CDF plot when compared to CACLA-1
and CACLA-2. The same time sequence for the fairness parameters is presented in Figure 4b.
When compared to CACLA-1, QV2 denotes higher αt values, placing it as the most over-fair option.
However, by adapting both fairness parameters (αt, βt), CACLA-2 is able to converge much faster to
the feasible zone when compared to SP-GPF scheduling rule parameterized by CACLA-1.

In Figure 5, we present the quantitative and qualitative evaluation for the same time sequence
presented in Figure 4, The qualitative plot depicted in Figure 5b indicates that both CACLA-1 and
CACLA-2 are feasible options while QV2 and PF scheduling schemes locate the CDF plot in the
over-fair region. The quantitative evaluation in Figure 5a shows that CACLA-2 increases the system
throughput when compared to CACLA-1 while still maintaining the feasible solution of NGMN
fairness. This is expected since CACLA-2 provides lower d when reported to NGMN requirement as
shown in Figure 4a. QV2 and PF scheduling schemes spread the quantitative trade-off points for a
wide range of JFI values, placing them as over-fair solutions.

A comparison of the top five RL algorithms for different settings of windowing factor ρ is provided
in Figure 6, where the average user throughput with the median moving filter is used to evaluate if
the NGMN fairness requirement is achieved. When the windowing factor takes low values such as
ρ = 2.0 (Figure 6a), ACLA and QVMAX2 obtain the lowest p(s ∈ UF) and all RL algorithms provide
nearly the same performance when the mean percentage of TTIs with feasible zones is measured
(p(s ∈ FS) ≥ 55%). By using the windowing factors in the range of ρ ∈ {2.25, 2.5, 3.0} (Figure 6b–d,

Information 2019, 10, 315 23 of 28

respectively), the considered RL algorithms provide nearly the same performance by increasing
gradually the amount of feasible TTIs from p(s ∈ FS) ≥ 70% to p(s ∈ FS) ≥ 80% as indicated in
Figure 6b,d. When increasing the windowing factor to ρ = 4.0 (Figure 6e), ACLA, CACLA-1, and
CACLA-2 are the best options by indicating the lowest percentage of TTIs when the scheduler is
unfair. In this case, QV2 achieves an amount of p(s ∈ FS) lower with about 10% when compared
with CACLA-2. In Figure 6f, ACLA, CACLA-1, and CACLA-2 are still the best options when ρ = 4.25
but a much lower p(s ∈ UF) when compared to QV2 or QVMAX2 is provided. However, when
ρ = 4.5 (Figure 6g), CACLA-2 and ACLA provide the best results when measuring p(s ∈ UF) and
p(s ∈ FS) while the mean percentage of TTIs with over-fair states is larger with about 10% when
compared to the performance obtained for ρ = 4.25. By increasing the windowing factor to ρ = 5.0
(Figure 6h), CACLA-2 becomes the best choice by minimizing the amount of TTIs with unfair states
and by increasing the percentage of feasible TTIs with more than 15% when compared to other RL
candidates. As seen from Figure 6i (ρ = 5.5), there is a consistent increase in the STandard Deviation
(STD) values for the obtained results, meaning that the proposed RL algorithms are not able to provide
high accuracy when approximating the best fairness steps to be applied in each state. CACLA-2 still
provides the highest amount of p(s ∈ FS), but the mean percentage of unfair TTIs is higher than
that of QV2 or CACLA-1. Based on Figure 6, the following conclusions can be drawn: (a) for low
windowing factors (i.e., ρ ∈ [2.0, 3.0]), QV2, QVMAX2, ACLA, CACLA-1, and CACLA-2 present
similar performance; (b) when the windowing factor is ρ ∈ (3.0, 4.25], ACLA, CACLA-1, and CACLA-2
ensure a minimum p(s ∈ UF) and are, thus, the best options; and (c) for higher windowing factors of
ρ > 4.25, CACLA-2 remains the most feasible solution.

Figure 7 shows the performance comparison of CACLA-2 and state-of-the-art fairness adaptive
schedulers MT and AS when the windowing factor is in the range of ρ ∈ [2.0, 5.5]. For this range,
CACLA-2 outperforms AS and MT in terms of p(s ∈ UF) and p(s ∈ FS). In particular, for
lower windowing factors such as ρ ∈ [2.0, 3.0], CACLA-2 provides a slightly better performance
than AS. When compared to MT adaptive scheme, maximum gains higher than 50% are obtained
when measuring p(s ∈ FS) and higher than 60% when computing p(s ∈ UF) (when ρ = 2.0).
For medium values of ρ ∈ [3.25, 4.25], the gains of CACLA-2 are constantly increasing to more than
11% of p(s ∈ UF) and to more than 14% of p(s ∈ FS) when matched against the AS algorithm.
When compared to MT for ρ = 4.25, gains higher than 25% are obtained when monitoring p(s ∈ UF),
while the gains corresponding to p(s ∈ FS) keep similar values when compared to other cases
of lower windowing factors. These gains become higher when the windowing factor belongs to
ρ ∈ {4.5, 5.0, 5.25}. However, when ρ ≥ 5.25, CACLA-2 still gets a higher percentage of feasible
TTIs but the amount of TTIs with unfair states is increasing when compared to the cases of lower
windowing factors. Also, we observe higher oscillations of p(s ∈ FS) and p(s ∈ UF) when ρ ≥ 5.25
since the impact of the fairness steps applied at each TTI cannot be sensed immediately when matching
the CDF plot to NGMN fairness requirement.

Information 2019, 10, 315 24 of 28

Figure 6. CACLA-2 vs. other RL Candidates: (a) ρ = 2.0; (b) ρ = 2.25; (c) ρ = 2.5; (d) ρ = 3.0;
(e) ρ = 4.0; (f) ρ = 4.25 (g) ρ = 4.5; (h) ρ = 5.0; and (i) ρ = 5.5.

Figure 7. System performance of the proposed CACLA-2 framework and state-of-the-art schedulers.

6.4. General Remarks

When training the feed forward neural networks with different RL algorithms to approximate in
each momentary state the best parameterization decision for SP-GPF or DP-GPF scheduling rules, the
following aspects must be considered: (a) the training data-set; (b) the compression of scheduler state
space; (c) the set-up of RL controller and neural network configuration; and (d) learning termination
condition. When solving the NGMN fairness based optimization problems with reinforcement learning,
the learning stage should be conducted through different regions of the scheduler state space (unfair,

Information 2019, 10, 315 25 of 28

feasible, and over-fair) in order to avoid the local-optima problems involved when updating the weights
of neural networks. Also, an additional dataset collected from the learning stage is needed to conduct
the ER stage for some RL algorithms such as Q-learning, DQ-learning, or SARSA. The scheduler state
space must be compressed in order to make the learning concept possible and to reduce the complexity
for the entire framework. Based on a priori simulations, a proper parameterization of RL controller
needs to be decided in order to reduce the learning time and to improve its quality. Time-based
adaptation of exploration parameters (ε, τ) is also possible by finding the most suitable functions
that can ensure the best learning performance and convergence. Multiple configurations of neural
networks must be a priori tested in order to get the best generalization of the input state space as a
result of the trade-off between over-fitting, under-fitting, and framework complexity. The termination
condition for the learning stage should monitor the evolution of the state-value and action-value errors
for a consistent number of iterations.

7. Conclusions

This paper proposes a reinforcement learning framework able to adapt the generalized
proportional scheduling rule in each state with the purpose of improving the fraction of scheduling
time (in TTIs) when the qualitative NGMN fairness requirement is met. We use feed forward neural
networks as nonlinear functions to approximate the best fairness parameters for the generalized
proportional fair scheduling rule to be applied at each TTI. Various reinforcement learning algorithms
are implemented to learn the best nonlinear functions that can ensure the highest outcome in terms
of NGMN fairness requirement. The purpose is to select the best RL algorithms that can provide the
highest outcome from the perspective of meeting the NGMN fairness criterion under various network
settings and circumstances.

The reinforcement learning algorithms employed in this paper can be divided based on the type
of action space and parameterization scheme. Some reinforcement learning algorithms (Q-learning,
Double-Q-Learning, SARSA, QV, QV2, QVMAX, QVMAX2, and ACLA) make use of discrete and
finite action space by using some fixed and a priori determined fairness steps to parameterize the
generalized proportional fair in each state. CACLA algorithm considers a continuous and infinite
action space, and the adaptation of generalized proportional fair is achieved with continuous fairness
steps. We develop and compare two types of parameterization schemes for generalized proportional
fair, such as simple and double parameterization. For the simple parameterization, the Q-learning,
Double-Q-Learning, SARSA, QV, QV2, QVMAX, QVMAX2, ACLA, and CACLA-1 algorithms are used
separately to train the neural networks in order to determine the best parameter αt to be applied at
each TTI. When the double parameterization scheme is used, the CACLA-2 algorithm is employed
to learn both fairness steps (αt, βt) in each state. On one side, the algorithms with continuous action
space can get a better generalization for the learnt neural networks due to higher flexibility when
selecting the fairness steps. On the other side, the double parameterization scheme can converge faster
to the fairness feasible region when compared to other simple parameterization algorithms.

The NGMN fairness criterion is measured at each TTI based on average user rates.
The performance of each reinforcement learning algorithm is analyzed by using two types of averaging
filters for the user throughput: exponential and median. When the exponential moving filter is used,
the QV2, QVMAX2, ACLA, CACLA-1, and CACLA-2 algorithms work better while minimizing the
time when the scheduler is declared unfair. When the median moving filter is employed, two main
conclusions can be drawn: (a) for lower window size, the obtained sets of neural networks learnt with
different RL algorithms provide comparable performance; (b) for larger window size, the feed forward
neural network learnt with CACLA-2 algorithm shows better performance in terms of average time
when the scheduler is feasible. When compared to adaptive schedulers from literature, CACLA-2
outperforms all candidates for the entire range of windowing factors.

Conflicts of Interest: Conceptualization, I.-S.C., S.Z. and M.A.; Data curation, I.-S.C. and R.T.; Formal analysis,
I.-S.C. and R.T.; Funding acquisition, P.K. and G.G.; Investigation, I.-S.C., P.K., R.T. and G.G.; Methodology, I.-S.C.,

Information 2019, 10, 315 26 of 28

M.A., R.T. and G.G.; Project administration, S.Z., M.A., P.K. and G.G.; Resources, P.K. and R.T.; Software, I.-S.C.
and P.K.; Supervision, S.Z., M.A., P.K. and G.G.; Validation, I.-S.C., S.Z., M.A., P.K. and R.T.; Visualization, I-S C,
M.A. and R.T.; Writing—original draft, I.-S.C.; Writing—review & editing, S.Z., M.A., P.K., R.T. and G.G.

Funding: This research was funded by the European Union Horizon 2020 Research and Innovation Programme
for the NEWTON project Grant Agreement number 688503.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Andrews, J.G.; Buzzi S.; Choi,W.; Hanly, S.V. Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J.
Sel. Areas Commun. 2014, 3, 1065–1082.

2. Calabrese, F.D.; Wang, L.; Ghadimi, E.; Peters, G.; Hanzo, L.; Soldati, P. Learning Radio Resource
Management in RANs: Framework, Opportunities, and Challenges. IEEE Commun. Mag. 2018, 56, 138–145.

3. Coms, a, I.-S.; Trestian, R. Information Science Reference. In Next-Generation Wireless Networks Meet Advanced
Machine Learning Applications; Coms, a, I.-S., Trestian, R., Eds.; IGI Global: Hershey, PA, USA, 2019.

4. Coms, a, I.-S. Sustainable Scheduling Policies for Radio Access Networks Based on LTE Technology. Ph.D.
Thesis, University of Bedfordshire, Luton, UK, November 2014.

5. Coms, a, I.-S.; Zhang, S.; Aydin, M.; Kuonen, P.; Trestian, R.; Ghinea, G. Enhancing User Fairness in OFDMA
Radio Access Networks Through Machine Learning. In Proceedings of the 2019 Wireless Days (WD);
Manchester, UK, 24–26 June 2019; pp. 1–8.

6. Capozzi, F.; Piro, G.; Grieco, L.A.; Boggia, G.; Camarda, P. Downlink Packet Scheduling in LTE Cellular
Networks: Key Design Issues and a Survey. IEEE Commun. Surv. Tutor. 2013, 15, 678–700.

7. Coms, a, I.-S.; Zhang, S.; Aydin, M.; Chen, J.; Kuonen, P.; Wagen, J.-F. Adaptive Proportional
Fair Parameterization Based LTE Scheduling Using Continuous Actor-Critic Reinforcement Learning.
In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Austin, TX, USA, 8–12
December 2014; pp. 4387–4393.

8. Coms, a, I.-S.; Aydin, M.; Zhang, S.; Kuonen, P. Wagen, J.-F.; Lu, Y. Scheduling Policies Based on Dynamic
Throughput and Fairness Tradeoff Control in LTE-A Networks. In Processings of the IEEE Local Computer
Networks (LCN), Edmonton, AB, Canada, 8–11 September 2014; pp. 418–421.

9. Shi, H.; Prasad, R.V.; Onur, E.; Niemegeers, I. Fairness in Wireless Networks: Issues, Measures and
Challenges. IEEE Commun. Surv. Tutor. 2014, 16, 5–24.

10. Jain, R.; Chiu, D.; Hawe, W. A Quantitative Measure of Fairness and Discrimination for Resource Allocation
in Shared Computer Systems; Technical Report TR-301; Eastern Research Laboratory, Digital Equipment
Corporation: Hudson, MA, USA, 1984; pp. 1–38.

11. Next Generation of Mobile Networks (NGMN), NGMN Radio Access Performance Evaluation Methodology.
In A White Paper by the NGMN Alliance. 2008. pp. 1–37. Available online: https://www.ngmn.
org/wp-content/uploads/NGMN_Radio_Access_Performance_Evaluation_Methodology.pdf (accessed on
12.10.2019).

12. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press Cambridge: Cambridge, MA,
USA, 2018.

13. Iacoboaiea, O.C.; Sayrac, B.; Jemaa, S.B.; Bianchi, P. SON Coordination in Heterogeneous Networks:
A Reinforcement Learning Framework. IEEE Trans. Wirel. Commun. 2016, 15, 5835–5847.

14. Simsek, M.; Bennis, M.; Guvenc, I. Learning based Frequency and Time-Domain Inter-Cell Interference
Coordination in HetNets. IEEE Trans. Veh. Technol. 2015, 64, 4589–4602.

15. De Domenico, A.; Ktenas, D. Reinforcement Learning for Interference-Aware Cell DTX in Heterogeneous
Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC),
Barcelona, Spain, 15–18 April 2018; pp. 1–6.

16. Zhang, L.; Tan, J.; Liang, Y.-C.; Feng, G.; Niyato, D. Deep Reinforcement Learning-Based Modulation
and Coding Scheme Selection in Cognitive Heterogeneous Networks. IEEE Trans. Wirel. Commun. 2019,
18, 3281–3294.

17. Naparstek, O.; Cohen, K. Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum
Access. IEEE Trans. Wirel. Commun. 2019, 18, 310–323.

https://www.ngmn.org/wp-content/uploads/NGMN_Radio_Access_Performance_Evaluation_Methodology.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_Radio_Access_Performance_Evaluation_Methodology.pdf

Information 2019, 10, 315 27 of 28

18. Coms, a, I.-S.; Aydin, M.; Zhang, S.; Kuonen, P.; Wagen, J.-F. Reinforcement Learning Based Radio
Resource Scheduling in LTE-Advanced. In Proceedings of the International Conference on Automation and
Computing, Huddersfield, UK, 10–10 September 2011; pp. 219–224.

19. Coms, a, I.-S.; Aydin, M.; Zhang S.; Kuonen, P.; Wagen, J.-F. Multi Objective Resource Scheduling in LTE
Networks Using Reinforcement Learning. Int. J. Distrib. Syst. Technol. 2012, 3, 39–57.

20. Coms, a, I.-S.; De-Domenico, A.; Ktenas, D. Method for Allocating Transmission Resources Using
Reinforcement Learning. U.S. Patent Application No. US 2019/0124667 A1, 25 April 2019.

21. He, J.; Tang, Z.; Tang, Z.; Chen, H.-H.; Ling, C. Design and Optimization of Scheduling and Non-Orthogonal
Multiple Access Algorithms with Imperfect Channel State Information. IEEE Trans. Veh. Technol. 2018,
67, 10800–10814.

22. Shahsavari, S.; Shirani, F.; Erkip, E. A General Framework for Temporal Fair User Scheduling in NOMA
Systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 408–422.

23. Kaneko, M.; Yamaura, H.; Kajita, Y.; Hayashi, K.; Sakai, H. Fairness-Aware Non-Orthogonal Multi-User
Access with Discrete Hierarchical Modulation for 5G Cellular Relay Networks. IEEE Access 2015,
3, 2922–2938.

24. Ahmed, F.; Dowhuszko, A.A.; Tirkkonen, O. Self-Organizing Algorithms for Interference Coordination in
Small Cell Networks. IEEE Trans. Veh. Technol. 2017, 66, 8333–8346.

25. Zabini, F.; Bazzi, A.; Masini, B.M.; Verdone, R. Optimal Performance Versus Fairness Tradeoff for Resource
Allocation in Wireless Systems. IEEE Trans. Wirel. Commun. 2017, 16, 2587–2600.

26. Ferdosian, N.; Othman, M.; Mohd Ali, B.; Lun, K.Y. Fair-QoS Broker Algorithm for Overload-State Downlink
Resource Scheduling in LTE Networks. IEEE Syst. J. 2018, 12, 3238–3249.

27. Trestian, R.; Coms, a, I.S.; Tuysuz, M.F. Seamless Multimedia Delivery Within a Heterogeneous Wireless
Networks Environment: Are We There Yet? IEEE Commun. Surv. Tutor. 2018, 20, 945–977.

28. Schwarz, S.; Mehlfuhrer, C.; Rupp, M. Throughput Maximizing Multiuser Scheduling with Adjustable
Fairness. In Proceedings of the IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9
June 2011; pp. 1–5.

29. Proebster, M.; Mueller, C.M.; Bakker, H. Adaptive Fairness Control for a Proportional Fair LTE Scheduler.
In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Instanbul, Turkey, 26–30 September 2010; pp. 1504–1509.

30. Coms, a, I.-S.; Aydin, M.; Zhang, S.; Kuonen, P.; Wagen, J.-F. A Novel Dynamic Q-learning-based Scheduler
Technique for LTE-advanced Technologies Using Neural Networks. In Proceedings of the IEEE Local
Computer Networks (LCN), Clearwater, FL, USA, 22–25 October 2012; pp. 332–335.

31. Coms, a I.-S.; De-Domenico, A.; Ktenas, D. QoS-Driven Scheduling in 5G Radio Access Networks—A
Reinforcement Learning Approach. In Proceedings of the IEEE Global Communications Conference
(GLOBECOM), Singapore, 4–8 December 2017; pp. 1–7.

32. Coms, a, I.-S.; Trestian, R.; Ghinea, G. 360◦ Mulsemedia Experience over Next Generation Wireless Networks—
A Reinforcement Learning Approach. In Proceedings of the Tenth International Conference on Quality of
Multimedia Experience (QoMEX), Cagliari, Italy, 29 May–1 June 2018; pp. 1–6.

33. Coms, a, I.-S.; Zhang, S.; Aydin, M.; Kuonen, P.; Yao, L.; Trestian, R.; Ghinea, G. Towards 5G: A Reinforcement
Learning-based Scheduling Solution for Data Traffic Management. IEEE Trans. Net. Serv. Manag. 2018,
15, 1661–1675.

34. Coms, a, I.-S.; Zhang, S.; Aydin, M.E.; Kuonen, P.; Trestian, R.; Ghinea, G. Guaranteeing User Rates with
Reinforcement Learning in 5G Radio Access Networks. In Next-Generation Wireless Networks Meet Advanced
Machine Learning Applications, Coms, a, I.S.; Trestian, R.; Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 163–198.

35. Piro, G.; Grieco, L.A.; Boggia, G.; Capozzi, F.; Camarda, P. Simulating LTE cellular systems: An Open-Source
Framework. IEEE Trans. Veh. Technol. 2011, 60, 498–513.

36. Song, G.; Li, Y. Utility-based Resource Allocation and Scheduling in OFDM-based Wireless Broadband
Networks. IEEE Commun. Mag. 2005, 43, 127–134.

37. Coms, a, I.-S.; Zhang, S.; Aydin, M.E.; Kuonen, P.; Trestian, R.; Ghinea, G. Machine Learning in Radio Resource
Scheduling. In Next-Generation Wireless Networks Meet Advanced Machine Learning Applications; Coms, a, I.S.,
Trestian, R., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 24–56.

Information 2019, 10, 315 28 of 28

38. Wiering, M.A.; van Hasselt, H.; Pietersma, A.-D.; Schomaker, L. Reinforcement Learning Algorithms for
Solving classification Problems. In Proceedings of the IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, Paris, France, 11–15 April 2011; pp. 1–6.

39. Szepesvari, C. Algorithms for Reinforcement Learning: Synthesis Lectures on Artificial Intelligence and Machine
Learning; Morgan: San Rafael, CA, USA, 2010.

40. Van Hasselt, H.P. Insights in Reinforcement Learning Formal Analysis and Empirical Evaluation of Temporal-
Difference Learning Algorithms. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands, 2011.

41. van Hasselt, H. Double Q-learning. Adv. Neural. Inf. Process. Syst. 2011, 23, 2613–2622.
42. Rummery, G. A.; Niranjan, M. Online Q-Learning Using Connectionist Systems; Technical Note; University of

Cambridge: Cambridge, UK, 1994.
43. Wiering, M. QV(lambda)-Learning: A new On-Policy Reinforcement Learning Algorithm. In Proceedings

of the 7th European Workshop on Reinforcement Learning, Utrecht, Netherlands, 20-21 October 2005;
pp. 17–18.

44. Wiering, M.A.; van Hasselt, H. The QV Family Compared to Other Reinforcement Learning Algorithms.
In Proceedings of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning,
Nashville, TN, USA, 30 March–2 April 2009; pp. 101–108.

45. van Hasselt, H.; Wiering, M.A. Using Continuous Action Spaces to Solve Discrete Problems. In Proceedings
of the International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 1149–1156.

46. Adam, S.; Busoniu, L.; Babuska, R. Experience Replay for Real-Time Reinforcement Learning Control.
IEEE Trans. Syst. Man Cybern. Part C 2012, 42, 201–212.

47. Proebster, M.C. Size-Based Scheduling to Improve the User Experience in Cellular Networks. Ph.D. Thesis,
Universität Stuttgart, Stuart, Baden-Württemberg, Germany, 2016.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Challenges and Solutions

	Related Work
	Paper Contributions
	Paper Organization

	OFDMA Scheduling Model
	Intra-Class Fairness Controlling System
	Throughput-Fairness Trade-off Concept
	Proposed System

	Learning Framework
	Scheduler-Controller Interaction
	States
	Actions
	Reward Functions

	Learning Functions
	Approximation of Learning Functions with Feed Forward Neural Networks
	Training the Feed Forward Neural Networks
	Forward Propagation
	Backward Propagation

	Exploration Types
	RL Algorithms

	Simulation Results
	Parameter Settings
	Network and Controller Settings

	Learning Stage
	Exploitation Stage
	General Remarks

	Conclusions
	References

