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Abstract

In this work, we consider a well-known and well-studied system of para-
consistent logic which is due to Newton da Costa, and present a topological
semantics for it.
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1 Introduction

Paraconsistency is an umbrella term for the logical systems where the explosion
principle fails. Namely, in paraconsistent systems there are some formula ϕ,ψ
such that {ϕ,¬ϕ} 6` ψ for a logical consequence relation `. In this work, we
will focus on a well-known and well-studied paraconsistent logic which is due
to Newton da Costa, and present a topological semantics for it.

Da Costa’s hierarchical systems Cn and C∗n are one of the earliest systems of
paraconsistent logic (da Costa, 1974). Da Costa systems Cn where n < ω are
consistent and finitely trivializable. Yet, for the limit ordinal ω, one can obtain
logic Cω which is not finitely trivializable (da Costa & Alves, 1977). In this
work, we focus on the paraconsistent system Cω and its first-order cousin C∗ω.

Conceptually, Da Costa systems are not unfamiliar. As Priest remarked, the
logic Cω can be thought of the positive intuitionistic logic with dualized nega-
tion to give truth value gluts (Priest, 2011). We define Cω with the following
postulates:

1. ϕ→ (ψ → ϕ)

2. (ϕ→ ψ)→ ((ϕ→ (ψ → χ))→ (ϕ→ χ))

3. ϕ ∧ ψ → ϕ

4. ϕ ∧ ψ → ψ

5. ϕ→ (ψ → ϕ ∧ ψ)

6. ϕ→ ϕ ∨ ψ
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7. ψ → ϕ ∨ ψ

8. (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))

9. ϕ ∨ ¬ϕ

10. ¬¬ϕ→ ϕ

The rule of inference that we need is modus ponens: ϕ,ϕ→ ψ ∴ ψ.
Based on this axiomatization, Baaz gave a Kripke-type semantics which uses

Gentzen style proof theory (Baaz, 1986). Baaz’s Cω-Kripke model is a tuple
M = 〈W,≤, V, T 〉 where W is a non-empty set, ≤ is a partial order, V is a valua-
tion that returns a subset of W for every propositional variable in the language.
The additional component T is a function defined from possible worlds (in W )
to the sets of negated propositional forms. The imposed condition on T is the
monotonicity: w ≤ v implies T (w) ⊆ T (v). Monotonicity condition, as it will
be clear later, resembles the hereditary condition of intuitionistic logic. The
valuation respects the monotonicity and is assumed to return upsets.

Also note that the relation ≤ is a partial order rendering the frame 〈W,≤〉
an S4-frame. The fact that the frame of Baaz’s model is S4 will be central in
our topological investigations later.

One of the most interesting properties of da Costa systems is the principle of
non-substitution for negated formulas. For instance, even if p and p∧ p are logi-
cally equivalent, i.e. p ≡ p∧ p, we do not necessarily have that ¬p ≡ ¬(p∧ p) in
da Costa systems, where ≡ denotes logical equivalence. In Baaz’s construction,
the function T is the operator that keeps track of the negated formulas with re-
spect to possible worlds. Therefore, at a possible world, the function T returns
a set of formulas which are negated at that possible world. Moreover, for a pos-
sible world w, T (w) need not be closed under logical equivalence. Namely, at a
state w, we can have ¬p ∈ T (w), but this does not mean that ¬(p ∧ p) ∈ T (w).
Thus, the function T returns a set which is not closed under logical consequence
relation, in other words, which is not necessarily a theory. Monotonicity of T ,
on the other hand, reflects the intuitionistic side of da Costa systems. In other
words, in the partially ordered Kripkean frame for Cω, children nodes have the
same formulas as their parents and possibly more under T .

Baaz gave a Kripkean semantics for Cω as follows (Baaz, 1986). First, let
¬0ϕ ≡ ϕ and ¬n+1ϕ ≡ ¬(¬nϕ) for a ϕ which does not include a negation sign
in the front.

w |= p iff for all v such that w ≤ v, v |= p for atomic p
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ
w |= ϕ ⊃ ψ iff for all v such that w ≤ v, v |= ϕ implies v |= ψ
w |= ¬1ϕ iff ¬1ϕ ∈ T (w) or ∃v.v ≤ w and v 6|= ϕ
w |= ¬n+2ϕ iff ¬n+2ϕ ∈ T (w) and w |= ¬nϕ, or

∃v.v ≤ w and v 6|= ¬n+1ϕ
w |= ϕ1, . . . , ϕn → iff ∀v.w ≤ v, v |= ϕ1, . . . , v |= ϕn imply

ψ1, . . . , ψn v |= ψ1 or . . . or v |= ψn
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Let us now briefly comment on the semantics. First, notice the hereditary
condition for propositional variables. In other words, propositional variables
remain true in the accessible states from the actual state once they are true at the
actual state. And, notice that the hereditary condition is given only for positive
propositional atoms. Second, as it can be observed, the original semantical
definition that Baaz gave does not include the valuation for the propositional
variables. In the topological semantics we introduce, we will address this issue.
Third, as we already underlined the similarity, the implication in this system
behaves like the intuitionistic implication. The crucial point, however, is the
negation. A negated formula is true at a state w if it is in T (w) or there is a
predecessor state at which the formula does not hold. The auxiliary function
T helps us to keep track of paraconsistent negations which are different than
intuitionistic negation or its dual. Finally, for the last connective→, we can have
empty set as antecedent. Therefore,→ p, q is a well-formed formula. However,
we will take this connective as a shorthand.

By using proof theory of (propositional) intuitionistic logic and Gentzen style
calculus, Baaz showed the soundness, completeness and decidability of this sys-
tem (Baaz, 1986). We will henceforth denote this system as KCω.

2 Topological Models TCω

In this section, we give a topological semantics for da Costa’s system Cω, and call
our formalism as TCω. First, notice that the topological semantics for (modal)
logics have been presented in early 1920s preceding the well-known Kripke /
Hintikka semantics (Goldblatt, 2006). The major developments in the field of
topological semantics for modalities have been initiated by J. C. C. McKinsey
and Alfred Tarski in 1940s in a series of papers (McKinsey & Tarski, 1944; McK-
insey, 1945; McKinsey & Tarski, 1946).

In the classical modal case, the modal operator � is associated with the
topological interior operator (and, similarly ♦ with closure operator in a dual
fashion). Moreover, a closer look reveals that the interior and closure opera-
tors behave as S4 modalities (normal, reflexive and transitive). Therefore, the
connection between topological semantics and S4 modalities becomes obvious.
The well-known McKinsey - Tarski result showed that S4 is the modal logic of
topological spaces, in fact, of any metric, separable, dense-in-itself space. More-
over, the topological semantics for intuitionistic and some paraconsistent logics
are also rather straight forward by using open and closed complements (i.e. in-
terior / closure of the complement) respectively (Goodman, 1981; Mints, 2000;
Başkent, 2013).

2.1 Basics

The language of TCω is the language of propositional logic with the usual
Boolean conjunction, disjunction and implication, and we will allow iterated
negations. Let P be a countable set of propositional variables. We denote the
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closure of a set X by Clo(X). If a set {x} is a singleton, we write Clo(x) instead
of Clo({x}) provided no confusion arises. Also note that in this case Clo(x) is
the intersection of all closed sets containing x.

Now, we start with defining TCω models.

Definition 2.1. A TCω model M is a tuple M = 〈S, σ, V,N〉 where S is a non-
empty set, σ is an Alexandroff topology on S, V : P → ℘(S) is a valuation
function, and N is a (full) function which takes possible worlds s ∈ S as inputs
and returns sets of negated propositional forms (possibly empty) in such a way
that w ∈ Clo(v) implies N(w) ⊆ N(v).

Here, note that we resort to the standard method to obtain a topological
model from a given (classical) Kripke model, and vice versa. In other words,
given a topological space we put w ≤ v, for w ∈ Clo(v) to obtain a partially
ordered tree. And conversely, given a partially ordered tree, we consider the
upward closed (or dually, downward closed) branches of the tree as opens to
construct a topology, indeed an Alexandroff topology - which is closed under
arbitrary intersections. In other words, since the Baaz’s frames are already S4,
the topology we obtain (after translating the given S4 frame) is an Alexandroff
topology. We refer the reader to (van Benthem & Bezhanishvili, 2007) for a
detailed treatment of the subject for the classical case.

Interestingly, the fact that we obtain Alexandroff spaces in TCω raises the
question of handling non-Alexandroff spaces in the topological models of Cω.
Granted, this is a very interesting question with a possibility of producing weaker
logics than Cω. In order not to digress from our current focus, we leave it to a
future work.

Now, we give the semantics of TCω as follows. We abbreviate ¬0ϕ := ϕ, and
¬n+1ϕ := ¬(¬nϕ) for a ϕ which does not include a negation sign in the front.
Similarly, we assume that the valuation function V returns closed sets (Başkent,
2013).

w |= p iff ∀v.w ∈ Clo(v), v |= p for atomic p
iff w ∈ V (p)

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ
w |= ϕ ⊃ ψ iff ∀v.w ∈ Clo(v), v |= ϕ implies v |= ψ
w |= ¬1ϕ iff ¬1ϕ ∈ N(w) or ∃v.v ∈ Clo(w) and v 6|= ϕ
w |= ¬n+2ϕ iff ¬n+2ϕ ∈ N(w) and w |= ¬nϕ or

∃v.v ∈ Clo(w) and v 6|= ¬n+1ϕ
w |= ϕ1, . . . , ϕn → iff ∀v.w ∈ Clo(v), v |= ϕ1, . . . , v |= ϕn imply

ψ1, . . . , ψn v |= ψ1 or . . . or v |= ψn

Following the usual representation, we denote the extension of a formula ϕ
in a model M by [ϕ]M , and define [ϕ]M := {w : M,w |= ϕ}.

Based on the given semantics, now we can discuss the satisfiability problem
(SAT) and its complexity in logic KCω. First of all, note that the complexity
of SAT for basic modal logic is known to be PSPACE-complete. In Kripkean
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frames, searching for a satisfying assignment may not be efficient timewise, but
it uses the space efficiently yielding a PSPACE-complete complexity. Think of it
as searching the branches of a Kripke model (which is a tree) starting from the
root. Once you are done with one branch, you do not need to remember it, and
thus you can reuse the same space. And, the extent of the tree you need the
search, i.e. the depth, solely depends on the length of the formula. Therefore,
the given formula determines the space you need to check. In KCω, the only
issue is checking the satisfiability for negation. However, a careful examination
shows that it has a rather immediate solution. The case for ¬1 requires two oper-
ations: check whether a given ¬1 is in the image set of T at the given state, and
check if there exists a state that sees the current state with the desired condition.
The latter part is clearly PSPACE considering the standard modal argument for
SAT. The prior part is also polynomial - it is a sequential check for membership.
Moreover, one can easily construct a polynomial transformation from modal
SAT with topological semantics to KCω satisfiability yielding the fact that SAT
for KCω is also PSPACE. Considering ¬n as a nested (intuitionistic) modality,
one can come up with the obvious translation giving the PSPACE-completeness
of the satisfiability problem for KCω. Now, based on the above mentioned
(polynomial) transformations between topological spaces and Kripke frames, it
is immediate to observe that SAT for TCω is also PSPACE-complete.

Theorem 2.2. The satisfiability problem for both KCω and TCω is PSPACE-
complete.

Corollary 2.3. Both KCω and TCω are decidable.

In his work, Baaz mentioned several results (Baaz, 1986). Here, we observe
that they hold in TCω as well. The following results make it clear how negation
behaves in TCω, and our definition for the function N works as expected.

Proposition 2.4. w |= ϕ iff for all v such that w ∈ Clo(v), we have v |= ϕ.

Proof. The proof is by induction on the length of the formula as usual. The only
interesting case is the negation.Assume ϕ ≡ ¬1ψ. Then, suppose w |= ¬1ψ.
By definition, either ¬1ψ ∈ N(w) or there exists a x such that x ∈ Clo(w) and
x 6|= ψ.Now, let v be such that w ∈ Clo(v). Then, by the definition of N , we
observe N(w) ⊆ N(v). Thus, ¬1ψ ∈ N(v). On the other hand, w ∈ Clo(v)
implies that Clo(w) ⊆ Clo(v). Therefore, x ∈ Clo(w) ⊆ Clo(v) with v 6|= ψ.
Then, we have either ¬1ψ ∈ N(x) or there exists x such that x ∈ Clo(v) with
x 6|= ψ. Thus, v |= ¬1ψ.

The cases for ¬n+1 are similar by using the induction hypothesis. �

Proposition 2.5. w 6|= ϕ implies that there is no v ∈ Clo(w) such that v 6|= ¬ϕ.

Proof. Let w 6|= ϕ. Towards a contradiction, assume that there is a v ∈ Clo(w)
with v 6|= ¬ϕ.On the other hand, by Proposition 2.4, v 6|= ¬ϕ means that for
all w such that v ∈ Clo(w) we have w 6|= ¬ϕ.Thus, we conclude w 6|= ϕ and
w 6|= ¬ϕ. Contradiction. �
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Proposition 2.6. w |= ¬¬ϕ→ ϕ.

Proof. We will show that w 6|= ϕ implies w 6|= ¬¬ϕ.Let w 6|= ϕ. Then, by Propo-
sition 2.5, there is no v ∈ Clo(w) with v 6|= ¬ϕ. Then, by definition of ¬2, we
conclude that w 6|= ¬¬ϕ. �

Note that ¬ϕ↔ ¬(ϕ∧ ϕ) is not valid in KCω. We next observe that it is not
valid in TCω as well.

Proposition 2.7. ¬ϕ↔ ¬(ϕ ∧ ϕ) is not valid.

Proof. Take a state w such that Clo(w) ⊆ [ϕ] and ¬ϕ ∈ N(w). Thus, w |= ¬ϕ.
Stipulate further that ¬(ϕ ∧ ϕ) 6∈ N(w) to get a counter-model. �

Proposition 2.8. w |=→ ϕ,¬ϕ.

Proof. Recall that→ ϕ1, . . . , ϕn means that ϕ1 ∨ · · · ∨ϕn holds. Then, the result
follows from the axiomatization of Cω. �

As we emphasized already, most theoretical of paraconsistency is proof theo-
retical and sometimes resorts to Gentzen style constructions. For the complete-
ness of our arguments in this work, here, we present the (semantical) validity
of cut elimination. The proof is straightforward, hence, we skip it.

Proposition 2.9. w |= Π→ Γ, ϕ and w |= ϕ,∆→ Λ imply w |= Π,∆→ Γ,Λ.

We now state the soundness theorem without a proof.

Theorem 2.10. ` ϕ→ ψ implies |= ϕ→ ψ.

Baaz uses Gentzen style sequent calculus to show the completeness of his
system. He concludes that if Π → Γ is not provable without cuts, there is a
KCω-Kripke model M = 〈W,≤, v, T 〉 such that 0 ∈ W and 0 6|= Π′ → Γ′ where
Π′ ≡ Π,∆ and Γ′ ≡ Γ,Ψ. Namely, M 6|= Π → Γ. Here, 0 is the lowest top
sequent in the reduction tree of Π→ Γ.

Now, to show the topological completeness of our system TCω, we again
make use of the translation which we mentioned earlier. Given a KCω model
M = 〈W,≤, v, T 〉, we can construct TCω model M ′ = 〈S, σ, V,N〉 as follows.
Let S := W , and V := v. Now, we need to define the topology σ, and the
open and closed sets in σ. Define closed sets as the upsets, and observe that
v ∈ Clo(w) whenever v ≤ w. For a tree model, it is easy to observe that the
closed sets we defined produces an Alexandroff topology. This is the standard
translation between the classical Kripke models and topological models (van
Benthem & Bezhanishvili, 2007). As we mentioned earlier, as the Kripke model
in our case is a S4 frame, we obtain an Alexandroff topology.

Furthermore, put N(w) := T (w). Then, the topology σ is defined as the
collection upward closed sets in W with respect to the order ≤ in the stan-
dard fashion. Therefore, given a TCω model, we can effectively convert it to
KCω which is known to be complete. This is the immediate method. Alterna-
tively, we can start off with the topological TCω model, and give a topological
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completeness proof. For the completeness of our arguments here in this paper,
we will sketch the completeness proof here.For the topological completeness of
TCω, we use maximal nontrivial sets of formulas. First, note that we call a set
X trivial if every formula in the language is deducible from X, otherwise we
call it nontrivial. Then, a nontrivial set X is called a maximal nontrivial set of
formulas if for all ϕ, if ϕ /∈ X, then X ∪ {ϕ} is trivial. Now, we construct the
maximal nontrivial consistent sets. First, observe the following.

Proposition 2.11. If Γ is a maximal non-trivial set of formulas, then we have
Γ ` ϕ iff ϕ ∈ Γ.

Using canonical sets, we construct the canonical TCω model 〈S′, σ′, V ′, N ′〉.
Let us first start with the canonical topological space. The canonical topological
space is the pair 〈S′, σ′〉 where S′ is the set of all maximal non-trivial sets of
formulas, and σ′ is the set generated by the basis B = {¬̂ϕ : any formula ϕ}
where we define ϕ̂ := {s′ ∈ S′ : ϕ ∈ s′}. Here, our construction is very similar
to the classical case: instead of (classical) modal formula, we use negated for-
mulas in the construction of the canonical model (and its topology). The reason
for this choice is the fact that in TCω negated formulas resort to the closure
operator - similar to the modal operators in the classical case.

In order to show that B is a basis for the topology σ′, we need to show:

1. For any U,U ′ ∈ B and any x ∈ U ∩U ′, there is Ux ∈ B such that x ∈ Ux ⊆
U ∩ U ′

2. For any x ∈ S′, there is U ∈ B with x ∈ U

For the first item, observe that ¬ϕ̂ ∧ χ = ¬̂ϕ ∧ ¬̂χ. Therefore, U ∩ U ′ ∈ B
which argues for finite intersection.

For the second item, observe that ¬⊥ ∈ x for any maximal consistent set x
in the canonical TCω. Therefore, for any x ∈ S′, there is a ¬̂⊥ ∈ B that includes
x.

This argument shows that B is a basis for the topology of the canonical
model.

Now, the valuation V ′ is defined in the standard way: V ′(p) := {s′ ∈ S′ : p ∈
s′}. Similarly, define N ′ from S′ to sets of formulas, and put, N ′(s′) ⊆ N ′(t′)
if s′ ∈ Clo(t′) for s′, t′ ∈ S′. Additionally, we impose that N ′(s′) ⊆ s′. In
other words, we lift N to the level of maximal consistent sets, and impose a
closure condition for the negated formulas with respect to the actual maximal
consistent set. Another way of looking at it is to include N ′(s′) formulas to the
s′ in the construction of the maximal non-trivial set s′. Therefore, we close not
only under logical connectives but also under the N ′ function which amounts
to adding negated formulas to the maximal (nontrivial) consistent sets. The
significant difference of our logic here is the function N ′, and, we need to close
the non-trivial sets under it. The truth of classical Booleans are defined as usual
in the canonical models. For negation, we put the following.

s′ |= ¬1ϕ iff ¬1ϕ ∈ N ′(s′) or ∃t′ ∈ Clo(s′) such that t′ 6|= ϕ
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For the truth lemma, we only need to observe that, s′ |= ϕ if and only if
ϕ ∈ s′.

The standard Boolean cases are immediate. So, let us take ϕ = ¬1ψ for
some ψ. For “truth to membership” direction, if ¬1ψ ∈ N ′(s′), then we are
done as N ′(s′) ⊆ s′. Otherwise, we need to find a t′ in Clo(s′) which does not
satisfy ψ. Since the topology σ is constructed by using a basis with opens, we
can easily pick t′ from the boundary points ∂(s′) which are not in the interior
of the extension (by definition). For instance, if the space is discrete and the
boundary is empty, then we can take any point from s′ as each subset of the
space is clopen (both closed and open) so that Clo(s′) = s′ = Int(s′). Therefore,
let us here argue assuming that the boundary is not empty (if it is, we still know
what to do as described above).

Take such a t′ ∈ ∂(s′) such that t′ 6|= ψ. Then, by the induction hypothesis,
ψ /∈ t′. The set t′ is maximal and non-trivial, so ¬1ψ ∈ t′. Recall that t′ ∈ Clo(s′),
thus ¬1ψ ∈ Clo(s′).

This was the direction from “truth to membership”. The direction from
“membership to truth” is similar using some properties of closure operators,
so we skip it. Similarly, we leave the case ϕ = ¬n+2ψ to the reader which only
requires an inductive proof.

After establishing the truth lemma, we have the following completeness re-
sult.

Theorem 2.12. For any set of formulas Σ in TCω, if Σ |= ϕ then, Σ ` ϕ.

Proof. We will show the contrapositive of the statement. Assume, Σ 6` ϕ. Then,
Σ∪{¬ϕ} is non-trivial, and can be extended to a maximal non-trivial set Σ′. By
the truth lemma, Σ′ |= ¬ϕ yielding Σ′ 6|= ϕ. This is the counter-model we were
looking for. �

Note that so far, we have simply showed that Baaz’s results in KCω can be
carried over to TCω without much difficulty. This is achieved relatively easily
because of the immediate and effective translation between KCω and TCω, and
the similarity between the classical modalities and the da Costa negation opera-
tor. Such similarities between classical modalities and paraconsistent operators
were also addressed in some other work (Béziau, 2005; Béziau, 2002).

2.2 Further Results

In this section, we reconsider TCω models in various topological spaces, and in-
vestigate how topological properties and TCω models interact. Here, we discuss
separation axioms, regular spaces and connected spaces. The main motivation
behind choosing these structures is the fact that the semantics of the negation
operator in TCω deals with the closure (and then indirectly, with the boundary)
of the sets. Thus, topological notions that are relevant to the boundary become
our main focus. Moreover, many of our results heavily depend on the fact that
Baaz’s construction uses a partial-order which produces an S4 frame.
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Moreover, we remind the reader that our treatment is by no means com-
plete. Various other topological, mereotopological and geometrical notions can
further be investigated within the framework of da Costa logics or paraconsis-
tent logics in general. Nevertheless, in this work, we confine ourselves to the
aforementioned issues, and leave the rest to future work.

2.2.1 Separation Axioms

Let us first recall some of the well-known separation axioms for topological
spaces. Two points are called topologically indistinguishable if both have the
same neighborhoods. They are topologically distinguishable if they are not
topologically indistinguishable. Indiscrete space (trivial topology) is perhaps
the simplest example where any two points are topologically indistinguishable.
Moreover, two points are separated if each of the points has a neighborhood
which is distinct from the other’s neighborhoods.

Separation axioms present an interesting take on paraconsistency. Tradi-
tionally, paraconsistent logics are known as the logics with truth value gluts as
opposed to intuitionistic logics which have truth value gaps. Therefore, sep-
arating the points in the model with respect to paraconsistent negation is an
intriguing direction to pursue.

Let us now define the separation axioms that we need. A topological space
is called,

• T0 if any two distinct points in it are topologically distinguishable.

• T1 if any two distinct points in it are separated.

• R0 if any two topologically distinguishable points are separable.

• T2 if any two distinct points in it are separated by neighborhoods.

• T21/2 if any two distinct points in it are separated by closed neighbor-
hoods.

Notice that while discussing the semantics of TCω above, we made use of
the relation w ∈ Clo(v) quite often. This relation is called the specialization
order: w ≤ v if and only if w ∈ Clo(v). It is a partial-order if and only if the
space is T0. In this case, if the relation ≤ is symmetric, then the space we obtain
is R0.

We do not force TCω models to be T1 models or even R0 models. Then the
natural question is the following: Can we have TCω models which are not even
T0 or T1?

Proposition 2.13. Given a KCω model M . The TCω model M ′ obtained from M
is T0, and not necessarily T1.

Proof. The argument is quite straight forward. While generating M ′ from M ,
we use the partial order of the Kripke model to obtain the opens and closed sets
of the topology, as we remarked earlier. In this case, the topology we obtain
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in M ′ is an Alexandroff topology as the specialization order of the Alexandroff
topology is precisely the partial order that comes from the Kripke model. There-
fore, since the specialization order is a pre-order, as we noted before, the space
we obtain is T0, so is M ′.

However, M ′ is not T1 as Alexandroff spaces are not necessarily T1. They
are T1 if only if they are discrete - each s having a neighborhood of {s} only
(Arenas, 1999). �

Now, we focus on T21/2 spaces as the closed sets and closure operator play
a central role in paraconsistent semantics. Our main theorem is the following.

Theorem 2.14. Let M = 〈S, σ, V,N〉 be a T21/2 TCω model which admits true
contradictions, then N cannot be empty.

Proof. In TCω (and similarly in KCω) models, N (or T ) function tracks the
negated formulas in an ad hoc way. In this fashion, nonemptiness of N means
that the model cannot have truth value gluts. Intuitively, this is because of
the imposition of the separation axiom. Let us now see the proof.Let M =
〈S, σ, V,N〉 be a T21/2 TCω model. Assume N is empty. Let w be a state where
we have a true contradiction ϕ ∧ ¬ϕ for some ϕ. Thus, w |= ϕ, and moreover,
since N is empty, there is v ∈ Clo(w) such that v 6|= ϕ. Since we are in a
T21/2 space, w and v must be separable. However, since v ∈ Clo(w), it means
that v is in the intersection of all closed sets in σ containing w. Thus, they
are not separable by closed neighborhoods. Contradiction. Thus, N cannot
be empty, and such a point v cannot exists in a T21/2 space that admit true
contradictions. �

Corollary 2.15. Let M = 〈S, σ, V,N〉 be a TCω space with true contradictions. If
N is empty, then M cannot be T21/2.

In order to see the correctness of the previous corollary in an example, first
assume that N is empty; and design a model where for some formula ϕ and
its negation ¬ϕ, at some points w ∈ [ϕ] and w′ ∈ [¬ϕ], the only closed sets
around w and w′ will be [ϕ] and [¬ϕ] respectively. Let S = {1, 2, 3}, and σ =
{∅, S, {1, 2}, {2, 3}, {2}}. Let [ϕ] = {1, 2}, and [¬ϕ] = {2, 3}. (Consider the
formula ϕ ∧ ¬ϕ at 2.) Then, observe that the points 1 and 3 are not separable
by closed sets. Thus, this model cannot be T21/2. However, if N was not empty,
in an ad-hoc way, we would have defined the truth of negated formula ¬ϕ in a
way to overcome this issue by letting N(2) = {¬ϕ}.

Mortensen, in an earlier paper, investigated the connection between similar
separation axioms and paraconsistent theories where he made several observa-
tions about discrete spaces, and T1 and T2 spaces (Mortensen, 2000).

Moreover, similar connections can be made between paraconsistency in gen-
eral, and connectedness and continuity. In this work, we refer the reader to
(Başkent, 2013) where such properties are studied.
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2.2.2 Regular Spaces

Regular (open) sets are the sets which are equal to the interior of their clo-
sure. They play an important role not only in topology but also in mereotopol-
ogy where the relationship between parts and the whole is investigated (Pratt-
Hartman, 2007).

Even if we will not dwell on it further, it is worthwhile to mention that
the algebra of closed sets and the topological models for paraconsistent logic
do have the same algebraic structure, they both are co-Heyting algebras. Co-
Heyting algebras are duals of Heyting algebras which were first proposed as
the algebraic counterpart of intuitionistic logics. Some region based logics, on
the other hand, utilize both Heyting and co-Heyting algebras (Mormann, 2012;
Stell & Worboys, 1997). From an algebraic perspective, we observe that regular
sets play an important role in paraconsistency. Now we will consider the matter
from a model theoretical perspective with topological semantics, and focus on
TCω. We start with definitions.

Definition 2.16. Let 〈S, σ〉 be a topology. A subset X ⊆ S is called a regular
open set if X is equal to the interior of its closure, namely if X = Int(Clo(X)).
Similarly, a subset Y ⊆ S is called a regular closed set if Y is equal to the closure
of its interior, namely if Y = Clo(Int(Y )). We call a space regular open (closed)
if all the opens (or dually closeds) are regular. We call a model regular open
(closed) if its topological space is regular open (closed).

For example, regular open sets in the standard topology of R2 are the open
sets with no “holes” or “cracks”. Also note that the complement of a regular
open is a regular closed and vice versa.

We then observe the following.

Proposition 2.17. Let M = 〈S, σ, V,N〉 be a TCω model with discrete topology
σ. If N = ∅, then we have w |= ¬ϕ if and only if w 6|= ϕ for all w ∈ S and for all
ϕ.

Proof. It is a well-known fact that, in a discrete topology every subset is closed
(or open dually). Now, let N be empty. Assume, for an arbitrary w ∈ S, an
arbitrary formula ϕ, we have w |= ¬ϕ. Then, by definition, considering the
discrete topology and the emptiness of N , we have w 6|= ϕ. Converse direction
is also similar, and we leave it to the reader. �

Clearly, the converse of the above statement is not necessarily true, as it is
very much possible to add “redundant” elements to N to make it non-empty.

2.2.3 Connectedness

A topological space is called connected if it cannot be written as the disjoint
union of two open sets. We define connected component as the maximal con-
nected subset of a given space. Moreover, in a connected topological space
〈S, σ〉, the only subsets with empty boundary are S and ∅. This fact, together
with the semantics of the negation, plays an important role in TCω.
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Proposition 2.18. Let M = 〈S, σ, V,N〉 be a TCω model that admits a true
contradiction whose extension is in the topology. If the space is disconnected and
|M | > 1, then N cannot be empty.

Proof. Proof follows from the fact that in disconnected spaces, there are sets
with empty boundary beyond the space itself and the empty set. So, we briefly
mention the proof idea here.Let a contradiction ϕ ∧ ¬ϕ satisfied in the model.
Then, in this case, the positive ϕ and negative ϕ conjuncts of the contradiction
will lie in the different connected components. However, if N is empty, it means
that the extensions of each conjunct is connected via the boundary - which
creates the contradiction as the space is assumed to be disconnected. �

Corollary 2.19. IfN is empty, andM admits true contradictions whose extensions
are in the topology, then M cannot be disconnected.

Namely, if the extension of a contradiction is not connected, then the nega-
tion function N needs to be non-empty. Clearly, one can define a topology that
does not include such true contradictions to get around the connectedness issue
(or any other issue about any topological property). Recall that, the definition
of a TCω model does not require that the extensions of formulas should be
open sets. Therefore, in the above observations we focused only on the true
contradictions ϕ ∧ ¬ϕ where [ϕ ∧ ¬ϕ] ∈ σ.

3 Topological First-Order Models TC∗ω

The logic Cω can be extended to first-order level by introducing quantifiers, and
the resulting first order da Costa logic is called C∗ω (da Costa, 1974).

Note that in his work which we mentioned in the previous section, Baaz
considered only the propositional case Cω, and did not take the next step to
introduce Kripke semantics for C∗ω. Priest, later on presented a Kripke semantics
and tableaux style completeness for first-order da Costa logic (Priest, 2011).
Here, we introduce a topological semantics for C∗ω, and call our system TC∗ω.

First, let us set a piece of notation. For a formula ϕ, we abbreviate ϕ◦ :=
¬(ϕ∧¬ϕ). Moreover, we let, ϕ(1) := ϕ◦, ϕ(n) := ϕ(n−1) ∧ (ϕ(n−1))◦ for 2 ≤ n ≤
ω. We will often abuse the notation, and write ϕn instead of ϕ(n) for easy read.

Let us now start with introducing the axioms for C∗ω. The axioms of C∗ω are
the axioms of Cω together with the following additional axioms.

1. ∀xF (x)→ F (y).

2. F (y)→ ∃xF (x).

3. ∀x(F (x))(n) → (∀xF (x))(n) for n ≤ ω.

4. ∀x(F (x))(n) → (∃xF (x))(n) for n ≤ ω.
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5. Given F and F ′, if either one is obtained from the other by replacing
bound variables or by suppressing vacuous quantification (without confu-
sion of variables), then F ↔ F ′ is an axiom.

The rules of inference are modus ponens, ϕ → F (x) ∴ ϕ → ∀xF (x) where
x does not occur in F , and F (x) → ϕ ∴ ∃xF (x) → ϕ. Based on the given
axiomatization, note that C∗n is finitely trivializable for n < ω while C∗ω is not.
Also, observe that C∗0 is the classical first-order logic.

Our goal now is to give a topological semantics for C∗ω, and show that the
given axiomatization is sound with respect to the topological semantics we will
propose. First, how can we give a topological semantics for C∗ω? Some ideas
which we have used in propositional case will also be useful for the predicate
case. Nevertheless, we need to be more careful.

In the case of TC∗ω, we will make use of denotational semantics akin to
Awodey and Kishida’s work on topological first-order classical modal logic. In
their work, they used sheaves to express the quantification domain of predi-
cated modal formulas together with various category theoretical tools in the
proofs (Awodey & Kishida, 2008). Their semantics is elegant, and simply ex-
plain how we should read predication in a natural way in the case of topological
modal models. The use of denotational semantics will be helpful for TC∗ω as it
is also a quite natural way to handle the non-truth functional behavior of the
negation.

We start by introducing TC∗ω models, and the related denotational interpre-
tation function.

Definition 3.1. A first-order topological da Costa model TC∗ω is given as the
tuple 〈S,D, | · |, N∗, σ〉 where S is a non-empty set with topology σ on it, ∅ 6=
D ⊆ S is called the domain of individuals, | · | is a denotational interpretation
function that assigns denotations in S to formulas, and N∗ is the extension of
the propositional negation function N to the first-order case defined over S.

A brief explanation of TC∗ω models is in order here. The denotational in-
terpretation function | · | takes formulas (with or without free variables), and
returns individuals from S. DomainD, on the other hand, is given to precise the
quantification. Similar to first-order classical modal logic, we use the domain
set in the definition of the semantics of the quantifiers (Fitting & Mendelsohn,
1998). Here, we take D as a subset of S, so that we can make use of the
topology σ defined on S for the objects in the domain. Alternatively, domain D
and the topological space S can be taken as disjoint, and there can be defined
a homeomorphic map from D to S (Awodey & Kishida, 2008). Nevertheless,
for simplicity reasons, we avoid such complications here. Finally, the function
N∗ is similar to the propositional one N , and makes the semantics for negation
non-truth functional, which we need in da Costa systems.

As we have remarked already, da Costa negation, in both propositional and
first-order cases, is not truth functional. Note that there are, however, some
paraconsistent logics with topological semantics where negation behaves truth
functionally (Goodman, 1981). In such systems, the extension of each and every
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propositional variable is associated with a closed set while this condition is not a
requirement in the topological semantics for classical modal logics. The reason
for that is the fact that in classical modal logics, only modal formulas are forced
to have open or closed extensions. Propositional formulas do not necessarily
have such extensions in classical case. They may have, or they may not. Then,
the negation in such (standard) paraconsistent topological systems is defined
as the closure of the compliment (Goodman, 1981). The reason for this is quite
immediate. While attempting to take the negation of a given formula, the usual
way is to consider the set theoretical complement of the extension of the given
formula. However, the complement of a closed set (which is the extension of
the given formula) may not be closed, thus, may not be in the topology since
the topology in question is a closed set topology. Therefore, in order to maintain
the closed set topological structure, negation needs to be defined in that way to
produce a closed set.

This idea, however, does not work in da Costa logics. For instance, assume
that we endorse the aforementioned definition of negation for TC∗ω. Namely,
consider the following definition |x;¬F | = Clo(Sn − |x;F |).

However, a closer inspection immediately reveals that the above semantics
for negation is truth functional. In order to see the failure of this definition
within the context of TC∗ω, consider the logically equivalent formulas ¬p and
¬(p ∧ p). Based on the proposed semantics, the denotations of ¬p and ¬(p ∧ p)
are necessarily the same. However, in da Costa systems, recall that the ex-
tensions of both ¬p and ¬(p ∧ p) are not necessarily identical. Therefore, the
proposed (standard) paraconsistent topological semantics does not work for da
Costa systems. This is another way of seeing why we need the N∗ function (or
N function in the propositional case) in da Costa systems. Here, we suggest a
working topological semantics for C∗ω. Let us now make it clear.

With x for variables x1, . . . , xn of appropriate arity n in the formula F , we
represent the function that maps all free variables in F to some objects. We
denote the denotational interpretation of F with x by |x;F |, which is a tuple in
Sn. For the formulas of different arity for free variables, we simply adjust the
arity of the function x per each of its occurrence (or we can simply define the
arity x as the largest arity of the predicates involved). Moreover, we denote the
compliment of |x;F | by |x;F |c.

We denote the variable assignment by v. The function v assigns the variables
in logical terms to the objects in the model, and this construction is a familiar
one from first-order logic matching individual atoms with objects in the model.
Moreover, we also define terms following the standard construction in first-order
logic. Based on these specifications, here we spell out the semantics which we
suggest for the logic TC∗ω.

• |x; c| ∈ S for a constant c

• |x;F | ⊆ Sn for a n-place predicate F In particular, take an atomic sentence
F (t1, . . . , tn) with terms ti for 1 ≤ i ≤ n. If d1, . . . , dn are the evaluation
of the terms t1, . . . , tn under the variable assignment v, then we have the
following in S:|t;F (t1, . . . , tn)| = v(F )(v(t1), . . . v(tn))
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• |x;F ∧G| = |x;F | ∩ |x;G|

• |x;F ∨G| = |x;F | ∪ |x;G|

• |x;¬F | = |x;N∗| ∪ Clo(|x;F |c)

• |x;∃yF | =
⋃

d∈D |d, d;F | where d ∈ Dn

• |x;∀yF | =
⋂

d∈D |d, d;F | where d ∈ Dn

We can furthermore define the truth in a TC∗ω model M . We say that a
formula F (x) is true in the denotational interpretation | · |, if |x;F | = S.

Let us now explicate the given semantics a bit further. The denotational
semantics for the negation ensures that the negated denotation is among the
formulas determined by N∗ function. So, |x;N∗| can be thought of as the col-
lection of the denotations of the formulas returned by N∗. The closure operator
Clo in the definition functions as the classical (or standard) part of the defi-
nition. Similarly, the denotational semantics for the quantifier varies over the
objects in the domain even though the denotation of the formula in question
will eventually be in S.

Recall that in the (standard) topological semantics for paraconsistent log-
ics, the negation is defined as the closure of the complement. Therefore, the
inconsistencies occur at the boundary points which makes it quite easy and
straightforward to keep track of inconsistencies. Yet, note that this is not nec-
essarily the case in da Costa systems. The Clo operator in our case introduces
the element of inconsistencies at boundaries, and the function N∗ makes sure
that negation behaves as it should in da Costa systems. The following exam-
ple illustrates how such constructed negation behaves in TC∗ω. Consider the
denotational semantics of the formula ∃y(¬F ∧ F ) with x.

|x;∃y(¬F ∧ F )| =
⋃
d∈D

|d, d′; (¬F ∧ F )|

=
⋃
d∈D

{|d, d′;¬F | ∩ |d, d′;F |}

=
⋃
d∈D

{(|d, d′;N∗| ∪ Clo(|d, d′;F |c)) ∩ |d, d′;F |}

=
⋃
d∈D

{(|d, d′;N∗| ∩ |d, d′;F |) ∪ ∂(|d, d′;F |)}

where ∂(·) is the topological boundary operator for sets. In this example, the
individuals d ∈ D which exist and satisfy the contradictory formula F ∧ ¬F lie
in the boundary of the denotation of F , or in the intersection of the denotation
of F , and the denotation of the formulas returned by N∗.

Also, note that quantified De Morgan’s laws are not valid in da Costa systems
- even if the set theoretical De Morgan’s laws hold (da Costa et al., 2007).
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As an illustration, consider the following classical first-order logical equality
∀xFx↔ ¬∃x¬Fx. Let us see the denotation of ¬∃x¬Fx.

|x;¬∃x¬Fx| = |d;N∗| ∪ Clo(|d;∃x¬Fx|c)
= |d;N∗| ∪ Clo((∪d∈D|d;¬F |)c)
= |d;N∗| ∪ Clo((∪d∈D(|d;N∗| ∪ Clo(|d;F |)c))c)

Therefore, if |d;N∗| is not empty, we cannot generally obtain
⋂

d∈D |d;F | -
which is the denotation of ∀xFx. Other quantified De Morgan laws can be given
similar arguments (Ferguson, 2012).

Soundness of the axioms of TC∗ω with respect to the given semantics above
is a straightforward symbolic manipulation. However, in order to illustrate our
point, let us consider those axioms which are unique to da Costa systems, and
show their soundness.

Now, as the first case, take the following formula as an instantiation of the
axiom scheme (3) with n = 1.

∀xF 1x→ (∀xFx)1

In order to have an idea what to expect, observe the following logical equal-
ities.

∀xF 1x = ∀xF ◦x = ∀x¬(Fx ∧ ¬Fx)

and
(∀xFx)1 = (∀xFx)◦ = ¬(∀xFx ∧ ¬∀xFx).

So let us now assume, ∀xF 1x, namely ∀x.¬(Fx ∧ ¬Fx). Then, we have the
following.
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|x;∀x.F 1x| = |x;∀x.¬(Fx ∧ ¬Fx)|

=
⋂
d∈D

|d;¬(Fx ∧ ¬Fx)|

=
⋂
d∈D

{|d;N∗| ∪ Clo(|d;Fx ∧ ¬Fx|c)}

=
⋂
d∈D

{|d;N∗| ∪ Clo((|d;Fx| ∩ |d;¬Fx|)c)}

=
⋂
d∈D

{|d;N∗| ∪ Clo((|d;Fx| ∩ (|d;N∗| ∪ Clo(|d;Fx|c)))c)}

=
⋂
d∈D

{|d;N∗| ∪

Clo((|d;Fx| ∩ |d;N∗|) ∪ (|d;Fx| ∩ Clo(|d;Fx|c)))c)}
(as intersection operation commutes with closure operator)

= ∩d∈D|d;N∗| ∪ ∩d∈DClo(|d;Fx| ∩ |d;N∗|)c ∪ (|d;Fx| ∩ Clo(|d;Fx|c))c))
= ∩d∈D|d;N∗| ∪ Clo(∩d∈D|d;Fx| ∩ |d;N∗|)c ∪ ∩d∈D(|d;Fx| ∩ Clo(|d;Fx|c))c))
(as the interior of a set is its subset)

⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx|)c ∪ (∩d∈D(|d;Fx| ∩ Clo(|d;Fx|c))c))
⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx|)c ∪ ((|d;Fx| ∩ Clo ∩d∈D (|d;Fx|c))c))
⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx| ∩ ((|d;Fx| ∩ Clo ∩d∈D (|d;Fx|c)))
⊆ ¬(∀xFx ∧ ¬∀xFx)

⊆ (∀xFx)1

Thus, we obtain ∀xF 1x→ (∀xFx)1.
As the second case, take the axiom scheme (4) instantiated with n = 1.

Thus, we consider the following with term x.

∀xF 1x→ (∃xFx)1

Now, we have the following.
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|x;∀x.F 1x| = |x;∀x.¬(Fx ∧ ¬Fx)|

=
⋂
d∈D

{|d;N∗| ∪ Clo(|d;Fx ∧ ¬Fx|c)}

=
⋂
d∈D

{|d;N∗| ∪ Clo(|d;Fx| ∩ |d;¬Fx|)c}

=
⋂
d∈D

{|d;N∗| ∪ Clo(|d;Fx|c ∪ |d;¬Fx|c)}

=
⋂
d∈D

{|d;N∗| ∪ Clo(|d;Fx|c ∪ (|d;N∗| ∪ Clo(|d;Fx|c))c))}

=
⋂
d∈D

{|d;N∗| ∪ Clo(|d;Fx|c ∪ (|d;N∗|c ∩ Int(|d;Fx|)))}

⊆ ∩d∈D|d;N∗| ∪ Clo(∩d∈D|d;Fx|c ∪ (∩d∈D|d;N∗|c ∩ Int(∩d∈D|d;Fx|)))
⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx|c ∪ (|d;N∗|c ∩ Int(∪d∈D|d;F |)))
by set theoretical De Morgan’s Laws

⊆ |d;N∗| ∪ Clo(∪d∈D|d;Fx| ∩ (|d;N∗| ∪ Clo(∪d∈D|d;F |c)c))
⊆ |d;N∗| ∪ Clo((∃xFx ∧ ¬∃xFx)c)

⊆ ¬(∃xFx ∧ ¬∃xFx)

⊆ (∃xFx)1

Finally, we obtain ∀xF 1x→ (∃xFx)1.
A closer inspection reveals that soundness of the axioms we discussed relies

on several simple topological facts. The remaining axioms can also be given
rather straight forward argumentations for their soundness, thus we leave them
to the reader.

This was soundness. However, we still do not have a completeness result (or
lack thereof) for our system. We leave it to further work.
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