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Spare part demand forecasting for consumer goods 
using installed base information 

 
 

Abstract 

When stopping production, the manufacturer has to decide on the lot size in the final production 
run to cover spare part demand during the end-of-life phase. This decision can be supported by 
forecasting how much demand is expected in the future. Forecasts can be obtained from the 
installed base of the product, that is, the number of products still in use. This type of information 
is relatively easily available in case of B2B maintenance contracts, but it is more complicated in 
B2C spare parts supply management. Consumer decisions on whether or not to repair a 
malfunctioning product depend on the specific product and spare part. Further, consumers may 
differ in their decisions, for example, for products with fast innovations and changing social trends. 
Consumer behavior can be accounted for by using appropriate types of installed base, for example, 
lifetime installed base for essential spare parts of expensive products with long lifecycle, and 
warranty installed base for products with short lifecycle. This paper proposes a set of installed base 
concepts with associated simple empirical forecasting methodologies that can be applied in 
practice for B2C spare parts supply management during the end-of-life phase of consumer 
products. The methodology is illustrated by case studies for eighteen spare parts of six products 
from a consumer electronics company. The research hypotheses on which installed base type 
performs best under which conditions are supported in the majority of cases, and forecasts obtained 
from installed base are substantially better than simple black box forecasts. Incorporating past sales 
via installed base therefore supports final production decisions to cover future consumer demand 
for spare parts. 
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1 Introduction 
 
For owners and users, it is frustrating if a product or system can no longer be used because a 
small component failed and spare parts are not available. The timely availability of spare parts 
is therefore an important issue for users, especially for ageing products. Providing spare parts, 
however, is a challenge for Original Equipment Manufacturers (OEMs), as users can be spread 
over the world and demand is typically intermittent (Boylan and Syntetos, 2009). In many cases, 
demand is high for some parts and very small for other parts, resulting in surplus stocks. 
Forecasting the location and size of demand per spare part is therefore an important aspect in 
spare parts management. It plays a major role in determining the final production run that should 
guarantee parts availability for the remaining service life (see e.g. Van der Heijden and Iskandar, 
2013). It is also important to determine where and how much parts should be in stock, especially 
if the demand is decreasing.   
 Much research has been devoted to forecasting spare parts demand. Boylan and Syntetos 
(2009) give a recent overview of methods available so far. They propose a three phase approach, 
with pre-processing, processing and post-processing. In the pre-processing phase, one classifies 
the spare parts and selects the forecasting method, which is then applied per class in the second 
phase. Finally, the obtained forecasts are adjusted in the post-processing phase. The forecasting 
methods considered by Boylan and Syntetos (2009) are all based on demand data only, without 
taking any other information into account, similar to forecasting sales of new products. However, 
forecasting spare parts demand differs from forecasting demand for new products because spare 
parts are only needed to repair products which are still in use. Hence the location and number of 
products in use, also called the Installed Base (IB), is of primary interest as generator of spare 
parts demand. Several authors, including Jalil et al. (2011) and Dekker et al. (2013), have 
therefore proposed to use IB as the causal variable in forecasting spare parts demand. This kind 
of approach requires that companies keep track of their IB. That is possible in B2B cases, such 
as planes (Fokker Services), high-end computers (IBM), or advanced chip making machines 
(ASML), as users of these expensive systems have service contracts with manufacturers to 
guarantee timely parts supply. IB forecasting then consists of establishing the demand per 
product and forecasting the future development of IB. This two-step forecasting procedure does 
require some work in practice because products may have been adapted for customers and 
demand may also be influenced by local conditions (Jalil et al., 2011).  
  Although the aforementioned companies all apply IB forecasting, less advanced 
companies tend to rely only on parts demand data. In an empirical review of seven industrial 
companies, Wagner and Lindemann (2008) state: “However, most of the case study companies, 
regardless of their size, have only a ‘cloudy view’ of their current installed base.” In the consumer 
business area, the contacts between users and manufacturers are even less established and 
manufacturers usually have little information on their installed base. They are likely to know the 
number of sales per region, but they generally do not have data on how many products are still 
in use and when they will be phased out, which is the crucial information for predicting future 
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demand of spare parts. In this paper, we therefore introduce new part classifications and related 
installed base concepts that can be used in the pre-processing phase of forecasting consumer 
demand for spare parts and that require a relatively limited amount of management information. 
The proposed installed base concepts are lifetime IB, warranty IB, economic IB, and mixed IB. 
Use of lifetime IB assumes that all products stay in the market according to their expected 
lifetime, which holds mostly for expensive products. Warranty IB assumes that spare parts 
demand is limited to products for which a warranty still applies. Economic IB assumes that 
products are discarded when repairs are no longer economic, which is relevant especially for 
products that evolve quickly, for example, due to technological innovations. Finally, mixed IB 
is a refinement of economic IB that applies when consumers show heterogeneity in their 
evaluation of the costs and benefits of repair. These IB concepts will be elaborated and they will 
be empirically validated through a comparison with standard forecasting for a sample of real 
cases drawn from a major consumer products manufacturer. 
  The remainder of this paper is structured as follows. Section 2 discusses some 
background literature, presents the employed concepts of installed base, and formulates the main 
research hypotheses. The methodology is described in Section 3, and it is illustrated in detail for 
a specific spare part in Section 4. Section 5 presents the results for a set of eighteen spare parts 
related to six products. Section 6 concludes and summarizes operational implications. 
 
 
2 Installed base 

2.1 Background literature 

The main topic of this paper is spare part demand forecasting for consumer products over their 
end-of-life phase, using the concept of installed base (IB). We review some background literature 
on IB forecasting and on the end-of-life production decision, where it should be noted that the term 
‘installed base’ has not always been used in the past for describing this concept.  
  One of the first authors considering life-cycles of products and their related spare parts 
demand is Yamashina (1989). Assuming given product failure rates and given development of the 
installed base, he gives formulas for the demand for spare parts. Cohen et al. (1990) mention IB 
as a possible way of updating forecasts, without going into detail. Brockhoff and Rao (1993) use 
the IB concept to forecast new product adoption, and Auramo and Ala-Risku (2005) focus on how 
to obtain IB information in service logistics. Wagner and Lindemann (2008) perform an empirical 
study on spare parts management within seven engineering companies. They consider the IB 
concept as part of advanced forecasting and observe that companies have problems in keeping 
track of their IB and hence have to resort to forecasting based on parts demand only. Hong et al. 
(2008) consider forecasting of discontinued products and base their forecasts on the number of 
product sales (without mentioning the term IB.), the discard rate of the product, the failure rate of 
the service part, and the replacement probability of the failed part. They illustrate their approach 
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with data from an automobile factory. Jin and Liao (2009) use IB within a simulation context for 
inventory control to satisfy maintenance demand for spare parts and assume that the IB is known. 
Thereafter, Jalil et al. (2010) describe further experience with IBM and highlight the value of the 
IB concept. Dekker et al. (2013) review the use of this concept and its application at several 
companies. Minner (2011) combines reliability models with inventory control to arrive at better 
forecasts than those obtained by time series analysis, and he evaluates his approach by simulation 
data. Jin and Tian (2012) use the IB concept in optimizing inventory control policies in case of 
increasing demand. They illustrate their method by simulations and they do not consider 
forecasting. Bacchetti and Saccani (2012) provide an extensive overview of spare parts demand 
forecasting. They investigate the currently still existing gap between research and practice in spare 
parts management, and they also identify issues in obtaining the IB, using information from 
Wagner and Lindemann (2008). Finally, Chou et al. (2015) use the concept of IB to forecast final 
orders of automobile parts. Their first finding is that production costs are higher during EOL than 
during the mature phase because of loss of economies of scale and of economies of scope. Second, 
they find that the optimal warranty period during EOL depends on product failure rates.  
  All the aforementioned contributions to the IB literature assume that the IB information is 
readily available, or they mention that obtaining this information is an open issue. In practice, this 
assumption is reasonable only for advanced companies in a business-to-business environment. 
Further, most papers focus on modeling and determining optimal inventory control policies instead 
of doing empirical analysis with real data. Our contribution lies in proposing IB concepts that can 
be applied in practice for B2C supply management of spare parts by means of IB-based empirical 
demand forecasts during the end-of-life phase of consumer products. We therefore mention some 
contributions on the question of the final production run or final order size, which is also called 
the end-of-life decision, and we compare them to our research setting. Teunter and Fortuin (1998) 
optimize the final order size by minimizing costs for machines with known finite lifetime. They 
do not evaluate actual forecast accuracy, and their method requires information on production 
costs, holding costs, and penalty costs that are unavailable in our case. Tibben-Lemke and Amato 

(2001) predict demand for replacement parts from known failure ratios. Our products have 
unknown failure ratios, and demand also depends on heterogeneous consumer preferences. Kim 
and Park (2008) stress the importance of demand forecasting for the EOL phase to decide on final 
order sizes. Teunter et al. (2011) base their forecasts of sporadic demand on probabilities and 
potential benefits are illustrated by simulation, not with real data. Islam and Meade (2000) analyze 
factors inducing replacement rather than repair, including socio-economic factors and improved 
technology. Pourakbar et al. (2012, 2014) consider final order production decisions for consumer 
electronic products combined with the option for the manufacturer to replace instead of repair 
failing products during the warranty period, because prices of these products tend to erode fast 
while repair costs stay steady over time. We will consider a similar choice between repair and 
replacement for consumers after the warranty period has expired, and we will model this economic 
decision by means of the concept of economic installed base. Van der Heijden and Iskandar (2013) 
study last time buy decisions for products sold under warranty. Their focus on demand forecasting 
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at the start of the EOL phase is similar to ours, but they consider only simulated data and no real-
world spare part demand data. 
 
2.2 Installed base concepts 

Traditionally, demand forecasting is based on simple extrapolation of historical data. Such so-
called black-box methods are popular because of their simplicity, as the required information is 
limited to historical demand data. For time series of (weekly, monthly, quarterly, or yearly) data, 
these methods have become widespread in business since the work of Box and Jenkins (1976).  

  For spare parts demand, the past sales of products that contain the part are evidently also 
relevant. The installed base of the product is the number of sold products that is in use and can 
therefore lead to demand of its spare parts.  More precisely, we define the lifetime installed base 
as follows. For each time period (week, month, quarter, or year), the lifetime installed base 
increases with the quantity that leaves the warehouse and it declines with the number of returned 
products and with the number of products exceeding the expected lifetime. This definition is 
similar to what Wagner and Lindemann (2008) propose for spare parts business of engineering 
companies. Consumer (electronic) products are typically sold through independent retailers who 
do not share sales information with manufacturers. For the electronics company in our case study, 
it generally takes between two and three weeks after leaving the warehouse before the products 
are sold and enter the customer base. The sales and demand data are typically available on a weekly 
basis. Let S(t) be the product sales to customers in week t, let R(t) be the returns from customers 
of that week, and let L denote the average lifetime of the product, including second-hand usage. 
Then lifetime installed base (IBL) at the end of week t is defined as follows 

  IBL(t) = ∑ (𝑆𝑆(𝑖𝑖) −  𝑅𝑅(𝑖𝑖))𝑡𝑡
𝑖𝑖=𝑡𝑡−𝐿𝐿+1  

 

(where sales start in period 1 and S(i) and R(i) are defined as 0 for times i < 1). Inderfurth and 
Mukherjee (2008) discuss the typical shape of IBL, as shown in Figure 1. This shape is 
characterized by three phases in the product life cycle. First is the initial phase with growing sales 
per time unit, followed by a mature phase where sales gradually fall back.  The IBL curve in Figure 
1 therefore has an inflection point where the initial phase passes into the mature phase. Finally 
comes the end-of-life phase, where the product is no longer produced. Demand for spare parts may 
be expected to be relatively low in the initial phase, as most products are relatively young and will 
generally function well. This demand is expected to rise during the mature phase and possibly also 
during early parts of the EOL phase, whereas later on, demand will gradually diminish as more 
products reach their lifetime.  
 

<< Insert Figure 1 about here. >> 
 

  Black box methods forecast the demand of spare parts for the EOL phase by extrapolating 
demand that has been observed during the initial and mature phases. Such methods will tend to 
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over-estimate actual demand, because the increasing demand trends during the mature phase will 
eventually break down somewhere during the EOL phase, because customers discard the products. 
Pince and Dekker (2011) report similar problems for forecasts based on exponential smoothing.  
 Figure 1 shows also the typical shape of what we call the warranty installed base. 
Consumers may determine their demand decision for repair based on product warranty regulations. 
The warranty period is the maximum duration for which the company supports sustainability of 
the product at its own expense. After this period, customers have to carry costs of repair and 
logistics by themselves, which may lead them to purchase a new product instead of asking repair 
of the old one. For a warranty period of W periods, the warranty installed base (IBW) is  
 

  IBW(t) = ∑ (𝑆𝑆(𝑖𝑖) −  𝑅𝑅(𝑖𝑖))𝑡𝑡
𝑖𝑖=𝑡𝑡−𝑊𝑊+1 . 

 

(again with S(i) = R(i) = 0 for i < 1). As the warranty period is smaller than the average lifetime of 
most consumer products, IBW is identical to IBL during the first W sales periods and IBW becomes 
smaller than IBL afterwards. 

 After expiration of the warranty period, consumers may still generate demand for spare 
parts. Such behavior is rational if the remaining economic value of the product after repair exceeds 
the repair costs. This leads us to the concept of economic installed base (IBE), of which the 
defining ingredients are shown in Figure 2. We use the following notation. For period t, let c(t) be 
the repair costs, let vi(t) be the remaining economic value of the product bought in week i, and let 
the economic decision for repair be denoted by Ei(t) = 1 if vi(t) > c(t) and Ei(t) = 0 if vi(t) ≤ c(t). 
Then the economic installed base is defined as that part of the lifetime installed base for which 
repair is economical, that is,  
 

   IBE(t) = ∑ 𝐸𝐸𝑖𝑖(𝑡𝑡) × (𝑆𝑆(𝑖𝑖) −  𝑅𝑅(𝑖𝑖))𝑡𝑡
𝑖𝑖=𝑡𝑡−𝐿𝐿+1 . 

 

(with S(i) = R(i) = 0 for i < 1). To make this base operational, values of repair costs and remaining 
value are needed. In our case study, we will take the price of the spare part as the repair cost. We 
do not incorporate handling and labor costs, as these cost figures are not available and vary per 
customer location and per type of failure. This choice implies under-estimation of actual costs, and 
hence over-estimation of the actual economic installed base. In other applications, more accurate 
values of IBE can be obtained if more accurate cost information is available. The remaining value 
vi(t) is determined by assuming exponential value decay and final unity value at the end of average 
lifetime. Let pi (>1) be the price of the product sold in period i, then the decay rate ai for products 
sold in that period is obtained from the condition that 1 = pi×exp(ai×L), so that ai = -ln(pi)/L. The 
remaining value in period t is equal to vi(t) = pi×exp(ai×(t-i)).  

  Usually, the remaining economic value of the product exceeds repair costs through all of 
the warranty period, in which case IBE will take values that lie between IBW and IBL. After the 
warranty period has ended, it is still economical for some time to demand spare parts for repair. 
This interim period is longer for longer lifetimes and lower repair costs, as it is more valuable to 
replace cheap spare parts for prolonged product use than expensive spare parts for short use. Figure 
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2 sketches the remaining value v(t) of a product bought at time t = 0 for price p, where it remains 
economically attractive to pay the repair cost c(t) until time E. Our concept of economic installed 
base is based on a trade-off between value and costs made by consumers after expiration of the 
warranty period and somewhat resembles the trade-off between repair and replacement costs made 
by manufacturers during the warranty period as studied by Pourakbar et al. (2012). 

 

     << Insert Figure 2 about here. >> 
 

 In the construction of IBE, it is assumed that all consumers apply the same decay rate for 
remaining value of the product. Consumers may differ in their subjective evaluation of remaining 
value, for example, if they vary in their sensitivity for social trends and technological innovations. 
The decision on whether or not it is economical to repair the product will then depend on 
heterogeneous tastes. For this situation of mixed economic decisions, we define the mixed 
economic installed base (IBM) similar to IBE, but with varying perceived lifetimes so that value 
decay rates are heterogeneous across users. In our IBM applications, we follow Rogers (2003) and 
divide consumers in five adopter segments. Early adopters replace the product relatively fast, 
corresponding to a relatively short lifecycle. In line with Rogers (2003), the consumers are 
distributed as follows over the segments (in parenthesis is the lifecycle within each segment, as 
fraction of the overall average): 2.5% innovators (0.6), 13.5% early adopters (0.7), 34% early 
majority (1.0), 34% late majority (1.05), and 16% laggards (1.3). 

2.3 Research hypotheses  

As discussed in the literature review, the distinguishing feature of our research on installed base is 
that we consider its use in forecasting real-world demand for spare parts of consumer products 
during the end-of-life phase. Previous studies concerned either demand for end products instead 
of spare parts, or demand for spare parts arising from maintenance contracts with large clients and 
with operational information on the number of products in use, or simulation studies instead of 
real demand data. The main question in forecasting consumer spare part demand with installed 
base is which type of base gives the best information. The answer to this question is likely to 
depend on characteristics of the spare part and of the product. We formulate a set of research 
hypotheses, which are tested empirically in Sections 4 and 5. 

  The first hypothesis is that forecasts from installed base improve upon simple black box 
methods that only use historical demand data. This hypothesis is in line with the findings of Jin et 
al. (2006) and Pince and Dekker (2011) that the extrapolation of historical demand data may 
misrepresent actual spare part demand. The second hypothesis is that lifetime installed base 
provides the best forecasts for essential and expensive spare parts of non-trendy products with long 
lifetime, whereas warranty installed base is better for products with short life cycle. This 
hypothesis is motivated by the assumption that consumers make a rational decision when a product 
fails after its warranty has expired, by trading off the marginal benefits of repair against the repair 
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costs. Obviously, the benefits are larger for longer life times. The third hypothesis is that economic 
installed base works best for non-essential spare parts of products with long lifetime. This situation 
corresponds to a relatively long interim period in Figure 2, where users can decide to repair non-
essential parts if the remaining lifetime is long enough to compensate repair costs. If repair of the 
spare part is relatively expensive but not mandatory, then the product can simply still be used 
without repair. Finally, the fourth hypothesis is that mixed economic installed base works best if 
consumers differ much in their acceptance of new products. If, for example, many consumers 
switch to a new product before the old one has lost its function, then spare part demand for the old 
product falls below what is expected from a purely economic point of view. This kind of behavior 
can be observed in particular for innovative products if consumers derive higher utility from 
switching to a new product than from prolonged use of the old product. Pourakbar et al (2012) 
mention the example of cathode ray tubes (CRT) for TV’s and monitors, where CRT failures often 
lead users to switch to liquid crystal display (LCD), plasma, or organic light emitting diode 
(OLED) screens even if CRT repair would still be economically profitable when measured by 
expected gained lifetime.  
 
 
3 Forecast methodology 

3.1 Installed base and spare part demand 

As we wish to use installed base to predict real-life spare part demand for consumer products, we 
need a model that relates installed base to this demand in terms of the available empirical 
information. In order to set up our model, we first make a set of simplifying assumptions that will 
later be relaxed. We first assume that the product is sold only in period 0 and that the spare part is 
so cheap that it will be replaced when it breaks down. As time goes by, ageing of the product 
affects spare part demand in two ways, that is, wear-out and end-of-use. For a given customer, let 
T1 be the (continuously measured) time of failure of the product requiring a spare part for repair, 
and let T2 be the (continuously measured) time where this customer ends use of the product. Both 
times can be seen as random variables, with survival distributions Si(t) = Pi(Ti > t), i = 1,2. This 
customer will not demand the spare part if T1 ≥ T2. The demand probability pd(t) in period t, that 
runs in continuous time from t-1 to t, is equal to the joint probability P(t-1 < T1 < t,  T2 > t). Assume 
that the probability of break-down does not depend on the decision of continued product use, that 
is, P(t-1 < T1 < t | T2 > t) = P(t-1 < T1 < t), then the demand probability is  

pd(t) = P(t-1 < T1 < t,  T2 > t)  = P(t-1 < T1 < t) × P(T2 > t) = (S1(t-1) – S1(t))×S2(t).     (1) 

If the hazard rates for product failure and product disuse are both assumed to be constant over 
time, so that the product and spare part do not age in that sense, then the survival functions are 
exponential, that is,  Si(t) = exp(-ait) with ai > 0. Then (1) becomes 
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 pd(t) = (exp(-a1(t-1)) – exp(-a1t))×exp(-a2t) = (exp(a1) – 1)×exp(-(a1 + a2)t).       (2) 

This is the probability per customer of demand in period t. The expected total demand D(t) in 
period t, with remaining installed base IB(t), is equal to pd(t)×IB(t). Let b0 = ln(exp(a1) – 1) and b2 
= -(a1 + a2), then (2) gives 

 ln(D(t)) = b0 + ln(IB(t)) + b2×t.             (3) 

This relation has been obtained under various simplifying assumptions. The variable t in (3) 
denotes the age of the product, which depends on the moment it was bought. If we neglect product 
disuse, as this information is usually not available to the manufacturer, then installed base in period 
t is IB(t) = ∑ 𝑋𝑋(𝑡𝑡 − 𝑠𝑠)𝑡𝑡

𝑠𝑠=1 , where X(t – s) are the sales in the period s time units before the current 
one. Then expected demand in period t is  𝐷𝐷(𝑡𝑡) = ∑ 𝑝𝑝𝑑𝑑(𝑠𝑠)𝑋𝑋(𝑡𝑡 − 𝑠𝑠) =𝑡𝑡

𝑠𝑠=1  𝑒𝑒𝑏𝑏0 ∑ 𝑒𝑒𝑏𝑏2𝑠𝑠𝑋𝑋(𝑡𝑡 − 𝑠𝑠)𝑡𝑡
𝑠𝑠=1 . 

The past sales information captured by installed base is not rich enough to retrieve this expected 
demand, as it only stores the sum-total of past sales and not the specific distribution of sales over 
the various periods. An approximation of expected demand is obtained by replacing the age-
specific weights (𝑒𝑒𝑏𝑏2𝑠𝑠) by a single weighting factor evaluated at the weighted age of the products, 
that is, 𝑒𝑒𝑏𝑏2AGE(t) where AGE(t) is the mean age of the installed base in period t. This approximation 
gives D(t) = 𝑒𝑒𝑏𝑏0𝑒𝑒𝑏𝑏2AGE(t) ∑ 𝑋𝑋(𝑡𝑡 − 𝑠𝑠)𝑡𝑡

𝑠𝑠=1  = 𝑒𝑒𝑏𝑏0𝑒𝑒𝑏𝑏2AGE(t) IB(t), or 

 ln(D(t)) = b0 + ln(IB(t)) + b2× AGE(t).            (4) 

The coefficient 1 of logarithmic installed base follows from the assumptions that no products are 
disused and that every break-down of the product results in demand for repair. We replace this 
coefficient by an arbitrary one to account for the fact that some products will be disused and only 
a portion of all break-downs will be repaired, as the owner can also decide to buy a new product. 
The resulting relation is 

  ln(D(t)) = b0 + b1×ln(IB(t)) + b2×AGE(t).            (5) 

This model is, of course, still a simplification. For example, wear-out of spare parts and end-of-
use of products may not have constant hazard rates, which results in more complicated relations. 
Demand models involving more flexible functions of installed base and product age can be used, 
provided that sufficient data are available. We mention one example. In our case study, we do not 
know the original purchase date of products that lead to spare part demand, that is, we do not know 
the individual ages. If this information were available, model (5) could be replaced by the 
disaggregated model (3), with t the age of the product and IB(t) the installed base remaining from 
the sales t weeks before the current date. 
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3.2 Estimation and model selection 

Our modelling approach is rather pragmatic. The amount of relevant available demand data is 
generally limited, so we do not assume to know all details of the data generating process. For 
example, we do not know the purchase dates of products that lead to spare part demand. Our 
ambition is therefore limited to produce reasonably accurate forecasts and we choose for rather 
simple models that are evaluated in terms of their out-of-sample forecast performance. For our 
case study, we present forecast results that are all based on model (5). We also considered richer 
specifications, for example, including squared age, but the data available for estimation were in 
general not rich enough to improve forecasting power. Model (5) corresponds to a regression 
model if we add an unobserved error ε(t) term to account for the (unknown) approximation errors 
of actual demand behavior. Further, to allow for zero values of demand and installed base, the 
estimated model is specified as follows. 

 ln(1+D(t)) = b0 + b1×ln(1+IB(t)) + b2×AGE(t) + ε(t).          (6) 

For simplicity, the error term is assumed to follow an autoregressive (AR) process, because the 
unknown coefficients b0, b1, and b2 in (6) can then be estimated simply by ordinary least squares. 
We could allow for more general error correlation structures like ARMA, but this would 
complicate the estimation and forecasting tasks and could easily cause over-fitting because of the 
relatively short time interval that is available for estimation in most practical applications. As the 
actual weekly demand data of the case study spare parts are quite erratic, these demand data are 
smoothed by taking an exponentially weighted moving average (EWMA), and we have chosen for 
smoothing factor 0.06. We did not try to optimize the EWMA smoothing factor in order to prevent 
over-fitting and we simply used the value of 0.06 that has become popular since RiskMetrics of J. 
P. Morgan (1996). This means that the demand of the current week gets weight 0.06, whereas the 
combined weight of previous weeks is 0.94. We compared the results for this choice of left-hand 
variable in (6) with two other options: without weighting, that is, using actual weekly demand, or 
with eight-week averaging, as the company needs an average lead time of eight weeks to cover 
unanticipated demand. We found that models estimated from EWMA smoothed demand, denoted 
by Ds(t), work best in forecasting, not only to forecast EWMA demand, but also to forecast actual 
demand and its eight-week average.   
  Black box forecasts are obtained from pure AR models, that is, with b1 = b2 = 0 in (6), and 
with b0 estimated from the demand data of the initial and mature product phases. The error term is 
modeled as ε(t) = c1×ε(t-1) + … + cp×ε(t-p) + ω(t), where ω(t) is a white noise process and where 
the AR order p is determined by forward selection, that is, by increasing this order until the extra 
lag term becomes insignificant (at 5% level). These orders range from one to three for the spare 
parts of the case study, and the corresponding AR models provide in general a very good in-sample 
fit for demand during the initial and mature phases (R-squared values are typically larger than 
0.99). We tried out some extensions of this simple black box model by allowing for linear or 
quadratic time trends and by smoothing, but as these extensions did not improve the forecasts we 
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will only consider pure AR models.   
  The AR order of the black box model is also used in all installed base models. The 
corresponding model (6) is estimated for the initial and mature phase of the product for each of 
the four considered installed base types, that is, IBL, IBW, IBE, and IBM. The mean age is defined 
in terms of the corresponding installed base type, for example, using only products under warranty 
in the model with IBW. The installed base term ln(1+IB(t)) is removed from the model if it has a 
negative coefficient (b1 < 0), as it is a natural requirement that demand is positively related to 
installed base (for given mean age). Although the above analysis for fixed hazard rates suggests 
that the coefficient of the mean age term AGE(t) should be negative (b2 < 0), we do not impose 
this condition. The reason is that other hazard rates provide other age effects, and it is not illogical 
that spare part demand could increase for higher mean age of the installed base. Insignificant terms 
are not removed from the model, because insignificance may be due to a short estimation period 
for the model.    
  We summarize the steps needed to estimate the candidate models for spare part demand 
during the initial and mature product phases. First, determine the following characteristics of the 
product: average lifetime, sales for each period during the initial and mature phases. From the sales 
data, determine the numerical values of installed base types IBL, IBW, IBE, and IBM, for each 
period over the full life cycle (initial, mature, and EOL phases). This requires information on 
warranty period (for IBW), cost of the spare part (for IBE), and consumer segmentation (for IBM). 
For each installed base, compute the associated values of mean age for each period of the full life 
cycle. Next, determine the spare part demand data for each period during the initial and mature 
phases, and compute smoothed values by EWMA. For these smoothed demand data, estimate an 
AR model and select the AR order p. Estimate four types of installed base models, each with the 
same AR order, and keep the installed base variable only if it has a positive coefficient.  

3.3 Forecast evaluation 

The procedure described in the previous section provides a set of five models (AR, IBL, IBW, 
IBE, and IBM) that can be used to forecast spare part demand over the EOL phase. These forecasts 
use only information that is available at the end of the mature phase, as no EOL information is of 
course available at the start of EOL. Note, however, that the values of installed base and mean age 
are completely determined by product sales before EOL, so that these variables can be extrapolated 
perfectly for the full EOL phase. The forecasts are determined iteratively, as the AR structure 
implies that forecasts of previous periods affect the forecast for the current period. These forecasts 
for earlier periods during EOL are not replaced by realized demands, because this information is 
not available at the start of EOL. The forecasts concern the variable ln(1+Ds(t)), which are easily 
translated into forecasts of Ds(t). For periods where the installed base is zero, the forecasted 
demand is manually set equal to zero. This is a logical condition, provided that the installed base 
type is correct, because no spare parts can be demanded if the installed base has disappeared. The 
resulting forecasts are for smoothed demand, but in practice one is interested in actual demand. To 
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prevent erratic behavior, the model forecasts are not “unsmoothed’, and the forecasts of Ds(t) are 
directly compared with actual demand D(t).     
  The forecast performance of the various models can be compared graphically with actual 
demand by means of a joint time plot for the EOL phase. The forecasts are also numerically 
compared by means of the following three criteria. The summed error is the difference between 
the summed forecasts and the summed demand over the EOL phase. Suppose that actual demand 
data D(t) are available for periods t1 ≤ t ≤ t2 of the EOL phase, and let F(t) be the forecasts for 
these periods; then  

 SUM = ∑ (𝐹𝐹(𝑡𝑡) − 𝐷𝐷(𝑡𝑡))𝑡𝑡2
𝑡𝑡=𝑡𝑡1 / ∑ 𝐷𝐷(𝑡𝑡)𝑡𝑡2

𝑡𝑡=𝑡𝑡1 .           (7) 

Positive values correspond to over-estimation of the total need for spare parts during EOL, and 
negative values correspond to under-estimation. This is our main criterion to compare forecast 
methods, as it is measures the global quality of forecasting the spare part need during EOL. We 
also consider two other criteria that measure the local, week-by-week forecast quality, that is, the 
mean absolute prediction error (MAPE) and the root mean squared prediction error (RMSPE). 

 MAPE = 
∑ |𝐹𝐹(𝑡𝑡)−𝐷𝐷(𝑡𝑡)|𝑡𝑡2
𝑡𝑡=𝑡𝑡1
∑ 𝐷𝐷(𝑡𝑡)𝑡𝑡2
𝑡𝑡=𝑡𝑡1

  ,  RMSPE = 
� 1
𝑡𝑡2−𝑡𝑡1+1

∑ (𝐹𝐹(𝑡𝑡)−𝐷𝐷(𝑡𝑡))2𝑡𝑡2
𝑡𝑡=𝑡𝑡1

1
𝑡𝑡2−𝑡𝑡1+1

∑ 𝐷𝐷(𝑡𝑡)𝑡𝑡2
𝑡𝑡=𝑡𝑡1

 = 
�∑ (𝐹𝐹(𝑡𝑡)−𝐷𝐷(𝑡𝑡))2𝑡𝑡2

𝑡𝑡=𝑡𝑡1

∑ 𝐷𝐷(𝑡𝑡)/�𝑡𝑡2−𝑡𝑡1+1
𝑡𝑡2
𝑡𝑡=𝑡𝑡1

 .    (8) 

 

4 Illustrative case: compressor of refrigerator 
 
4.1 Product and demand characteristics 

The spare parts in our case study are provided by the Western European warehouse of Samsung 
Electronics. Refrigerators are one of their products with a relatively stable sales pattern. In this 
section, we analyze the demand for the compressor of a specific type of refrigerator, which we call 
type 1 to distinguish it from another refrigerator type 2 that is studied in the next section. The 
compressor is indispensable, as the refrigerator does not function if the compressor is out of order. 
Compressors are very reliable, and malfunctioning is mainly caused by extreme operating 
conditions. The compressor is somewhat expensive, as it costs about 100 euro, which is about 18.3 
percent of the price of around 550 euro of the refrigerator. The warranty period is 2 years, and the 
average lifetime of refrigerators is 13 years according to the National Association of Home 
Builders (2007), which is relatively long for consumer electronics products.  

 In Section 2.3, we formulated a set of research hypotheses for the four installed base types. 
Consumers see refrigerators as a necessary product without much distinguishing characteristics, 
apart from size, price, and reliability.  We therefore do not expect that consumers differ much in 
their subjective evaluation of remaining value of the refrigerator, so that a mixed economic 
installed base does not seem useful. The interim period for economic installed base is obtained 
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from the formula in Section 2.2 for the (yearly) decay rate, a = -ln(p)/L = -ln(550)/13 = -0.485. 
The remaining value is 18.3 percent when 0.183 = exp(-0.485×y), that is, after y = 3.5 years. The 
interim period of Figure 2, starting after the warranty period of 2 years, is therefore only 1.5 years. 
This is rather short for products with an average replacement cycle of 13 years, so that we do not 
expect large differences between economic and warranty installed base during initial periods. As 
refrigerators are such stable products, we expect that many consumers are willing to replace the 
compressor at their own cost for the benefit of considerable extra lifetime of the refrigerator. Our 
hypothesis is therefore that IBL will provide the best forecasts, better than black box (AR) and 
alternative installed base types (IBW, IBE, and IBM).  
 

     << Insert Figure 3 about here. >> 
 

Time plots of the various installed base types are shown in Figure 3. All installed base types are 
very similar in the initial phase, but start to get differentiated in the mature phase. The sales data 
run from week 12 in 2008, when sales of this refrigerator started, to week 29 of 2013, when sales 
ended. Weekly replacement data for the compressor are available from week 12 in 2008 to week 
13 of 2014. Total sales of the refrigerator are more than half a million, and the total replacement 
demand for compressors is 5,678, of which 247 occur in the observed EOL phase. The six years 
of observations, with 279 weekly sales and 315 weekly demand data, cover less than half of the 
lifecycle of the product, and the observed EOL phase is only 36 weeks. The forecasting task is to 
predict demand for these 36 weeks, and there is a relatively long estimation period of 279 weeks 
for the initial and mature periods. As the case study has been conducted in April 2014, we are not 
able to evaluate forecasts beyond week 13 of 2014.  
 

     << Insert Figure 4 about here. >> 
 

  The top left diagram in Figure 4 shows a time plot of weekly demand during 315 weeks, 
as well as its EWMA smoothed version. The other diagrams show scatter plots, with EWMA 
smoothed demand on the vertical axis and installed base (IBL, IBW, and IBE) on the horizontal 
axis. The task is to determine a relation between installed base and demand from data for the initial 
and mature phases, and to use this relation to forecast demand during EOL. The scatter diagrams 
indicate that this is not an easy task, as this relation changes among the various phases of the 
product. If, for example, one would fit a straight line in the IBW scatter diagram for the initial and 
mature phases, then this would systematically over-estimate actual demand during the EOL phase. 
It seems very difficult to make a choice among alternative installed base types solely from the 
statistical data information in the initial and mature phases. In the foregoing, we used economic 
arguments on consumer behavior to motivate the choice for IBL. 

4.2  Forecast results 

The obtained black box model is the following AR(2) model: ln(1+Ds(t)) = 3.30 + ε(t), with ε(t) = 
1.13×ε(t-1) – 0.14×ε(t-2) + ω(t). This model provides a very good fit for the smoothed demand 
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data, with R2 = 0.997. Each of the four installed base models has a negative coefficient for installed 
base, so that this variable is removed. The reduced models contain mean age and AR(2) error 
terms. The mean age variable has an insignificant negative coefficient in all cases, with the 
following (one-sided) p-values: 0.09 for IBL, 0.44 for IBW, 0.47 for IBE, and 0.40 for IBM. Even 
though the effects are weak, we try to exploit this installed base information in forecasting.  

 

     << Insert Figure 5 about here. >> 
 

  Figure 5 shows time plots for the observed EOL phase of actual demand and its EWMA 
smoothed version (solid lines), and the five alternative forecasts (dotted lines). IBL is clearly doing 
best and is rather successful in tracking the EWMA series that was used to estimate the model. 
The real interest lies in forecasting actual demand over the EOL phase, and IBL is also the best 
method in this respect. The models for IBW, IBE, and IBM provide forecasts that are nearly 
identical to that of the black box model, which is explained by the lack of significance of mean 
age in these models. The actual total demand over the observed EOL phase is 247, and the 
predicted totals are as follows: 551 (AR), 404 (IBL), 424 (IBW), 552 (IBE), and 545 (IBM). The 
relative total error, defined by SUM in (6), is 0.64 (IBL), 0.72 (IBW), 1.21 (IBM), 1.23 (IBE), and 
1.23 (AR). IBL provides the best forecasts also in this respect, with IBW as second-best. This 
ranking is confirmed by the criteria MAPE (0.77 for IBL, 1.05 for IBW, 1.21 for IBE, 1.30 for 
IBM, 1.33 for AR) and RMSPE (0.87 for IBL, 1.21 for IBW, 1.44 for IBM, 1.46 for IBE, and 1.46 
for AR). 
  Our conclusion is that lifetime installed base provides helpful information to forecast spare 
part demand for the relatively expensive and essential compressors for this type of refrigerator, 
which is a non-trendy product with long lifecycle. As compared to black box forecasting, the error 
in total EOL demand is reduced by a factor of about two (from 304 to 157). These results confirm 
our first and second research hypotheses formulated in Section 2.3. 
 
 
5 Results for three types of consumer products 
 
5.1 Overview of eighteen spare parts 

We apply the methodology of Section 3 to a set of eighteen spare parts related to six products, and 
we test the relevant research hypotheses of Section 2.3 for each case. The products fall in three 
categories, that is, refrigerators, flat panel televisions, and smartphones. Consumer sentiments and 
behavior differ among these three products. Sales data are available for two types of each product, 
and for three spare parts for each product. These spare parts differ in functionality and price. The 
products differ substantially in terms of both the available estimation data, that is, length of initial 
and mature phases, and the forecast challenge as measured by the length of the observed EOL 
phase. Figure 6 shows installed base of various types for the two types of each product, 
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refrigerators (top row), televisions (middle row), and smartphones (bottom row). IBE and IBM 
depend on the (cost of the) spare part, and Figure 6 shows these two types of installed base for the 
most expensive spare part per product. The top left graph is identical to Figure 3.  

  Some characteristics of the products and spare parts are summarized in Table 1. The price 
of spare parts does not incorporate handling and labor costs. These additional costs are rather 
marginal for televisions and smartphones, because customers can easily bring these products to 
repair shops. The labor costs are more substantial for refrigerators, because their repair requires 
that a skilled technician visits the owner at home. Table 1 also shows our hypothesis on which 
installed base is expected to be most useful in forecasting EOL demand. The motivation for each 
of these hypotheses is described below in Sections 5.2-5.4, together with the main forecast results 
for the eighteen spare parts. Further details on models and forecasts are available from the authors 
upon request. 
 

     << Insert Figure 6 about here. >> 
 

     << Insert Table 1 about here. >> 
 
5.2 Refrigerator spare parts demand 

Refrigerators have a long lifecycle, and Table 1 shows that the forecast evaluation period covers 
only a small part of the full EOL phase. The product warranty lasts for two years.   
  An essential and expensive spare part is the compressor (price 14-18% of that of the 
refrigerator). As was explained in Section 4.1, we expect IBL to perform best for this spare part, 
because repairing the compressor provides large gains in expected lifetime and refrigerators do not 
quickly get out of fashion. An expensive and non-essential part is the circuit board (relative price 
6-8%). The refrigerator works well even if some functions of the circuit board have broken down. 
As the product has a much longer lifetime than the warranty period and keeps high utility until end 
of life, our third hypothesis in Section 2.3 suggests that consumers make economic decisions and 
replace this non-essential part if the remaining value of the refrigerator, which has a long lifecycle, 
is higher than the replacement costs. That is, we expect that IBE will provide the best forecasts. A 
cheap and non-essential spare part is the door gasket (relative price about 3.5%). Even though this 
spare part is relatively cheap, replacement by the manufacturer is costly as a specialized repairer 
should visit the owner at home. We therefore expect consumers to demand this spare part only 
during the warranty period and to find other solutions after warranty has expired. That is, we expect 
IBW to provide the best forecasts. 

 We applied the forecast methodology of Section 3 for each of the six spare parts, in the 
same way as was illustrated in Section 4 for compressors of the first type of refrigerator. The results 
are shown in Table 2. The outcomes for compressors support our hypotheses, as IBL provides 
more accurate EOL demand forecasts than the other installed base types. It also performs much 
better than the black box AR method. The results for the circuit board are varied. Our hypothesis 
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that IBE performs best is confirmed for the first type of refrigerator, but not for the second type 
where black box forecasts are much better. The cause of the bad forecast performance of IBE in 
the latter case is that the model has a significant positive coefficient for mean age, which increases 
steadily over EOL, whereas actual EOL demand is rather stable. Note that this bad forecast 
performance could not be foreseen at the start of the EOL phase, as the future trends in spare part 
demand have somehow to be extrapolated from the past. The results for the door gasket are varied, 
as our hypothesis that IBW is best is confirmed for the second type of refrigerator, but not for the 
first type where IBM performs better. Overall, the outcomes provide support for the first and 
second hypotheses of Section 2.3 on the value of installed base forecasting and the usefulness of 
lifetime and warranty installed base, and partial support for the third hypothesis on the usefulness 
of economic installed base. 

     << Insert Table 2 about here. >> 

5.3 Television spare parts demand 

High-tech products, like televisions, experience decreasing lifecycles because of fast innovations 
and quickly developing consumer trends (Pourakbar et al., 2012, 2014). Consumers tend to base 
their buying decisions for these products less on economic value and more on the wish to own new 
product features. Therefore, the value of these products as experienced by consumers often decays 
much faster than the economic lifecycle would suggest. Because of the shortened lifecycle due to 
innovations, we expect that warranty installed base for these products is in general more 
informative than lifetime and economic installed base. The warranty period is two years. 
  Both types of flat screen televisions have very short sales periods of approximately one 
year. The estimation period for all models is too short to provide reliable forecasts. All methods, 
including black box, are far off the mark. We conclude that full EOL forecasting after such a short 
estimation period is too challenging, and instead we consider the more modest task to forecast 
remaining EOL demand one year after the end of product sales. The estimation period then 
becomes about two years, and the forecast evaluation period is about three years for television type 
1 and about two years for type 2, as type 2 was introduced about one year after type 1.  
  An expensive and indispensable spare part of the television is the LCD panel. LCD panels 
are very expensive, with a price of about half that of a new television. As utility of televisions 
declines rather rapidly over time due to fast product innovations, we expect that IBW provides the 
best forecasts. An expensive but non-essential part is the circuit board (relative price 8-10%). In 
many cases, the circuit board keeps its main functionalities even if some options are lost. We expect 
that customers demand this spare part during the warranty period, but not afterwards, as they may 
accept some function losses of relatively old televisions with short remaining lifecycle. Again, we 
expect IBW to perform best. A cheap and non-essential spare part is the cover of the television 
(relative price 3-5%), but repair is more expensive as it requires a service engineer. As this part is 
not essential, we expect that owners demand this part only during the warranty period, so that IBW 
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is again expected to give the best forecasts. 
  Table 3 shows the forecast results for television spare parts. Most of the outcomes support 
our hypotheses, as IBW provides the best EOL demand forecasts in five out of six cases. The only 
exception is found for circuit boards for the first type of television, where IBE and IBL do slightly 
better. The differences between the four installed base types are small for this specific spare part, 
and each of these four methods is considerably better than the black box method. The outcomes 
therefore support our first and second hypotheses of Section 2.3 on the usefulness of warranty 
installed base for products with short lifecycle. 

     << Insert Table 3 about here. >> 
 
5.4 Smartphone spare parts demand 

The market for smartphones has expanded very rapidly in recent years. Consumers are fast in 
adopting new technologies, as product innovations expand the functionalities of new phones. 
Giachetti and Marchi (2010) find that this market is highly competitive, not only between brands 
but also between products of the same brand. The continuous launch of innovative technologies in 
the global mobile phone industry stimulates replacing old phones by new ones and reduces spare 
part demand. The two smartphones in our case study are of the same brand. The first type is an 
early version, which is followed up within a year of its introduction by a second type that has much 
better functionalities. Both phones have a warranty period of two years, and the second type is 
introduced before the warranty period of the first type has expired. The far majority of phones is 
sold by telecom companies in combination with mandatory financial and maintenance contracts 
that last for one or two years. Consumers with such contracts are forced to use the product during 
this mandatory period, irrespective of their subjective evaluation of the remaining product value. 
We therefore expect that owners of the first type of phone will demand spare parts only during the 
warranty period, as later on they will wish to switch to the much improved new version. The second 
type of phone is still up-to-date and fashionable after the warranty period, and late adopters can 
continue using this phone whereas early adopters will move to newer products. We therefore 
expect that consumer decisions for the second phone will be mixed. Summarizing, we expect in 
general that IBW will be the best method for the first phone, and IBM for the second one. 

 Phones of type 1 have a short sales period of slightly more than a year, which is too short 
for all forecast models, including black box, to provide reliable forecasts for the full EOL phase. 
For this phone, we make the same choice as for televisions in the previous section, that is, we 
forecast remaining EOL demand one year after the end of product sales. The sales period of phones 
of type 2 is nearly two years, which is sufficiently long to forecast the full observed EOL phase. 
  Expensive spare parts of smartphones are their circuit board (relative price 29-40%) and 
touch screen (20-26%). For the reasons stated above, we expect that IBW provides the best 
forecasts for phone 1 and IBM for phone 2. A very cheap spare part is the back cover (relative 
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price 1-2%). As this part is so cheap and very easy to buy at shops or via internet, we expect that 
the demand for this spare part is best predicted by IBL. 
  Table 4 shows the forecast results for smartphone spare parts. Our hypotheses for the circuit 
board are confirmed, as IBW is clearly the best for phone 1 and IBM for phone 2. IBW is also best 
for touch screens, and this confirms our hypothesis for phone 1 but not for phone 2. The outcomes 
show that users of both phones replace the touch screen mostly during the warranty period. IBW 
is also best for back covers, contrary to our expectation that this cheap spare part would be replaced 
also after warranty has expired. Smartphone users seem not to wish repairing cosmetic parts after 
warranty has expired, even if the spare part is cheap. Overall, the outcomes provide support for 
the first hypothesis of Section 2.3, and partial support for the second and fourth hypothesis on the 
usefulness of the various considered installed base types. 
 

     << Insert Table 4 about here. >> 
 
5.5 Theoretical and practical contributions of the study 
 
The main theoretical contribution of our study lies in proposing installed base concepts that are 
practically viable for B2C companies. The use of installed base in demand forecasting is currently 
limited to advanced companies in a B2B environment, whereas B2C companies still tend to simply 
extrapolate past demand patterns. The demand for products of B2B companies often originates 
from long-term delivery and maintenance contracts with large clients that provide them with 
reliable operational information on the number of products in use. Even though B2C managers 
usually lack such detailed information, our study shows that such managers can substantially 
improve their consumer demand forecasts by employing installed base concepts (lifetime, 
warranty, economic, and mixed) that can be constructed from the management information 
available to them. The main question of interest to B2C managers then is which type of installed 
base gives the best information. We present and test a set of hypotheses on which type of installed 
base works best for which type of consumer products. The proposed hypotheses are based on 
characteristics of the product (such as life cycle length and innovation speed) and of the spare part 
(such as ease of repair and price of spare part relative to price of new product) as well as on 
product-specific consumer attitudes (such as sensitivity to innovations).  
  The practical contribution of our study consists of real-life illustrations of the favorable use 
of installed base in demand forecasting by B2C companies. In particular, we present empirical 
demand forecasts obtained from installed base to support B2C supply management of eighteen 
spare parts during the end-of-life (EOL) phase of consumer electronics products. Table 5 provides 
a summary of our hypothesis for each spare part, together with the outcomes discussed in preceding 
sections. The table also shows the outcomes of two tests to compare the forecast performance of 
two candidate methods. The first test is a comparison-of-means t-test for the forecast errors over 
the EOL phase, that is, the SUM criterion. The second test is a forecast comparison test proposed 
by Diebold and Mariano (1995), which is a comparison-of-means t-test for the absolute forecast 
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errors over the EOL phase. Their test provides automatic correction for the extensive serial 
correlation that is present in the weekly series of forecast errors. If our hypothesis is confirmed, 
then we test whether this method is significantly better than the second-best method as measured 
by the SUM and MAPE criteria. If our hypothesis is denied, then we test whether the best method 
is significantly better than the method of the hypothesis. Small p-values indicate that one method 
is significantly better than the other. The final column in Table 5 shows whether our hypothesis is 
significantly confirmed or denied by the two tests. Confirmation is found in twelve out of eighteen 
cases, whereas denial occurs in six cases. Possible causes of these denials were discussed in 
previous sections.  
 

     << Insert Table 5 about here. >> 
 

  We summarize our empirical findings in terms of the four hypotheses of Section 2.3. The 
first hypothesis, that installed base forecasts are better than the considered black box AR methods, 
is confirmed for seventeen out of the eighteen spare parts in Table 5, and Tables 2-4 show that the 
improvements are substantial. The second hypothesis concerns the relative performance of lifetime 
and warranty installed base. Table 5 shows that one of these two installed bases is expected to be 
best for fourteen spare parts, and the hypothesis is confirmed for ten of these spare parts. The most 
notable exception occurs for back covers of smartphones, where the outcome that IBW is better 
than IBL is reverse to what was expected. The third hypothesis is on economic installed base, 
which is our hypothesis for one spare part of refrigerators. This hypothesis is confirmed for one 
type of refrigerator but not for the other type. The fourth hypothesis is on mixed economic installed 
base, which is our hypothesis for two spare parts of smartphone type 2. This hypothesis is 
confirmed for one of these spare parts, but not for the other one. 
  A final note for practitioners is that EOL demand forecasting is only feasible provided that 
the learning period consisting of the initial and mature phases is long enough. This condition holds 
equally well for simple extrapolation methods and for installed base forecasts, as both methods 
require product-specific information on demand patterns. 
 
 
 
6 Conclusions 
 
When production of a product stops, the producer faces the important question as to how many 
spare parts will be needed to cover all future demand of the product during the end-of-life (EOL) 
phase. The producer then needs to know how many users will repair the product when it fails and 
which spare parts are needed for the repair. We consider these questions for consumer goods. 
Consumer decisions on repair will depend on the price of the required spare part and on the 
evaluation by the user of the remaining value of the product. We propose the concept of installed 
base to forecast EOL spare part demand for consumer products to support B2C companies in their 
decisions on final production size. The most suitable type of installed base depends on 
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characteristics of the product, the spare part, and the consumer market. Warranty installed base is 
advised for spare parts with relatively short lifecycle, and lifetime installed base for essential spare 
parts for products with long average lifetimes. Economic installed base is useful for non-essential 
spare parts of products with long average lifetimes that are out of warranty. If consumers differ in 
their adoption attitudes for product innovations, a mixed economic installed base can be useful. 
Our case study shows that installed base forecasts improve much upon straightforward black box 
autoregressive extrapolation of past demand patterns.  
  Although the specific results will vary across products, the proposed methodology is 
technically viable to forecast EOL spare part demand for any product. The required information 
for each product and spare part is the following. First, and most important, time series of product 
sales and of spare part demand until start of EOL. Further, the average lifetime of the product (for 
lifetime installed base), the warranty period (for warranty installed base), the cost of the spare part 
(for economic installed base), and consumer segments (for mixed economic base). We propose to 
smooth the demand data after screening them for extreme values that may occur, for example, in 
case of extraordinary failure rates briefly after introduction of a new product.  The quality of the 
forecasts depends on the richness of the available data, ideally with a long estimation period during 
the production phase and with a limited EOL phase. In practice, the production period is often 
relatively short as compared to the EOL phase, and this also applies for the products in our case 
study. We advise to use simple models in such cases, in order to prevent forecast deterioration due 
to over-fitting. We do not advise a fully automated forecast procedure, because consumer behavior 
differs widely across products. It can be helpful to cluster products and spare parts in groups, 
depending on their characteristics and on expected consumer demand behavior. Within each 
cluster, EOL spare part demand can be forecasted by using one common type of installed base that 
applies for all products of that cluster. 
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Figure 1: Sketch of product sales (S), installed base (IBL and IBW), and spare part demand (D), 
all measured on the vertical axis, against time on the horizontal axis 
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Figure 2: Relation between product price (p), remaining economic value (v), spare part cost (c), 
and lifetime (L); costs and values are measured on the vertical axis, and time on the horizontal 
axis 
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Figure 3: Installed base for refrigerator type 1, measured in units on the vertical axis, against 
time in weeks on the horizontal axis 
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Figure 4: Demand for compressor of refrigerator type 1: time series of actual and EWMA 
smoothed demand against time in weeks (top left), and three scatter diagrams of smoothed 
demand in units on vertical axis against installed base in 1,000 units on horizontal axis, for 
lifetime installed base (top right), warranty installed base (bottom left), and economic installed 
base (bottom right) 
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Figure 5: Actual demand (D) and smoothed demand (EWMA) for compressor of refrigerator 
type 1 during end-of-life phase and black box forecasts (AR) and four installed base forecasts 
(IBL, IBW, IBE, IBM), all measured in units on vertical axis against week number on horizontal 
axis 
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Figure 6: Time series of installed base in 1,000 units on vertical axis against time in weeks on 
horizontal axis for six products: refrigerators (top row), televisions (middle row), and 
smartphones (bottom row), for type 1 (left column) and type 2 (right column); in each diagram, 
the vertical line indicates the start of the end-of-life phase 
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Table 1: Overview of six products and eighteen spare parts

Product Estim. Forec. Lifecycle

Life cycle Tech trendy

Refrigerator 1 Long Low 08.12 - 13.29 279 36 676

Refrigerator 2 Long Low 08.32 - 12.51 229 66 676

Television 1 Short Low 09.23 - 10.17 100 152 360

Television 2 Short Low 10.12 - 11.15 108 102 360

Smartphone 1 Short High 10.24 - 11.28 109 89 160

Smartphone 2 Short High 11.19 - 13.04 90 61 160

Spare part Essential Expensive Hypothesis

1 2 1 2 1 2

For refrigerator

Compressor Yes Yes 5,678 6,090 4.4 13.6 46.7 39.8 L

Circuit board No Yes 9,596 3,518 17.7 36.5 7.6 5.6 E

Door gasket No No 4,581 698 17.7 10.0 3.5 3.4 W

For television

LCD panel Yes Yes 868 889 24.9 20.6 47.0 39.4 W

Circuit board No Yes 562 774 37.7 39.1 9.6 8.2 W

Cover No No 152 230 9.2 16.1 3.2 4.5 W

For smartphone

Touch screen Yes Yes 21,499 58,413 16.5 23.8 19.8 25.8 1W, 2M

Circuit board No Yes 6,325 14,492 14.2 37.6 28.6 40.0 1W, 2M

Back cover No No 5,259 11,033 42.4 45.8 1.6 1.2 L

Table notes

* Consumer sentiments describe aspects that affect consumer attidudes towards products and spare parts.

* Sales is total product sales during sales period, indicated in format year.week (e.g., 08.12 is week 12 of 2008).

* Estim. and Forec. show number of weeks of data available respectively for estimation and for forecast analysis.

* Lifecycle is average lifetime in weeks, obtained for refrigerators from National Association of Home Builders

(2007), for televisions from NPD DisplaySearch (2012), and for smartphones from Entner (2011).

* "Essential" describes whether spare part is essential for product, and "Expensive" indicates relative price of

spare part compared to product price (excluding spare part repair costs if service engineer is needed).

* Demand is total spare part demand until analysis date, i.e., week 13 of 2014, for products of type 1 and type 2.

* EOL % shows demand during EOL phase as percentage of demand in initial and mature phases.

* Price % is price of spart part as percentage of product price, for type 1 & for type 2.

* Hypothesis shows installed base hypothesis for the spare part (L for IBL, W for IBW, E for IBE, M for IBM).

50,986

348,153

694,816

Demand EOL % Price %

Consumer sentiments Sales Period

538,386

166,782

36,766
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Table 2: Forecast results for refrigerator spare parts

Spare part

AR L W E M

1, Compressor

   SUM 1.23 0.64 0.72 1.23 1.21

   MAPE 1.33 0.77 1.05 1.21 1.30

   RMSPE 1.46 0.87 1.21 1.46 1.44

2, Compressor

   SUM 0.81 0.05 0.32 0.17 0.12

   MAPE 0.98 0.49 0.62 0.53 0.52

   RMSPE 1.08 0.68 0.75 0.69 0.69

1, Circuit board

   SUM -0.10 0.03 -0.13 -0.01 0.03

   MAPE 0.27 0.25 0.39 0.25 0.25

   RMSPE 0.32 0.32 0.54 0.31 0.32

2, Circuit board

   SUM -0.09 3.04 -0.27 2.94 1.37

   MAPE 0.27 3.09 0.37 2.99 1.43

   RMSPE 0.36 4.07 0.48 3.93 1.68

1, Door gasket

   SUM -0.08 0.09 -0.15 0.07 0.05

   MAPE 0.38 0.47 0.43 0.45 0.44

   RMSPE 0.59 0.62 0.61 0.61 0.61

2, Door gasket

   SUM 1.43 0.18 0.07 0.17 0.19

   MAPE 1.60 0.94 0.85 0.94 0.94
   RMSPE 1.79 1.13 1.13 1.13 1.13

Table notes

* The two types of refrigerator are denoted by 1 and 2.

* Installed base L denotes lifetime, W warranty, E economic, and M mixed economic.

* SUM is the summed forecast error over observed EOL as fraction of EOL demand; a

positive (negative) value corresponds to over-forecasting (under-forecasting) actual demand.

* RMSPE and MAPE are respectively the root mean weekly squared prediction error and 

the mean weekly absolute prediction error over observed EOL, each as fraction of the mean 

weekly EOL demand. 

* The result for the best forecast method (per spare part and criterion) is underlined.

Installed base
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Table 3: Forecast results for television spare parts 

Spare part

AR L W E M

1, LCD panel

   SUM 4.60 22.03 -0.22 -1.00 -1.00

   MAPE 4.64 22.03 0.89 0.99 1.00

   RMSPE 4.79 24.42 1.48 1.76 1.76

2,  LCD panel

   SUM 3.45 0.48 0.46 -1.00 -1.00

   MAPE 3.46 0.78 0.95 1.00 1.00

   RMSPE 3.73 1.00 1.34 1.39 1.39

1, Circuit board

   SUM 2.31 -0.16 -0.26 -0.03 0.15

   MAPE 2.52 0.65 0.68 0.72 0.74

   RMSPE 2.75 0.92 0.98 0.98 0.95

2, Circuit board

   SUM 6.26 7.55 0.85 5.77 8.03

   MAPE 6.26 7.54 1.48 5.82 8.05

   RMSPE 7.37 9.06 1.95 7.68 9.56

1, Cover

   SUM 13.86 5.86 1.20 3.58 3.62

   MAPE 14.11 6.51 2.17 4.34 6.51

   RMSPE 14.11 7.60 4.34 5.43 7.60

2, Cover

   SUM 4.45 3.53 0.25 2.40 2.01

   MAPE 4.69 3.86 1.38 2.76 2.48
   RMSPE 5.24 4.14 2.76 3.31 3.31

Table notes

* This table is similar to Table 2.

* Spare part demand forecasts are not for the full EOL phase, but for the 

subperiod starting one year (52 weeks) after begin of EOL.

Installed base
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Table 4: Forecast results for smartphone spare parts

Spare part

AR L W E M

1, Circuit board

   SUM 6.03 4.04 -0.05 -1.00 -1.00

   MAPE 6.05 4.08 0.96 1.00 1.00

   RMSPE 6.34 4.66 1.76 2.05 2.05

2, Circuit board

   SUM 0.71 0.78 0.76 -0.24 0.03

   MAPE 0.85 0.91 0.89 0.73 0.69

   RMSPE 0.99 1.06 1.03 0.93 0.86

1, Touch screen

   SUM 5.03 3.01 -0.31 0.97 2.20

   MAPE 5.18 3.16 0.65 1.37 2.44

   RMSPE 5.36 3.62 1.25 2.08 2.96

2,  Touch screen

   SUM 1.74 0.54 0.36 1.15 -0.45

   MAPE 1.77 0.65 0.67 1.26 0.88

   RMSPE 1.89 0.80 0.91 1.41 1.15

1, Back cover

   SUM 3.53 4.46 0.83 5.74 5.69

   MAPE 3.84 4.76 1.59 6.03 5.99

   RMSPE 4.14 5.18 2.07 6.88 6.98

2,  Back cover

   SUM 0.42 1.88 0.18 0.70 1.13

   MAPE 0.86 2.17 0.67 1.08 1.49
   RMSPE 1.13 2.51 0.99 1.25 1.79

Table notes

* This table is similar to Table 2.

* Forecast evaluation period is full EOL phase for smartphone type 2, and subperiod

starting one year (52 weeks) after begin of EOL for smartphone type 1.

Installed base



33 

 

 

Table 5: Evaluation of forecast strategies 

Spare part Hypothesis Outcome Conclusion

Type SUM MAPE

Refrigerator

   1, Compressor L L L > W 0.000 0.000 Confirmed (2x)

   2, Compressor L L L > M 0.000 0.006 Confirmed (2x)

   1, Circuit board E E E > L 0.000 0.400 Confirmed (1x)

   2, Circuit board E AR AR > E 0.000 0.000 Denied (2x)

   1, Door gasket W M M > W 0.001 0.855 Denied (1x)

   2, Door gasket W W W > E 0.000 0.293 Confirmed (1x)

Television

   1,  LCD panel W W W > E 0.000 0.000 Confirmed (2x)

   2,  LCD panel W W W > L 0.378 0.995 Weakly confirmed (1x)

   1, Circuit board W E E > W 0.000 0.802 Denied (1x)

   2, Circuit board W W W > E 0.000 0.000 Confirmed (2x)

   1, Cover W W W > E 0.000 0.000 Confirmed (2x)

   2, Cover W W W > M 0.000 0.000 Confirmed (2x)

Smartphone

   1, Circuit board W W W > E 0.000 0.400 Confirmed (1x)

   2, Circuit board M M M > E 0.001 0.228 Confirmed (1x)

   1, Touch screen W W W > E 0.000 0.000 Confirmed (2x)

   2, Touch screen M W W > M 0.000 0.021 Denied (2x)

   1, Back cover L W W > L 0.000 0.000 Denied (2x)
   2, Back cover L W W > L 0.000 0.000 Denied (2x)

Table notes

* Hypothesis on installed base: lifetime L, warranty W, economic E, or mixed economic M. 

* Outcome shows the installed base that provides the best forecasts (taken from Tables 2-4);

if best method varies across criteria, then method with best SUM is taken as outcome.

* Test type A > B tests whether method A provides better forecasts than method B; if the outcome 

confirms the hypothesis, then A is the hypothesis and B is second-best method (with respect to 

SUM); if the outcome differs from the hypothesis, then A is the outcome and B is the hypothesis.

* Test SUM is t-test for mean error, and MAPE is Diebold-Mariano test for absolute errors; 

the table shows the p-value for the one-sided alternative that base A is better than base B.

* Conclusion "confirmed" denotes that the hypothesis base is significantly better (for 1 or 2 tests)

than second-best; "weakly confirmed" means that hypothesis base is best, but not significantly

better than the second-best base; "denied" means that the hypothesis base performs significantly

worse than the best base; significance level is 5%.

Test


