Research Article

Jonathan Elmer* and Müfit Sezer

Degree bounds for modular covariants

https://doi.org/10.1515/forum-2019-0196 Received July 25, 2019; revised January 30, 2020

Abstract: Let *V*, *W* be representations of a cyclic group *G* of prime order *p* over a field of characteristic *p*. The module of covariants $\mathbb{k}[V,W]^G$ is the set of *G*-equivariant polynomial maps $V \to W$, and is a module over $\Bbbk[V]^G$. We give a formula for the Noether bound $\beta(\Bbbk[V,W]^G,\Bbbk[V]^G)$, i.e. the minimal degree *d* such that $\mathbb{K}[V,W]^G$ is generated over $\mathbb{K}[V]^G$ by elements of degree at most *d*.

Keywords: Invariant theory, modular representation, cyclic group, module of covariants, Noether bound

MSC 2010: 13A50

||**Communicated by:** Frederick R. Cohen

1 Introduction

Let G be a finite group, $\mathbb k$ a field and V, W a pair of finite-dimensional $\mathbb k$ G-modules. Let $\mathbb k[V]$ denote the symmetric algebra on the dual V^* of V and let $\mathbb{k}[V, W] = \mathbb{k}[V] \otimes_{\mathbb{k}} W$. Elements of $\mathbb{k}[V]$ represent polynomial functions $V \to \mathbb{R}$ and elements of $\mathbb{R}[V, W]$ represent polynomial functions $V \to W$; for $f \otimes w \in \mathbb{R}[V, W]$ the corresponding function takes v to $f(v)w$. The group *G* acts by algebra automorphisms on $\mathbb{k}[V]$ and hence diagonally on $\mathbb{k}[V, W]$. The fixed points $\mathbb{k}[V, W]^G$ of this action are called covariants and represent *G*-equivariant polynomial functions $V \to W$. The the fixed points $\Bbbk[V]^G$ are called invariants. For $f \in \Bbbk[V]^G$ and $\phi \in \mathbb{R}[V, W]^G$ we define the product

$$
f\phi(v)=f(v)\phi(v).
$$

Then $\Bbbk[V]^G$ is a \Bbbk -algebra and $\Bbbk[V,W]^G$ is a finite $\Bbbk[V]^G$ -module. Modules of covariants in the non-modular case ($|G| \neq 0 \in \mathbb{k}$) were studied by Chevalley [\[3\]](#page-5-0), Shephard–Todd [\[10\]](#page-5-1), Eagon–Hochster [\[7\]](#page-5-2). In the modular case far less is known, but recent work of Broer and Chuai [\[1\]](#page-5-3) has shed some light on the subject. A systematic attempt to construct generating sets for modules of covariants when *G* is a cyclic group of order *p* was begun by the first author in [\[5\]](#page-5-4).

Let $A = \bigoplus_{d \geq 0} A_d$ be any graded \Bbbk -algebra and $M = \sum_{d \geq 0} M_d$ any graded A -module, where A_d and M_d denote the *d*-th homogeneous components of *A* and *M*, respectively. Then the Noether bound *β*(*A*) is defined to be the minimum degree $d > 0$ such that *A* is generated by the set { $a : a \in A_k$, $k \le d$ }. Similarly, $\beta(M, A)$ is defined to be the minimum degree $d > 0$ such that *M* is generated over *A* by the set { $m : m \in M_k$, $k \le d$ }, and we write $\beta(M) = \beta(M, A)$ when the context is clear.

Noether famously showed that $\beta(\mathbb{C}[V]^G) \leq |G|$ for arbitrary finite G , but computing Noether bounds in the modular case is highly nontrivial. When *G* is cyclic of prime order, the second author along with Fleischmann, Shank and Woodcock [\[6\]](#page-5-5) determined the Noether bound for any *kG*-module. The purpose of this article is to find results similar to those in [\[6\]](#page-5-5) for covariants. Our main result can be stated concisely as follows.

^{*}Corresponding author: Jonathan Elmer, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, United Kingdom, e-mail: j.elmer@mdx.ac.uk. https://orcid.org/0000-0001-5296-1987

Müfit Sezer, Department of Mathematics, Bilkent University, Cankaya, Ankara 06800, Turkey, e-mail: sezer@fen.bilkent.edu.tr

Theorem 1. *Let G be a cyclic group of order p, a field of characteristic p, V a reduced G-module and W a nontrivial indecomposable G-module. Then*

$$
\beta(\Bbbk[V,W]^G)=\beta(\Bbbk[V]^G)
$$

unless V is indecomposable of dimension 2*.*

Here by *reduced* we mean that the direct sum decomposition of *V* contains no summands on which *G* acts trivially; see also remarks following Proposition [4.](#page-2-0)

2 Preliminaries

For the rest of this article, *G* denotes a cyclic group of order $p > 0$, and we let k be a field of characteristic *p*. We choose a generator σ for *G*. Over k, there are *p* indecomposable representations V_1, \ldots, V_p and each indecomposable representation V_i is afforded by a Jordan block of size i . Note that V_p is isomorphic to the free module \mathbb{k} *G*, and this is the unique free indecomposable \mathbb{k} *G* -module.

Let $\Delta = \sigma - 1 \in \Bbbk G$. We define the transfer map Tr : $\Bbbk[V] \to \Bbbk[V]$ by $\sum_{1 \leq i \leq p} \sigma^i.$ Notice that we also have $\text{Tr} = \Delta^{p-1}$. Invariants that are in the image of Tr are called transfers.

Remark 2. Let e_1, \ldots, e_i be an upper triangular basis for the *i*-dimensional indecomposable representation *V*_{*i*}. Then ∆(e_j) = e_{j-1} for 2 ≤ *j* ≤ *i* and ∆(e_1) = 0. Therefore ∆^{*j*}(V_i) = 0 for all *j* ≥ *i*. Note that for an indecomposable module V_i we have $\Delta(V_i) \cong V_{i-1}$ for $2 \le i \le p$ and $\Delta(V_1) = 0$. It follows that an invariant *f* is in the image of the linear map $\Delta^j : \Bbbk[V] \to \Bbbk[V]$ if and only if it is a linear combination of fixed points in indecomposable modules of dimension at least $j + 1$. In particular, an invariant is in the image of the transfer map (= ∆ *p*−1) if and only if it is a linear combination of fixed points of free *G*-modules.

We assume that *V* and *W* are *kG*-modules with *W* indecomposable and we choose a basis w_1, \ldots, w_n for *W* so that we have

$$
\sigma w_i = \sum_{1\leq j\leq i} (-1)^{i-j} w_j
$$

for $1 \le i \le n$. For $f \in \mathbb{k}[V]$ we define the *weight* of f to be the smallest positive integer d with $\Delta^d(f) = 0$. Note that $\Delta^p = (\sigma - 1)^p = 0$, so the weight of a polynomial is at most *p*.

A useful description of covariants is given in [\[5\]](#page-5-4). We include this description here for completeness.

Proposition 3 ([\[5,](#page-5-4) Proposition 3]). Let $f \in \mathbb{k}[V]$ with weight $d \le n$. Then

$$
\sum_{1\leq j\leq d}\Delta^{j-1}(f)w_j\in \Bbbk[V,W]^G.
$$

Conversely, if

$$
f_1w_1+f_2w_2+\cdots+f_nw_n\in \mathbb{k}[V,W]^G,
$$

then there exists $f \in \mathbb{k}[V]$ *with weight* $\leq n$ *such that* $f_j = \Delta^{j-1}(f)$ for $1 \leq j \leq n$.

For a non-zero covariant $h = f_1w_1 + f_2w_2 + \cdots + f_nw_n$, we define the *support* of *h* to be the largest integer *j* such that $f_j \neq 0$. We denote the support of *h* by $s(h)$. We shall say *h* is a *transfer covariant* if there exists a non-negative integer k and $f \in \mathbb{k}[V]$ such that $f_1 = \Delta^k(f), f_2 = \Delta^{k+1}(f), \ldots, f_{s(h)} = \Delta^{p-1}(f)$ for some $f \in \mathbb{k}[V]$.

We call a homogeneous invariant in $\mathbb{k}[V]^G$ indecomposable if it is not in the subalgebra of $\mathbb{k}[V]^G$ generated by invariants of strictly smaller degree. Similarly, a homogeneous covariant in $\mathbb{k}[V, W]^G$ is indecomposable if it does not lie in the submodule of $\Bbbk[V,W]^G$ generated by covariants of strictly smaller degree.

3 Upper bounds

We first prove a result on decomposability of a transfer covariant. In the proof below we set $\gamma = \beta(\mathbb{k}[V], \, \mathbb{k}[V]^G)$.

Proposition 4. Let $f \in \mathbb{k}[V]$ be homogeneous and let $h = \Delta^k(f)w_1 + \Delta^{k+1}(f)w_2 + \cdots + \Delta^{p-1}(f)w_{s(h)}$ be a transfer *covariant of degree* > *γ. Then h is decomposable.*

Proof. Let *g*₁, . . . , *g*_{*t*} be a set of homogeneous polynomials of degree at most *γ* generating $\mathbb{K}[V]$ as a module over $\Bbbk[V]^G$. So we can write $f = \sum_{1 \le i \le t} q_i g_i$, where each $q_i \in \Bbbk[V]^G_+$ is a positive degree invariant. Since Δ^j is \mathbb{I} k[*V*]^{*G*}-linear, we have $\Delta^{j}(f) = \sum_{1 \leq i \leq t} q_i \Delta^{j}(g_i)$ for $k \leq j \leq p - 1$. It follows that

$$
h=\sum_{1\leq i\leq t}q_i(\Delta^k(g_i)w_1+\cdots+\Delta^{p-1}(g_i)w_{s(h)}).
$$

Note that $\Delta^k(g_i)w_1 + \cdots + \Delta^{p-1}(g_i)w_{s(h)}$ is a covariant for each $1 \le i \le t$ by Proposition [3.](#page-1-0) We also have $q_i \in \mathbb{R}[V]^G_+$ so it follows that *h* is decomposable. \Box

Write $V = \bigoplus_{j=1}^{m} V_{n_j}$ as a sum of indecomposable modules. Note that

$$
\mathbb{k}[V \oplus V_1, W]^G = (S(V^*) \otimes S(V_1^*)) \otimes W)^G = \mathbb{k}[V, W]^G \otimes \mathbb{k}[V_1].
$$

Therefore we will assume that $n_i > 1$ for all *j*; such representations are called reduced. Choose a basis ${x_{i,j} : 1 \le i \le n_j, 1 \le j \le m}$ for V^* , with respect to which we have

$$
\sigma(x_{i,j}) = \begin{cases} x_{i,j} + x_{i+1,j}, & i < n_j, \\ x_{i,j}, & i = n_j. \end{cases}
$$

This induces a multidegree on $\mathbb{k}[V] = \bigoplus_{\mathbf{d} \in \mathbb{N}^m} \mathbb{k}[V]_{\mathbf{d}}$ which is compatible with the action of *G*. For $1 \le j \le m$ we define $N_j = \prod_{k=0}^{p-1}$ $\int_{k=0}^{p-1} \sigma^k x_{1,j}$, and note that the coefficient of x_1^p $_{1,j}^\nu$ in N_j is 1. Given any $f\in \Bbbk[V_{n_j}],$ we can therefore perform long division, writing

$$
f=q_jN_j+r,
$$

where $q_j \in \Bbbk[V_{n_j}]$ for all j and $r \in \Bbbk[V_{n_j}]$ has degree $< p$ in the variable $x_{1,j}.$ This induces a vector space decomposition

$$
\mathbb{k}[V_{n_j}] = N_j \mathbb{k}[V_{n_j}] \oplus B_j,
$$

where B_j is the subspace of $\mathbb{k}[V_{n_j}]$ spanned by monomials with $x_{1,j}$ -degree $< p$, but the form of the action implies that B_j and its complement are $\Bbbk G$ -modules, so we obtain a $\Bbbk G$ -module decomposition. Since $\Bbbk[V] = \bigotimes_{j=1}^m \Bbbk[V_{n_j}],$ it follows that

$$
\mathbb{k}[V] = N_j \mathbb{k}[V] \oplus (B_j \otimes \mathbb{k}[V']).
$$

where $V' = V_{n_1} \oplus \cdots \oplus V_{n_{j-1}} \oplus V_{n_{j+1}} \cdots \oplus V_{n_m}$. From this decomposition it follows that if *M* is a kG direct summand of $\mathbb{K}[V]_d$, then N_jM is a $\mathbb{K}G$ direct summand of $\mathbb{K}[V]_{d+p}$ with the same isomorphism type. Further, any $f \in \mathbb{k}[V]^G$ can be written as

$$
f=qN_j+r
$$

with $q \in \kappa[V]^G$ and $r \in (B_j \otimes \kappa[V'])^G$. If in addition $\deg(f) = (d_1, d_2, \ldots, d_m)$ with $d_j > p - n_j$, then the degree d_j homogeneous component of B_j is free by [\[8,](#page-5-6) 2.10] and since tensoring a module with a free (projective) module gives a free (projective) module we may further assume, by Remark [2,](#page-1-1) that *r* is in the image of the transfer map.

If $h = \sum_{i=1}^{s(h)}$ $\sum_{i=1}^{S(h)} \Delta^{i-1}(f)w_i \in \mathbb{R}[V, W]^G$, we define the multidegree of *h* to be that of *f*. Since *G* preserves the multidegree, this is the same as the multidegree of ∆ *i*−1 (*f*) for all *i* ≤ *s*(*h*). Then the analogue of this result for covariants is the following:

Proposition 5. Let h be a covariant of multidegree d_1, d_2, \ldots, d_m with $d_i > p - n_i$ for some j. Then there exist *a* covariant h_1 and a transfer covariant h_2 such that $h = N_1h_1 + h_2$.

Proof. We proceed by induction on the support $s(h)$ of h. If $s(h) = 1$, then by Proposition [3,](#page-1-0) we have that *h* = *fw*₁ with *f* ∈ $\mathbb{K}[V]^G$. Then we can write *f* = *qNj* + $\Delta^{p-1}(t)$ for some *q* ∈ $\mathbb{K}[V]^G$ and *t* ∈ $\mathbb{K}[V]$. Then both *qw*₁ and $\Delta^{p-1}(t)$ *w*₁ are covariants by Proposition [3](#page-1-0) and therefore *h* = $qN_jw_1 + \Delta^{p-1}(t)w_1$ gives us the desired decomposition.

4 | J. Elmer and M. Sezer, Degree bounds for modular covariants

Now assume that $s(h) = k$. Then by Proposition [3](#page-1-0) there exists $f \in \mathbb{R}[V]$ such that

$$
h = fw_1 + \Delta(f)w_2 + \cdots + \Delta^{k-1}(f)w_k,
$$

with $\Delta^k(f) = 0$. Since $\Delta^{k-1}(f) \in \mathbb{k}[V]^G$ and $d_j > p - n_j$, we can write $\Delta^{k-1}(f) = qN_j + \Delta^{p-1}(t)$ for some $q \in \mathbb{k}[V]^G$ and *t* ∈ $\mathbb{k}[V]$. It follows that qN_j is in the image of Δ^{k-1} . But since multiplication by N_j preserves the isomorphism type of a module, it follows that *q* is in the image of Δ^{k-1} . Write $q = \Delta^{k-1}(f')$ with $f' \in \mathbb{k}[V]$. Set

$$
h_1 = f'w_1 + \Delta(f')w_2 + \cdots + \Delta^{k-1}(f')w_k
$$
 and $h_2 = \Delta^{p-k}(t)w_1 + \cdots + \Delta^{p-1}(t)w_k$.

Since $\Delta^{k-1}(f') \in \mathbb{k}[V]^G$, it follows that h_1 is a covariant by Proposition [3.](#page-1-0) Consider the covariant

$$
h'=h-N_jh_1-h_2.
$$

Since $\Delta^{k-1}(f) = \Delta^{p-1}(t) + \Delta^{k-1}(f')N_j$, the support of *h'* is strictly smaller than the support of *h*. Moreover, *h*₂ is a transfer covariant and so the assertion of the proposition follows by induction. \Box

We obtain the following upper bound for the Noether number of covariants:

Proposition 6. We have $\beta(\mathbb{k}[V, W]^G) \le \max(\beta(\mathbb{k}[V], \mathbb{k}[V]^G), mp - \dim(V)).$

Proof. Let $h \in \mathbb{K}[V, W]^G$ with degree $d > \max(\beta(\mathbb{K}[V], \mathbb{K}[V]^G), mp - \dim(V))$. Let (d_1, d_2, \ldots, d_m) be the multidegree of *h*. Then we must have $d_i > p - n_i$ for some *j*. Consequently, we may apply Proposition [5,](#page-2-1) writing

$$
h=N_jh_1+h_2,
$$

where h_2 is a transfer covariant. Since $\deg(h_2) > \beta(\Bbbk[V], \Bbbk[V]^G)$, it follows that h_2 is decomposable by Proposition [4,](#page-2-0) and so we have shown that *h* is decomposable. \Box

4 Lower bounds

Indecomposable transfers are one method of obtaining lower bounds for $\beta(\Bbbk[V]^G)$. Recall that we have written $V = \bigoplus_{j=1}^{m} V_{n_j}$ as a sum of indecomposable modules. The analogous result for covariants is:

Lemma 7. Let $n \geq 2$ and let $\Delta^{p-1}(f) \in \mathbb{k}[V]^G$ be an indecomposable homogeneous transfer. Then the transfer *covariant*

$$
h = \Delta^{p-n}(f)w_1 + \cdots + \Delta^{p-1}(f)w_n
$$

is indecomposable.

Proof. Assume on the contrary that *h* is decomposable. Then there exist homogeneous $q_i \in \mathbb{K}[V]^G_+$ and $h_i\in\Bbbk[V,W]^G$ such that $h=\sum_{1\leq i\leq t}q_ih_i.$ Write $h_i=h_{i,1}w_1+\cdots+h_{i,n}w_n$ for $1\leq i\leq t.$ Then we have

$$
\Delta^{p-1}(f)=\sum_{1\leq i\leq t}q_ih_{i,n}.
$$

By Proposition [3](#page-1-0) we have $\Delta(h_{i,n-1})=h_{i,n}$ and so $h_{i,n}\in\mathbb{k}[V]^G_+$ because $n\geq 2$. It follows that $\sum_{1\leq i\leq t}q_ih_{i,n}$ is a decomposition of $\Delta^{p-1}(f)$ in terms of invariants of strictly smaller degree, contradicting the indecomposability of $\Delta^{p-1}(f)$. \Box

Corollary 8. Suppose $n \ge 2$ and $\beta(\mathbb{k}[V]^G) > \max(p, mp - \dim(V))$. Then $\beta(\mathbb{k}[V]^G) \le \beta(\mathbb{k}[V, W]^G)$.

Proof. By [\[8,](#page-5-6) Lemma 2.12], $\mathbb{k}[V]^G$ is generated by the norms N_1, N_2, \ldots, N_m , invariants of degree at most mp – dim(*V*), and transfers. Since there exists an indecomposable invariant of degree $\beta(\Bbbk[V]^G)$, if the hypotheses of the corollary above hold, then $\mathbb{k}[V]^G$ contains an indecomposable transfer with this degree. By Lemma [7,](#page-3-0) $\Bbbk[V,W]^G$ contains a transfer covariant of degree $\beta(\Bbbk[V]^G)$ which is indecomposable, from which the conclusion follows. \Box

5 Main results

We are now ready to prove Theorem [1.](#page-1-2) Note that $\Bbbk[V, V_1]^G$ is generated over $\Bbbk[V]^G$ by w_1 alone, which has degree zero, and therefore $\beta(\mathbb{k}[V, V_1]^G) = 0$. For this reason we assume $n \geq 2$ throughout.

Proof. Suppose first that $n_i > 3$ for some *j*. Then by [\[6,](#page-5-5) Proposition 1.1 (a)], we have

$$
\beta(\mathrm{lk}[V]^G) = m(p-1) + (p-2).
$$

Since *V* is reduced, we have dim(V) $\geq 2m$ and hence

 $\beta(\mathbb{k}[V]^G) > m(p-2) \ge mp - \dim(V).$

Also, $\beta(\Bbbk[V]^G) \geq 2p - 3 > p$ since $n_j \leq p$ for all j. Therefore Corollary [8](#page-3-1) implies that $\beta(\Bbbk[V]^G) \leq \beta(\Bbbk[V,W]^G)$. On the other hand, [\[6,](#page-5-5) Lemma 3.3] shows that the top degree of $\mathbb{k}[V]/\mathbb{k}[V]_+^G \mathbb{k}[V]$ is bounded above by *m*(*p* − 1) + (*p* − 2). By the graded Nakayama Lemma it follows that $β$ ($\mathbb{k}[V]$, $\mathbb{k}[V]$ ^G) ≤ *m*(*p* − 1) + (*p* − 2). We have already shown that this number is at least *mp* − dim(*V*) + 1, so by Proposition [6](#page-3-2) we get that

$$
\beta(\mathrm{lk}[V, W]^G) \le m(p-1) + (p-2) = \beta(\mathrm{lk}[V]^G)
$$

as required.

Now suppose that $n_i \leq 3$ for all *i* and $n_i = 3$ for some *j*. Then by [\[6,](#page-5-5) Proposition 1.1 (b)], we have

$$
\beta(\mathrm{lk}[V]^G)=m(p-1)+1.
$$

Since *V* is reduced, we have dim(V) $\geq 2m$ and hence

$$
\beta(\mathrm{lk}[V]^G) > m(p-2) \ge mp - \dim(V).
$$

Also $\beta(\mathbb{k}[V]^G) \geq 2p - 1 > p$ provided $m \geq 2$. In that case Corollary [8](#page-3-1) applies. If $m = 1$, then Dickson [\[4\]](#page-5-7) has shown that $\mathbb{k}[V]^G = \mathbb{k}[x_1, x_2, x_3]^G$ is minimally generated by the invariants $x_3, x_2^2 - 2x_1x_3 - x_2x_3$, *N*, $Δ^{p-1}(x_1^{p-1}x_2)$. It follows that $Δ^{p-1}(x_1^{p-1}x_2)$ is an indecomposable transfer, so by Lemma [7,](#page-3-0) $\Bbbk[V,W]^G$ contains an indecomposable transfer covariant of degree $p = \beta(\mathbb{k}[V]^G)$. In either case we obtain

$$
\beta(\mathbb{k}[V,W]^G) \geq \beta(\mathbb{k}[V]^G).
$$

On the other hand, by [\[9,](#page-5-8) Corollary 2.8], $m(p-1)+1$ is an upper bound for the top degree of $\Bbbk[V]/\Bbbk[V]_+^G$. By the same argument as before we get $\beta(\mathbb{k}[V]^G, \mathbb{k}[V]) \leq m(p-1) + 1$. We have already shown that this number is at least $mp - \dim(V) + 1$, so by Proposition [6](#page-3-2) we get that

$$
\beta(\mathrm{lk}[V, W]^G) \leq m(p-1) + 1 = \beta(\mathrm{lk}[V]^G)
$$

as required.

It remains to deal with the case $n_i = 2$ for all *i*, i.e. $V = mV_2$. We assume $m \ge 2$. In this case Campbell and $Hughes [2]$ $Hughes [2]$ showed that $β($ [k[V] $^G) = (p - 1)m$. As dim(V) = 2*m*, we have $β($ [k[V] $^G) > m(p - 2) = mp - dim(V)$. If $m \geq 3$ or $m = 2$ and $p > 2$, then we have

$$
\beta(\mathbb{k}[V]^G) > p
$$

and Corollary [8](#page-3-1) applies. In case $m = 2 = p$, $\mathbb{k}[V]^G = \mathbb{k}[x_{1,1}, x_{2,1}, x_{1,2}, x_{2,2}]^G$ is a hypersurface, minimally generated by {*x*_{2,1}, *N*₁, *x*_{2,2}, *N*₂, $\Delta^{p-1}(x_{1,1}x_{1,2})$ }. In particular, $\Delta^{p-1}(x_{1,1}x_{1,2})$ is an indecomposable transfer, so by Lemma [7,](#page-3-0) $\mathbb{K}[V,W]^G$ contains an indecomposable transfer covariant of degree 2. In both cases we get

$$
\beta(\mathrm{k}[V,W]^G) \geq \beta(\mathrm{k}[V]^G).
$$

On the other hand, by [\[9,](#page-5-8) Theorem 2.1], the top degree of $\mathbb{k}[V]/\mathbb{k}[V]$ ^C $\mathbb{k}[V]$ is bounded above by $m(p-1)$. We have already shown this number is at least *mp* − dim(*V*) + 1. Therefore, by Proposition [6,](#page-3-2) we get

$$
\beta(\Bbbk[V,W]^G)\leq \beta(\Bbbk[V]^G)
$$

as required.

Remark 9. The only reduced representation not covered by Theorem [1](#page-1-2) is $V = V_2$. An explicit minimal set of generators of $\mathbb{k}[V_2, W]^G$ as a module over $\mathbb{k}[V_2]^G$ is given in [\[5\]](#page-5-4), the result is

$$
\beta(\Bbbk[V_2,W])=n-1.
$$

This is the only situation in which the Noether number is seen to depend on *W*.

Remark 10. Suppose *V* is any reduced $\Bbbk G$ -module and $W = \bigoplus_{i=1}^r W_i$ is a decomposable $\Bbbk G$ -module. Then

$$
\mathbb{k}[V, W]^G = (S(V^*) \otimes \left(\bigoplus_{i=1}^r W_i)\right)^G = \bigoplus_{i=1}^r (S(V^*) \otimes W_i)^G.
$$

So $\beta(\mathbb{k}[V, W]^G) = \max{\beta(\mathbb{k}[V, W_i]^G): i = 1, \dots, r} = \beta(\mathbb{k}[V]^G)$ unless *V* is indecomposable of dimension 2, in which case we have

 β ($\mathbb{k}[V_2, W]^G$) = max{ β ($\mathbb{k}[V_2, W_i]^G$) : *i* = 1, . . . , *r*} = max{ $\dim(W_i) - 1$: *i* = 1, . . . , *r*}.

Thus, the results of this paper can be used to compute $\beta(\mathbb{k}[V, W]^G)$ for arbitrary $\mathbb{k}G$ -modules *V* and *W*.

Funding: The second author is supported by a grant from TÜBITAK:119F181.

References

- [1] A. Broer and J. Chuai, Modules of covariants in modular invariant theory, *Proc. Lond. Math. Soc. (3)* **100** (2010), no. 3, 705–735.
- [2] H. E. A. Campbell and I. P. Hughes, Vector invariants of *U*2(**F***p*): A proof of a conjecture of Richman, *Adv. Math.* **126** (1997), no. 1, 1–20.
- [3] C. Chevalley, Invariants of finite groups generated by reflections, *Amer. J. Math.* **77** (1955), 778–782.
- [4] L. E. Dickson, *On Invariants and the Theory of Numbers*, Dover Publications, New York, 1966.
- [5] J. Elmer, Modular covariants of cyclic groups of order *p*, preprint (2019), [https://arxiv.org/abs/1806.11024.](https://arxiv.org/abs/1806.11024)
- [6] P. Fleischmann, M. Sezer, R. J. Shank and C. F. Woodcock, The Noether numbers for cyclic groups of prime order, *Adv. Math.* **207** (2006), no. 1, 149–155.
- [7] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, *Amer. J. Math.* **93** (1971), 1020–1058.
- [8] I. Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, *Comm. Algebra* **28** (2000), no. 4, 2059–2088.
- [9] M. Sezer and R. J. Shank, On the coinvariants of modular representations of cyclic groups of prime order, *J. Pure Appl. Algebra* **205** (2006), no. 1, 210–225.
- [10] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, *Canad. J. Math.* **6** (1954), 274–304.