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1 Introduction

The importance of analysing large quantities of data
is growing as a consequence of the rapid generation
of data from social interactions, smart devices, WiFi
and networks, among other sources [1]. Several
methodologies have been extended in order to deal
with the scale of the data. Recently, there has been an
increased interest in methodologies based on MapReduce
[1] and online analysis [2]. The former is an approach
designed to parallelise the execution of an algorithm by
using several nodes to distribute computation in two
steps: map (takes an input pair and produces a set of
intermediate values) and reduce (merges intermediate
values to form a smaller set of values). Online analysis is
a methodology where data instances are only processed
once and the system keeps no information about
old instances, reducing the memory use to allow an
algorithm to work with datasets where there are strong
density variation.

There are several data mining approaches that deal
with dense data. The most relevant ones are those
based on supervised and unsupervised learning [3]. Since
supervised techniques usually need human assistant in
a manual labelling process, which in many cases is
costly, unsupervised techniques are gaining importance
in this area [2]. One of the most relevant unsupervised
techniques is clustering. Clustering is defined as the
process of grouping data blindly, using a similarity
criterion. Clustering algorithms have been extensively
used in several heterogeneous fields [3].

Clustering can be divided into several sub-areas [3],
such as centroid, medoid, hierarchical and continuity-
based. This work is based on the latter. Continuity-based
clustering is a methodology focused on the identification
of manifolds within the data. Manifolds are structures
defined by the data points inside the search space [4]—
i.e., groups of data instances that define a specific form,
such as a sphere or a cube. This work aims to extend
the Spectral-based ACO Clustering (SACOC) algorithm
by incorporating the Nyström extension [5]. SACOC is
a bio-inspired clustering algorithm based on Ant Colony
Optimisation (ACO) [6].

ACO algorithms are based on the foraging behaviour
of the ants: many ants species are able to find the
shortest path between their nest and a food source
without any visual aid. All communication is performed
indirectly by means of pheromone. Ants use pheromones
to indicate the path that they have followed, and since
ants following shorter paths are faster, more pheromone
is deposited—the greater the pheromone concentration,
the more attractive a path becomes for other ants.
Eventually, all ants will follow the same path, which
in most cases corresponds to the shortest path between
the nest and a food source. ACO extends this idea
to optimization problems and it has been successfully
applied in several fields, such as data mining [7, 8].

The SACOC extension proposed in this paper, called
SACON, applies a space approximation using a sub-

sample of the dataset. This reduces the computational
time of the algorithm since it does not need to calculate
the similarity metric value for each data pair, allowing
the algorithm to deal efficiently with larger datasets. It
guarantees accurate solutions even when the reduction
has been applied. It is evaluated using several continuity-
based dense datasets and the results are compared
against online clustering algorithms and the Nyström
extension of spectral clustering.

The paper is structured as follows: Section 2 presents
the related work, Section 3 introduces the SACOC
algorithm, which is extended in Section 4 to create
the new SACON algorithm. Section 5 shows the
experimental setup used in the experiments presented in
Section 6. Finally, Section 7 presents the conclusions.

2 Related Work

Clustering has been widely used in several heterogeneous
areas, where the vast amount of data make clustering
a promising technique given that it can deal with
unlabelled data, while classification usually needs a
previous (manual) labelling process. Current challenges
are focused on dense and stream data analysis,
where online clustering techniques are popular. Another
area receiving increasing attention is continuity-based
clustering for manifold identification, since it can be used
to deal with dense data problems. In this section we
review related work on both online and continuity-based
clustering, and previous ACO approaches for clustering.

2.1 Online Clustering

The idea behind online clustering algorithm is to analyse
this data using real-time techniques. These techniques
usually need to deal with large quantities of data, making
them suitable for dense data problems. One of the
main challenges of real-time analysis is that they need
a complete representation of the data space to update
the information, limiting their applicability to design
new clustering algorithms—e.g., there are clustering
algorithms that might not be easily adapted to this kind
of analysis [2].

One of the main tools used for online clustering
analysis is the Massive On-line Analysis (MOA) tool.
This framework provides the following online clustering
algorithms:

• Online K-means [2]: This online algorithm updates
the centroid position when a new instance arrives.
Only one centroid is updated per iteration. It is
similar to classical K-means algorithm.

• ClusTree [9]: This online algorithm iteratively
updates the information of the clusters. It is
able to consider the speed of the data stream
generating the concept of the age of an object. It
also maintains stream summaries.

Copyright c⃝ 2009 Inderscience Enterprises Ltd.
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• CluStream [10]: This algorithm combines offline
clustering and online clustering in order to provide
partial clustering solutions, which measures the
evolution of the clusters.

2.2 Spectral Clustering

This section presents an overview of the Spectral
Clustering (SC) algorithm, which is one of the most
relevant continuity-based and manifold identification
clustering algorithm. For each data pair, SC starts
generating a similarity graph among the data instances.
There are three main methodologies that are used [11]:

1. ϵ-neighbourhood graph: all the components
whose pairwise distance is smaller than ϵ are
connected.

2. k-nearest neighbour graphs: the vertex vi is
connected with vertex vj if vj is among the k-
nearest neighbours of vi.

3. fully connected graph: all points with positive
similarity are connected with each other.

This work focuses in the fully connected graph. One of
the most important metrics used in SC is the RBF kernel
[12] defined by:

s(xi, xj) = e−σ||xi−xj ||
2

, (1)

where the metric calculates the inverse exponent of the
Euclidean distance between points xi and xj using a
normalization factor σ.

The second step is related to the study of the
eigenvectors of the Laplacian matrix of the similarity
graph. Depending on the Laplacian matrix calculation,
there are three different techniques related to SC [11]:

1. unnormalized Spectral Clustering: it defines
the Laplacian matrix as: L = D −W

2. normalized Spectral Clustering: it defines the
Laplacian matrix as: Lsym = D−1/2LD−1/2 = I −
D−1/2WD−1/2

3. random walks-based normalized Spectral
Clustering: it defines the Laplacian matrix as:
Lrw = D−1L = I −D−1W

In these equations, I is the identity matrix, D represents
the diagonal matrix whose (i, i)-element is the sum of
the similarity matrix i-th row and W represents the
similarity graph. Once the Laplacian is calculated, its
eigenvectors are extracted. One of the main problems
of SC is related to the consistency of the two
classical methods used in the analysis: normalized and
unnormalized. A deep analysis about the theoretical
effectiveness of normalized clustering over unnormalized
can be found in [13].

The last step is the application of a clustering
algorithm to the projective space formed by the

normalized eigenvectors, considering each row of the
matrix as a point. The most frequently applied algorithm
is K-means. There are several versions of SC according
to the algorithm that is used in this step—e.g., the
SACOC [14] algorithm is a Spectral-based algorithm
which applies an ACO clustering algorithm instead of
K-means.

The main challenge of SC lies in how to compute
the eigenvectors and the eigenvalues of the Laplacian
matrix of the similarity graph, avoiding a huge memory
consumption. For example, when large datasets are
analysed, the similarity graph of the SC algorithm
requires a high memory storage that makes extremely
hard the eigenvalues and eigenvectors computation.

2.3 Ant Colony Optimization in Clustering

ACO algorithms have been extensively applied to
supervise learning—e.g., classification rules [15, 16],
decision tree induction [7], neural networks [17] and
näıve-bayes model [18]. ACO has also been applied
to clustering with promising results. Kao and Cheng
designed a centroid-based ACO clustering algorithm
(ACOC) [19], where ants assign each data instance
to one of the available clusters and clusters centroids
are adjusted based on this assignment; following a
similar direction, we presented the SACOC algorithm
[14], which is a spectral extension of ACOC; a similar
approach is also used to design a medoid-based ACO
clustering (MACOC) algorithm [8], with the difference
that ants assign data instances to medoids; Ashok and
Messinger focused their work on graph-based clustering
of spectral imagery [20], where the data is represented as
a graph and an ACO procedure is used to find long paths
through the data; several other approaches are discussed
in [21].

It is interesting to remark that both MACOC and
SACOC are based on ACOC algorithm in terms of the
search, where ants visit all data instances to decide the
cluster assignation. The main difference between them is
the cluster/search space representation used: in ACOC,
clusters are represented by centroids in an euclidean
space; MACOC represents clusters as medoids (i.e., data
instances are used to define the clusters); SACOC uses a
spectral transformation to project the original space to
a representation where similarities are more apparent.

3 SACOC: Spectral-based ACO Clustering
Algorithm

This section presents SACOC [14], as it is the base for
the proposed SACON algorithm. SACOC is similar to
Spectral Clustering, where the goal of the algorithm
is to discriminate the data using the information of a
similarity graph and partition it into different clusters.
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Figure 1 The construction graph of SACOC. The arrows
illustrate a potential trail of an ant.

Algorithm 1 High-level pseudocode for the ACO-based
clustering procedure.

Require: X = x1, . . . , xN data instances and k number
of clusters

Ensure: c1, . . . , ck best k centroids
1: Initialize the pheromone matrix τ0.
2: for iteration t = 0 to maxIterations do
3: Initialize ants: Ca = {k randomly chosen

centroids}, Wa = 0 and tba = ∅
4: for all ant a ∈ A (the ants set) do
5: while |tba| < N do
6: Select the next instance i
7: Choose exploration or exploitation
8: Select cu ∈ Ca as the closest centroid
9: Set wa

i,u = 1
10: add instance i to tba

11: end while
12: Calculate the objective function for each

ant: Ja =
∑N

i=1

∑k
j=1 w

a
ij · d(i, j

a)
13: end for
14: Rank the ants according to Ja.
15: Choose the best ant a∗ (iteration-best solution).
16: Compare it with the best-so-far solution (a∗∗)

and update this value with the maximum
between them.

17: Update pheromone values: τij(t+ 1) = (1− ρ) ·
τij(t) +

∑r
h=1 w

h
ij ·∆τhij

18: end for
19: Re-centralize instances based on a∗∗.

3.1 Clustering data

SACOC performs the clustering of the data by using
a strategy based on the ACOC algorithm [19], as
illustrated in Algorithm 1. The search space is defined
in terms of instances and centroids, which can be
represented as a graph with an associated N × k matrix
(where N is the number of instances and k is the number
of centroids or clusters).

The algorithm uses several ants looking for the best
path in the graph, illustrated in Figure 1. Each ant a
has the following features: a list of visited objects (tba),
a set of chosen centroids Ca and a weighted matrix W a

(related to the assignment of instances to clusters). To
create a solution, an ant uses two different strategies:

exploration and exploitation. It chooses the strategy
according to:

j =

{
argmaxu∈Ni

{[τ(i, u)][ηa(i, u)]β} , if q ≤ q0
S , otherwise

(2)

where Ni is the set of nodes associated to instance i,
τ(i, u) is the pheromone value between instance i and
centroid u, q0 is a user-defined exploitation probability, q
is a random number for strategy selection, β is an ACO
parameter that controls the influence of the heuristic
and j is the chosen cluster; ηa(i, u) is the heuristic value
between i and u for ant a, defined as 1/d(i, ua), where i
is a data instance and ua is the u-th centroid from the
ant a centroid list. When q is greater than q0, an ant
uses the probabilistic exploration strategy S, defined by:

S = P a(i, u) =
[τ(i, u)][ηa(i, u)]β

∑k
j=1[τ(i, j)][η

a(i, j)]β
, (3)

where P a(i, u) is the probability of assigning instance i
to cluster u and k is the total number of clusters.

The algorithm steps presented in Algorithm 1 can be
divided in:

1. Initialize pheromone matrix (line 1).

2. Initialize ants (line 3): (tba, Ca, W a), for each ant
a in the colony; then, each ant repeats until tba is
full:

(a) Select randomly an instance i satisfying i /∈
tba (line 6).

(b) Select a cluster j: first the ant chooses a
strategy; then, it calculates the transition
probability and visits a node (line 7).

(c) Update tba and W a (lines 9 and 10).

3. Calculate the objective function for each ant (line
12):

Ja =
N∑

i=1

k∑

j=1

wa
ij · d(i, j

a) , (4)

where wa
ij is a weight value of the assignment

matrix W a.

4. Select the best solution (lines 14 to 16). First, rank
ants solutions, select the iteration-best solution,
apply local search (for more details of local search
see [22]) to improve the solution and, finally,
compare it with the best-so-far solution and update
this value with their maximum.

5. Update pheromone trails (line 17): only the best
r ants are able to add pheromones. Let ρ be
the pheromone evaporation rate (0 < ρ < 1), t the
iteration number, r is the number of elitism ants
and ∆τhij = 1/Jh (line 17):

τij(t+ 1) = (1− ρ) · τij(t) +
r∑

h=1

wh
ij ·∆τhij . (5)
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Algorithm 2 High-level pseudocode of SACOC
algorithm [14].

Require: X = x1, . . . , xN data instances and k number
of clusters

Ensure: c1, . . . , ck best k clusters
1: Form the similarity graph W ∈ RN×N defined by

Wij = e−||xi−xj ||
2/2σ2

if i ≠ j, and Wii = 0.
2: Define D to be the diagonal matrix whose (i, i)-

element is the sum of the i-th row of W .
3: Construct the matrix L = D−1/2WD−1/2.
4: Find v1, . . . , vk, the k largest eigenvectors of L

(chosen to be orthogonal to each other in the case
of repeated eigenvalues) and form the matrix V =
[v1v2 . . . vk] ∈ RN×k by stacking the eigenvectors in
columns.

5: Form the matrix Y from V by renormalizing
each row of V to have unit length (i.e. Yij =
Vij/(

∑
j V

2
ij)

1/2).
6: ClusterData(Y ,k).

6. Check the termination condition: if the number
of iterations is greater than the maximum limit,
finish; otherwise, go to step 2.

3.2 The spectral hybridisation

The clustering procedure presented in Algorithm 1 was
originally designed to use Euclidean space as a search
space. However, it can be modified to consider any kernel
in a similar way that K-means is modified to generate
the SC algorithm—a similar strategy is employed in
SACOC. Algorithm 2 presents the high-level pseudocode
of SACOC. Consider a graph G and its associated
weighted matrix W , which is a pairwise similarity
graph among the data. The similarity is calculated
using a similarity function defined by a kernel k(xi, xj),
where xi and xj are the i-th and j-th data instances,
respectively (line 1). The spectrum of the graph is
calculated in a similar fashion as proposed by Ng et al.
[23] (lines 2 and 3) to create the SC algorithm. First,
we calculate the Laplacian matrix defined by: Lsym =
I −D−1/2WD−1/2, where I is the identity matrix and
D represents the diagonal matrix whose (i, i)-element
is the sum of the similarity matrix i-th row. After
the creation of the Laplacian matrix, we extract the
v1, . . . , vz, (line 4), which corresponds with the z largest
eigenvectors of L—chosen to be orthogonal to each other
in the case of repeated eigenvalues—and form the matrix
V = [v1 v2 . . . vz] ∈ Rn×z by stacking the eigenvectors
in columns. Finally, we form the matrix Y from V by
renormalizing each row of V to have unit length (i.e.,
Yij = Vij/(

∑
j V

2
ij)

1/2) (line 5). Then, we can consider
Y as a projection of the original space and apply the
clustering procedure (line 6) to the representation of each
point.

4 SACON: Improving the SACOC
algorithm through the Nyström extension

The goal of combining SACOC with the Nyström
extension is to reduce the dimensions sampling of the
similarity matrix. The reduction is achieved by choosing
a subset of points S = {s1, . . . , sn} ∈ X = {x1, . . . , xN}
(where n < N)—the high-level pseudocode of SACON
is presented in Algorithm 3. Given a similarity matrix
W (related to the similarity graph), we need to extract
the eigenvectors of its spectrum in order to project the
data. In this work, the spectrum is defined by Lsym.
In order to improve the computational time through
the Nyström method, we need to use the sub-sample S
and reformulate the whole process to describe how to
extract approximate eigenvectors of the spectrum using
less information related to the original similarity matrix.

The approximation is obtained by applying the
Nyström extension [5], defined as follows:

Nyström Extension: Let k(xi, xj) be a kernel whose
Gram matrix K is symmetric and positive semi-
definite satisfying Ki,j = k(xi, xj). We assume that
the eigendecomposition is KU = UΛ where U is the
orthogonal matrix of eigenvectors and Λ is the diagonal
matrix composed by the eigenvalues. Then, the Nyström
extension for a new instance x is the eigenvector
approximation ūk(x) to the real uk(x) given by:

ūk(x) =
1

λu
k

N∑

j=1

k(x, xj)û
k
j ,

where ūk is the extension of the eigenvector ûk calculated
from the sub-sample set of the matrix K, ûk

j is the
coordinate j of the eigenvector and λu

k is the eigenvalue
associated to the eigenvector ûk.

In order to apply the extension to calculate the
eigenvectors of Lsym, we simplify the process as follows.
First, the eigenvectors of Lsym = I −D−1/2WD−1/2,
are equivalent to the eigenvectors of P = D−1/2WD−1/2

since the identity matrix can be omitted.
The eigenvectors approximation follows the scheme

specified in Algorithm 3. In this case, we use W and take
the sub-samples set S to define a sub-matrix of W called
A. The matrices satisfy:

W =

(
A B
Bt C

)
,

where A ∈ Rn×n, B ∈ Rn×(N−n) and C ∈
R(N−n)×(N−n) (line 3). The Nyström extension will
only need the augmented matrix (A|B) formed by
A and B. The matrix C is the part that we want
to approximate and satisfies that has more elements
than A, due to n < N . Using matrix C, it will be
able to approximate eigenvectors of U calculating
the eigenvectors of A, denoted by Ū (line 4). The
eigenvectors Ū are extended to form the approximation
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U , which is close to the original U . Once the eigenvectors
Ū have been calculated, we have the eigendecomposition
of A, denoted as A = Ū Λ̄ŪT (where Ū is orthonormal).
The approximation U of the eigenvectors of W is
calculated as (line 5):

U =

(
Ū

BtŪ Λ̄−1

)
.

Now, we need to calculate the Laplacian eigenvectors,
which are approximated by the matrix (line 7): L′ =
D−1/2W ′D−1/2, where W ′ = UΛ̂U , Λ̂ = N

n Λ̄. Setting

Di,i =
∑N

j=1 w
′
ij , we can restructure D as:

D =

(
D1 0
0 D2

)
,

where D1 ∈ Rn×n, D2 ∈ R(N−n)×(N−n) and L can be
approximated by (lines 7 and 8):

L′ =

(
A′ B′

(B′)t (B′)t(A′)−1B′

)
,

where A′ = D1A and B′ = D2B. In order to
approximate the eigenvectors of L′ we will use the same
methodology that we have used to approximate W .
Assuming that the eigenvectors of A′ and eigenvalues are
Vo and Λo, and using A′ as the base, the approximation
is given by:

Λ′ =
N

n
Λo , V =

√
n

N

[
A′

(B′)t

]
VoΛo ,

where V and Λ′ are the extended eigenvectors and
eigenvalues of L′. Since V is not orthogonal, which is
required by the spectral clustering algorithm, we apply
the Fowlkes et al. [5] transformation and define the
matrix R as (line 9):

R = A′ + (A′)−1/2B′(B′)t(A′)−1/2 .

This matrix can be decomposed as R = URΛRU t
R, since

A′ is positive define. Then, V is defined as:

V =

[
A′

(B′)t

]
(A′)−1/2URΛ

−1/2
R ,

and finally, P is defined as:

P = D−1/2W ′D−1/2 = VΛRV
t .

At the end of this process, V are the eigenvectors
used cluster the data (i.e., the projection of the data
based on the Spectrum). This whole process helps to
reduce the computational time consumed by the pairwise
calculation, which is usually performed to create the
whole similarity graph, and also reduces the memory
consumption.

Algorithm 3 High-level pseudocode of SACON
algorithm.

Require: X = x1, . . . , xN data instances and k number
of clusters

Ensure: c1, . . . , ck best k clusters
1: Select a subsample of the data instances: S =

{s1, . . . , sn} ∈ X = {x1, . . . , xN} where, n < N .
2: Form the similarity graph A ∈ Rn×n defined by

Aij = e−σ||si−sj ||
2

if i ≠ j, and Aii = 0.
3: Calculate the matrix B formed by the similarities

among the elements of A and the rest of data
instances.

4: Calculate the eigenvectors of A, named Ū and the
eigenvalues, named Λ̄.

5: Calculate the approximate eigenvectors U of W
which try to approximate the real eigenvectors,
named U , as:

U =

(
Ū

BtŪ Λ̄−1

)

6: Define D to be the diagonal matrix whose (i, i)-
element is the sum of the i-th row of W .

7: Construct the matrix L′ = D−1/2W ′D−1/2.

8: Separate L′ =

(
A′ B′

(B′)t (B′)t(A′)−1B′

)

9: Set R = A′ + (A′)−1/2B′(B′)t(A′)−1/2, and
calculate its eigenvector decomposition R =
URΛRU t

R.

10: Set V =

[
A′

(B′)t

]
(A′)−1/2URΛ

−1/2
R .

11: Find v1, . . . , vk, the k largest eigenvectors of L′

and form V = [v1v2 . . . vk] ∈ Rn×k by stacking the
eigenvectors in columns.

12: Form the matrix Y from V by renormalizing
each row of V to have unit length (i.e. Yij =
Vij/(

∑
j V

2
ij)

1/2).
13: ClusterData(Y ,k).

5 Experimental Setup

The evaluation of a clustering algorithm is a sensitive
process, due to clustering being a blind process. There
are no universal methods to evaluate it, in particular
when the algorithm deals with large datasets. In this
work we have focused the evaluation on comparing
the proposed SACON algorithm against state-of-the-
art algorithms. Experiments have been carried out
using the Nyström extension of Spectral Clustering
(SC+Nyström) [5], CluStream, Online K-means and
ClusTree.

The parameters of SACON are: the sub-sample size
fixed to 500 and the sigma value was calculated using the
methodology described by Ng et al. [23], the same value
used for SC+Nyström); the number of ants is 10, elitism
is 1, exploitation probability is 0.0001, initial pheromone
values have been set to 1/k (where k is the number
of clusters), β = 2.0, ρ = 0.1, local search probability is
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0.001 and the maximum number of iterations is 1000.
We have made no attempt to tune the parameters to
individual datasets.

The metrics used are the Euclidean Distance
for online algorithms (CluStream, Online K-means
and ClusTree) and the RBF for the spectral-based
algorithms (SACOC and SC+Nyström). The evaluation
is performed comparing the results with the real labels
to measure the accuracy, defined by:

sim(Ci, Cj) =

∑n
q=1 δCi

(xq)δCj
(xq)

2

(
1

|Ci|
+

1

|Cj |

)
,

where |Ci| is the number of elements of cluster Ci and
δCi

(xq) is the Kronecker δ defined by:

δCi
(xq) =

{
0 if xq /∈ Ci

1 if xq ∈ Ci
.

All algorithms have been executed 100 times. The
statistical test analysis was performed using the non-
parametric Wilcoxon test, which does not require a
normal distribution. The aim is to compare SACON
against SC+Nyström, since both algorithms use the
Nyström extension but differ in the way they cluster
the data. We have considered that there is statistically
difference when the p-value of the test is lesser than 0.05
(5% significance level).

5.1 Dataset Description

The datasets have been generated using the R package
mlbench [24], a collection of standard benchmark
problems. The datasets—all composed by 50.000
instances—that have been generated are the following
(see Figure 2 for some examples):

• Cassini: 2-dimensional problem with 3 clusters
(2 external banana-shaped clusters with a circular
cluster between them).

• Cuboids: 3-dimensional problem with 3 cuboids
and a small cube in the middle of them.

• Hypercube: 8 spherical Gaussians distributed at
the corners of a 8-dimensional cube.

• Shapes: a Gaussian, square, triangle and wave in
2 dimensions.

• Simplex: 4 spherical Gaussians distributed at the
corners of a 4-dimensional simplex.

• Smiley: 2 Gaussian eyes, a trapezoid nose and a
parabola mouth (with vertical Gaussian noise).

• Spirals-1: 2 entangled spirals without noise.

• Spirals-2: 2 entangled spirals with noise.

(a) Cuboids (b) Hypercube

(c) Smiley (d) Spiral-2

Figure 2 Illustration of the synthetic datasets used in the
experiments.

6 Computational Results

Table 1 presents the results achieved by the algorithms in
each dataset. As we can observe, the proposed SACON
algorithm obtains very good results overall.

In the case of Cassini dataset, SACON obtains the
best results—the statistical test shows that SACON is
significantly better than SC+Nyström. It is important to
remark that the standard deviation (SD) of SACON is 0,
which means that these results are stable. SC+Nyström
also obtains good results, while the remaining algorithms
obtain poor results. The Cassini dataset has two
sections that can be easily defined using a Gaussian
distribution, but when the number of instances is high
the boundaries between these distributions are harder for
the discrimination process; SC+Nyström is also sensitive
to the noise produced in this situation.

For Cuboids dataset, Clustream obtains the best
median results (100.0%) followed by SC+Nyström
(99.74%), with SACON achieving close results (99.33%).
SACON is the most stable of the algorithms in this
dataset (0.0066 of SD). The Wilcoxon test shows that
there is not statistical difference between the SACON
and SC+Nyström.

Hypercube results show that SACON is able
to discriminate the clusters perfectly. Clustream also
obtains good results during the discrimination process.
SC+Nyström, Clustree and Online K-means have
problems to discriminate the cluster distribution. This
dataset is challenging due to the large quantities of data,
which introduces noise during the cluster separation
(Figure 2(b)). The algorithms are also less stable than
SACON (the SD of SACON is 0). Again, SACON is
statistically significantly better than SC+Nyström.

In the case of Shapes, the best results according
to the median are achieved by Clustream, Clustree and
Online K-means. SACON obtains good results (99.98%)
and it is also very stable (the SD is 0.0002). SC+Nyström
obtains the worst results (68.71%). According to the
statistical test, SACON is statistically significantly
better than SC+Nyström again.
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Table 1 Median and standard deviation accuracy results obtained by each algorithm, measured over 100 executions. Values
in bold show the best results. The ! symbol indicates the datasets where the results of SACON are statistically
significantly better than the results of the benchmark SC+Nyström algorithm.

Dataset SACON SC+Nyström Online K-means Clustree Clustream

Cassini 99.98% ± 0.0000 ! 98.61% ± 0.1681 65.47% ± 0.0003 66.97% ± 0.1301 67.39% ± 0.0478
Cuboids 99.33% ± 0.0066 ! 99.74% ± 0.1736 88.84% ± 0.1219 72.74% ± 0.1108 100.0% ± 0.1157
Hypercube 100.0% ± 0.0000 ! 76.71% ± 0.1565 81.36% ± 0.1122 82.29% ± 0.1126 100.0% ± 0.0541
Shapes 99.98% ± 0.0002 ! 68.71% ± 0.4425 100.0% ± 0.1389 100.0% ± 0.1765 100.0% ± 0.0001
Simplex 100.0% ± 0.0000 ! 100.0% ± 0.0000 100.0% ± 0.1508 100.0% ± 0.1703 100.0% ± 0.0000
Smiley 99.56% ± 0.0003 ! 74.99% ± 0.1627 62.54% ± 0.1729 64.41% ± 0.1608 91.60% ± 0.1451
Spirals-1 100.0% ± 0.0000 ! 100.0% ± 0.0991 50.00% ± 0.0000 50.01% ± 0.0002 50.01% ± 0.0006
Spirals-2 63.03% ± 0.0001 ! 59.59% ± 0.0392 59.36% ± 0.0000 58.84% ± 0.0295 59.59% ± 0.0392

Simplex is easy for all algorithms. The median
values show that they obtain the maximum results.
These results are a consequence of the data structure
—in this case, they only need to discriminate spheres,
which is the simplest clustering problem. There is not
statistical difference between SACON and SC+Nyström.

Smiley results show that SACON obtains the
best discrimination results (99.59%). The remaining
algorithms have problems generating the clusters.
This dataset represents a continuity-based problem,
therefore only SC+Nyström, Clustream and SACON can
discriminate the boundaries (Figure 2(c)). SACON is
statistically significantly better than SC+Nyström.

The Spiral-1 dataset tests show how the algorithms
can deal with continuity datasets without noise. In this
case, SACON and SC+Nyström obtain the best results
(100.0%); Online K-means, Clustree and Clustream
have problems discriminating the spirals, which means
that these algorithms are not able to deal with pure
continuity-based problems. There is not statistical
difference between SACON and SC+Nyström.

The Spiral-2 dataset introduces noise to Spiral-1
(Figure 2(d)). In this case, the results of SACON are
worse than in the previous Spiral-1 dataset, as expected,
but it obtains the best and more stable results. The
results of the remaining algorithms show that there
is a good minimal solution and all of them are close
to this solution (around the 59%), however, they still
find problems discriminating the spirals. SACON is
statistically significantly better than SC+Nyström.

6.1 Discussion

SACON shows competitive results identifying manifolds
when is applied to continuity-based data—such
as Cassini, Shapes, Smiley and Spirals—while the
remaining algorithms have problems (e.g., in Spirals,
which is a pure continuity-based problem). It also
performs better than the rest when we add noise to the
dataset. The algorithm also obtains more stable results
than the others according to the standard deviation. The
spectral transformation in combination with the ACO
clustering procedure is probably the main reason for
the algorithm performance—the transformation makes
the regularities in the data space more apparent and

the ACO global search procedure is able to find the
(near-)optimal cluster assignment. The performance is
correlated to the type of clustering that this algorithm
can face, i.e., continuity-based clustering.

In order to compare the memory usage of the
proposed algorithm against SACOC (its predecessor), it
is important to remark that SACON uses a matrix of
50, 000× 500 instances, whereas SACOC uses 50, 000×
50, 000 instances. The memory usage of the former
is around 0.18 GB while the latter consumes around
18.63 GB. The memory consumption of SACON
grows linearly, whereas SACOC grows exponentially.
The remaining algorithms are not spectral algorithm,
with the exception of SC+Nyström—i.e., they do
not use a similarity matrix. Regarding the memory
consumption, the online algorithms only keep in memory
the information about the centroids they are using
(similar to K-means), i.e., the memory grows according
to the number of centroids.

7 Conclusions

This paper proposed an improvement of the SACOC
algorithm [14] using the a Nytröm extension [5]. The
new algorithm, called SACON, applies the spectral
transformations and the Nyström extension to the
original search space in order to cluster the data
in the projective space. The projection consists on
transforming the original data into a graph-based
representation (through a similarity graph) and calculate
its Laplacian matrix. During this calculation, the
Nyström extension guarantees that the Laplacian
calculation is accurate enough using less information.
Once the Laplacian has been obtained, the eigenvectors
are extracted and normalized to generate the projective
space—this extraction also applies the Nyström
extension in order to reduce the memory usage.

The proposed SACON algorithm shows good results
in the studied datasets. It is able to discriminate
manifolds and continuity-based clusters with more stable
results in dense datasets, when compared to Spectral
Clustering using the Nyström extension and modern
online clustering algorithms. The future work will be
mainly focused on running experiments with real-world
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large datasets, in particular large datasets with cluster
intersections.
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