
entropy

Article

Mimicking Anti-Viruses with Machine Learning and
Entropy Profiles

Héctor D. Menéndez 1,* and José Luis Llorente 2

1 Computer Science Department, University College London, London WC1E 6BT, UK
2 Hoffmann-La Roche, 28027 Madrid, Spain; jose_luis.llorente@roche.com
* Correspondence: h.menendez@ucl.ac.uk

Received: 1 April 2019; Accepted: 20 May 2019; Published: 21 May 2019
����������
�������

Abstract: The quality of anti-virus software relies on simple patterns extracted from binary files.
Although these patterns have proven to work on detecting the specifics of software, they are extremely
sensitive to concealment strategies, such as polymorphism or metamorphism. These limitations
also make anti-virus software predictable, creating a security breach. Any black hat with enough
information about the anti-virus behaviour can make its own copy of the software, without any
access to the original implementation or database. In this work, we show how this is indeed possible
by combining entropy patterns with classification algorithms. Our results, applied to 57 different
anti-virus engines, show that we can mimic their behaviour with an accuracy close to 98% in the best
case and 75% in the worst, applied on Windows’ disk resident malware.

Keywords: anti-virus; classification; malware; mimicking; mimickAV; entropy profiles

1. Introduction

Malware is proliferating and growing exponentially every year, especially in the current software
markets [1]. This is due to several different reasons, some of which relate to Moore’s law, which states
the exponential growing tendency of technology, and others to the cybersecurity arms race. Emerging
technologies, such as the internet of things [2], create new vulnerabilities that are normally easily
exploited. The cybersecurity arms race also focuses on new steps on already known systems. Final
users are normally ignorant to the infections on their machines, relying on anti-viruses to deal with
these threats. However, the reliability of anti-viruses is not the strongest line of defence, although
several anti-virus companies are making strong efforts to deal with malware in a timely fashion.

Detection of malware relies on static and dynamic software analysis [3]. On the former,
the software is analysed with no execution. On the latter, the software is executed and its traces
are analysed. Depending on the analysis goals and strategies, this can be extremely time consuming.
Normally, dynamic analysis requires longer time to detect malicious behaviours than static analysis, as
the malware needs to activate it during execution, which might depend on potential enviromental
conditions that trigger it [4]. The highest and most costly level of analysis is manual reverse engineering,
which is normally targeted when a triage process puts the malware at the top level of threat.
Nevertheless, different works have strong caveats on static analysis, providing malicious concealment
via metamorphism or polymorphism, and dynamic analysis via red pills. Besides, modern methods
can even attack the triage process, shaping the malicious piece to look as benign as possible using
machine learning [5].

One of the most interesting steps forward of the anti-virus companies is VirusTotal [6], a platform
where anybody can submit a piece of software that will be analysed by several different anti-virus
engines. This mechanism helps to understand not only which anti-viruses detect malicious behaviours,
but it also provides information related to automatic dynamic and static analysis of the binary.

Entropy 2019, 21, 513; doi:10.3390/e21050513 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6314-3725
http://www.mdpi.com/1099-4300/21/5/513?type=check_update&version=1
http://dx.doi.org/10.3390/e21050513
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 513 2 of 19

The usefulness of VirusTotal makes it a good honey-pot for black hats, helping anti-virus companies
to collect new malware pieces that are in the wild. However, does a black hat really need to use an
anti-virus to evaluate whether their malware is detected or not? This question motivates our work.

Considering that several anti-viruses normally perform statistical analysis using features extracted
from the binary file, such as: n-grams, entropy, opcodes, signatures, size, imports section, or in specific
kinds of malware like Android malware, permissions and intent actions, among others [7], we want to
know how accurately we can predict the outcome of an anti-virus given a piece of software. Mimicking
anti-viruses supposes that a black hat might not need to use it, in order to evaluate the detection of
their malware or malware variants, but instead they can use their own predictors. These copies can
be created based on the information already known from the anti-virus by using machine learning
methods. The mimicking process only needs two things: a proper set of features, representative
enough to extract strong patterns from the detection of malware, and a proper learning system.

As this work pretends to create a general approach that can work with any kind of binary file,
we apply entropy profiles as features of the binaries [8]. An entropy profile considers the binary
representation of a file, divides it into chunks, calculates the Shannon entropy of these chunks, and
aggregates them, forming an entropy sequence called the entropy profile. These entropy profiles have
shown a strong accuracy for deciding whether a piece of software is malware or not, even when the
piece of malware is using metamorphic or polymorphic/packing-based concealment [9]. Their strength
comes from the entropy variations on the binary files. These variations are similar among different
variants of the same malware or different concealments using the same or similar strategies [8–10].
These variations, or signals, are relevant patterns to distinguish different kinds of binaries. Here, we
want to evaluate if these patterns can lead to learn the anti-virus itself, by learning how it behaves
under different entropy variations.

For this purpose, we have created a whole framework, called MimickAV, based on applying
different classification algorithms to reproduce the behaviour of several anti-viruses. These classifiers
have been chosen from different machine learning paradigms, in order to understand which statistical
models are better for approximating the behaviour of anti-virus engines. Our experiments focus
on disk resident malware, concretely Windows PE32, extracted from VirusShare. We also collect
benign-ware to balance the detection. To make sure that the concealment strategies do not affect the
detection quality, we independently evaluate packed and non-packed malware and, after, we evaluate
them in an aggregated way. The results show that we have a strong accuracy mimicking the anti-virus
engines from VirusTotal, especially when we apply classifiers based on boosting. The classifiers can
mimic every anti-virus with an accuracy up to 98%. Our main contributions can be summarized
as follows:

• We introduce MimickAV, the first general purpose method that can mimic almost any current
commercial anti-virus engine by using entropy profiles, a feature that every single binary file has
(Section 2).

• We apply this methodology using 20 state of the art machine learning classifiers from 10 different
paradigms with the aim of mimicking 57 commercial anti-viruses from VirusTotal (Section 3).

• From the 20 machine learning algorithms, we proved that boosting is the strongest, reaching an
accuracy between 96% and 98% for packed malware, 93% and 96% on mix malware, and 85% and
96% on non-packed malware (Sections 4.1 and 4.2).

• We show which anti-virus are more resistant to our method, and which specific concealment
strategies make harder to apply entropy to mimic the anti-viruses responses (Sections 4.3 and 4.4).

2. MimickAV: Mimicking Anti-Virus Software

Our goal is to show how to predict the behaviour of anti-virus software by using their own
detection decision. To reach this goal, we introduce MimickAV, a framework that combines entropy
profiles with different machine learning methods in order to mimic anti-viruses. As the anti-virus
normally uses features extracted from the binary file itself, we will use an aggregation of these features



Entropy 2019, 21, 513 3 of 19

in the form of an entropy profile (Section 2.1). After, we explain the classifiers applied in this process
(Section 2.2).

2.1. Entropy Profiles

The process of extracting an entropy profile is based on Sorokin’s structural entropy method [8].
For a detailed description we reference Section 2 of [9], the following summarizes this process. The main
three steps are:

1. Partition the file in chunks, i.e., small parts of the same size, and calculate their entropy to
generate an entropy sequence.

2. Shrink or extend the entropy sequence to a specific length, which normalizes the approach to
different file lengths.

3. Clean the noise of the sequence using the Harr wavelet. The cleaned sequence is the
entropy profile.

Consider a program P as a binary string of size sP, and the chuck size sc, both sizes in
bytes. We partition P in sP/sc chunks, starting from the beginning of the binary string. Suppose
C = {c1, . . . , cN} as the set of all chunks (N chunks) after partitioning. Following the work of
Sorokin [8] on entropy profiles and subsequent works [9], we consider the entropy at byte granularity,
therefore we use the chunk string as a byte string, and calculate the probability of every byte inside
the chunk to measure the Shannon entropy. The Shannon entropy, which measures the levels of
randomness on data, for a specific chunk ci is computed as:

H(ci) = − ∑
b∈B

p(b) log2 p(b), (1)

where B is the set of all possible bytes (b) in the chunk string. This process is applied to every chunk to
generate the entropy sequence, denoted by H(C) = {H(c1), . . . , H(cN)}. Nevertheless, as the chunk
size is fixed, files of different sizes would have different cardinality for H(C), therefore, we need to
normalize this value. The normalization is related with the cleaning process based on wavelets, used to
focus the entropy sequence only on the main entropy variations. This normalization process will select
specific chunks form H(C) to fit a specific size. This process is similar to time series comparison, where
time series of different lengths are normalized to have the same length. We need to select a number of
chunks that is a power of 2. Let M = 2a be the final number of chunks, the process selects the first and
last chunks (which are normally special sections of the file [9]), and, then, selects each chunk by index,
with an increment of inc = (N − 1)/(M− 1). We consider X = x1, . . . , xM the entropy sequence after
the reduction/enlargement process.

Finally, the cleaning process eliminates noise from the entropy sequence and keeps only the
relevant entropy variations. This process extracts the Harr wavelet from the entropy profile. The Harr
wavelet coefficients are divided into scales, where the next scale is calculated recursively from the
previous one, starting from the entropy profile. Each scale is divided in two parts (this is the main
reason of forcing the sequence length to be 2a). The first part is called the scale coefficients (si), and the
second is called the detail coefficients (di). A scale coefficient is calculated from the previous scale as:

s1
i =

1√
2
(xi + xi+1), sa

i =
1√
2
(sa−1

i + sa−1
i+1 ), a > 1, (2)

while a detail coefficient is calculated by:

d1
i =

1√
2
(xi − xi+1), da

i =
1√
2
(sa−1

i − sa−1
i+1 ), a > 1, (3)



Entropy 2019, 21, 513 4 of 19

Suppose that we set a = 2, therefore the wavelet has up to two scales, starting from the
entropy sequence:

(x1, x2, x3, x4)

↑↓
(s1

1, s1
2 | d1

1, d1
2)

↑↓
(s2

1 | d2
1, d1

1, d1
2)

Our cleaning process works at the last scale, in this example (s2
1 | d2

1, d1
1, d1

2). It sets a threshold τ

on the coefficients and set to 0 every value under this threshold. This removes noise from the wavelet,
keeping only the relevant variations on the entropy sequence after its reconstruction. The reconstruction
of the scales uses the inverse process:

xk =
1√
2
(s1

k + d1
k), sa

k =
1√
2
(sa+1

k + da+1
k ), a > 0,

xk+1 = 1√
2
(s1

k − d1
k), sa

k+1 = 1√
2
(sa+1

k − da+1
k ), a > 0,

(4)

After the reconstruction, the values of X are smoother. We consider this reconstruction as the
entropy profile of the binary that will provide the features for the classification process. For each
program, we will extract its entropy profile. It is important to remark that after the reconstruction,
the Harr wavelet provides a clean signal for a machine learning algorithm.

2.2. Classification

In order to mimic the anti-virus behaviour, we leverage classification algorithms. As we have
no information on how the anti-viruses are detecting malware, we can hardly approximate which
classification method would be more suitable for mimicking them. Therefore, we consider different
classifier families:

• Tree-based classification [11]: these classifiers divide the data in a linear fashion, defining a tree of
decisions on their features. This division is chosen by a metric, normally the entropy.

• K-nearest neighbourhood [12]: the k-NN algorithm decides the classification on an instance based
on its k-nearest neighbours. Normally, this decision is the majority of the neighbours classes.

• Support Vector Machines [13]: SVM creates a hyperplane to separate the data into classes. This
hyperplane maximizes its margin with the frontier of each data class, defined by specific instances
called support vectors. It normally applies kernels to work with non-linear separations .

• Rules-based classification [14]: these classifiers create a set of rules that aim to generalize the
classification decision of each instance based on its features.

• Naïve Bayes [15]: this classifier learns a probability distribution for each feature, considering each
one independent, and applies Bayesian probability on the features distribution to decide when an
instance is assigned to a class.

• Random Forest [16]: this method combines different tree-based classifiers into a voting system.
Normally the algorithm splits the feature space and train each tree in different combinations
of features.

• Boosting [17]: following the same logic than random forest, this algorithm is a multi-learning
approach where several weak classifiers are combined to learn different areas of the feature space
and aggregate them to provide a final classification decision.

• Generalised Linear models [18]: this algorithm generalizes linear regression to different
probability distributions. The aim is to separate the data by learning the parameters of specific
probability distributions that work as an estimator.



Entropy 2019, 21, 513 5 of 19

• Artificial Neural Networks [19]: an artificial neural network is a hierarchical structure of nodes
connected by layers, where the top one is the input and the bottom one is the output. Between
these layers there are hidden layers that aim to reproduce the behaviour of the human brain.

• Deep Learning [20]: deep learning algorithms are a generalization of neural network where the
algorithm combines unsupervised learning and supervised learning in its hidden layers.

These families have been selected for two reasons. First, they cover a huge spectrum of different
machine learning paradigms, and second, they use different statistical models that can be adapted to
the behaviour of specific anti-viruses.

3. Experimental Setup

MimickAv requires a detailed evaluation in terms of performance and accuracy. Section 3.1
explains the steps that we have followed on its evaluation. Section 3.2 details the datasets used.
Section 3.3 shows the anti-virus engines in which we evaluated MimickAV, and Section 3.4 details the
set up for the classifiers.

3.1. Research Goals

Our system aims to mimic the behaviour of different anti-virus engines. In order to be able
to generalise, we need to understand the abilities of the system for different kinds of malware and
different anti-viruses. Although the study can be extended to Android, JavaScript, and PDF malware,
among others, we focused on disk resident malware as our proof of concept, concretely Windows PE32
malware. We also consider packed malware during our experimentation as packers apply compression
and encryption, directly affecting the entropy of the files. It is important to remark that the concept of
entropy profile can be applied to any type of binary or text file.

In order to understand how our methodology can reach our research goals, we have divided our
experiments in order to answer the following research questions.

RQ 1. What is the accuracy and performance of MimickAV when it is applied to packed, non-packed and mixed
binary files?

To answer this RQ we need to collect specific malware and benign-ware which are either packed
and non-packed. Then we will apply our learning process with different classifiers in order to evaluate
which one is more accurate during the mimicking process.

RQ 2. What is the precision of MimickAV when it is applied to the different kinds of binaries?

One of our main concerns is to ensure that we have the lowest possible number of false negatives,
i.e., none of the malware that we pass to the system is falsely considered as benign in our mimicking
process. For this reason, we also measure the Receiver Operating Characteristic (ROC) curve, but we
focus it on the false negatives instead of the traditional false positives rate.

RQ 3. Which specific packing systems are more resistant to MimickAV?

We aim to understand which specific packers make harder to predict the behaviour of the
anti-viruses, based on our entropy features.

RQ 4. Which anti-viruses are more, and which ones are less resistant to our mimicking process?

We rank the abilities of the whole set of anti-virus where we operate to measure those that are
more resistant in general.

The following section explains the data that will be applied for answering to these research questions
and how these data have been extracted and processed.



Entropy 2019, 21, 513 6 of 19

3.2. Evaluation Data

Our evaluation of the mimicking process is focused on Windows resident malware. We have
collected malware data from VirusShare. From this source, we collected packed and non-packed
malware. In order to balance these datasets with benign-ware, we have also collected fresh packed
and non-packed benign-ware files.

VirusShare (http://virusshare.com) is a storage webpage for malware data containing several
different kinds of malware from different periods. For these experiments, we focused our extraction
process on disk resident malware for Windows. To identify the packed malware we applied Yara
(http://yara.readthedocs.org) and the set of rules applied for identifying packed software from the
YaraRules project (http://yararules.com/). Yara identified 10,000 malware pieces that use known
packers and 6,000 that were not packed. The number of packers that this dataset contains is around 70
from several different families. Dividing them into families, we identify 7 predominant ones (Table 1).
The software was collected between 2015 and 2016. As we do not have a ground truth for the malware
families, we used the Avast anti-virus’ reports which provide information about the detection. Avast
detects 364 different families in the packed corpus and 266 in the non-packed corpus. The packed
corpus’ size ranges from 4 Kb to 32 Mb with an average of 515 Kb, and the non-packed corpus’ size
ranges from 4 K to 32 Mb with an average of 747 Kb.

In order to balance these data, we extracted a set of disk resident benign-ware for Windows
from download.com. This benign-ware is divided into two sets: packed and non-packed. The benign
packers are also described in Table 1. We extract 2,000 samples for each set. The packed benign-ware
was also identified using Yara. The packed corpus’ size ranges from 20 Kb to 9 Mb with an average of
2 Mb, while the non-packed benign-ware ranges from 4 Kb to 26 Mb with an average of 3 Mb.

For our experiments we create different datasets to evaluate the mimicking abilities of our
methodology depending on the nature of the data. We make sure that the classes (malware and
benign-ware) are balanced to avoid imbalance problems related to the machine learning algorithms,
as those mentioned in [21]. These datasets are:

• Pck data. Composed of 2000 samples from VirusShare selected uniformly at random without
repetition from the 10,000 described in Table 1, and the 2000 samples from the packed benign-ware.

• NPck data. Composed of 2000 samples from the non-packed data of VirusShare selected uniformly
at random without repetition from the 6000 malware, and the 2000 samples from the non-packed
benign-ware.

• Mix data. It is a mix of the previous dataset with the aim of generalising the mimicking abilities of
the system. These data contains 4000 samples, 1/2 of packed malware and benign-ware, and 1/2
non-packed malware and benign-ware. It aggregates the Pck and NPck data.

Table 1. Information about packers for the packed malware and benign-ware, divided by the number
of instances per set.

Packer Malware Benign-Ware

Armadillo 542 101
ASPack 186 32

ASProtect 54 10
Borland 2123 417

NET 2351 476
PECompact 445 88

UPX 3175 641
Rest 1124 235

Total 10,000 2000

http://virusshare.com
http://yara.readthedocs.org
http://yararules.com/
download.com


Entropy 2019, 21, 513 7 of 19

For each sample of the data, we will extract the entropy profile as explained in Section 2.1. The
application of the Harr wavelet will de-noise the entropy profiles providing clean signals for the
machine learning algorithms (step 3, Section 2.1).

3.3. Anti-Virus Selection

The system has been evaluated using several anti-virus engines. These anti-viruses are commercial
versions which are available in VirusTotal. VirusTotal is a malware analysis service that allows to
upload a binary file and runs several anti-virus engines to it, in order to evaluate whether a binary
file is malicious or not. There are 82 different anti-viruses on VirusTotal at the moment. For our
experiments, we submit all our binary files to the system. We collect only those reports that specify
which anti-virus has detected the malware. In the case of the benign-ware, all anti-virus provided a
negative detection. During the detection process, not all of the 82 anti-virus are activated by VirusTotal.
To guarantee enough data for the training process, we filter those anti-viruses that failed to activate
more than 500 times with our malware. The final number of anti-viruses that we applied for the
experiments is 57. For each anti-virus we will select the previous datasets (PcK, NPck, and Mix) based
on its detections. The sampling process will select first among the detected malware. If there is not
enough malware, it will complement the information with non-detected malware until it reaches the
2,000 malicious samples. The other samples will be the corresponding benign-ware.

3.4. Classification Algorithms

For the classification process we have applied 20 different classifiers, organized by the MLR
package (https://cran.r-project.org/web/packages/mlr/index.html) [22] of the R-project. This
package simplifies the interface with different machine learning algorithms. In our case we have chosen
classifiers from different families in order to evaluate which kind of classifier has better performance
(Section 2.2). For each classifier family, we have chosen, at least, one classifier, but we gave priority to
the best state of the art implementations. The specific list of algorithms and packages is the following:

• Tree-based classifiers: we have applied the classical J48 [11], from the RWeka package [23], and
its specialization applying separate-and-conquer algorithms, PART [24]. We have also applied the
recursive partition algorithm, rpart, from the homonym package [25].

• K-nearest neighbours: for k-nearest neighbours, we have applied the classical knn implementation
from R [12], and the Instance-based learning classifier (Ibk) from RWeka [26].

• Support Vector Machines: we applied the classical svm implementation from the e1071
package [27], and the implementation of kernlab which also optimize the kernel parameters,
ksvm [28].

• Rules-based: we applied the implementation of the classical Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) algorithm [14] from the RWeka package (JRip), and the One
Rule (OneR) algorithm [29] that generates one rule for each predictor in the data.

• Naïve Bayes: we apply the classical naiveBayes algorithm from package e1071 [15].
• Random Forest: we applied one of the current state of the art implementations from the H2O

package: h2o.rForest [16].
• Boosting: since boosting is one of the current strongest classifiers for entropy profile

discrimination [10], we applied several versions of it. First, we use the original boosting [17], that
we used in our previous work [9] leveraging rpart from the multi-learning approach. Then, we
apply adaptive boosting (ada) [30], from the homonym package [31], which adapts the learners
weight in favour of those instances misclassified by previous classifiers. We also applied two
modern versions of gradient boosting [32], an adaptation of adaptive boosting with the ability
of optimizing a cost function. We consider the implementation of gbm package and the parallel
version of the algorithm from the H2O package (h2o.gbm), which also includes an automatic

https://cran.r-project.org/web/packages/mlr/index.html


Entropy 2019, 21, 513 8 of 19

detection system for different loss functions. Finally, we consider the extreme gradient boosting
algorithm, xgboost, which reduces feature splits in order to reduce the search space [33].

• Generalized Linear Model: for GLM we use the implementation from H2O package, h2o.glm [18].
• Deep Learning: for deep learning, we also apply the H2O implementation of deep learning

algorithms, h2o.deepL [20].
• Neural Network: for neural networks, we applied the classical nnet implementation from the

homonym R-package [19] and Learning Vector Quantization [34], lvq1, from the R-project core,
whose interpretation is easier than neural networks.

The classifiers parameters are selected by default. The parameters for the entropy profiles were
chosen following the same criteria as [9]. These parameters are the following: the chunk size is
256 bytes, the length of the entropy profile is 512 coefficients (hence, the scale is 9), and the threshold
for the cleaning process using wavelets is 0.5. The entropy profiles and the implementation of the
algorithms is publicly available in: https://github.com/hdg7/MimickAV.

4. Experiments

In order to evaluate MimickAV with respect to our research goals (Section 3.1), we start doing a
global analysis using every available classifiers described in Section 3.4, and each of the 57 anti-virus
engines. Then, we focus the analysis on the best classifier to evaluate their ability to reduce false
negatives, our target with MimickAV (Section 4.2). As the results of MimickAV can be altered by
different packer systems, Section 4.3 increments our classification granularity to check which packers
are more resistant during the mimicking process. Finally, we provide an analysis on the most and less
resistant anti-viruses to the mimicking process in Section 4.4. Every classifier is trained with 2/3 of the
data and tested with 1/3. Every result reported is on the test data.

4.1. Performance of MimickAV

Our experiments measure the quality of MimickAv learning the output of different anti-viruses.
This first experiment focuses on understanding its prediction abilities on the 57 anti-viruses of
VirusTotal. Figure 1 shows the median results over 20 repetitions for the 20 classifiers on packed
malware, Figure 2 shows the equivalent results on non-packed malware and Figure 3 shows the
results on the mix data. For clarification purposes, the most mimicked anti-viruses (and less) and the
best/worse classification techniques of the mimicking process are also shown in Table 2. The figures
show that the classifiers follow a ranking tendency, especially the top four, where those who are the
best at learning a specific anti-virus are also the best learning any of them. This is the case for booting,
ada, h2o.gbm, and h2o.rForest. This tendency does not apply for the following classifiers in the
quality ranking, where the classifiers mix. Nevertheless, the hierarchy of classification quality is the
same for every dataset, where boosting is always the predominant and the other 3 top algorithms
keep similar results. In every single dataset, the naiveBayes classifier obtains the worst results.

In terms of mimicking ranges, we can see that the global ranges are different between the three
datasets. The packed dataset has the best accuracy range, between 96.2% and 97.8% (Table 2, boosting)
of accuracy for the best classifier, and between 79.7% and 84.4% of accuracy for the worst (Table 2,
NBayes). The non-packed dataset has the worst results, between 85 and 96.2% of accuracy for the best
classifier (Table 2, boosting), and 71.4% and 79.7% for the worst (Table 2, NBayes). The mix dataset
has an intermediate range: the best is between 92.9% and 96.2% (Table 2, boosting), and the worst
between 76.4% and 86.5% (Table 2, NBayes). The results suggest that the packers tend to leave clearer
entropy patterns on the binary that those found on non-packed files, as different files tend to use
similar packers (this is also analysed in Section 4.3).

Research question 1 asked about the accuracy performance of MimickAV. It can, indeed, mimic the
behaviour of any anti-virus of VirusTotal reaching an accuracy up to 98% on packed data, and 96% on
non-packed and mix data, using a boosting classifier.

https://github.com/hdg7/MimickAV


Entropy 2019, 21, 513 9 of 19

●
●

●
● ● ● ●

●

●

●
●

●

● ● ●
● ●

●

●

● ● ●
● ● ●

●

● ● ● ●
● ●

●

●
● ●

●

● ●
●

●

●

●
●

●

●

● ●

● ●
●

● ●
● ●

●
●

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Packed Malware Mimicking
A

cc
ur

ac
y

S
A

S
py

w
ar

e
To

ta
lD

ef
en

se
C

la
m

A
V

B
ai

du
R

is
in

g
M

ic
ro

so
ft

A
hn

La
b−

V
3

S
ym

an
te

c
eG

am
bi

t
A

LY
ac

Ji
an

gm
in

F
−

P
ro

t
P

al
oa

lto
K

7A
nt

iV
iru

s
S

op
ho

s
A

rc
ab

it
C

AT
Q

H
ea

l
Z

on
eA

la
rm

A
d−

A
w

ar
e

C
M

C
C

ro
w

dS
tr

ik
e

In
vi

nc
ea

K
as

pe
rs

ky
K

in
gs

of
t

P
an

da
S

en
tin

el
O

ne
F

or
tin

et
A

va
st

T
he

H
ac

ke
r

T
M

H
ou

se
C

M
ic

ro
W

or
ld

V
IP

R
E

A
V

G
Tr

en
dM

ic
ro

B
itD

ef
en

de
r

Te
nc

en
t

V
B

A
32

V
iR

ob
ot

A
V

w
ar

e
M

cA
fe

e−
G

W
E

N
O

D
32

B
ka

v
G

D
at

a
F

−
S

ec
ur

e
E

m
si

so
ft

M
A

X
W

eb
ro

ot
A

vi
ra

D
rW

eb
Q

ih
oo

−
36

0
N

A
N

O
Ya

nd
ex

K
7G

W
C

om
od

o
C

yr
en

E
nd

ga
m

e
M

cA
fe

e

● ●
●

●
●

●

●

●

●
●

●
● ● ● ●

●
● ●

●
● ●

● ● ● ●
● ● ● ● ● ● ●

●
● ● ●

●

●
● ● ●

●
● ● ●

●
●

●
● ● ● ● ● ●

●
● ●●

● ●

●
● ●

●

●

●

●
●

●

●
● ● ●

●
●

●

●
●

●
● ● ●

●

●

●

● ●
●

●

●

● ● ●

●

● ●
●

●

●

●
● ●

●

● ●

● ●
●

● ●
● ●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●
●

●
●

●

●

● ● ●
●

● ●
●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ● ●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

IBk
ada
h2o.glm
naiveBayes

J48
boosting
h2o.rForest
nnet

JRip
gbm
knn
rpart

OneR
h2o.deepL
ksvm
svm

PART
h2o.gbm
lvq1
xgboost

Figure 1. Accuracy of the 20 classifiers on the 57 anti-viruses for the Pck data.

●

●

●

●

●

●
●

●
● ●

●
●

●

●
● ●

●
●

●

● ●

●
●

●

●
●

●
●

●
● ●

●

● ●
●

●

●
●

●

●

●
● ● ●

●
●

●
●

● ●

●
●

● ● ●

● ●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

No−Packed Malware Mimicking

A
cc

ur
ac

y

eG
am

bi
t

A
LY

ac
F

−
P

ro
t

A
d−

A
w

ar
e

S
A

S
py

w
ar

e
Ya

nd
ex

B
ka

v
Ji

an
gm

in
C

yr
en

R
is

in
g

W
eb

ro
ot

A
hn

La
b−

V
3

C
la

m
A

V
C

ro
w

dS
tr

ik
e

M
ic

ro
W

or
ld

B
itD

ef
en

de
r

K
7G

W
D

rW
eb

Te
nc

en
t

Q
ih

oo
−

36
0

G
D

at
a

B
ai

du
F

−
S

ec
ur

e
A

rc
ab

it
K

7A
nt

iV
iru

s
A

vi
ra

C
om

od
o

E
nd

ga
m

e
S

en
tin

el
O

ne
P

an
da

S
op

ho
s

Tr
en

dM
ic

ro
Z

on
eA

la
rm

K
as

pe
rs

ky
A

va
st

A
V

G
E

m
si

so
ft

V
B

A
32

In
vi

nc
ea

T
M

H
ou

se
C

M
cA

fe
e

M
ic

ro
so

ft
M

cA
fe

e−
G

W
E

N
O

D
32

N
A

N
O

C
AT

Q
H

ea
l

V
IP

R
E

A
V

w
ar

e
S

ym
an

te
c

P
al

oa
lto

F
or

tin
et

M
A

X
C

M
C

To
ta

lD
ef

en
se

T
he

H
ac

ke
r

V
iR

ob
ot

K
in

gs
of

t

●

●
● ● ● ●

●
● ● ●

● ● ●
● ●

● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ●

●
●

● ● ●
● ● ● ●

● ● ●
● ●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
● ●

● ●

●

●
●

● ●
●

●
●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●
● ● ●

●

●
●

● ● ●

●

●

● ● ●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

● ●
●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

● ● ●
●

●
● ●

●

● ●
● ●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

● ● ●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●
● ●

●
●

● ● ●

●

●
●

●
● ●

●

●

●

●
●

●

● ● ●
●

●
● ● ●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

IBk
ada
h2o.glm
naiveBayes

J48
boosting
h2o.rForest
nnet

JRip
gbm
knn
rpart

OneR
h2o.deepL
ksvm
svm

PART
h2o.gbm
lvq1
xgboost

Figure 2. Accuracy of the 20 classifiers on the 57 anti-viruses for the NPck data.



Entropy 2019, 21, 513 10 of 19

●

●

●

●

●

● ●

●
● ● ●

●

● ●
● ●

●
●

●

●
●

●

● ● ● ●
●

● ●

●
●

●
● ●

●

●

●
●

● ●
● ●

● ●
●

●
●

●

●
●

●

●

●

●

● ●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Mix Malware Mimicking
A

cc
ur

ac
y

eG
am

bi
t

T
he

H
ac

ke
r

A
d−

A
w

ar
e

C
M

C
S

A
S

py
w

ar
e

V
iR

ob
ot

K
in

gs
of

t
R

is
in

g
A

LY
ac

To
ta

lD
ef

en
se

Ji
an

gm
in

C
la

m
A

V
C

AT
Q

H
ea

l
A

hn
La

b−
V

3
F

−
P

ro
t

P
an

da
E

m
si

so
ft

Te
nc

en
t

W
eb

ro
ot

G
D

at
a

M
A

X
M

ic
ro

W
or

ld
S

op
ho

s
In

vi
nc

ea
V

B
A

32
B

ka
v

A
rc

ab
it

B
ai

du
D

rW
eb

Tr
en

dM
ic

ro
M

ic
ro

so
ft

A
V

G
S

en
tin

el
O

ne
K

7A
nt

iV
iru

s
C

yr
en

T
M

H
ou

se
C

Z
on

eA
la

rm
M

cA
fe

e−
G

W
C

om
od

o
Q

ih
oo

−
36

0
F

−
S

ec
ur

e
B

itD
ef

en
de

r
F

or
tin

et
Ya

nd
ex

N
A

N
O

K
7G

W
P

al
oa

lto
S

ym
an

te
c

A
V

w
ar

e
A

vi
ra

A
va

st
E

N
O

D
32

C
ro

w
dS

tr
ik

e
M

cA
fe

e
V

IP
R

E
K

as
pe

rs
ky

E
nd

ga
m

e

●
●

● ●

●

● ●
● ● ●

● ● ●
● ● ● ●

● ●
●

●

●
● ● ●

●
●

●
● ●

●
●

●
●

●
● ●

● ● ● ●
● ● ●

●
●

● ● ● ●
●

● ● ● ● ● ●●

●

●

●

●

● ●

●
●

● ●
●

● ●
● ●

●
●

●

●

●
●

● ● ● ●

●
●

●

● ●
●

● ●

●

●

●
●

● ●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
● ●

●
● ●

● ●

●
●

● ●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

● ●

●
●

●
●

●

●
●

●
●

●
●

●

● ● ●

●

● ● ●

● ●

● ●
●

●
●

●
● ●

● ●
●

●
● ● ● ●

●

●

●

●

●

●

●

●

●
● ●

● ●

●
● ● ●

●
●

●

● ● ●

● ●

●

●

●
●

● ●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●
●

●
●

●
● ●

● ● ● ●

●

●

●

●

●

●

●

IBk
ada
h2o.glm
naiveBayes

J48
boosting
h2o.rForest
nnet

JRip
gbm
knn
rpart

OneR
h2o.deepL
ksvm
svm

PART
h2o.gbm
lvq1
xgboost

Figure 3. Accuracy of the 20 classifiers on the 57 anti-viruses for the Mix data.

Table 2. Accuracy results for the best and worst classifiers and anti-viruses.

Model Top 2 MimickAV Bottom 2 MimickAV

Pck boosting SASpyware (97.8) TotalDefense (97.8) Endgame (96.2) McAfee (96.2)
NPck boosting eGambit (96.2) ALYac (94.7) ViRobot (86.4) Kingsoft (85.0)
Mix boosting eGambit (96.2) TheHacker (95.7) Kaspersky (93.0) Endgame (92.9)

Pck ada SASpyware (97.3) TotalDefense (97.1) K7GW (95.5) Cyren (95.5)
NPck ada eGambit (95.1) Ad-Aware (94.0) ViRobot (86.3) Kingsoft (84.9)
Mix ada TheHacker (95.3) eGambit (95.2) Avast (92.0) CrowdStrike (91.9)

Pck h2o.gbm TotalDefense (97.1) SASpyware (97.0) K7GW (95.4) Cyren (95.4)
NPck h2o.gbm eGambit (95.1) ALYac (93.7) ViRobot (86.4) Kingsoft (84.7)
Mix h2o.gbm TheHacker (95.2) eGambit (95.0) Avast (91.9) Endgame (91.8)

Pck OneR AhnLab-V3 (88.7) Kaspersky (88.5) GData (86.0) MAX (86.0)
NPck OneR ALYac (89.1) eGambit (88.5) TrendMicro (80.1) Kingsoft (78.6)
Mix OneR Ad-Aware (86.3) ALYac (85.5) Bkav (80.3) TMHouseC (79.6)

Pck nnet Rising (91.5) AhnLab-V3 (91.4) ALYac (86.2) NANO (85.6)
NPck nnet eGambit (88.2) ALYac (88.2) Bkav (77.7) ViRobot (77.7)
Mix nnet Baidu (87.3) eGambit (87.1) TMHouseC (81.9) Kingsoft (81.4)

Pck NBayes Panda (84.4) TotalDefense (84.1) Paloalto (80.2) ENOD32 (79.7)
NPck NBayes TMHouseC (79.7) TheHacker (78.7) Kingsoft (72.0) SASpyware (71.4)
Mix NBayes CMC (86.5) TrendMicro (82.9) GData (77.3) SASpyware (76.4)

4.2. Precision of MimickAV

The main goal of MimickAV is to understand how an anti-virus is predicting malware in order
to provide an imitation of this prediction. In this black hat scenario, it is important to make sure that
MimickAV produces the lowest possible number of false negatives, as a false negative in this imitation



Entropy 2019, 21, 513 11 of 19

process is a variant that will be detected in the wild. Therefore, in this context, we aim to study the
negative predictive value, defined as the rate between true negatives and total negatives. For this
reason, we studied the inverse ROC curve, focusing on the trade off between false and true negatives
depending on the classifier prediction threshold.

Based on the results of Table 2, we choose the best classifier (boosting) to evaluate the limits on
the AV imitation process. Table 3 shows the specific accuracy results for the top and bottom anti-viruses.
The table shows the evolution of true and false negatives rate, as we move the detection threshold
from 1 to 0, and compare these two values. It also divides the comparisons on the three different
datasets considered: Pck, NPck, and Mix. These results are also graphically represented in Figure 4.
We can see that for both, the PcK data and the Mix data, all the anti-viruses have similar results in the
curve evolution, however, in the case of NPck, there is a representative difference between the best and
the worse.

Table 3. False negatives and true negatives rates for the best and worst anti-virus (AV) predictions of
boosting. Bold characters highlight the best results.

TNR/FNR 0 0.002 0.01 0.05 0.1 0.15

Pck SASpyware 0.04 0.11 0.93 0.99 1.0 1.0
Pck TotalDefense 0.05 0.26 0.80 0.99 1.0 1.0
Pck Endgame 0.01 0.03 0.93 0.98 0.99 1.0
Pck McAfee 0.20 0.64 0.81 0.99 1.0 1.0

NPck eGambit 0.80 0.83 0.88 0.96 0.98 0.98
NPck ALYac 0.06 0.26 0.64 0.94 0.97 0.98
NPck ViRobot 0.18 0.24 0.48 0.73 0.80 0.88
NPck Kingsoft 0.09 0.12 0.25 0.54 0.72 0.82

Mix eGambit 0.08 0.14 0.79 0.96 0.98 0.99
Mix TheHacker 0.01 0.13 0.58 0.91 0.97 0.98
Mix Kaspersky 0.13 0.51 0.60 0.94 0.97 0.99
Mix Endgame 0.11 0.19 0.68 0.92 0.96 0.98

0.00 0.05 0.10 0.15 0.20

0.
6

0.
7

0.
8

0.
9

1.
0

ROC Curves Packed

False Negative Rate

Tr
ue

 N
eg

at
iv

e 
R

at
e

SASpyware
TotalDefense
Endgame
McAfee

0.00 0.05 0.10 0.15 0.20

0.
6

0.
7

0.
8

0.
9

1.
0

ROC Curves Non−Packed

False Negative Rate

Tr
ue

 N
eg

at
iv

e 
R

at
e

eGambit
ALYac
ViRobot
Kingsoft

0.00 0.05 0.10 0.15 0.20

0.
6

0.
7

0.
8

0.
9

1.
0

ROC Curves Mix

False Negative Rate

Tr
ue

 N
eg

at
iv

e 
R

at
e

eGambit
TheHacker
Kaspersky
Endgame

Figure 4. Boosting results of the inverse ROC curves (true vs false negative rates) for the best and worst
anti-viruses.

Focusing on the evolution of the threshold, when the curve reaches 0.01 false negatives rate, every
anti-virus of the PcK data is over an 0.8 true negatives rate. This means that for every malicious variant
that MimickAV classifies as benign, 80% will also be classified as benign by the anti-virus, with 1%
error. This is even more relevant when the curve reaches 0.05 where, at least, 98% will be successfully
mimicked, with 5% error. In the case of the Mix data, these values go a bit lower, but it can still imitate
this behaviour for more than 90% with 5% error. In NPck malware the results are similar to the results
of Mix on those anti-viruses that are easy to imitate, but they are reduced on those that are harder,
especially in Kingsoft, which is the most resistant.



Entropy 2019, 21, 513 12 of 19

Research question 2 asked about the negative predictive value of MimickAV. MimickAV shows a really
strong confidence when it provides a negative prediction, especially relevant on packed malware,
where it can predict 98% of variants with 5% error.

4.3. Detection by Packers

In order to understand which predictions were more sensitive to the packer system, we leverage
the knowledge provided by Yara to identify which packers are more and less resistant to our imitation
methodology. This is motivated by the alterations on entropy produced by different packers [9].
Table 4 extends the results of Table 2, considering the results of boosting for the top and bottom
anti-viruses, with the packers families and the detections related to them, for both, the packed malware
and benign-ware in test.

These results show that ASProtect is the less challenging packer (100% for every anti-virus), while
the most resistant is ASPack, whose values are ranged between 75% to 100%. All packer systems, but
ASPack have detection probabilities above 90%. Some specific packers like UPX and NET, which have
the majority of instances according to Table 1, have an accuracy above 95% (UPX ranges from 97% to
98% and NET form 95% to 97%). Borland, which also has a strong number of instances, ranges from
92% to 97%. The rest of the packers range from 96% to 98%. This suggests that, with the exception of
ASPack, the different packers are not having a strong influence on the selection of entropy profiles for
the analysis.

Research question 3 asked about the influence of packers systems on the accuracy. Packers do not
affect the accuracy significantly, except for ASPack, as their accuracy is always above 90%.

Table 4. Breakdown of boosting in Table 2, divided into packing systems of Pck. Bold characters
highlight the best results, in this case, results higher than 99%.

Packer SASpyware TotalDefense Endgame McAfee

Armadillo 97.30% 94.87% 95.12% 96.88%
ASPack 75.00% 100.0% 80.00% 93.33%
ASProtect 100.0% 100.0% 100.0% 100.0%
Borland 97.20% 93.66% 92.16% 94.48%
NET 97.96% 96.51% 95.49% 96.64%
PEComp 100.0% 100.0% 93.55% 97.30%
UPX 98.22% 97.98% 97.69% 97.35%
Rest 98.43% 98.22% 96.23% 98.09%

4.4. Anti-Virus Quality

This last part aims to understand which anti-viruses are more and less resistant to the mimicking
process. Based on the previous results from Section 4.1, we consider the boosting classifier results
to create an anti-virus ranking, based on the detection abilities of each anti-virus engine in the three
datasets (see Figures 1–3). Under these conditions, Table 5 shows the ranking with the 57 anti-viruses
considered in this work, providing for each anti-virus the mean detection between the three datasets.

There are ten anti-viruses whose imitation accuracy is higher than 95%, headed by eGambit,
SUPERAntiSpyware, and Ad-Aware. Forty-five anti-viruses have accuracy detection values betweeen
94% and 95% and only two (ViRobot and Kingsoft) have an accuracy detection under the 93%. Based
on these results, and the features that we have used, it is reasonable to consider two main outcomes
from them. First, entropy profiles can provide rich information to learn about how anti-viruses are
working and, although anti-viruses might not be using entropy profiles directly for detecting malware,
they are using features which are, in some way, correlated with the entropy profiles. Otherwise,
these imitation rates would be lower. The second conclusion that we can extract from these results
is that current anti-virus engines might share information. This can be intuited by analysing, on one



Entropy 2019, 21, 513 13 of 19

hand, the 45 anti-virus programs whose detection rates lie between 94% and 95% of Table 5 (these
detection values are extremely similar), and, on the other hand, the detection tendencies of the top 4
classifiers of Figures 1–3, where they grow and decrease similarly at different moments, depending on
the anti-viruses.

Research question 4 asked about the accuracy of the most and less resistant anti-viruses. Although it is
clear from the accuracy results that eGambit, SUPERAntiSpyware, and Ad-Aware are the most sensitive
anti-viruses and ViRobot and Kingsoft the most resistant, our results show that some anti-viruses
might share information, as their behaviours are similar according to the top classifiers.

Table 5. Whole anti-virus ranking after applying MimickAV with boosting. These results show the
mean of the three datasets.

Anti-Virus Accuracy Anti-Virus Accuracy Anti-Virus Accuracy

eGambit 96.50% TotalDefense 94.74% K7GW 94.48%
SASpyware 95.75% CATQHeal 94.74% Comodo 94.44%
Ad-Aware 95.65% K7AntiVirus 94.71% McAfee-GW 94.44%
ALYac 95.53% Cyren 94.70% TheHacker 94.41%
Rising 95.40% BitDefender 94.68% Symantec 94.38%
F-Prot 95.36% DrWeb 94.68% MAX 94.38%
Jiangmin 95.33% Microsoft 94.65% Avira 94.34%
ClamAV 95.21% Invincea 94.64% Avast 94.33%
AhnLab-V3 95.15% SentinelOne 94.64% Paloalto 94.33%
Bkav 95.00% ZoneAlarm 94.60% Kaspersky 94.33%
Webroot 94.92% Qihoo-360 94.60% Fortinet 94.30%
MicroWorld 94.90% Emsisoft 94.60% NANO 94.24%
Baidu 94.89% TrendMicro 94.59% AVware 94.24%
Tencent 94.85% CrowdStrike 94.59% ENOD32 94.23%
GData 94.82% F-Secure 94.59% VIPRE 94.20%
Arcabit 94.79% VBA32 94.59% Endgame 94.13%
Sophos 94.77% CMC 94.57% McAfee 94.07%
Panda 94.77% AVG 94.52% ViRobot 92.70%
Yandex 94.74% TMHouseC 94.50% Kingsoft 92.30%

5. Related Work

Malware detection techniques have been widely studied in the literature. Section 5.1 provides
an overview on the malware arms race. It describes different malware detection techniques based on
both static and dynamic analysis, providing some details about different architectures and evasion
techniques. Section 5.2 focuses on the application of entropy to malware detection, while Section 5.3
focuses on the importance of anti-viruses research, paying special attention to VirusTotal.

5.1. The Malware Arms Race

Malware detection is one of the main sides on the malware arms race. Every time white hats take
a step forward, as a reaction to different malicious attacks, black hats find a way to evade this defense,
producing a competitive co-evolution between both sides [9].

The main state of the art detection strategies for malware detection are based on static and
dynamic analysis. Related to our scenario, Windows malware analysis, there are several methods
based on static analysis, like [35], where Santos el at. use disassembled sequences of code, or Opcodes,
to discriminate malware from benign-ware, or [36], where Martin et al. use third party library calls to
detect invariants for malicious behaviours. From the dynamic analysis perspective, there are several
tools that perform traces analysis, such as [37,38] which are based on Cuckoo [4], a virtualization
system that extract traces from malware. Similar systems use modifications of QEMU [39] with the
same aim [40]. There are also extensions of dynamic analysis that are specifically designed to deal with
packers, such as [41].



Entropy 2019, 21, 513 14 of 19

In different architectures, or types of malware, there are also relevant examples of tools and
analysis methodologies. The most populars are those analysing PDF [42], JavaScript [43] and
Android [44] malware. Android malware itself is becoming extremely relevant these days [45], and lots
of researchers are contributing to this field with several new analysis and detection tools [46,47]. From
a static perspective, there are examples like FlowDroid [48], designed to analysise data flows. From
dynamic analysis, there are examples like CopperDroid [49], which can analyse traces embedding the
Android application into its own virtualization.

According to the most popular detection mechanism, the current state of the art is focused on
machine learning techniques [50]. Several examples leverage the information extracted by the previous
tools to obtain software features, in order to use them for distinguishing malware from benign-ware [51].
From the static analysis perspective, these features can either feed a classification algorithm (like those
described in Section 3.4), using imports [36], opcodes [35], or byte-code n-grams [52]. There are also
tools like RevealDroid combining several of these features [53]. From dynamic analysis, the classifiers
can also use traces [54], registers [55], or sequences of system calls [56] to obtain high detection accuracy.
Machine learning also allows to easily generate hybrid models by combining these features [57].

Nevertheless, there are currently several works proving that machine learning is weak in front of
adversaries [50]. The main problem where this sensitiveness relies is the hypothesis that the train and
test probability distributions must be equal. Although this assumption has shown its validity with
malware in the wild [51], it fails when an adversary has knowledge either on the oracle that decides
about the malicious nature of the software, the features chosen for the discrimination process, or the
trained model [50]. The work of Biggio and others [58] has shown several examples on how these
techniques can be easily defeated. Besides, in the malware detection field, tools such as EvadeML [59],
IagoDroid [5], or EEE [9] have proved that those features representing the malware can help to learn
how to create undetectable variants.

Current studies are trying to deal with this evasion problem from different perspectives.
The works of Goodfellow et al. [60] try to improve the capabilities of classifiers by detecting the
adversarial attack directly. Other works leverage game theory, defining a reactive game between the
attacker and the defender, and trying to measure its Nash equilibrium [61]. This helps to understand
the limitations of the classifiers. However, defending machine learning algorithms from adversaries is
still an open problem that requires further investigation.

5.2. Entropy on Malware Detection

Entropy has served as one of the main detection metrics for malware for, at least, the last ten
years [62]. Originally, it was able to obtain good prediction results, especially after the application of
compression or encryption mechanisms for concealing the malware from anti-viruses. The mechanisms
left a clear entropy signature that made them detectable [62]. However, as an aggregated measure,
it is easily evaded [9], therefore, several authors have either tried to complement it with other metrics
based on information theory, such as the normalized compression distance [63], or have given it a
different nature, such as the work of Sorokin on structural entropy [8].

Sorokin’s work inspires this paper. On structural entropy, the binary is also divided into fixed
size chunks. Nevertheless, the comparison between files is based on a segmentation process that
summarizes the information of all the chunks sequence. This summarization is less precise than
considering the whole entropy signature or profile, as our previous work has shown [9]. As we require
as much information as possible for our micmicking process, we maintained our previous decision
of leveraging the whole entropy profile [9]. It is also important to remark that, although entropy has
proven to accurately imitate anti-virus behaviours (Section 4.4), we have evidence from our previous
work that entropy can be manipulated to defeat classifiers [9], therefore, our future work will measure
the influence of these manipulations on real anti-viruses.



Entropy 2019, 21, 513 15 of 19

5.3. Anti-Viruses and VirusTotal

Anti-virus software has evolved in the last years. Originally, it was based on signature-based
detection on the binary file, but polymorphism and metamorphism force it to consider other features in
order to extend this detection and make it more accurate [64]. Besides, several anti-virus engines have
unpacking tools in order to detect malware hidden by known packers. Nevertheless, this technology
still relies on signatures, as it is the most precise method in terms of reducing false positives, producing
huge datsets of malware signatures. Currently, there are several projects aiming to enrich the anti-virus
information with extra analysis, in order to mitigate malware, such as VirusTotal [6].

VirusTotal has helped several researchers to obtain a ground truth on malware detection [65].
This platform provides rich information about the malware binaries, apart of its detection, providing a
rich analysis surface. Some works have also leveraged VirusTotal not only to provide the detection,
but also to obtain information about the malware families. A good example is AVClass [66]. VirusTotal
has also been used to test anti-viruses quality. A good example is Mystique [67]. This auditing tool
generates malware variants based on different attack and evasion features. These variants are evaluated
against VirusTotal and other anti-malware systems to show their sensitiveness to simple changes.
Similarly, DroidChameleon [68] shows how simple and trivial transformation significantly affect the
performance of anti-viruses. This was also recently remarked on the work of Hammad et al. [69]
that focused these transformation on code obfuscations, discovering that they significantly affect
the performance of the anti-viruses. However, at the moment, no work has been focused on trying
to imitate the individual anti-viruses behaviour. It is also important to remark that VirusTotal has
limitations related to unification of criteria—especially for families [66], and deepness of the analysis.
For this reason, we have used malware that is, at least, two years old and has higher probability to be
on the VirusTotal dataset, since it comes from a public repository (VirusShare).

6. Conclusions and Future Work

Understanding the decisions performed by different anti-viruses is reachable by combining
entropy-based features and machine learning, as our tool, MimickAV, has proven. We have shown that
for 57 anti-virus engines, MimickAV is able to imitate their behaviour with high accuracy, reaching up
to 98% accuracy. It also provides especially good results when it applies a classifier based on boosting.
We have also proven that even when the malware is concealed by different packers, which normally
alters the entropy of the binary itself, the detection rate is not reduced. Our experimentation has
shown that these vulnerabilities might be a consequence of the shared information between different
anti-virus companies, as several of them produce similar imitation patterns during the analysis.

According to our results, MimickAV has different auditing applications. From the attacker’s
perspective, this similarity between the machine learning model and the anti-virus reduces the needs
to check whether a new piece of malware is malicious by using an anti-virus. Therefore, MimickAV
reduces the risk of sending the malicious software to the anti-virus company that can perform a
deeper analysis finding indicators of compromise. Besides, it is possible that specific modifications
to the software that reduce the detection probability of MimickAV might also reduce the detection
probability of the specific anti-virus engine, for instance, specific obfuscations that have proven to
reduce the detection abilities on anti-viruses [69]. From the defenders perspective, MimickAV shows
that anti-viruses are predictable using machine learning methods combined with entropy profiles, and
it is relevant to reduce this prediction probability to make sure that they can still contribute to protect
computers. Adding more features to the anti-virus prediction, probably extracted from dynamic and
static analysis, will decrease this dependency on entropy, which only uses information of the binary
itself. This is extremely relevant as the detection of disk resident malware has to be performed before
the malware has enough time to infect the system. White hats can leverage MimickAV as a “fitness
function”, i.e., as a method to help them to make anti-virus software less predictable, with the aim of
defeating this technique, improving the quality of their engines.

Our future work will focus on extending these ideas to the malware families prediction, and
measuring how this information can impact on real anti-viruses. We aim to create variants that



Entropy 2019, 21, 513 16 of 19

can defeat these classifiers independently, in order to measure how the strongest ones affect the
anti-viruses. This will provide stronger intuition about the importance of our achievements not only
with information in the wild, but also with adversarial intentions.

Author Contributions: Both authors have contributed significantly and complementary to the whole research
process to develop this work.

Funding: This research was funded by EPSRC under InfoTestSS grant EP/P006116/1 and SeMaMatch grant
EP/K032623/1. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V
GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Meng, G.; Patrick, M.; Xue, Y.; Liu, Y.; Zhang, J. Securing Android App Markets via Modelling and Predicting
Malware Spread between Markets. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1944–1959. [CrossRef]

2. Bertino, E.; Islam, N. Botnets and internet of things security. Computer 2017, 50, 76–79. [CrossRef]
3. Sikorski, M.; Honig, A. Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software;

No Starch Press: San Francisco, CA, USA, 2012.
4. Oktavianto, D.; Muhardianto, I. Cuckoo Malware Analysis; Packt Publishing Ltd.: Birmingham, UK, 2013.
5. Calleja, A.; Martín, A.; Menéndez, H.D.; Tapiador, J.; Clark, D. Picking on the family: Disrupting android

malware triage by forcing misclassification. Expert Syst. Appl. 2018, 95, 113–126. [CrossRef]
6. Total, V. Virustotal-Free Online Virus, Malware and Url Scanner. 2012. Available online: https://www.

virustotal.com/en (accessed on 1 March 2019).
7. Gandotra, E.; Bansal, D.; Sofat, S. Malware analysis and classification: A survey. J. Inf. Secur. 2014, 5, 56–64.

[CrossRef]
8. Sorokin, I. Comparing files using structural entropy. J. Comput. Virol. 2011, 7, 259–265. [CrossRef]
9. Menéndez, H.D.; Bhattacharya, S.; Clark, D.; Barr, E.T. The arms race: Adversarial search defeats entropy

used to detect malware. Expert Syst. Appl. 2019, 118, 246–260. [CrossRef]
10. Bhattacharya, S.; Menéndez, H.D.; Barr, E.; Clark, D. Itect: Scalable information theoretic similarity for

malware detection. arXiv Preprint 2016, arXiv:1609.02404.
11. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 2014.
12. Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27.

[CrossRef]
13. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999,

9, 293–300. [CrossRef]
14. Cohen, W.W. Fast Effective Rule Induction. In Twelfth International Conference on Machine Learning; Morgan

Kaufmann: Burlington, MA, USA, 1995; pp. 115–123.
15. Domingos, P.; Pazzani, M. On the optimality of the simple Bayesian classifier under zero-one loss.

Mach. Learn. 1997, 29, 103–130. [CrossRef]
16. Barandiaran, I. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal.

Mach. Intell. 1998, 20, 832–844.
17. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth

International Conference on International Conference on Machine Learning, Bari, Italy, 3–6 July 1996;
pp. 148–156.

18. Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A Gen. 1972, 135, 370–384.
[CrossRef]

19. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002;
ISBN 0-387-95457-0.

20. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
21. Japkowicz, N.; Shaju Stephen The class imbalance problem: A systematic study Intell. Data Anal. 2002,

6, 429–449. [CrossRef]
22. Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M.

mlr: Machine Learning in R. J. Mach. Learn. Res. 2016, 17, 1–5.

http://dx.doi.org/10.1109/TIFS.2018.2889924
http://dx.doi.org/10.1109/MC.2017.62
http://dx.doi.org/10.1016/j.eswa.2017.11.032
https://www.virustotal.com/en
https://www.virustotal.com/en
http://dx.doi.org/10.4236/jis.2014.52006
http://dx.doi.org/10.1007/s11416-011-0153-9
http://dx.doi.org/10.1016/j.eswa.2018.10.011
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1023/A:1007413511361
http://dx.doi.org/10.2307/2344614
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3233/IDA-2002-6504


Entropy 2019, 21, 513 17 of 19

23. Hornik, K.; Buchta, C.; Zeileis, A. Open-Source Machine Learning: R Meets Weka. Comput. Stat. 2009,
24, 225–232. [CrossRef]

24. Frank, E.; Witten, I.H. Generating Accurate Rule Sets Without Global Optimization. In Fifteenth International
Conference on Machine Learning; Shavlik, J., Ed.; Morgan Kaufmann: Burlington, MA, USA, 1998; pp. 144–151.

25. Breiman, L. Classification and Regression Trees; Routledge: New York, NY, USA, 2017.
26. Aha, D.; Kibler, D. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [CrossRef]
27. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27.

[CrossRef]
28. Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab—An S4 Package for Kernel Methods in R. J. Stat.

Softw. 2004, 11, 1–20. [CrossRef]
29. Holte, R. Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 1993,

11, 63–91. [CrossRef]
30. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with

discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [CrossRef]
31. Culp, M.; Johnson, K.; Michailidis, G. ada: An r package for stochastic boosting. J. Stat. Softw. 2006, 17, 9.

[CrossRef]
32. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.

[CrossRef]
33. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 785–794.

34. Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 2007.
35. Santos, I.; Brezo, F.; Nieves, J.; Penya, Y.K.; Sanz, B.; Laorden, C.; Bringas, P.G. Idea: Opcode-sequence-based

malware detection. In Proceedings of the International Symposium on Engineering Secure Software and
Systems, Pisa, Italy, 3–4 February 2010; pp. 35–43.

36. Martín, A.; Menéndez, H.D.; Camacho, D. MOCDroid: Multi-objective evolutionary classifier for Android
malware detection. Soft Comput. 2017, 21, 7405–7415. [CrossRef]

37. Shijo, P.; Salim, A. Integrated static and dynamic analysis for malware detection. Procedia Comput. Sci. 2015,
46, 804–811. [CrossRef]

38. Vasilescu, M.; Gheorghe, L.; Tapus, N. Practical malware analysis based on sandboxing. In Proceedings of
the 2014 RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event RENAM
8th Conference, Chisinau, Moldova, 11–13 September 2014; pp. 1–6.

39. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual Technical
Conference, FREENIX Track, Anaheim, CA, USA, 10–15 April 2005; Volume 41, p. 46.

40. Kang, M.G.; Yin, H.; Hanna, S.; McCamant, S.; Song, D. Emulating emulation-resistant malware.
In Proceedings of the 1st ACM Workshop on Virtual Machine Security, Chicago, IL, USA, 9 November 2009;
pp. 11–22.

41. Kawakoya, Y.; Iwamura, M.; Itoh, M. Memory behavior-based automatic malware unpacking in stealth
debugging environment. In Proceedings of the 2010 5th International Conference on Malicious and Unwanted
Software, Nancy, France, 19–20 October 2010; pp. 39–46.

42. Laskov, P.; Šrndić, N. Static detection of malicious JavaScript-bearing PDF documents. In Proceedings
of the 27th Annual Computer Security Applications Conference, Orlando, FL, USA, 5–9 December 2011;
pp. 373–382.

43. Curtsinger, C.; Livshits, B.; Zorn, B.G.; Seifert, C. ZOZZLE: Fast and Precise In-Browser JavaScript Malware
Detection. In Proceedings of the USENIX Security Symposium, San Francisco, CA, USA, 8–12 August 2011;
pp. 33–48.

44. Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 95–109.

45. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Ribagorda, A. Evolution, detection and analysis of malware
for smart devices. IEEE Commun. Surv. Tutor. 2014, 16, 961–987. [CrossRef]

46. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Blasco, J. Dendroid: A text mining approach to analyzing
and classifying code structures in android malware families. Expert Syst. Appl. 2014, 41, 1104–1117.
[CrossRef]

http://dx.doi.org/10.1007/s00180-008-0119-7
http://dx.doi.org/10.1007/BF00153759
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.18637/jss.v011.i09
http://dx.doi.org/10.1023/A:1022631118932
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.18637/jss.v017.i02
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1007/s00500-016-2283-y
http://dx.doi.org/10.1016/j.procs.2015.02.149
http://dx.doi.org/10.1109/SURV.2013.101613.00077
http://dx.doi.org/10.1016/j.eswa.2013.07.106


Entropy 2019, 21, 513 18 of 19

47. Martín, A.; Calleja, A.; Menéndez, H.D.; Tapiador, J.; Camacho, D. ADROIT: Android malware detection
using meta-information. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8.

48. Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Le Traon, Y.; Octeau, D.; McDaniel, P.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps.
ACM Sigplan Not. 2014, 49, 259–269. [CrossRef]

49. Tam, K.; Khan, S.J.; Fattori, A.; Cavallaro, L. CopperDroid: Automatic Reconstruction of Android Malware
Behaviors. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA,
USA, 8–11 February 2015.

50. Chio, C.; Freeman, D. Machine Learning and Security: Protecting Systems with Data and Algorithms;
O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018.

51. Saxe, J.; Sanders, H. Malware Data Science: Attack Detection and Attribution; No Starch Press: San Francisco,
CA, USA, 2018.

52. Martín, A.; Menéndez, H.D.; Camacho, D. String-based malware detection for android environments.
In Proceedings of the International Symposium on Intelligent and Distributed Computing, Paris, France,
10–12 October 2016, pp. 99–108.

53. Garcia, J.; Hammad, M.; Malek, S. Lightweight, obfuscation-resilient detection and family identification of
Android malware. ACM Trans. Softw. Eng. Methodol. 2018, 26, 11. [CrossRef]

54. Nari, S.; Ghorbani, A.A. Automated malware classification based on network behavior. In Proceedings of
the 2013 International Conference on Computing, Networking and Communications, San Diego, CA, USA,
28–31 January 2013; pp. 642–647.

55. Leder, F.; Steinbock, B.; Martini, P. Classification and detection of metamorphic malware using value set
analysis. In Proceedings of the 2009 4th International Conference on Malicious and Unwanted Software
(MALWARE), Montréal, QC, Canada, 13–14 October 2009; pp. 39–46.

56. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep learning for classification of malware system call
sequences. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Hobart, Tasmania,
Australia, 5–9 December 2016; pp. 137–149.

57. Santos, I.; Devesa, J.; Brezo, F.; Nieves, J.; Bringas, P.G. Opem: A static-dynamic approach for
machine-learning-based malware detection. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12
Special Sessions; Springer: Berlin/Heidelberg, Germany, 2013; pp. 271–280.

58. Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit.
2018, 84, 317–331. [CrossRef]

59. Xu, W.; Qi, Y.; Evans, D. Automatically evading classifiers. In Proceedings of the 2016 Network and
Distributed Systems Symposium, San Diego, CA, USA, 21–24 February 2016; pp. 21–24.

60. Goodfellow, I.; McDaniel, P.; Papernot, N. Making machine learning robust against adversarial inputs.
Commun. ACM 2018, 61, 56–66. [CrossRef]

61. Zhou, Y.; Kantarcioglu, M.; Xi, B. A survey of game theoretic approach for adversarial machine learning.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 9, e1259. [CrossRef]

62. Lyda, R.; Hamrock, J. Using entropy analysis to find encrypted and packed malware. IEEE Secur. Privacy
2007, 5, 40–45. [CrossRef]

63. Alshahwan, N.; Barr, E.T.; Clark, D.; Danezis, G. Detecting Malware with Information Complexity.
arXiv Preprint 2015, arXiv:1502.07661.

64. Lin, D.; Stamp, M. Hunting for undetectable metamorphic viruses. J. Comput. Virol. 2011, 7, 201–214.
[CrossRef]

65. Sanz, B.; Santos, I.; Laorden, C.; Ugarte-Pedrero, X.; Nieves, J.; Bringas, P.G.; Álvarez Marañón, G. MAMA:
Manifest analysis for malware detection in Android. Cybern. Syst. 2013, 44, 469–488. [CrossRef]

66. Sebastián, M.; Rivera, R.; Kotzias, P.; Caballero, J. Avclass: A tool for massive malware labeling.
In International Symposium on Research in Attacks, Intrusions, and Defenses; Springer: Cham, Switzerland, 2016;
pp. 230–253.

67. Meng, G.; Xue, Y.; Mahinthan, C.; Narayanan, A.; Liu, Y.; Zhang, J.; Chen, T. Mystique: Evolving android
malware for auditing anti-malware tools. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, Xi’an, China, 30 May–3 June 2016; pp. 365–376.

http://dx.doi.org/10.1145/2666356.2594299
http://dx.doi.org/10.1145/3162625
http://dx.doi.org/10.1016/j.patcog.2018.07.023
http://dx.doi.org/10.1145/3134599
http://dx.doi.org/10.1002/widm.1259
http://dx.doi.org/10.1109/MSP.2007.48
http://dx.doi.org/10.1007/s11416-010-0148-y
http://dx.doi.org/10.1080/01969722.2013.803889


Entropy 2019, 21, 513 19 of 19

68. Rastogi, V.; Chen, Y.; Jiang, X. Droidchameleon: Evaluating android anti-malware against transformation
attacks. In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, Hangzhou, China, 8–10 May 2013; pp. 329–334.

69. Hammad, M.; Garcia, J.; Malek, S. A large-scale empirical study on the effects of code obfuscations on
Android apps and anti-malware products. In Proceedings of the 40th International Conference on Software
Engineering, Gothenburg, Sweden, 27 May–3 June 2018; pp. 421–431.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	MimickAV: Mimicking Anti-Virus Software
	Entropy Profiles
	Classification

	Experimental Setup
	Research Goals
	Evaluation Data
	Anti-Virus Selection
	Classification Algorithms

	Experiments
	Performance of MimickAV
	Precision of MimickAV
	Detection by Packers
	Anti-Virus Quality

	Related Work
	The Malware Arms Race
	Entropy on Malware Detection
	Anti-Viruses and VirusTotal

	Conclusions and Future Work
	References

