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Paraconsistent logics are the formal systems in which absurduties do not trivialize the logic.
In this paper, we give Hintikka-style game theoretical semantics for a variety of paracon-
sistent and non-classical logics. For this purpose, we consider Priest’s Logic of Paradox,
Dunn’s First-Degree Entailment, Routleys’ Relevant Logics, McCall’s Connexive Logic and
Belnap’s Four-Valued Logic. We also present a game theoretical characterization of a trans-
lation between Logic of Paradox/Kleene’s K3 and S5. We underline how non-classical logics
require different verification games and prove the correctness theorems of their respective
game theoretical semantics. This allows us to observe that paraconsistent logics break the
classical bidirectional connection between winning strategies and truth values.
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1. Introduction

Game theoretical semantics suggests a very intuitive and natural approach to formal
semantics and proofs. The semantic verification game for classical logic is played by
two players, the verifier and the falsifier, who we call Heloise and Abelard respectively.
The verifier’s goal is to verify the truth of a given formula in a given model. Dually, the
falsifier’s goal is to falsify it. The rules of the semantic verification game are specified
syntactically based on the form of the formula. During the play of the game, the given
formula is broken into subformulas step by step by the players. The play of the game
terminates when it reaches the propositional literals and when there is no move to make.
If the play ends with a propositional literal which is true in the model in question,
then the verifier wins the game. Otherwise, the falsifier wins. We associate conjunction
with the falsifier, disjunction with the verifier. That is, when the main connective is a
conjunction, it is the falsifier’s turn to choose and make a move, and similarly, disjunction
yields a choice for the verifier. The negation operator switches the roles of the players:
the verifier becomes the falsifier and the falsifier becomes the verifier. Informally, a player
is said to have a winning strategy if he has a set of rules that guides him throughout the
play and tells him which move to make, and consequently gives him a win regardless
of how the opponent plays. The major result of this approach states that Heloise the
verifier has a winning strategy in the verification game if and only if the given formula
is true in the given model. This is called the correctness theorem for game theoretical
semantics for classical logic.

There can be found various foundational philosophical problems in game semantics.
First, the verifier cannot be expected to verify a formula in a single play if she does
not have a winning strategy. But the very existence of a winning strategy requires
quantification over plays1. Second, a determined perfect information game such as a
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1We are grateful to one of the anonymous referees for pointing this out.
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semantic verification game may be found irrational to play for the losing player. The
reason is simple: computational complexity of verifying the truth of a formula (that is
computing it from the truth table, in the classical propositional case) is very low. Then,
it is reasonable to ask why a rational player would engage in such a simple determined
perfect information game if she does not have a winning strategy? However important
they are, such philosophical issues fall outside the scope of this work.

This paper is motivated by the fact that the semantic verification game and its rules
are shaped by classical logic and consequently by its restrictions. Our goal is to observe
how verification games change in some well-known propositional non-classical and para-
consistent logics when we strictly follow the Hintikkan methodology. In what follows,
we obtain semantic verification games in which winning strategies for players are not
sufficient conditions for establishing the truth values of the formulas, and observe fur-
ther how the Hintikkan agenda may or may not be carried over to non-classical logics
successfully.

A warning is in order here. Notice that in verification games players may change
their roles throughout the game depending on the occurrences of the negation symbol1.
Therefore, players’ roles at the beginning of the game and at the end of the game may
differ. Abelard may start the game as the falsifier but end up being the verifier. For this
reason, the characterization theorems for game semantics and logics are given based on
players’ roles. This is easy when the game has two players with two immediate roles, such
as the verifier and the falsifier. But, for multi-valued logics and non-classical logics, it is
not easy to identify and name the precise roles of the players. Therefore, throughout the
paper, we give the characterization theorems for players’ roles and informally associate
it with the players for clarity.

1.1 Non-Classical Logics and Game Theoretical Semantics: A Brief
Overview

Game theoretical semantics (GTS, for short) was popularized by Jaakko Hintikka and
Helsinki School researchers, even though similar ideas can be found in Parikh (much
later published as (Parikh, 1999)).

Game semantics nowadays spans a very broad field attracting computer scientists and
philosophers alike. Some extensive surveys of the subject can be found in (Abramsky
& McCusker, 1999; A. Pietarinen & Sandu, 2000; A.-V. Pietarinen, 2003; Hintikka &
Sandu, 1997). An overview of the field and its relation to various epistemic and scientific
topics was discussed in (A.-V. Pietarinen, 2003).

The connection between non-classical logics and game semantics still remains under-
studied. A game theoretical reading of truth and its relation to winning strategies were
investigated by (Boyer & Sandu, 2012). Pietarinen considered various non-classical is-
sues including partiality and non-competitive games within the framework of GTS with
some connections to the Kleene logic without focusing on particular (paraconsistent)
logics (A. Pietarinen, 2000; A.-V. Pietarinen, 2004; Sandu & Pietarinen, 2001). Hin-
tikka and Sandu discussed non-classicality in GTS also without specifically offering any
insight on paraconsistency (Hintikka & Sandu, 1997; A. Pietarinen & Sandu, 2000). Tu-
lenheimo studied languages with two negation signs, which can bear some resemblence
to paraconsistent ideas on weak and strong negations (Tulenheimo, 2014). Additionally,

1A quick solution to this problem is to convert the given formula to its negation normal form with all the
occurrences of negation symbols in front of the formula. This allows to distribute the roles at the very beginning
of the play and prevents any further role redistribution during the play. However, for the most general case, we

do not resort to this trick. Additionally, for many non-classical logics, failure of the De Morgan laws makes it
difficult, if not impossible, to form the negation normal forms.
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relating GTS to constructivism and intuitionism with some reference to type-theoretical
foundations was presented by Ranta (Ranta, 1988). An epistemic, first-order extension
of GTS, called “Independence-Friendly” logic, was suggested by Hintikka and Sandu
(Hintikka & Sandu, 1989; Mann, Sandu, & Sevenster, 2011). Independence-friendly log-
ics can be viewed as the logics for imperfect information games and they introduce
Henkin quantifiers to game theoretical discussions.

It is worth noting how intuitionism can be approached from a GTS point of view.
Hintikka remarked that the law of excluded middle may not hold in some instances of
GTS. The reason is that the lack of a winning strategy for a player does not entail the
existence of a winning strategy for the other player, which suggests that some semantic
games may not be zero-sum (Hintikka, 1996). However, Hintikka himself was never very
clear on GTS and intuitionism, especially when it came to negation (Tennant, 1998).

In this work, we consider a variety of well-known non-classical and paraconsistent
logics. We define paraconsistent logic as any formal system that does not satisfy the
explosion principle: ϕ,¬ϕ ` ψ for all ϕ,ψ. In other words, in paraconsistent logic,
inconsistencies do not trivialize the system. There exists a wide variety of paraconsistent
logics, and there are numerous ways to construct them (da Costa, Krause, & Bueno,
2007; Priest, 2002, 2007). Apart from its proof-theoretical definition, paraconsistency
can also be described semantically suggesting that in paraconsistent logics some formulas
and their negations can both be true1. In what follows, we will trace the reflections of
this semantical condition on verification games, and ask how verification games might
change when the logic allows non-trivial inconsistencies.

Apart from studying the underlying logic, GTS can also be approached from a purely
game theoretical perspective. In the classical case, the verification games are constructed
as zero-sum (a win for a player is a loss for the other), two-player, determined (one player
always has a winning strategy), sequential (players do not make moves at the same time)
non-cooperative games. It is then worthwhile to consider verification games where i)
Abelard and Heloise both may win, ii) Abelard and Heloise both may lose, iii) Heloise
may win, Abelard may not lose, iv) Abelard may win, Heloise may not lose, v) There is a
tie, vi) There is an additional player, vii) Players play simultaneously, and viii) Players
may cooperate. Such different possibilities can occur, for instance, when both p and ¬p
are true, so that both players can be expected to have winning strategies. We can also
imagine verification games with additional truth values and additional players beyond
verifiers and falsifiers, and also construct games where players may play concurrently in
a parallel fashion.

Additionally, in the classical case, the existence of winning strategies and the truth
values of formulas are closely connected. In particular, can players have winning strate-
gies that cannot determine the truth value of the formula? Can the truth value of a
formula be established if more than one player has a winning strategy? In what follows,
we observe such deviances from the classical case.

Another motivation to approach GTS from a non-classical logical perspective is game
compositionality. Combining logics using various game theoretical, semantical and model
theoretical arguments is central in proof theory (Abramsky, 2007; Gabbay, Kurucz,
Wolter, & Zakharyaschev, 2003). However, such work has not been extended to para-
consistent logics to the best of our knowledge. In this regard, constructing a theory for
composing semantic games for different non-classical logics is still an open problem, and
this work attempts to take a modest step towards that direction.

1Paraconsistency is usually given a proof-theoretical definition, as we did. Semantical (and metaphysical) com-

mitment for the possibility of having true contradictions is called dialetheism. In this work, to prevent an inflation
of terminology, we use the term “paraconsistency” both in proof-theoretical and semantical senses.
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1.2 Negation: Game Theoretical Motivation

The problems of negation constitute one of the main motivations in the development of
various non-classical logics. For our purposes, negation becomes problematic especially
when it is considered within a game theoretical context. In the classical case, as we
mentioned, the negation operator forces players to assume their opponent’s role. Yet, in
the non-classical case, it is not obvious how the new roles are determined. The following
simple example illustrates our point.

Example 1.1. Two men want to marry a princess. The king says they have to race on
a horseback. The slowest one wins, and can marry the princess. How can one win this
game and marry the princess?

The solution simply suggests that the men need to swap their horses. Since the fastest
one loses, and players race with each other’s horse, what they need to do is to become
the fastest in the dual game. The fastest one on the switched horse in the dual game
wins the original game.

In the above example, it becomes clear how GTS for negation operates. If the slowest
one wins the game G, then the fastest one wins the dual game Gd. There is certainly
some sense of rationality here. That is, the players consider it easier in some sense to
switch horses and race in the dual game. Yet, the above example and the idea are not
strong enough to generalize. One of the most obvious difficulties arises when the same
game is considered with 3 or more players. For n > 2 players, the solution requires a
different understanding of negation. The similar complexity also carries over to binary
connectives perceived as choice functions for certain players (Olde Loohuis & Venema,
2010).

For example, let us consider Example 1.1 with three players. If three players are
supposed to switch horses for the dual game, it is possible that some players may end
up with their own horses. The players who end up with their own horses can be viewed
as the fixed-points for negation. Therefore, in some games, negation may not change the
roles of some players and this needs to be addressed in verification games.

This paper aims at filling the gap in the literature between game theoretical semantics
and paraconsistent non-classical logics. In what follows, we consider a variety of well-
known paraconsistent logics, offer Hintikkan game semantics for them and observe how
different logics generate different verification games. By this, we remark how the Hin-
tikkan methodology applies to non-classical logics when the verification games and the
players’ roles are defined in the standard way. This project is philosophically important
when winning strategies are seen as constructive proofs for truth in an intuitionistic
sense or as verifications (Boyer & Sandu, 2012). Therefore, by focusing on inconsistent
formulas and associated winning strategies, we offer alternative (constructive) proofs for
inconsistencies and contribute to the computational discussions on the connection be-
tween proofs, strategies and truth. Furthermore, game semantics is a non-compositional
semantics, where the truth value of a formula does not necessarily depend on the truth
value of all its subformulas. Therefore, by constructing semantics games, this work sug-
gests non-compositional semantics for various non-classical logics.

In this work, we consider Priest’s Logic of Paradox, Dunn’s First-Degree Entailment,
Routleys’ Relevant Logic, McColl’s Connexive Logic, Belnap’s Four Valued Logic and
modal S5 and discuss their game semantics. En passant, we briefly discuss the Brazilian
and Canadian schools of paraconsistency.
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2. Semantic Games

As we argued earlier, semantic verification games for non-classical logics do not neces-
sarily have the limitations of semantic games for classical logic which are two-player,
zero-sum, non-cooperative, sequential and determined. For that reason, we define se-
mantic games broadly to allocate the deviances of non-classical logics within game
theoretical framework.

Let us now formally define GTS following the terminology given in (A. Pietarinen &
Sandu, 2000). First, we take the language L of propositional logic with the following
syntax for a set of countable propositional variables P:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where p ∈ P. The non-classical logics we consider here may or may not enjoy the De
Morgan Laws for the interdefinability of the connectives. This, however, will not be our
main concern here. In this respect, the above syntax includes the connectives that we
believe are central in our non-classical inquiry of game semantics, and for simplicity, we
assume that L has neither → nor ↔. Throughout the paper, except when we consider
modal S5, we assume the standard language L of propositional logic as defined above.
Let us now define models.

Definition 2.1. A model M is a tuple (S, v) where S is a non-empty domain on which
the game is played, and the valuation function v assigns the formulas in L to truth
values in the logic.

In order to define a verification game in a model, we need some game theoretical
components. First, we need a set of players with the supposition that each player forces
a truth value. This defines players’ goals, that is, they try to reach an atom that has the
truth value that they are forcing. However, their roles can be changed in the play by the
negation operator: a player may start the play with a specific role and end up with some
other role. Second, we need rules telling each player what moves are possible at each
stage depending on their roles. Sometimes, some players may make simultaneous moves,
sometimes, some players may make no move at all. Since moves are made between game
positions, we need to define them as well. A game-token can be used to indicate the
current position of the players. Finally, it is possible to have concurrent or parallel play,
and this needs to be specified. An inclusive definition of a verification game is given as
follows.

Definition 2.2. A verification game is a tuple Γ = (π, ρ, σ, τ, δ) where π is the set of
players aiming at winning the play by reaching atomic formulas with specific truth values
based on their roles, ρ is the set of well-defined game rules, σ is the set of positions, τ
is the set of positions of the game-token in the case of a concurrent play, and δ is the
set of designated truth values.

A more detailed explanation for the components of Γ is in order. The set of positions or
game states σ is determined by the subformulas of the given formula and the players. We
also embed the turn function at the positions into game rules for simplicity. Therefore,
the set of positions will be composed of tuples as (pi, ϕ) for pi ∈ π and a well defined
formula ϕ. The tuple (pi, ϕ) will read “it is player pi’s turn at ϕ”. The set σpi will denote
the set of positions for player pi ∈ π, and will be defined as σpi = {(pi, ϕ) : (pi, ϕ) ∈
σ for a fixed player pi}.

The set σ is not sufficient by itself to describe concurrency in verification games as we
also need to know which positions are tied together and played simultaneously. In the
classical case, τ is the set of singletons of the form {(pi, ϕ)} for pi ∈ π and a well-defined
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formula ϕ as there is no parallel play. However, in non-classical verification games, as
we may need to resort to concurrency, τ need not be composed of singletons. Therefore,
{(p1, ϕ), (p2, ψ)} ∈ τ will then read that “player p1 plays ϕ and player p2 plays ψ
concurrently (simultaneously)”. For simplicity, we will not include the end-points (that
is, the atoms) in τ . Additionally, in the logics we consider, only the binary connectives
have the potential to create concurrency and parallel plays in the game. Therefore in the
play, the current place of the game token is determined by σ and τ together. Moreover,
the separation of σ and τ serves another purpose that the verification games in non-
classical logics are not assumed to be zero-sum. Thus, the outcome of one subgame does
not necessarily determine the outcome of its parallel play, if it exists.

Given two positions (pi, ϕ) and (pj , ψ) for i 6= j ∈ π, we say that they are played
concurrently (or in parallel) if ∃X ∈ τ such that X = {(pi, ϕ), (pj , ψ)}. The defini-
tion can easily be extended to n-concurrency where n different players are allowed to
play concurrently. Throughout this work, we will use “concurrency” and “parallel play”
interchangeably for easy reading.

It is important to see that this reading of concurrency in games entails that concur-
rent moves result in two separate positions. This separation is essential as it does not
presuppose any additional game theoretical restrictions and keeps the model simple.
Clearly, it is possible to define game theoretical concurrency for different purposes, yet
we stick to our definition for simplicity.

The set of game rules ρ will be defined inductively as transformations from a game
position (pi, ϕ) to a set of game positions {(pj , ψ)}j∈I for pi ∈ π, I ⊆ π, well-defined
formula ϕ and a subformula ψ of ϕ, defined in the standard way. For a rule r ∈ ρ and
a set of positions O, the set r(O) denotes the set of positions obtained from applying r
to the set of positions in O (where applicable). When specifying the set ρ for the logics
we discuss here, we will use the informal descriptions of the rules for simplicity. It will
also help us to maintain the Hintikkan intuition about game semantics.

Finally, the set of designated truth values are used to define theorems in a given
particular logic. They can be viewed as a non-classical extension of the truth value
True, and are preserved under valid inferences. For example, two logics may enjoy the
same truth table but can be distinguished by a different set of designated truth values.

Game semantics naturally introduces game theoretical concepts to logic. In this re-
spect, a strategy for a player is a set of rules that tells him which move to make at each
position where it is his turn. A winning strategy is a strategy that guarantees a win for
the player regardless of the moves of the opponents.

The play of a verification game terminates when it reaches atomic formulas, and the
winner is determined by the truth value of the atom. In the classical case for example,
if we end up with an atom with a truth value T , the verifier wins the game1.

In the non-classical case, the existence of a winning strategy for a player does not
necessarily entail the non-existence of winning strategies for the opponents. Moreover,
some players may force some truth values jointly (by forming coalitions, for example) or
some players may force no truth values (which can be called noneist players or nullifiers).
In this work, we focus on the existence of winning strategies and how this relates to the
truth value of the formula in question. For this reason, strategies (or winning strategies)
themselves are not the main focus of this work.

Formally, a strategy s(pi) for a player pi is a function from a set of positions to
the set of positions obtained by applying the particular rules in ρ. Formally, we define
spi : σpi 7→

⋃
r∈ρ r(σpi) where pi ∈ π, σpi is the set of positions for player pi, and r(σpi)

is the set of positions for pi obtained after the application of rule r ∈ ρ. Notice that

1Notice again that the initial and final configurations of the roles and the players may differ. For instance, in
some plays, Abelard may start as the falsifier yet may finish as the verifier.
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r(σpi) is not necessarily a subset of σpi . Also, it is important to observe that strategies
are defined from a set of positions, not from a set of game tokens. The reason is that
when players play concurrently each may have their own strategy independent from
each other.

Finally, we denote the semantic verification game Γ for a model M and a well-defined
formula ϕ ∈ L by Γ(M,ϕ).

The framework we have presented so far has the expressive power for the semantic
games we consider in this work. But more importantly, it carries the Hintikkan game
theoretical intuition over to non-classical logical semantic games, which is one of our
main focal points in this work.

3. Game Semantics for Logic of Paradox

Logic of paradox (LP, for short) introduces an additional truth value P , called paradox-
ical, which intuitively stands for both true and false (Priest, 1979).

The logics LP and Kleene’s three valued logic K3 have the same truth tables. However,
they differ on the truth values that they preserve in valid inferences, and how they read
P . The truth values that are preserved in validities are called designated truth values
and they can be thought of as the extensions of the classical notion of truth (Priest,
2008). In LP, it is the set {T, P}; in K3 (and classical logic), it is the set {T}. Even
if the truth tables of two logics are the same, different sets of designated truth values
produce different sets of validities, thus different logics. For instance, p∨¬p is a theorem
in LP, but not in K3. In K3, the third truth value has an intuitionistic reading and can
be viewed as an undervaluation in contrast to its reading as an overvaluation in LP. It
is also important to note that the set of validities of LP contains the set of validities of
the classical logic.

¬
T F
F T
P P

∧ T P F
T T P F
P P P F
F F F F

∨ T P F
T T T T
P T P P
F T P F

Figure 1. The truth tables for LP and K3.

We stipulate that the introduction of the third truth value requires an additional
player that we call Astrolabe1. Astrolabe is the paradoxifier in the game forcing the
game to an end with the truth value P .

In GTS for LP, the first problem is to determine the turns and the moves of three
players at each connective. For instance, the problem surfaces clearly when the formula
t ∧ p, where t and p have the truth values T and P respectively, is considered. In this
quick game, if we assume that it is Abelard the falsifier’s turn then he will not have a
move that can give him a win. From the truth table, it can be seen that the formula
evaluates to P , therefore Astrolabe the paradoxifier can be expected to have a winning
strategy. In order to make it possible, Astrolabe must be allowed to make moves at
conjunctions. Similarly, let us consider f ∨ p, where f and p have the truth values F
and P respectively. As it can be computed from the LP truth table, the formula f ∨ p
has the truth value P . Now, Heloise cannot make a move that can give her a win. Also,
Astrolabe needs to be given a turn to make a move to win. Therefore, we associate
disjunction with Heloise and Astrolabe, and conjunction with Abelard and Astrolabe.
This modification introduces parallel play where the players may make moves in a

1Astrolabe was the name of Abelard and Heloise’s son.
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parallel, concurrent fashion independently. In the case of negation, Heloise and Abelard
will switch their role, and Astrolabe will keep his role as P is a fixed-point for negation
in LP. Astrolabe’s role always remains as the paradoxifier in the game.

The following example will be helpful in determining the rules for LP semantic games.
For simplicity and easiness in dealing with the non-classical truth values, we will use the
following convention: the proposition variable p will have a truth value P , t will have T
and f will have F and so on.

Example 3.1. Consider the formula (p ∧ t) ∨ (p ∧ f) which evaluates to P in LP. In
this game, Astrolabe the paradoxifier has a winning strategy: at each end-node (p ∧ t
and p ∧ f), he selects p. Here, we also observe that Abelard being stuck at some states
(such as p ∧ t) does not necessarily entail a win for the other players.

(p ∧ t) ∨ (p ∧ f)
Heloise

p ∧ t

Abelard

p t

Astrolabe

p t

p ∧ f

Abelard

p f

Astrolabe

p f

Astrolabe

p ∧ t

Abelard

p t

Astrolabe

p t

p ∧ f

Abelard

p f

Astrolabe

p f

For this illustrative game, the game token set τ contains, for example, the tuples
{(Heloise, (p∧t)∨(p∧f)), (Astrolabe, (p∧t)∨(p∧f))} and {(Abelard, p∧t), (Astrolabe, p∧
t)} which read that players Heloise and Astrolabe play simultaneously at (p∧t)∨(p∧f),
and players Abelard and Astrolabe play at p ∧ t simultaneously, respectively.

We denote the verification game for LP by GTSLP. GTSLP is a non-zero sum verifi-
cation game where more than one player may have a winning strategy. Since GTSLP is
non-zero sum, making the opponent lose does not necessarily entail that it is a win for
the player himself. As we will observe later on, in GTSLP admitting winning strategies
does not necessarily entail the truth value of the formula in question.

Definition 3.2. The tuple ΓLP = (π, ρ, σ, τ, δ) is a verification game for LP where
π = {Astrolabe, Heloise, Abelard}, σ is the set of tuples (pi, ϕ) for pi ∈ π and a well-
formed formula ϕ, and δ is {T, P}. For a game ΓLP(M,ϕ), τ is given inductively for the
positions (pi, ϕ) in σ as follows,

• if ϕ = ¬ψ, then,
– if {(Abelard,¬ψ)} ∈ τ then, {(Heloise, ψ)} ∈ τ ,
– if {(Heloise,¬ψ)} ∈ τ then, {(Abelard, ψ)} ∈ τ ,
– if {(Astrolabe,¬ψ)} ∈ τ then, {(Astrolabe, ψ)} ∈ τ ,

• if ϕ = χ ∧ ψ, then {(Abelard, χ ∧ ψ), (Astrolabe, χ ∧ ψ)} ∈ τ ,
• if ϕ = χ ∨ ψ, then {(Heloise, χ ∨ ψ), (Astrolabe, χ ∨ ψ)} ∈ τ ;

and, finally, ρ is given inductively as follows.

• If ϕ is atomic, the game terminates, and Heloise wins if ϕ is true, Abelard wins if
ϕ is false and Astrolabe wins if ϕ is paradoxical,
• if ϕ = ¬ψ, Abelard and Heloise switch roles, Astrolabe keeps his role, and the

game continues as ΓLP(M,ψ),
• if ϕ = χ ∧ ψ, Abelard and Astrolabe choose between χ and ψ simultaneously,
• if ϕ = χ ∨ ψ, Heloise and Astrolabe choose between χ and ψ simultaneously.

As we mentioned earlier, game rules ρ is given informally above. They can be made
more precise. For example, the last game rule for disjunction can formally be written
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down as a function r as follows

r(pi, χ ∨ ψ) =

{
{(pj , χ), (pk, ψ)} if pi is Heloise,

{(pj , χ), (pk, ψ)} if pi is Astrolabe,

where pi, pj , pk ∈ π, {(Heloise, χ ∨ ψ), (Astrolabe, χ ∨ ψ)} ∈ τ , and game continues as
either ΓLP(M,χ) or ΓLP(M,ψ) with whomever player is supposed to make the next
move. However, in order to reflect the game theoretical intuition more clearly, from
now on, we will specify the game rules as in Definition 3.2. Additionally, in order to
economize in the formal game definitions, from now on we will define τ only for binary
connectives as negation does not create a parallel play.

As we have noted before, the correctness theorems are given with respect to players’
roles. In order to avoid any possible confusion, we will put for example, “Heloise the
verifier” to specify that the theorem applies to the player who is the verifier - even if it
is not Heloise. This is for easy read, especially when we have non-classical players with
non-classical roles, such as paradoxifier.

Theorem 3.3. In a GTSLP verification game ΓLP(M,ϕ),

• Heloise the verifier has a winning strategy if ϕ is true in M ,
• Abelard the falsifier has a winning strategy if ϕ is false in M ,
• Astrolabe the pardoxifier has a winning strategy if ϕ is paradoxical in M .

Proof. We start with the case for Heloise the verifier. Let us and consider the game
state (Heloise, ϕ). We proceed by induction on the complexity of ϕ and describe Heloise
the verifier’s winning strategy for each case. Now, let ϕ be true in M .

If ϕ is a propositional letter p which is true in M , then Heloise the verifier wins by
definition, hence has a winning strategy.

Let ϕ = ¬ψ. Then, ψ is false. By the game rules, the play continues where Heloise is
the falsifier. By the induction hypothesis (for falsifier), Heloise the falsifier has a winning
strategy for ψ. Then, she as the verifier has a winning strategy for ¬ψ by simply playing
her game as the falsifier for ψ. Thus, she has a winning strategy for ϕ.

Now, let ϕ be a conjunction of the form χ∧ψ. Since, ϕ is assumed to be true, the only
way to make it true is to have χ and ψ both true. Then, by the induction hypothesis,
Heloise the verifier has a winning strategy for both χ and ψ. Then, for ϕ, Abelard the
falsifier and Astrolabe the paradoxifier make moves. Yet, whichever move they make
(whichever of χ or ψ they choose), Heloise the verifier will have a winning strategy.
Thus, for ϕ, she has a winning strategy: whatever move Abelard and Astrolabe make,
she wins.

Let ϕ be a disjunction of the form χ ∨ ψ. Then, by the induction hypothesis, Heloise
has a winning strategy for either χ or ψ, whichever is true. Then, choosing the true
disjunct is her winning strategy at ϕ, independent from whatever Astrolabe chooses.

The case for Abelard the falsifier, that is, the game positions (Abelard, ϕ), is almost
identical to that of Heloise’s, hence skipped.

For Astrolabe the paradoxifier, we first assume that the given formula ϕ is paradoxical.
Let ϕ be paradoxical in M . Consider the game state (Astrolabe, ϕ)

If ϕ is a propositional letter p which is paradoxical in M , then Astrolabe wins the
play by definition, hence has a winning strategy.

Let ϕ = ¬ψ. Then, ψ is paradoxical, too. By the game rules, Astrolabe the paradoxi-
fier’s rule remains the same. By the induction hypothesis, he has a winning strategy for
ψ. Then, he has a winning strategy for ϕ by simply maintaining the same role and the
strategy, and proceeding with ψ.

For ϕ = χ ∧ ψ. Since ϕ is assumed to be paradoxical, we only have two options for
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χ and ψ: (1) either one of them has the truth value P and the other has the truth
value T , (2) both have the truth value P . Therefore, Astrolabe the paradoxifier has a
winning strategy for at least one of χ and ψ, by the induction hypothesis. Then, for ϕ,
Astrolabe chooses the conjunct that has the truth value P for which he has a winning
strategy already. This forms his winning strategy for ϕ, independent from whatever
move Abelard the falsifier makes.

If ϕ = χ∨ ψ, then we have two options as well: (1) one of the disjuncts has the truth
value P and the other one has the truth value F , (2) both have the truth value P . So,
Astrolabe the paradoxifier has a winning strategy for at least one of χ and ψ, by the
induction hypothesis. Then, for the game with ϕ, Astrolabe chooses the disjunct that
has the truth value P , and this forms his winning strategy for ϕ, independent from
whatever Heloise chooses. �

Theorem 3.3 is what is called the correctness theorem for GTSLP which establishes
how GTS captures the standard semantics of LP. We will refer to such theorems with
this name from now on.

In the light of Theorem 3.3, it is important to note that LP distinguishes different
trues and falses: trues that are only true (T ), falses that are only false (F ), and trues
that are also false (P ) and falses that are also true (P ). In GTS, this distinction carries
over to games allowing Astrolabe the paradoxifier to make moves alongside Heloise the
verifier and Abelard the falsifier. The purpose of this extended set of game rules in LP
is to cover the possibility of trues that are also false and falses that are also true. In
GTSLP, there are winning strategies which cause a loss for the opponent, and there are
winning strategies which do not. Additionally, there are winning strategies that cannot
guarantee the logical truth of the formula in GTSLP. A play for p ∧ f illustrates this
point, where both Abelard and Astrolabe can have a winning strategy. But this does not
directly say anything about determining the truth value of p∧ f . Therefore, in GTSLP,
the immediate connection between the existence of winning strategies and truth values
becomes slightly more complicated as the following theorem identifies.

Theorem 3.4. In a GTSLP verification game ΓLP(M,ϕ),

• If Heloise the verifier has a winning strategy, then ϕ is true in M ,
• If Abelard the falsifier has a winning strategy, then ϕ is false in M ,
• If Astrolabe the paradoxifier has a winning strategy, but not the other players, then
ϕ is paradoxical in M .

Proof. We start with the case for Heloise the verifier. Assume that for ϕ Heloise the
verifier has a winning strategy at state (Heloise, ϕ). The proof is by induction on ϕ.

If ϕ is a propositional variable p for which Heloise the verifier has a winning strategy,
then p is true by definition.

If ϕ = ¬ψ, then by definition, Heloise the falsifier has a winning strategy for ψ. By
the induction hypothesis, then ψ as false. Then, ¬ψ, that is, ϕ is true.

Let ϕ = χ ∧ ψ. If Heloise the verifier has a winning strategy, then she must have
winning strategies for both χ and ψ as it is not her turn. By the induction hypothesis
both χ and ψ must be true. In this case, ϕ turns out to be true as well.

Let ϕ = χ ∨ ψ. If Heloise the verifier has a winning strategy, this means that Heloise
has a winning strategy for at least one of χ and ψ. Then, by the induction hypothesis
one of them is true. By the truth table for LP, this makes ϕ true as well. Notice that it
is also Astrolabe the paradoxifier’s turn to choose here. If he has a winning strategy, he
can select the disjunct that gives him a win. By the induction hypothesis, that disjunct
can be paradoxical. Yet, as the other conjunct is true (which is by assumption as Heloise
has a winning strategy), ϕ still becomes true (as T ∨ P is true).
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The case for Abelard the falsifier is very similar, hence skipped.
The interesting case is that of Astrolabe the paradoxifier. Assume that for ϕ only

Astrolabe the paradoxifier has a winning strategy at position (Astrolabe, ϕ).
If ϕ is a propositional variable, and Astrolabe has a winning strategy, then by defini-

tion ϕ is paradoxical.
If ϕ = ¬ψ, and only Astrolabe has a winning strategy, he keeps playing for ψ as

a paradoxifier. By the induction hypothesis, this means that ψ is paradoxical. By the
truth table, ϕ becomes paradoxical as well.

Now, let ϕ = χ ∧ ψ. If only Astrolabe the paradoxifier has a winning strategy, this
means that he has a winning strategy for either of the conjuncts (as he can choose
whichever he likes), say χ without loss of generality. Then, by the induction hypothesis,
χ is paradoxical. Since Abelard does not have a winning strategy, by Theorem 3.3, then
neither of the conjuncts is false. Thus, by the truth table, ϕ is forced to be paradoxical
as χ is paradoxical. Otherwise, if Abelard had a winning strategy, and if one of the
conjuncts was F , then P ∧ F would return F , not P disproving the claim. This is the
reason why only Astrolabe is supposed to have a winning strategy.

Finally, if ϕ = χ ∨ ψ, then if only Astrolabe the paradoxifier has a winning strategy,
then he has a winning strategy for either of the disjuncts, say χ without loss of general-
ity. Then, by the induction hypothesis, χ is paradoxical. Heloise not having a winning
strategy means that neither of the disjuncts is true by Theorem 3.3. Then by the truth
table, ϕ is forced to be paradoxical as χ is paradoxical. �

It is important to note that the above theorems also show that verification games
ΓLP(M,ϕ) for LP are determined as valuations in game models are functional (that is,
each and every formula has exactly one truth value) and for each game there is at least
one player with a winning strategy.

Theorem 3.4 also indicates that Astrolabe the paradoxifier’s strategy is strictly dom-
inated in a sense that if some other player also admits a winning strategy, then Astro-
labe’s strategy will not give him a win. This observation is another reading of the truth
table for LP given in Figure 1.

Now, as a thought-experiment, it is possible to change some game rules in order to
give a biconditional correctness theorem for GTSLP by prioritizing some players over
others. This will allow some players to dominate the others reflecting the truth table for
LP. In this new and extended reading of GTSLP, such a move priority is given to the
parents (Abelard and Heloise). They are allowed to play first, then Astrolabe makes his
move. This extension prevents parallel moves and incorporates winning strategies into
the game rules. The revised game rules are given as follows.

• For propositional letters and negation, the rules are as before.
• Disjunction belongs to Heloise and Astrolabe; conjunction belongs to Abelard and

Astrolabe.
• If Heloise (resp. Abelard) has a winning strategy in the sub-game they choose, the

game proceeds with her (resp. his) move.
• Otherwise, Astrolabe makes a move.

The following example illustrates this modification.

Example 3.5. Let us consider the formula in Example 3.1. Given (p∧t)∨(p∧f), Heloise
first attempts to choose either of them only to realize that she does not have a winning
strategy in either of the sub-games with p∧t or p∧f . So, she cannot make a move. Then,
it becomes Astrolabe’s turn. Astrolabe chooses p ∧ t. Now, Abelard attempts to choose
either p or t only to realize that neither gives him a win. So, he cannot make a move.
Astrolabe makes a move, chooses p, and wins - this is Astrolabe’s winning strategy. If
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Astrolabe chose p ∧ f , then first Abelard would make a move and choose f for a win.
Yet, Abelard still does not have winning strategy in this game.

As we mentioned earlier, such a twist on GTSLP to recover the biconditionality in the
correctness theorem is ad-hoc. It incorporates the existence of winning strategies into
game rules creating a circular reasoning which results in the loss of game theoretical
intuition. This is a big price to pay to have a biconditional version of Theorem 3.3. We
shall observe a similar problem in due course for some other logics.

For another attempt to obtain a biconditional and classical correctness theorem, it
can be argued that the introduction of the third player is arbitrary, and his role can be
played by both players allowing them to play simultaneously. This line of argument also
suggests that Astrolabe’s win in a verification game is identical to having both Abelard
and Heloise win the play at the same time.

The idea of covering the third truth value by some combination of the original two
truth values is not strong enough to generalize to multi-valued logics. The situation
gets more complicated when 4-valued logics are considered. More importantly, from
a game theoretical perspective, identifying players’ roles (whether they are verifiers,
falsifiers, paradoxifiers or else) is an important game theoretical conceptualization in
formal semantics (Hodges, 2013). Reducing some truth values to some combinations of
others in an absolute reductionist sense eliminates the game theoretical sophistication
and richness of verification games. A play may end with the same outcome when it
is played by 2 or 4 players, but it does not suggest that they are indeed the same
game. The results may be identical but the process, the play and more importantly
the game theoretical and rational interaction among the players will not be identical.
Such an agenda will inevitably fail if we want to explore the full richness of GTS for
non-classical logics together with its logical and game theoretical implications.

In this section, we only discussed the basic system of LP. Kleene’s K3, as we men-
tioned, admits the same truth table and the above GTS works for K3 with some small
modifications. Additionally, some extensions of LP, such as RM3 which admits modus
ponens, or minimal LP can also be given a GTS. We leave such extensions of LP to
future work.

4. Game Semantics for First-Degree Entailment

Semantic evaluations are generally thought of as functions from logical formulas to
truth values. This ensures that each and every formula is assigned a unique truth value.
However, it is possible to replace the valuation function with a valuation relation which
can produce multiple or no truth values for logical formulas. The system obtained in
this manner is called First-degree entailment (FDE, for short), and is due to Dunn
(Anderson & Belnap, 1963; Dunn, 1976).

For the given propositional language L, the valuation relation r is defined on L×{0, 1}.
By ϕr∅, we denote the situation where ϕ is not related to any truth value, and (with a
slight abuse of notation) by ϕr{0, 1} the situation where it is related to both truth values.
FDE is a paraconsistent (inconsistency-tolerant) and paracomplete (incompleteness-
tolerant) logic. For formulas ϕ,ψ ∈ L, the valuation r is defined inductively as follows.

• ¬ϕr1 iff ϕr0,
• ¬ϕr0 iff ϕr1,
• (ϕ ∧ ψ)r1 iff ϕr1 and ψr1,
• (ϕ ∧ ψ)r0 iff ϕr0 or ψr0,
• (ϕ ∨ ψ)r1 iff ϕr1 or ψr1,
• (ϕ ∨ ψ)r0 iff ϕr0 and ψr0.
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Notice that LP can be obtained from FDE by imposing a restriction that no formula
gets the truth value ∅.

What does the relational semantics correspond to in verification games? If the truth
value P in LP can intuitively be thought of as both true and false, and if this allows
concurrent moves in GTSLP, then the same approach should work in game semantics for
FDE as well. In FDE, unlike LP, formulas can have no truth values which suggests that
neither Heloise nor Abelard may have a winning strategy (incompleteness-tolerance).
Also, in FDE, both players can have winning strategies (inconsistency-tolerance). Since
there exists a possibility that no players may have a winning strategy, semantic games
for FDE are not determined.

We define the verification games for FDE in the standard fashion as follows where the
GTS for FDE is denoted by GTSFDE.

Definition 4.1. The tuple ΓFDE = (π, ρ, σ, τ, δ) is a verification game for FDE where
π = {Heloise, Abelard}, σ is composed of tuples in the form (Heloise, ϕ) or (Abelard, ϕ)
or (∅, ϕ) where ∅ denotes that no player has a turn at ϕ, and δ is {T}. For a game
ΓFDE(M,ϕ), τ is given inductively for the positions (pi, ϕ) in σ as follows,

• if ϕ = ¬ψ, then,
– if {(Abelard,¬ψ)} ∈ τ then, {(Heloise, ψ)} ∈ τ ,
– if {(Heloise,¬ψ)} ∈ τ then, {(Abelard, ψ)} ∈ τ ,

• if ϕ = χ ∧ ψ, then {(Heloise, χ ∧ ψ), (Abelard, χ ∧ ψ)} ∈ τ ,
• if ϕ = χ ∨ ψ, then {(Heloise, χ ∨ ψ), (Abelard, χ ∨ ψ)} ∈ τ ;

and, finally, ρ is given inductively as follows.

• If ϕ is atomic, the game terminates, and Heloise wins if ϕr1, Abelard wins if ϕr0,
neither wins if ϕr∅,
• if ϕ = ¬ψ, players switch roles, and the game continues as ΓFDE(M,ψ),
• if ϕ = χ ∧ ψ, Abelard and Heloise choose between χ and ψ simultaneously,
• if ϕ = χ ∨ ψ, Abelard and Heloise choose between χ and ψ simultaneously.

Game rules for GTSFDE also include the turn function which specifies that both
players make moves at all binary connectives. A simple example can be helpful.

Example 4.2. Consider the formula p∧ (q ∨ r) where pr{0, 1}, qr∅ and rr0. Then, the
formula p ∧ (q ∨ r) evaluates to 0. In the verification game, Abelard the falsifier first
chooses q ∨ r, and then chooses r. Alternatively, he can also choose p as his winning
strategy, yet this also cause Heloise the verifier to win the play.

This example is another case where the existence of winning strategies do not directly
guarantee the truth value of the formula in question.

The correctness theorem for GTSFDE is given as follows.

Theorem 4.3. In a game ΓFDE(M,ϕ), we have the following:

• Heloise the verifier has a winning strategy if ϕr1,
• Abelard the falsifier has a winning strategy if ϕr0,
• Either of the players or no player has a winning strategy if ϕr∅.

Proof. The proof is by induction for each case.
Case for ϕr1: We start with the case for Heloise the verifier at the game position

(Heloise, ϕ). Suppose ϕr1. The cases for propositional variables and negation are imme-
diate.

Let ϕ = χ ∧ ψ. If ϕr1, then we have both χr1 and ψr1. By the induction hypothesis,
Heloise the verifier has winning strategies for both χ and ψ. Thus, she has a winning
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strategy for ϕ. For the failure of the reverse direction, assume that Heloise has a winning
strategy. Without loss of generality, suppose that she chooses χ. Assume further that
Abelard the falsifier has a winning strategy as well, that is, he chooses ψ. Then, by the
induction hypothesis χr1 and ψr0 which forces ϕr0.

Similarly, let ϕ = χ ∨ ψ. Then, we have χr1 or ψr1. By the induction hypothesis,
Heloise the verifier has a winning strategy for χ or ψ. Therefore, she has a winning
strategy for ϕ, that is, she chooses the disjunct for which she has a winning strategy.

Case for ϕr0: The cases for Abelard the falsifier are very similar to the above, hence
skipped.

Case for ϕr∅: Consider the position (∅, ϕ) with ϕr∅. If ϕ is a propositional variable,
by definition, no player wins. Similarly, let ϕ = ¬ψ. Then, by definition, ψr∅. By the
induction hypothesis, no player has a winning strategy. Thus, no player has a winning
strategy for ϕ.

Let ϕ = χ∧ψ. Then, by the truth conditions for FDE, we have two options: (1) both
χr∅ and ψr∅, or (2) χr1 and ψr∅ (without loss of generality). If the prior is the case, by
the induction hypothesis, no player has a winning strategy for χ or ψ. Thus, no player
has a winning strategy for ϕ. If the latter is the case, then Heloise the verifier has a
winning strategy for ϕ as he can make a move at a conjunction which forms his winning
strategy for ϕ.

Dually, let ϕ = χ ∨ ψ. Then, by the truth conditions for FDE, we have two options:
(1) both χr∅ and ψr∅, or (2) χr0 and ψr∅ (without loss of generality). If the prior one
is the case, by the same argument as above, no player has a winning strategy for ϕ. If
the latter is the case, Astrolabe the falsifier chooses χ which constitutes her winning
strategy for ϕ. �

The above theorem suggests a different reading of determinacy. Even if games
ΓFDE(M,ϕ) are finite and expected to be determined by the Gale-Stewart theorem, we
observe that there can be cases where no player can have a winning strategy. Therefore,
due to the underlying logic, some verification games for FDE can be undetermined. This
immediately suggests a different reading of strategies as not functions, but as relations.
We leave such extensions to future work.

Furthermore, if we impose that the ΓFDE(M,ϕ) games need to be determined, what
we obtain is a ΓLP(M,ϕ) game. On the other hand, another reason why ΓFDE(M,ϕ) is
not determined is because the game lacks a player whose role is to force the empty truth
value ∅. It is a matter of philosophical debate whether ∅ is a truth value or whether it
can be forced by a player. However, in the current framework, we chose not to introduce
a player for that role. In due time, we will consider an extension of FDE that has four
players: the verifier, the falsifier, the paradoxifier and the nullifier.

The connection between FDE and LP can further be explicated as follows.

Corollary 4.4. For an LP model M and a formula ϕ, let M ′ be the model obtained
from M by maintaining the same carrier set and replacing the valuation function of LP
with the valuation relation of FDE as follows: T 7→ 1, F 7→ 0 and P 7→ {0, 1}.

If Heloise or Abelard has a winning strategy in ΓLP(M,ϕ), then Heloise or Abelard has
a winning strategy in ΓFDE(M ′, ϕ) respectively. If only Astrolabe has a winning strategy
in ΓLP(M,ϕ), then both Heloise and Abelard have winning strategies in ΓFDE(M ′, ϕ).

Proof. The first part about Heloise and Abelard follows from Theorem 3.4 and The-
orem 4.3. In other words, if Heloise has a winning strategy in an LP game, then the
formula is true in LP by Theorem 3.4. The translation then translates T of LP to 1
of FDE. Then, by Theorem 4.3, Heloise has a winning strategy in the FDE game. The
argument is similar for Abelard.

If only Astrolabe has a winning strategy for the LP game for ϕ, then by Theorem 3.4,
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ϕ is paradoxical. By the translation, then ϕ is related to both 0 and 1 in FDE. By
Theorem 4.3, then both Heloise and Abelard have winning strategies in the FDE game.

�

The converse of Corollary 4.4 is not true. In GTSFDE, for t ∧ f , both Abelard and
Heloise have winning strategies. Yet, in LP for a game t ∧ f , Heloise does not have a
winning strategy.

5. Game Semantics for A Relevant Logic

Relevant logics define negation by resorting to possible worlds, and this reading renders
negation as a modal operator. The idea is due to Routley and Routley (Routley &
Routley, 1972). A Routley model is a structure (W,#, v) where W is a set of possible
worlds, # is a map from W to itself, and v is a valuation function defined in the standard
way. In this system, the semantics for disjunction and conjunction is local, whereas for
negation, possible worlds are needed. The semantics is given as follows.

v(w,¬ϕ) = 1 iff v(#w,ϕ) = 0,
v(w,ϕ ∧ ψ) = 1 iff v(w,ϕ) = 1 and v(w,ψ) = 1,
v(w,ϕ ∨ ψ) = 1 iff v(w,ϕ) = 1 or v(w,ψ) = 1.

We call Routleys’ system RR, and denote its GTS by GTSRR. Notice that if #w = w,
then we have the classical truth conditions. Further connections between RR and FDE or
LP can be found in (Priest, 2007). We denote semantical games in RR by ΓRR(M,ϕ,w)
where M and ϕ are as before, and w ∈W is a possible world.

Definition 5.1. The tuple ΓRR = (π, ρ, σ, τ, δ) is a verification game for RR where
π = {Heloise, Abelard}, σ is the set of game states in the form of (pi, ϕ, w) for pi ∈ π,
ϕ ∈ L and w ∈ W , τ is composed of singleton game states as there is no parallel play,
and δ is {T}. In a game ΓRR(M,ϕ,w), ρ is given as follows inductively for a fixed w.

• If ϕ is atomic, the game terminates, and Heloise wins if ϕ is true, Abelard wins if
ϕ is false,
• if ϕ = ¬ψ, the players switch roles, and the game continues as ΓRR(M,ψ,#w),
• if ϕ = χ ∨ ψ, Heloise the verifier chooses between χ and ψ,
• if ϕ = χ ∧ ψ, Abelard the falsifier chooses between χ and ψ.

The correctness theorem for GTSRR is given as follows.

Theorem 5.2. In a game ΓRR(M,ϕ,w), Heloise the verifier has a winning strategy if
ϕ is true, and Abelard the falsifier has a winning strategy if ϕ is false.

Proof. The proof is by induction on ϕ. Let us see the case for Heloise the verifier with
the game state (Heloise, ϕ, w). The case for Abelard the falsifier is very similar hence
skipped.

Let ϕ be a propositional letter p. If p is true then, by definition, Heloise the verifier
has a winning strategy.

Let ϕ = ¬ψ. Then, the game continues at #w for ψ with switched roles, where
v(#w,ψ) = 0. Heloise becomes the falsifier at the game position (Heloise, ψ,#w). By
the induction hypothesis (for Abelard the falsifier), the falsifier has a winning strategy
for the play at #w for ψ. Therefore, Heloise the verifier has a winning strategy at
(Heloise,¬ψ,w) which forms her winning strategy for ϕ at (Heloise, ϕ, w).

The cases for conjunction and disjunction are as expected thus omitted. �

Notice that ΓRR(M,ϕ,w) games are not necessarily zero-sum. In order to see this, let
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w |= ¬p for a propositional atom p. Stipulate further that #(w) = w. Now, by definition
w |= p. Therefore, by Theorem 5.2, both Abelard and Heloise have winning strategies in
ΓRR(M,p∧¬p, w) where M and w are as above. Therefore, Heloise can have a winning
strategy for a false (at the same time true) formula, and likewise for Abelard.

6. Game Semantics for a Connexive Logic

As Wansing puts it, connexive logic is a “comparatively little-known and to some extent
neglected branch of non-classical logic” (Wansing, 2015). Even if it is under-studied, its
philosophical roots can be traced back to Aristotle and Boethius.

Connexive logic is defined as a system which satisfies the following two schemes of
conditionals:

• Aristotle’s Theses: ¬(¬ϕ→ ϕ)
• Boethius’ Theses: (ϕ→ ¬ψ)→ ¬(ϕ→ ψ)

The philosophical motivation behind the above schemata goes back to early medieval
philosophy where unintuitive results about material implication received some interest.
In modern days, connexive logics can also be viewed as part of the agenda of relevant
logic, which takes the material implication central in its inquiry. In this paper, we will
set such historical and philosophical discussions aside and focus on the formal semantics.

As in many different families of non-classical logic, there has been suggested a variety
of connexive logics in the literature. In this work, we discuss one of the earliest examples
of connexive logics CC, which is due to McCall (McCall, 1966).

The logic CC is axiomatized by adding the scheme (ϕ → ϕ) → ¬(ϕ → ¬ϕ) to the
axiomatization of classical propositional logic. The rules of inference for CC is modus
ponens and adjunction, which is given as ` ϕ, ` ψ ∴ ` ϕ∧ψ. As usual, we consider CC
with the standard propositional syntax L.

The semantics for CC is given with 4 truth values: T , t, f and F which can be
viewed as “logical necessity”, “contingent truth”, “contingent falsehood”, and “logical
impossibility” respectively (Routley & Montgomery, 1968). In CC, the designated truth
values are T and t. The truth table for CC is given in Figure 2.

¬
T F
t f
f t
F T

∧ T t f F
T T t f F
t t T F f
f f F f F
F F f F f

∨ T t f F
T t T t T
t T t T t
f t T F f
F T t f F

Figure 2. The truth table for CC.

Notice that even if there are paraconsistent connexive logics, CC in particular is not
paraconsistent. It is possible to obtain paraconsistent connexive logics based on relevant
logic RR, which we discussed earlier, or by splitting the satisfaction relation into negative
and positive satisfaction (Wansing, 2015).

The CC truth table, similar to some other non-classical logics considered in this work,
exhibits an interesting property that for some binary connectives and truth values, two
truth values produce a third truth value. For instance, in CC with a brief abuse of
notation, we have t ∧ f ≡ F . We generalize this phenomenon as follows.

Definition 6.1. Let L be a n-valued logic where n ≥ 2, {Vi}i≤n the set of truth-values,
and {Cj}j∈J be set of binary logical connectives for some index set J . Then, L is said
to have the hereditary condition if for all i, i′ ≤ n, j ∈ J , Cj(Vi, Vi′) evaluates to either
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Vi or Vi′ . In short, logical connectives cannot output a truth value different than the
input values. This definition can easily be extended to k-ary logical connectives.

Thus, CC lacks the hereditary condition which complicates its game theoretical se-
mantics. For instance, if the verification game is for t∧ f , how can Abelard the falsifier
guarantee a win?

First, following our earlier methodology, we introduce 4 players for 4 truth values.
The truth value T is forced by Heloise, F by Abelard, t by Aristotle and f by Boethius.
We denote the game theoretical semantics for CC with 4 players by GTSCC.

Since CC lacks the hereditary condition, we stipulate that the players form coalitions.
The idea of forming coalitions in logical games for a win is not new, and its origins in
(modal) logic can be found in (Pauly, 2002). In GTSCC, we impose that “Heloise and
Aristotle” and “Abelard and Boethius” form two teams, which can be viewed as truth-
maker and false-maker coalitions respectively. Now, we define the semantic verification
game for CC as follows.

Definition 6.2. The tuple ΓCC = (π, ρ, σ, τ, δ) is a verification game for CC where
π = {Heloise, Aristole, Boethius, Abelard}, σ is the set of tuples in the form of
(Heloise/Aristotle, ϕ) and (Abelard/Boethius, ϕ) for well-formed formula ϕ, τ is com-
posed of singleton game positions as there is no parallel play, and δ is {T, t}. And, for
a game ΓCC(M,ϕ), ρ is given inductively as follows.

• If ϕ is atomic, the game terminates, and Heloise wins if ϕ has the truth value T ,
Aristotle wins if ϕ has the truth value t, Boethius wins if ϕ has the truth value f
and Abelard wins if ϕ has the truth value F ,
• if ϕ = ¬ψ, Heloise assumes Abelard’s role, Aristotle assumes Boethius’ role,

Boethius assumes Aristotle’s role and Abelard assumes Heloise’s role, and the
game continues as ΓCC(M,ψ),
• if ϕ = χ ∧ ψ, false-makers simultaneously choose between χ and ψ,
• if ϕ = χ ∨ ψ, truth-makers simultaneously choose between χ and ψ.

In the above definition, game states (Heloise/Aristotle, ϕ) and (Abelard/Boethius, ϕ)
denote the the truth-maker coalition and false-maker coalition respectively. In short,
these coalitions are considered as single agents.

As an alternative to the above definition and a thought experiment, it can be suggested
that instead of forming coalitions, players may be allowed to play in parallel just as in
GTSLP. In this case, it can be argued that conjunction can be assigned to Abelard and
Boethius, and disjunction to Heloise and Aristotle. The following example considers this
hypothetical case as well.

Example 6.3. By a slight abuse of notation, let us denote with f, t, F, T the atoms
with truth values f, t, F, T respectively. Let us consider the formula (F ∧ f) ∨ (T ∧ t)
which evaluates to T in CC. In this play, we expect the truth-makers to win. However,
they cannot individually achieve a win. If Heloise makes a move to T ∧ t, then she needs
Aristole to win since Abelard or Boethius can choose whatever they wish at T ∧ t. Thus,
by forming a coalition, Aristotle and Heloise (the truth-makers) can guarantee a win in
this play.

However, following the hypothetical case of allowing parallel plays where individual
players play in parallel without a coalition, it can be observed that Heloise cannot
guarantee a win. First, she chooses the conjunct T ∧ t. But then, Abelard and Boethius
can choose whatever they like, in particular t. Thus, Heloise cannot have a winning
strategy for a formula with truth value T . This justifies why we need coalitions in
GTSCC.

We give the biconditional correctness theorem for GTSCC as follows.
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(F ∧ f) ∨ (T ∧ t)
Heloise

F ∧ f

Abelard

F f

Boethius

F f

T ∧ t

Abelard

T t

Boethius

T t

Aristotle

F ∧ f

Abelard

F f

Boethius

F f

T ∧ t

Abelard

T t

Boethius

T t

Theorem 6.4. In a GTSCC verification game ΓCC(M,ϕ),

• truth-makers have a winning strategy if and only if ϕ has the truth value t or T
in M ,
• false-makers have a winning strategy if and only if ϕ has the truth value f or F

in M .

Proof. We present a proof only for truth-makers as the cases for false-makers are similar.
In order to make it easier to follow, we will give proof without being fully formal on the
game positions.

[Left-to-Right Direction] Assume that truth-makers have a winning strategy for the
verification game ΓCC(M,ϕ), we will show by induction on ϕ that the truth value of ϕ
is either t or T .

Let ϕ be a propositional variable p. If truth-makers Heloise and Aristotle have winning
strategies, then by definition of GTSCC, the truth value of ϕ is either T or t.

Now, let ϕ = ¬ψ for some ψ. Assume that truth-makers have a winning strategy for
ΓCC(M,ϕ). By the game rules, Heloise and Aristotle assume the role of false-makers, and
will have a winning strategy as false makers for the game ΓCC(M,ψ). By the induction
hypothesis, then, ψ will be either f or F . Then, by the truth table for CC in Figure 2,
ϕ has the truth value t or T .

As the third step of the induction, let ϕ = χ ∧ ψ and assume that truth-makers have
a winning strategy for ΓCC(M,ϕ). Then, by definition, false-makers make a move and
choose either of the conjunct, depending on their strategy. Since truth-makers have a
winning strategy for ϕ whichever conjunct false-makers choose, they will still have a
winning strategy. By the induction hypothesis, then the truth-makers have a winning
strategy for both χ and ψ. By the induction hypothesis, the truth values of χ and ψ are
either t or T . The truth table for CC in Figure 2 shows that any conjunction of ts and
T s produces a t or T truth value. Thus, the truth value of χ ∧ ψ is still t or T which
gives us the truth value of ϕ.

Finally, let ϕ = χ ∨ ψ and assume that truth-makers have a winning strategy for
ΓCC(M,ϕ). Then, by definition truth-makers will choose either of the disjunct to employ
their winning strategy, say χ without loss of generality. Then, by induction hypothesis,
as truth makers also have a winning strategy for χ, the truth value of χ is either t or
T . The truth table for CC in Figure 2 shows that any disjunction of a t or T with any
other truth value still produces a t or T truth value. Thus, the truth value of χ ∨ ψ is
still t or T , independent from the truth value of ψ. Thus, the truth value of ϕ is either
t or T .

[Right-to-left Direction] Let ϕ have the truth value t or T in M .
If ϕ is a propositional letter p with a truth value t or T , then truth-makers win the

game by definition, hence they possess a winning strategy.
Let ϕ = ¬ψ. Then, ψ has the truth value f or F . By the game rules, now the game

continues where Heloise and Aristotle are false-makers. By the induction hypothesis
(for false-makers), the coalition of Heloise and Astrolabe as false-makers have a win-
ning strategy for ψ. Then, taking one step back, they, as truth-makers, have a winning
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strategy for ϕ.
Now, let ϕ be a conjunction of the form χ ∧ ψ. Since, ϕ is assumed to have the truth

values t or T , according to the truth table for CC in Figure 2, the only way to realize
ϕ as t or T is to have χ and ψ with truth values t or T (or any combination thereof).
Thus, whichever move false-makers make at χ ∧ ψ, truth-makers will have a winning
strategy, by induction hypothesis. Then, truth-makers will have a winning strategy for
ψ.

Finally, let ϕ be a disjunction of the form χ∨ψ. Then, truth-makers make a move and
choose the disjunct with the truth value t or T . According to the truth table for CC in
Figure 2, the only way to realize χ ∨ ψ with a truth value t or T is to have at least one
of disjunct with a truth value either t or T . By induction hypothesis, truth-makers have
a winning strategy for that disjunct with the truth value t or T . Thus, at χ ∨ ψ, truth
makers simply choose that disjunct which form the winning strategy of truth makers
for ϕ.

This concludes the proof. �

It is possible to consider teams and coalitions as individual players with an aim of
reducing the verification game to a two-player game. This simply mimics a translation
from CC to classical logic where T and t are assigned to T , and F and f are assigned
to F .

From a game theoretical perspective, this amounts to loss of information. Identifying
two players with different goals to force the play to a “necessary truth” win and to a
“contingent truth” win, with a single player to force the play to a “truth” win, does not
do justice to the verification game for CC. Players may have similar goals and can form
coalitions, yet this by no means entails that they are identical players with identical
roles.

The major contribution of CC to GTS is that it introduces coalitions into verification
games in a natural way. Coalition formation directly reflects the truth table of the logic
in question and its philosophical underpinnings. Therefore, some other multi-valued
logical systems with similar properties can possibly be given a coalition-based GTS.

7. Game Semantics for Belnap’s Four Valued Logic

Belnap’s four valued logic (BL, for short) introduces two additional truth values besides
the classical ones. The truth value P , as before, represents over-valuation, and N rep-
resents under-valuation. Traditionally, P stands for both truth values and N stands for
neither of the truth values. As the truth table in Figure 3 indicates, P and N are the
fixed-points under negation.

¬
T F
P P
N N
F T

∧ T P N F
T T P N F
P P P F F
N N F N F
F F F F F

∨ T P N F
T T T T T
P T P T P
N T T N N
F T P N F

Figure 3. The truth table for BL.

As can be seen from the truth table, similar to CC, BL does not admit the hereditary
condition. In the case of BL, with a slight abuse of notation, the problematic formulas
are P ∨ N ≡ T and P ∧ N ≡ F . A Hasse-style truth value lattice for BL is given in
Figure 4.

The above Hasse diagram illustrates the standard method to compute disjunction and
conjunction of two truth values as the least upper bound and the greatest lower bound
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T

P N

F

Figure 4. Hasse Diagram for BL.

of the two values respectively. Then, with a slight abuse of notation, it is possible to
read off P ∨N ≡ T and P ∧N ≡ F from the diagram. For simplicity, we will take the
designated values for BL as {P, T}.

The truth combinations P∨N ≡ T and P∧N ≡ F suggest that our standard approach
may not work for BL. For a true formula, Heloise the verifier may have to choose P or
N as her end-state for a win. Similarly, Abelard the falsifier may end up with a P or N
state as well.

As before, we introduce 4 players for 4 truth values. The truth value T is forced by
Heloise, F by Abelard, P by Astrolabe and N by Bernard1. In this case, at the beginning
of the play, Heloise is the verifier, Abelard is the falsifier, Astrolabe is the paradoxifier,
and Bernard is the nullifier. We denote the game theoretical semantics for BL with 4
players by GTSBL.

Similar to earlier games, the first problem is to assign players’ roles to the connectives.
But this time, BL lacks the hereditary condition. Now, similar to our methodology for
GTSCC, we can consider coalitions and form two teams as “Heloise and Astrolabe”
and “Abelard and Bernard”. In this case, the disjunction will belong to the team of
“Heloise and Astrolabe” and the conjunction to ‘Abelard and Bernard”. Let us test this
hypothetical idea in the following example.

Example 7.1. Let us consider the formula (n ∧ p) ∨ (n ∨ p) which evaluates to T . In
this game, we expect the coalition of Heloise the verifier and Astrolabe the falsifier win
as a coalition even if neither of the end-nodes has the truth value T . Simply put, in this
case Heloise will start playing and pass the ball to Astrolabe for a win.

First, Heloise makes a move and chooses n ∨ p. Because if she chooses n ∧ p, then
the coalition of Abelard and Bernard may choose n and win. Then, at n ∨ p, Astrolabe
chooses p which is a win for the coalition of Heloise and Astrolabe.

(n ∧ p) ∨ (n ∨ p)
Heloise

n ∧ p

Abelard

n p

Bernard

n p

n ∨ p

Heloise

n p

Astrolabe

n p

Astrolabe

n ∧ p

Abelard

n p

Bernard

n p

n ∨ p

Heloise

n p

Astrolabe

n p

In the above example and thought experiment, the idea of forming coalitions for BL
verification games seem to work. However, from a philosophical perspective, it seems to
create a more ambiguous case. For example, for the case when the coalition of Heloise
and Astrolabe wins, it is not possible to know the truth value of the formula in question.
Is it T (after Heloise) or P (after Astrolabe)? In the case of GTSCC, the aforementioned

1After Abelard’s rival Bernard of Clairvaux.
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ambiguity might have been considered relatively less serious as the resulting truth value
of the coalition-led game was either one of the trues or one of the falses. Simply put,
the goal and the purpose of the coalitions in GTSCC was clear: truth-makers and false-
makers formed their respective teams. However, it does not seem to be the case in
GTSBL. In order to remedy this problem, we suggest a radical version of simultaneous
play for GTSBL. We associate conjunction with Abelard the falsifier, Astrolabe the para-
doxifier and Bernard the nullifier; and disjunction with Heloise the verifier, Astrolabe
the paradoxifier and Bernard the nullifier. Also, we take special care of the problematic
formulas.

We define the semantic verification game for BL for 4 players as follows in a rather
unusual way. Notice that for simplicity in the argument we associate players with their
roles.

Definition 7.2. The tuple ΓBL = (π, ρ, σ, τ, δ) is a verification game for BL where
π = {Heloise, Astrolabe, Abelard, Bernard}, σ is the set of tuples (pi, ϕ) for pi ∈ π and
well-formed formula ϕ, and δ is {T, P}. For a game ΓBL(M,ϕ), τ is given inductively
for the positions (pi, ϕ) in σ as follows,

• if ϕ = ¬ψ, then,
– if {(Abelard,¬ψ)} ∈ τ then, {(Heloise, ψ)} ∈ τ ,
– if {(Heloise,¬ψ)} ∈ τ then, {(Abelard, ψ)} ∈ τ ,
– if {(Astrolabe,¬ψ)} ∈ τ then, {(Astrolabe, ψ)} ∈ τ ,
– if {(Bernard,¬ψ)} ∈ τ then, {(Bernard, ψ)} ∈ τ ,

• if ϕ = χ ∧ ψ, then {(Abelard, χ ∧ ψ), (Astrolabe, χ ∧ ψ), (Bernard, χ ∧ ψ)} ∈ τ ,
• if ϕ = χ ∨ ψ, then {(Heloise, χ ∨ ψ), (Astrolabe, χ ∨ ψ), (Bernard, χ ∧ ψ)} ∈ τ ;

and, finally, ρ is given inductively as follows

• If ϕ is atomic, the game terminates, and Heloise wins if ϕ has the truth value T ,
Astrolabe wins if ϕ has the truth value P , Bernard wins if ϕ has the truth value
N and Abelard wins if ϕ has the truth value F ,
• if ϕ = ¬ψ, Heloise assumes Abelard’s role, Abelard assumes Heloise’s role, Astro-

labe and Bernard keep their previous roles, and the game continues as ΓBL(M,ψ),
• if ϕ = χ ∧ ψ where only Bernard has a winning strategy for ΓBL(M,χ) and only

Astrolabe has a winning strategy for ΓBL(M,ψ), then Abelard wins,
• if ϕ = χ∧ψ, for other cases, Abelard, Astrolabe and Bernard choose simultaneously

between χ and ψ,
• if ϕ = χ ∨ ψ where only Bernard has a winning strategy for ΓBL(M,χ) and only

Astrolabe has a winning strategy for ΓBL(M,ψ), then Heloise wins,
• if ϕ = χ∨ψ, for other cases, Heloise, Astrolabe and Bernard choose simultaneously

between χ and ψ.

The unusual game rules about P ∧N and P ∨N stem from the truth table for BL, and
the price we have to pay is to incorporate the existence of winning strategies into the
semantics - similar to what we observed for LP when we inquired about the possibility
of obtaining a biconditional correctness theorem.

It is important to note that this unusual semantics underlines the significance of game
composition in non-classical games. In other words, if the winning strategy of Bernard
and the winning strategy of Astrolabe is composed disjunctively, what we obtain is a
win for Heloise. Similarly, if the winning strategy of Bernard and the winning strategy
of Astrolabe is composed conjunctively, what we obtain is a win for Heloise.

The one-directional correctness theorem for GTSBL is given as follows.

Theorem 7.3. In a GTSBL verification game ΓBL(M,ϕ),
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• Heloise the verifier has a winning strategy if ϕ evaluates to T in M ,
• Abelard the falsifier has a winning strategy if ϕ evaluates to F in M ,
• Astrolabe the paradoxifier has a winning strategy if ϕ evaluates to P in M ,
• Bernard the nullifier has a winning strategy if ϕ evaluates to N in M .

Proof. The proof is an induction on the complexity of ϕ for each players respecting the
different cases for N ∧ P and N ∨ P , and is very similar to the previous cases. Hence,
few cases for Heloise and Bernard will be given in this proof.

Let us start with Heloise the verifier at position (Heloise, ϕ). The cases for propo-
sitional variables and negation is immediate. The case for disjunction N ∨ P follows
directly from the definition and is a win for Heloise.

For the cases for other disjunctions, Heloise the verifier chooses the disjunct with
the truth value T which gives her a win by the induction hypothesis. And this win
constitutes her winning strategy for the original formula ϕ.

For conjunction ϕ = χ ∧ ψ, by the truth table for BL in Figure 3, there is only one
option. That is, both ψ and χ are true. Thus, whatever Abelard the falsifier, Bernard
the nullifier or Astrolabe the paradoxifier chooses, their choice will have the truth value
T . By the induction hypothesis, then Heloise the verifier has a winning strategy for
whatever choice the other players make for the conjuncts. And that is the winning
strategy for Heloise for ϕ.

For Bernard the nullifier at the game position (Bernard, ϕ), the cases for propositional
variables and the negation follow directly from the definitions.

For ϕ = χ ∧ ψ with a truth value N , it can be observed in the truth table for
BL in Figure 3 that at least one of the conjuncts must have the truth value N , say
χ without loss of generality. Then, Bernard the nullifier chooses χ. By the induction
hypothesis, Bernard the nullifier has a winning strategy for the verification game for χ
at (Bernard, χ). Therefore, choosing χ, the conjunct with a truth value N is Bernard
the nullifier’s winning strategy at (Bernard, ϕ).

If ϕ = χ∧ψ, and χ and ψ have truth values N and P respectively, the theorem holds
vacuously for Bernard the nullifier as he is not allowed to make a move at this point by
the game rules.

For ϕ = χ ∨ ψ with a truth value N , then by the truth table for BL in Figure 3, at
least one of the disjuncts has the truth value N , and Bernard the nullifier chooses that
conjunct, say χ. By the induction hypothesis, he has a winning strategy at the game
state (Bernard, χ). Then, he has a winning strategy for ϕ at state (Bernard, ϕ).

Similarly, if ϕ = χ ∨ ψ, and χ and ψ have truth values N and P respectively, the
theorem holds vacuously for Bernard the nullifier as he is not allowed to make a move
at this point by the game rules.

As we argued, the cases for Abelard the falsifier and Astrolabe the paradoxifier are
very similar, hence skipped.

This concludes the proof. �

The converse of the theorem does not immediately hold for obvious reasons. For
example, in the game ΓBL(M,p∨n), Astrolabe the paradoxifier and Bernard the nullifier
have winning strategies as well, but this does not entail that the formula has the truth
value P or N .

Theorem 7.3 starts from the truth values and establishes the existence of (non-
exclusive) winning strategies. Parallel plays introduce the possibility of the existence
of winning strategies for multiple players. Therefore, it is important to ask whether the
converse of Theorem 7.3 holds or more importantly, under which conditions the converse
of Theorem 7.3 holds. The following result suggests a restriction where the existence
of winning strategies necessarily determine the truth value of the formula in question,
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similar to Theorem 3.4. It also reflects the algebraic structure of BL given in Figure 4.

Theorem 7.4. In a GTSBL verification game ΓBL(M,ϕ),

• If Heloise the verifier has a winning strategy, then ϕ evaluates to T ,
• If Abelard the falsifier has a winning strategy, then ϕ evaluates to F ,
• If only Astrolabe the paradoxifier has a winning strategy, then ϕ evaluates to P ,
• If only Bernard the nullifier has a winning strategy, then ϕ evaluates to N

in the model M .

Proof. The proof is by induction on the complexity of ϕ for each player.
The cases for Heloise the verifier and Abelard the falsifier are similar to previous cases,

except the cases for χ ∧ ψ and χ ∨ ψ where χ, ψ are formulas with truth values N and
P .

Let us consider the case for ϕ = χ ∧ ψ where only Bernard has a winning strategy
for ΓBL(M,χ) and only Astrolabe has a winning strategy for ΓBL(M,ψ). Then, by the
relevant parts of this theorem, χ evaluates to N and ψ evaluates to B. Then by the
truth table for BL given in Figure 3 and by Theorem 7.3, ϕ evaluates to T and Heloise
admits a winning strategy.

The other cases including χ ∨ ψ where χ, ψ are formulas with truth values N and P
respectively are very similar.

Next is the case for Astrolabe the paradoxifier. The cases for propositional variables
and the negation is immediate as Astrolabe keeps his role in the case of negation.

Let us assume ϕ = χ∧ψ where only Astrolabe has a winning strategy in ΓBL(M,ϕ).
By this restriction, the case where only Bernard has a winning strategy for ΓBL(M,χ)
and only Astrolabe has a winning strategy for ΓBL(M,ψ) is excluded (as also it was
covered earlier).

Now, for ϕ = χ∧ψ, Abelard, Astrolabe and Bernard choose simultaneously. Since, only
Astrolabe has a winning strategy, neither Abelard nor Bernard has winning strategies
for neither of the conjuncts χ nor ψ. Astrolabe now chooses one of the conjuncts as
part of his winning strategy. Assume he chooses χ without loss of generalization. By the
induction hypothesis, χ evaluates to the truth value P . By the truth table given for BL
in Figure 3, we have two cases for the truth value of ϕ: P or F .

Next, we eliminate the cases for F . Formula ϕ evaluates to F only if ψ is F or N .
By the relevant part of this theorem and by the assumption that Abelard cannot have
a winning strategy for for ϕ, it follows that ψ cannot be F . Similarly, ψ cannot be N .
If it was, then by Theorem 7.3 Bernard the nullifier would have a winning strategy for
ΓBL(M,ψ). Since, by the game rules, Bernard is allowed to make a move for ϕ = χ∧ψ,
then he would have a winning strategy for ΓBL(M,ϕ) which would contradict with the
assumption that only Astrolabe had a winning strategy in that game. Thus, ϕ can only
have the truth value P .

The case for disjunction for Astrolabe is similar, hence omitted.
Moreover, the case for Bernard the nullifier is very similar to that of Astrolabe’s,

hence left to the reader.
This completes the proof. �

Theorem 7.4 shows how restrictions on the existence of winning strategies guarantee
the truth value of the formula in question.

Logics FDE and BL seem rather similar. There can be given effective translations
between their truth values, and their philosophical motivations look closely related.
However, the games we introduced for them are very different. The logical and technical
differences between BL and FDE surface more clearly from the view point of GTS.
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Furthermore, Theorem 7.4 suggests how we should understand the dominance of
strategies in GTSBL. The theorem states how the existence of winning strategies - with-
out depending on the existence of winning strategies for other players - determine (or
do not determine) the truth value of the formula in question. This is a fruitful and in-
teresting future research direction and relates to the elimination of dominated strategies
as a solution concept in game theory. We leave such extension to future work.

8. Translating Games

In a recent work, an efficient translation between three-valued logics and modal logic S5
was given (Kooi & Tamminga, 2013). A model of modal logic S5 is defined as a tuple
(W,R, V ) where W is a non-empty set, R is an equivalence relation on W ×W and V
is the standard valuation function. The logic S5 generates equivalence classes and the
modal operator can be used to define a new paraconsistent negation ¬� (Béziau, 2005).
Furthermore, there have been suggested various consequence relations between modal
S4 and various intuitionistic and dual-intuitionistic logics (Shramko, 2016). For that
reason, it can be inquired whether there exist further connections between modal and
paraconsistent logics. In what follows, we present a game theoretical connection between
modal and paraconsistent logic based on the translations in (Kooi & Tamminga, 2013;
Shramko, 2016).

Briefly, the language LM of S5 is obtained by taking the syntactic closure of proposi-
tional logic with the possibility modal operator ♦ and the necessity modal operator �
in the usual way. Semantically, for w ∈W in a model M , we have the following.

M,w |= �ϕ iff ∀v.Rwv →M, v |= ϕ
M,w |= ♦ϕ iff ∃v.Rwv ∧M, v |= ϕ

Furthermore, in S5, a formula �ϕ is true at a state w in a model M if and only if it
is true at all v ∈ [w] where [w] denotes the partition of W that contains w. Dually, a
formula ♦ϕ is true at state w in a model M if and only if it is true at some v ∈ [w].

GTS for the classical modal logic is well-known. “Diamond” formulas are assigned to
Heloise the verifier whereas the “Box” formulas are assigned to Abelard the falsifier.
Also, similar to the RR, formulas in LM are associated with a possible world. For
modal formulas, the position of the game token for the next move is determined by the
accessibility relation.

In this section, we give a translation of LP (and K3) into S5 via GTS. The translation
is built on the following observation:

“In an S5-model there are three mutually exclusive and jointly exhaustive possibilities for
each atomic formula p: either p is true in all possible worlds, or p is true in some possible
worlds and false in others, or p is false in all possible worlds” (Kooi & Tamminga, 2013).

The translations TrLP : L 7→ LM and TrK3 : L 7→ LM for LP and K3 respectively are
given as follows, where p is a propositional variable (Kooi & Tamminga, 2013).

TrLP(p) = ♦p

TrK3(p) = �p

TrLP(¬ϕ) = ¬TrK3(ϕ)

TrK3(¬ϕ) = ¬TrLP(ϕ)

TrLP(ϕ ∧ ψ) = TrLP(ϕ) ∧ TrLP(ψ)

TrK3(ϕ ∧ ψ) = TrK3(ϕ) ∧ TrK3(ψ)

TrLP(ϕ ∨ ψ) = TrLP(ϕ) ∨ TrLP(ψ)

TrK3(ϕ ∨ ψ) = TrK3(ϕ) ∨ TrK3(ψ)

The translation is a co-induction, and generates fully modalized formulas. For example,
the translation of the LP formula p∧¬q is ♦p∧¬�q in S5 - every proposition generates
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a modal formula in S5. More interestingly, the translation of the LP formula p ∧ ¬p
is ♦p ∧ ¬�p in S5, which is equivalent to ♦p ∧ ♦¬p not necessarily inconsistent in
S5. However, the same formula p ∧ ¬p translates from K3 to S5 as �p ∧ �¬p which is
contradictory. Moreover, TrLP(p∨¬p) = ♦p∨♦¬p which holds in S5, while TrK3(p∨¬p) =
�p ∨�¬p which does not hold in general in S5.

As the authors underlined, for fully modalized formulas in S5, a formula is true some-
where in an S5 model if and only if it is true everywhere in the model. This fact is due
to the frame properties of S5. We refer the reader to (Kooi & Tamminga, 2013) for a
detailed exposition of the translation and its correctness proof.

Given ΓLP = (π, ρ, σ, τ, δ), we define ΓS5 = (π′, ρ′, σ′, τ ′, δ′) as follows: π′ =
{Heloise,Abelard}, δ′ = {1}; ρ′, σ′, and τ ′ are rules, positions and position of game to-
ken of verifications games for (classical) S5, respectively. Similarly, a win for the verifier
is the situation when the play terminates with a true atom. Dually, a player terminated
with a false atom brings a win to the falsifier.

Furthermore, given an LP model M with valuation V , there exists a corresponding S5
model M ′ (Kooi & Tamminga, 2013). Let us describe how M ′ = (W ′, V ′) is constructed.
Let W ′ = {w,w′}, and for all propositional variables, we define V ′ as follows for truth
values T, F and P of LP:

V ′(p) = W ′ iff V (p) = {T}
V ′(p) = {w} iff V (p) = {P}
V ′(p) = ∅ iff V (p) = {F}

That is, true formulas are true everywhere in the S5 model, false formulas are false
everywhere, paradoxical formulas are true somewhere - not everywhere, not nowhere.

The following example illustrates the games we have defined.

Example 8.1. Let us reconsider Example 3.1. In this example, the formula (p∧t)∨(p∧f)
which evaluates to P in LP was examined. In this LP game, Astrolabe the paradoxifier
has a winning strategy.

Now, Tr((p∧ t)∨ (p∧ f)) = (♦p∧♦t)∨ (♦p∧♦f). In this game in S5, we expect both
players have a winning strategy.

The first move is due to Heloise. She chooses ♦p ∧ ♦t. Otherwise, if she chooses
♦p ∧ ♦f , then Abelard may choose ♦f which would result in Heloise not having a
winning strategy.

Now, at ♦p ∧ ♦t, Abelard chooses ♦p. Otherwise, he cannot possibly win. At ♦p,
however, he chooses the state in S5 model (that is w according to the model defined
earlier) at which the atom p is false. But, by the observation that V (¬p) = V (p), the
very same state in M ′ also verifies p. So, this move brings both players a win as ¬p has
the same extension as p.

Thus, both players have a winning strategies in the S5 game ΓS5 for the given formula
in this model.

The following theorem establishes the correctness of the translation for LP.1

Theorem 8.2. Let ΓLP(M,ϕ) be given. Then, there exists a corresponding S5 model
M ′ and,

• if Heloise the verifier has a winning strategy in ΓLP(M,ϕ), then she has a winning
strategy in ΓS5(M ′,TrLP(ϕ)),
• if Abelard the falsifier has a winning strategy in ΓLP(M,ϕ), then he has a winning

strategy in ΓS5(M ′,TrLP(ϕ)),
• if only Astrolabe the paradoxifier has a winning strategy in ΓLP(M,ϕ), then both

1A similar theorem can also be given for K3 very easily.
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Abelard and Heloise have winning strategies in ΓS5(M ′,TrLP(ϕ)).

Proof. The theorem is given for LP and S5 and is a co-induction on ϕ. For this reason,
we assume the correctness of a similar theorem for K3 and S5 whose proof requires the
correctness of the current theorem. Here, we present only the proof of the translation
between LP and S5.

First of all, let us observe again how M ′ = (W ′, V ′) is constructed. Let W ′ = {w,w′},
and for propositional variable p, we define V ′ as follows for truth values T, F and P of
LP:

V ′(p) = W ′ iff V (p) = {T}
V ′(p) = {w} iff V (p) = {P}
V ′(p) = ∅ iff V (p) = {F}

Now, assume that Heloise the verifier has a winning strategy for ϕ in LP. Let us
proceed by induction on ϕ. If ϕ is a propositional letter p, then p is true in LP. Then,
it translates to S5 as ♦p, which is a turn for Heloise the verifier. Then, the game in
S5 starts by Heloise with ♦p, and she can choose any state in the model as p is true
everywhere. This is her winning strategy in ΓS5(M ′,TrLP(ϕ)).

For ϕ = ¬ψ, suppose Heloise the verifier has a winning strategy for ¬ψ in LP. By the
translation, she has a winning strategy for ¬TrK3(ψ) in S5. So, by the assumed similar
theorem for K3 and S5, the falsifier has a winning strategy in S5 for TrK3(ψ). Then, in
S5 Heloise the verifier has a winning strategy for ¬TrK3(ψ) which is TrLP(¬ψ). Thus,
Heloise the verifier has a winning strategy for TrLP(ϕ) in S5.

The cases for conjunction and disjunction are immediate. Also, the case for Abelard
the falsifier is very similar, hence skipped.

The case for Astrolabe the paradoxifier is interesting. Assume that only Astrolabe the
paradoxifier has a winning strategy for ϕ in LP. Then by Theorem 3.4, ϕ has the truth
value P .

As the first step of the induction, assume ϕ = p for a propositional variable p. This
translates as ♦p and is true at w in M ′, as observed already. However, as V (p) = V (¬p)
in LP, ♦¬p (which is TrLP(¬p)) is also true at w. Heloise the verifier makes a move to w,
which her only possibility to verify ♦p. Yet, this move also constitutes a win for Abelard
the falsifier. Thus, both players have winning strategies for ϕ = p in ΓS5(M ′,TrLP(ϕ)).

The case for negation for Abelard the paradoxifier is obvious as the negation of a
paradoxical formula is paradoxical. Similarly, the cases for the binary connectives are
immediate, hence skipped. �

Next, we discuss the converse of Theorem 8.2. For this purpose, we start with the
following definition.

For an LP valuation v, and a model M of S5, v and M are said to be TrLP-equivalent
if for all ϕ ∈ L we have (i) 1 ∈ v∗(ϕ)⇔ M |=S5 TrLP(ϕ), and (ii) 0 ∈ v∗(ϕ)⇔ M 6|=S5

TrK3(ϕ), where v∗ is the (truth table) function based on v that maps formulas to truth
values of LP. Based on various results in (Kooi & Tamminga, 2013), we now prove the
following.

Theorem 8.3. Let M be an S5 model, ϕ ∈ L with an associated verification game
ΓS5(M,ϕ). Then, there exists an LP model M ′ and a game ΓLP(M ′, ϕ) where,

• if Heloise the verifier has a winning strategy for ΓS5(M,ϕ) at each point in M ,
then Heloise has a winning strategy in ΓLP(M ′, ϕ),
• if Abelard the falsifier has a winning strategy for ΓS5(M,ϕ) at each point in M ,

then Abelard has a winning strategy in ΓLP(M ′, ϕ),
• if Heloise or Abelard has a winning strategy for ΓS5(M,ϕ) at some points but not

all in M , then Astrolabe has a winning strategy in ΓLP(M ′, ϕ).
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Proof. As we observed, the propositions that are true everywhere are associated with the
LP truth value T , the propositions that are true nowhere with F , and the propositions
that are true somewhere with P . In (Kooi & Tamminga, 2013), it was shown that these
LP and S5 models are TrLP-equivalent.

Based on this observation, if Heloise has a winning strategy for ΓS5(M,ϕ) at all
points in M , it means that, by the aforementioned translation, ϕ has a truth value T in
LP. Then by Theorem 3.3, Heloise has a winning strategy in ΓLP(M ′, ϕ). Similarly, if
Abelard has a winning strategy for ΓS5(M,ϕ) at all points in M , it means that, by the
aforementioned translation, ϕ has a truth value F in LP. Then by Theorem 3.3, Abelard
has a winning strategy in ΓLP(M ′, ϕ). Finally, if Astrolabe has a winning strategy for
ΓS5(M,ϕ) at some points in M , it means that, by the aforementioned translation, ϕ
has a truth value P in LP. Then by Theorem 3.3, Astrolabe has a winning strategy in
ΓLP(M ′, ϕ). �

The translation between LP and S5 via game semantics brings along the question of
apply the same methodology to a (possible) translation between BL and a modal logic.
We leave this to future work.

9. Difficult Logics

There are some well-known and well-studied paraconsistent logics in the literature which
have not been discussed in this work. Let us now explain why the well-known Brazilian
and Canadian schools of paraconsistency do not seem to fit in our Hintikkan approach.

The da Costa system is one of the most well-known and well-studied systems of
paraconsistent logic (da Costa, 1974; da Costa et al., 2007). In order to control inconsis-
tencies, da Costa systems introduce a weaker negation alongside a consistency operator
◦. This operator brings the meta-logical condition of consistency down to the object
level. In this syntax, ◦ϕ reads that the formula ϕ is consistent. Moreover, the classical
negation can also be reclaimed in the da Costa systems.

From a game theoretical perspective, the rather ad hoc consistency operator seems
unusual as it does not seem to have an immediate game theoretical counterpart, to
the best of our knowledge. There have been attempts to give Kripkean possible world
semantics and topological semantics for da Costa logics, yet such works simply take this
operator as a given function (Baaz, 1986; Başkent, 2016). Similarly, the Logic of Formal
Inconsistency (LFI, for short) extends da Costa systems and seems to suffer from similar
game theoretical issues (Carnielli, Coniglio, & Marcos, 2007).

Game theoretical problems for da Costa logics are rooted in the fact that players in
our approach cannot test the consistency of the formulas when they are making moves.
This would require an (omniscient and omnipotent) auxiliary player whose task is to
check the consistency of the formulas. Since such a player cannot be associated with
truth values, we chose not to implement this idea in this work. Moreover, the game
theoretical connection between the consistency of a formula and the winning strategies
is not clear, as the logics we have discussed have demonstrated. Therefore, admitting a
consistency-forcer player seems difficult, if not impossible in our Hintikkan approach.

The Canadian school of paraconsistency, which is widely known as Preservationism
and pioneered by Jennings and Schotch, also falls outside the scope of the current pa-
per. In Jennings and Schotch’s work, modal truth conditions are extended from a binary
accessibility relation to an n-ary accessibility relation R. In this way, their system pre-
serves the rule of necessitation and the monotonicity principle of modal logic (Schotch,
Brown, & Jennings, 2009). The semantics for the necessity modality is given as follows
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for a possible world w.

w |= �ϕ if and only if ∀v1, . . . , vn(Rwv1 . . . vn → ∃i ≤ n.vi |= ϕ)

In this case it is not difficult to see how some possible worlds can satisfy the modal
contradictions in the form of �(ϕ ∧ ¬ϕ). Additionally, one of the technical strengths
of the preservationist account is its interdependence with various algebraic and lattice
theoretical notions.

The above definition introduces an additional layer of complexity for game theoretical
semantics for preservationist logics. In the classical, binary modal case, the accessibility
relation dictates how the game proceeds in a deterministic fashion. For boxed-formulas,
Abelard the falsifier chooses whichever accessible state he wishes, and for diamond-
formulas Heloise the verifier chooses one of the accessible states. However, in preserva-
tionism, for boxed-formulas Abelard the falsifier must first choose a string of accessible
states (that is a vector of the form v1 . . . vn) among many possibilities. This choice im-
plicitly includes another choice, which is represented by the existential quantifier in the
consequent to determine the precise point in the vector which satisfies the formula. This
would amount to two choices disguised in one move. Yet another complication is that
such a move involves formula dependency, and the game rules must reflect this fact. For
this reason, we have not considered preservationist paraconsistent systems in this work,
even if they seem to provide a rich mathematical machinery and interesting applications,
especially for IF-logic or dependency logic (Mann et al., 2011; Väänänen, 2007).

10. Conclusion

In this work, we discussed how different non-classical logics require different verification
games. We observed that some logics require additional players, some require concurrent
play and some require coalitions. Most importantly, paraconsistent logics break the
immediate connection between truth values and winning strategies. In addition to that,
in some games, the knowledge of the existence of winning strategies for the opponents
may be required to determine the truth value of the formula. This directly relates
the discussion to epistemic game theory in a way that was not addressed by IF-logic.
Furthermore, we observed that for some logics, admitting winning strategies do not
conclusively say anything about the truth value of the formula in question.

Additionally, the current work can be seen as an attempt to broaden the semantical
basis of non-classical logic. A vast majority of work on the subject presents an axiomatic,
proof-theoretical approach, and the semantical analysis of the subject is usually found
trapped between truth-tables and algebraic semantics. Game theoretical semantics, on
the other hand, has the potential to position itself within the intersection of both re-
search programs. It introduces non-classical logics more systematically to the Hintikkan
agenda of game theoretical semantics, and at the same time, encourages further appli-
cations of the Hintikkan approach in non-classical logical domains - which, for various
philosophical reasons, remained not-so-influential for non-classical logicians.

Game theory is the study of rational, interactive decision making. In this work, we
studied the interactive decisions in logic and games, and did not discuss the rationality of
the players, apart from their hidden assumption to choose the best moves to win the play
of the game. Potential future work in this area is to relate non-classical logical games
to (ir-)rationality. In this framework, it is meaningful to ask how players’ rationality
changes from one logic to the another, and how the rationality of players can be defined
for inconsistent logics and their verification games.

Our choice of logics can be seen as limited. This is most certainly true. Within the rea-
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sonable limits of a research article, we considered few propositional logics, one from each
family, and discussed their game theoretical semantics. Each family of non-classical log-
ics contains a wide variety of logical systems with some modal and first-order extensions.
For practical reasons, we limited ourselves to well-known, relatively well-studied propo-
sitional non-classical logics. This should serve as an indication to show the breadth and
depth of this research project and its future potential. Therefore, we leave the extension
of this approach to modal and first-order non-classical logics to future work.

Our approach here can be seen as a case for the plurality of logic (Beall & Restall,
2006). The well-known classical GTS is essentially a very narrow, limited case with many
additional and auxiliary game theoretical and logical assumptions and restrictions. Once
those assumptions are set aside (or at least questioned) for various reasons, GTS turns
out to be expressive enough for a variety of non-classical logics as we have exemplified.
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