Research Article

Jonathan Elmer* and Müfit Sezer

Degree bounds for modular covariants

https://doi.org/10.1515/forum-2019-0196 Received July 25, 2019; revised January 30, 2020

Abstract: Let *V*, *W* be representations of a cyclic group *G* of prime order *p* over a field k of characteristic *p*. The module of covariants $\Bbbk[V, W]^G$ is the set of *G*-equivariant polynomial maps $V \to W$, and is a module over $\Bbbk[V]^G$. We give a formula for the Noether bound $\beta(\Bbbk[V, W]^G, \Bbbk[V]^G)$, i.e. the minimal degree *d* such that $\Bbbk[V, W]^G$ is generated over $\Bbbk[V]^G$ by elements of degree at most *d*.

Keywords: Invariant theory, modular representation, cyclic group, module of covariants, Noether bound

MSC 2010: 13A50

Communicated by: Frederick R. Cohen

1 Introduction

Let *G* be a finite group, k a field and *V*, *W* a pair of finite-dimensional $\Bbbk G$ -modules. Let $\Bbbk[V]$ denote the symmetric algebra on the dual V^* of *V* and let $\Bbbk[V, W] = \Bbbk[V] \otimes_{\Bbbk} W$. Elements of $\Bbbk[V]$ represent polynomial functions $V \to \Bbbk$ and elements of $\Bbbk[V, W]$ represent polynomial functions $V \to W$; for $f \otimes w \in \Bbbk[V, W]$ the corresponding function takes v to f(v)w. The group *G* acts by algebra automorphisms on $\Bbbk[V]$ and hence diagonally on $\Bbbk[V, W]$. The fixed points $\Bbbk[V, W]^G$ of this action are called covariants and represent *G*-equivariant polynomial functions $V \to W$. The the fixed points $\Bbbk[V]^G$ are called invariants. For $f \in \Bbbk[V]^G$ and $\phi \in \Bbbk[V, W]^G$ we define the product

$$f\phi(v) = f(v)\phi(v).$$

Then $\mathbb{k}[V]^G$ is a \mathbb{k} -algebra and $\mathbb{k}[V, W]^G$ is a finite $\mathbb{k}[V]^G$ -module. Modules of covariants in the non-modular case ($|G| \neq 0 \in \mathbb{k}$) were studied by Chevalley [3], Shephard–Todd [10], Eagon–Hochster [7]. In the modular case far less is known, but recent work of Broer and Chuai [1] has shed some light on the subject. A systematic attempt to construct generating sets for modules of covariants when *G* is a cyclic group of order *p* was begun by the first author in [5].

Let $A = \bigoplus_{d \ge 0} A_d$ be any graded k-algebra and $M = \sum_{d \ge 0} M_d$ any graded A-module, where A_d and M_d denote the *d*-th homogeneous components of *A* and *M*, respectively. Then the Noether bound $\beta(A)$ is defined to be the minimum degree d > 0 such that *A* is generated by the set $\{a : a \in A_k, k \le d\}$. Similarly, $\beta(M, A)$ is defined to be the minimum degree d > 0 such that *M* is generated over *A* by the set $\{m : m \in M_k, k \le d\}$, and we write $\beta(M) = \beta(M, A)$ when the context is clear.

Noether famously showed that $\beta(\mathbb{C}[V]^G) \leq |G|$ for arbitrary finite *G*, but computing Noether bounds in the modular case is highly nontrivial. When *G* is cyclic of prime order, the second author along with Fleischmann, Shank and Woodcock [6] determined the Noether bound for any $\mathbb{k}G$ -module. The purpose of this article is to find results similar to those in [6] for covariants. Our main result can be stated concisely as follows.

^{*}Corresponding author: Jonathan Elmer, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, United Kingdom, e-mail: j.elmer@mdx.ac.uk. https://orcid.org/0000-0001-5296-1987

Müfit Sezer, Department of Mathematics, Bilkent University, Cankaya, Ankara 06800, Turkey, e-mail: sezer@fen.bilkent.edu.tr

Theorem 1. Let *G* be a cyclic group of order *p*, \Bbbk a field of characteristic *p*, *V* a reduced \Bbbk *G*-module and *W* a nontrivial indecomposable \Bbbk *G*-module. Then

$$\beta(\Bbbk[V, W]^G) = \beta(\Bbbk[V]^G)$$

unless V is indecomposable of dimension 2.

Here by *reduced* we mean that the direct sum decomposition of *V* contains no summands on which *G* acts trivially; see also remarks following Proposition 4.

2 Preliminaries

For the rest of this article, *G* denotes a cyclic group of order p > 0, and we let \Bbbk be a field of characteristic p. We choose a generator σ for *G*. Over \Bbbk , there are p indecomposable representations V_1, \ldots, V_p and each indecomposable representation V_i is afforded by a Jordan block of size i. Note that V_p is isomorphic to the free module $\Bbbk G$, and this is the unique free indecomposable $\Bbbk G$ -module.

Let $\Delta = \sigma - 1 \in \mathbb{k}G$. We define the transfer map Tr : $\mathbb{k}[V] \to \mathbb{k}[V]$ by $\sum_{1 \le i \le p} \sigma^i$. Notice that we also have Tr = Δ^{p-1} . Invariants that are in the image of Tr are called transfers.

Remark 2. Let e_1, \ldots, e_i be an upper triangular basis for the *i*-dimensional indecomposable representation V_i . Then $\Delta(e_j) = e_{j-1}$ for $2 \le j \le i$ and $\Delta(e_1) = 0$. Therefore $\Delta^j(V_i) = 0$ for all $j \ge i$. Note that for an indecomposable module V_i we have $\Delta(V_i) \cong V_{i-1}$ for $2 \le i \le p$ and $\Delta(V_1) = 0$. It follows that an invariant *f* is in the image of the linear map $\Delta^j : \mathbb{k}[V] \to \mathbb{k}[V]$ if and only if it is a linear combination of fixed points in indecomposable modules of dimension at least j + 1. In particular, an invariant is in the image of the transfer map $(= \Delta^{p-1})$ if and only if it is a linear combination of fixed points.

We assume that *V* and *W* are $\Bbbk G$ -modules with *W* indecomposable and we choose a basis w_1, \ldots, w_n for *W* so that we have

$$\sigma w_i = \sum_{1 \leq j \leq i} (-1)^{i-j} w_j$$

for $1 \le i \le n$. For $f \in \mathbb{k}[V]$ we define the *weight* of f to be the smallest positive integer d with $\Delta^d(f) = 0$. Note that $\Delta^p = (\sigma - 1)^p = 0$, so the weight of a polynomial is at most p.

A useful description of covariants is given in [5]. We include this description here for completeness.

Proposition 3 ([5, Proposition 3]). Let $f \in \mathbb{k}[V]$ with weight $d \leq n$. Then

$$\sum_{1\leq j\leq d}\Delta^{j-1}(f)w_j\in \Bbbk[V,W]^G.$$

Conversely, if

$$f_1w_1+f_2w_2+\cdots+f_nw_n\in \Bbbk[V,W]^G,$$

then there exists $f \in \mathbb{k}[V]$ with weight $\leq n$ such that $f_i = \Delta^{j-1}(f)$ for $1 \leq j \leq n$.

For a non-zero covariant $h = f_1w_1 + f_2w_2 + \cdots + f_nw_n$, we define the *support* of h to be the largest integer j such that $f_j \neq 0$. We denote the support of h by s(h). We shall say h is a *transfer covariant* if there exists a non-negative integer k and $f \in \mathbb{k}[V]$ such that $f_1 = \Delta^k(f), f_2 = \Delta^{k+1}(f), \ldots, f_{s(h)} = \Delta^{p-1}(f)$ for some $f \in \mathbb{k}[V]$.

We call a homogeneous invariant in $\mathbb{k}[V]^G$ indecomposable if it is not in the subalgebra of $\mathbb{k}[V]^G$ generated by invariants of strictly smaller degree. Similarly, a homogeneous covariant in $\mathbb{k}[V, W]^G$ is indecomposable if it does not lie in the submodule of $\mathbb{k}[V, W]^G$ generated by covariants of strictly smaller degree.

3 Upper bounds

We first prove a result on decomposability of a transfer covariant. In the proof below we set $y = \beta(\mathbb{k}[V], \mathbb{k}[V]^G)$.

Proposition 4. Let $f \in \mathbb{K}[V]$ be homogeneous and let $h = \Delta^k(f)w_1 + \Delta^{k+1}(f)w_2 + \cdots + \Delta^{p-1}(f)w_{s(h)}$ be a transfer covariant of degree > γ . Then h is decomposable.

Proof. Let g_1, \ldots, g_t be a set of homogeneous polynomials of degree at most γ generating $\Bbbk[V]$ as a module over $\Bbbk[V]^G$. So we can write $f = \sum_{1 \le i \le t} q_i g_i$, where each $q_i \in \Bbbk[V]^G_+$ is a positive degree invariant. Since Δ^j is $\Bbbk[V]^G$ -linear, we have $\Delta^j(f) = \sum_{1 \le i \le t} q_i \Delta^j(g_i)$ for $k \le j \le p - 1$. It follows that

$$h = \sum_{1 \leq i \leq t} q_i(\Delta^k(g_i)w_1 + \cdots + \Delta^{p-1}(g_i)w_{s(h)}).$$

Note that $\Delta^k(g_i)w_1 + \cdots + \Delta^{p-1}(g_i)w_{s(h)}$ is a covariant for each $1 \le i \le t$ by Proposition 3. We also have $q_i \in \mathbb{k}[V]^G_+$ so it follows that *h* is decomposable.

Write $V = \bigoplus_{i=1}^{m} V_{n_i}$ as a sum of indecomposable modules. Note that

$$\mathbb{k}[V \oplus V_1, W]^G = (S(V^*) \otimes S(V_1^*)) \otimes W)^G = \mathbb{k}[V, W]^G \otimes \mathbb{k}[V_1].$$

Therefore we will assume that $n_j > 1$ for all j; such representations are called reduced. Choose a basis $\{x_{i,j} : 1 \le i \le n_j, 1 \le j \le m\}$ for V^* , with respect to which we have

$$\sigma(x_{i,j}) = \begin{cases} x_{i,j} + x_{i+1,j}, & i < n_j, \\ x_{i,j}, & i = n_j. \end{cases}$$

This induces a multidegree on $\mathbb{k}[V] = \bigoplus_{\mathbf{d} \in \mathbb{N}^m} \mathbb{k}[V]_{\mathbf{d}}$ which is compatible with the action of *G*. For $1 \le j \le m$ we define $N_j = \prod_{k=0}^{p-1} \sigma^k x_{1,j}$, and note that the coefficient of $x_{1,j}^p$ in N_j is 1. Given any $f \in \mathbb{k}[V_{n_j}]$, we can therefore perform long division, writing

$$f = q_j N_j + r,$$

where $q_j \in \mathbb{k}[V_{n_j}]$ for all j and $r \in \mathbb{k}[V_{n_j}]$ has degree < p in the variable $x_{1,j}$. This induces a vector space decomposition

$$\Bbbk[V_{n_j}] = N_j \&[V_{n_j}] \oplus B_j,$$

where B_j is the subspace of $\mathbb{k}[V_{n_j}]$ spanned by monomials with $x_{1,j}$ -degree $\langle p$, but the form of the action implies that B_j and its complement are $\mathbb{k}G$ -modules, so we obtain a $\mathbb{k}G$ -module decomposition. Since $\mathbb{k}[V] = \bigotimes_{i=1}^{m} \mathbb{k}[V_{n_i}]$, it follows that

$$\Bbbk[V] = N_j \&[V] \oplus (B_j \otimes \&[V']),$$

where $V' = V_{n_1} \oplus \cdots \oplus V_{n_{j-1}} \oplus V_{n_{j+1}} \cdots \oplus V_{n_m}$. From this decomposition it follows that if M is a $\Bbbk G$ direct summand of $\Bbbk[V]_d$, then N_jM is a $\Bbbk G$ direct summand of $\Bbbk[V]_{d+p}$ with the same isomorphism type. Further, any $f \in \Bbbk[V]^G$ can be written as

$$f = qN_j + r$$

with $q \in \mathbb{k}[V]^G$ and $r \in (B_j \otimes \mathbb{k}[V'])^G$. If in addition deg $(f) = (d_1, d_2, \dots, d_m)$ with $d_j > p - n_j$, then the degree d_j homogeneous component of B_j is free by [8, 2.10] and since tensoring a module with a free (projective) module gives a free (projective) module we may further assume, by Remark 2, that r is in the image of the transfer map.

If $h = \sum_{i=1}^{s(h)} \Delta^{i-1}(f) w_i \in \mathbb{k}[V, W]^G$, we define the multidegree of h to be that of f. Since G preserves the multidegree, this is the same as the multidegree of $\Delta^{i-1}(f)$ for all $i \leq s(h)$. Then the analogue of this result for covariants is the following:

Proposition 5. Let *h* be a covariant of multidegree $d_1, d_2, ..., d_m$ with $d_j > p - n_j$ for some *j*. Then there exist a covariant h_1 and a transfer covariant h_2 such that $h = N_j h_1 + h_2$.

Proof. We proceed by induction on the support s(h) of h. If s(h) = 1, then by Proposition 3, we have that $h = fw_1$ with $f \in \mathbb{k}[V]^G$. Then we can write $f = qN_j + \Delta^{p-1}(t)$ for some $q \in \mathbb{k}[V]^G$ and $t \in \mathbb{k}[V]$. Then both qw_1 and $\Delta^{p-1}(t)w_1$ are covariants by Proposition 3 and therefore $h = qN_jw_1 + \Delta^{p-1}(t)w_1$ gives us the desired decomposition.

4 — J. Elmer and M. Sezer, Degree bounds for modular covariants

Now assume that s(h) = k. Then by Proposition 3 there exists $f \in k[V]$ such that

$$h = fw_1 + \Delta(f)w_2 + \cdots + \Delta^{k-1}(f)w_k,$$

with $\Delta^k(f) = 0$. Since $\Delta^{k-1}(f) \in \mathbb{k}[V]^G$ and $d_j > p - n_j$, we can write $\Delta^{k-1}(f) = qN_j + \Delta^{p-1}(t)$ for some $q \in \mathbb{k}[V]^G$ and $t \in \mathbb{k}[V]$. It follows that qN_j is in the image of Δ^{k-1} . But since multiplication by N_j preserves the isomorphism type of a module, it follows that q is in the image of Δ^{k-1} . Write $q = \Delta^{k-1}(f')$ with $f' \in \mathbb{k}[V]$. Set

$$h_1 = f'w_1 + \Delta(f')w_2 + \dots + \Delta^{k-1}(f')w_k$$
 and $h_2 = \Delta^{p-k}(t)w_1 + \dots + \Delta^{p-1}(t)w_k$.

Since $\Delta^{k-1}(f') \in \mathbb{k}[V]^G$, it follows that h_1 is a covariant by Proposition 3. Consider the covariant

$$h'=h-N_jh_1-h_2.$$

Since $\Delta^{k-1}(f) = \Delta^{p-1}(t) + \Delta^{k-1}(f')N_j$, the support of h' is strictly smaller than the support of h. Moreover, h_2 is a transfer covariant and so the assertion of the proposition follows by induction.

We obtain the following upper bound for the Noether number of covariants:

Proposition 6. We have $\beta(\Bbbk[V, W]^G) \le \max(\beta(\Bbbk[V], \Bbbk[V]^G), mp - \dim(V))$.

Proof. Let $h \in \mathbb{k}[V, W]^G$ with degree $d > \max(\beta(\mathbb{k}[V], \mathbb{k}[V]^G), mp - \dim(V))$. Let (d_1, d_2, \ldots, d_m) be the multidegree of h. Then we must have $d_i > p - n_i$ for some j. Consequently, we may apply Proposition 5, writing

$$h = N_i h_1 + h_2,$$

where h_2 is a transfer covariant. Since $\deg(h_2) > \beta(\Bbbk[V], \Bbbk[V]^G)$, it follows that h_2 is decomposable by Proposition 4, and so we have shown that h is decomposable.

4 Lower bounds

Indecomposable transfers are one method of obtaining lower bounds for $\beta(\mathbb{k}[V]^G)$. Recall that we have written $V = \bigoplus_{i=1}^{m} V_{n_i}$ as a sum of indecomposable modules. The analogous result for covariants is:

Lemma 7. Let $n \ge 2$ and let $\Delta^{p-1}(f) \in \mathbb{k}[V]^G$ be an indecomposable homogeneous transfer. Then the transfer covariant

$$h = \Delta^{p-n}(f)w_1 + \dots + \Delta^{p-1}(f)w_n$$

is indecomposable.

Proof. Assume on the contrary that *h* is decomposable. Then there exist homogeneous $q_i \in \mathbb{k}[V]^G_+$ and $h_i \in \mathbb{k}[V, W]^G$ such that $h = \sum_{1 \le i \le t} q_i h_i$. Write $h_i = h_{i,1}w_1 + \cdots + h_{i,n}w_n$ for $1 \le i \le t$. Then we have

$$\Delta^{p-1}(f) = \sum_{1 \le i \le t} q_i h_{i,n}.$$

By Proposition 3 we have $\Delta(h_{i,n-1}) = h_{i,n}$ and so $h_{i,n} \in \mathbb{k}[V]^G_+$ because $n \ge 2$. It follows that $\sum_{1 \le i \le t} q_i h_{i,n}$ is a decomposition of $\Delta^{p-1}(f)$ in terms of invariants of strictly smaller degree, contradicting the indecomposability of $\Delta^{p-1}(f)$.

Corollary 8. Suppose $n \ge 2$ and $\beta(\Bbbk[V]^G) > \max(p, mp - \dim(V))$. Then $\beta(\Bbbk[V]^G) \le \beta(\Bbbk[V, W]^G)$.

Proof. By [8, Lemma 2.12], $\mathbb{k}[V]^G$ is generated by the norms N_1, N_2, \ldots, N_m , invariants of degree at most $mp - \dim(V)$, and transfers. Since there exists an indecomposable invariant of degree $\beta(\mathbb{k}[V]^G)$, if the hypotheses of the corollary above hold, then $\mathbb{k}[V]^G$ contains an indecomposable transfer with this degree. By Lemma 7, $\mathbb{k}[V, W]^G$ contains a transfer covariant of degree $\beta(\mathbb{k}[V]^G)$ which is indecomposable, from which the conclusion follows.

5 Main results

We are now ready to prove Theorem 1. Note that $\mathbb{k}[V, V_1]^G$ is generated over $\mathbb{k}[V]^G$ by w_1 alone, which has degree zero, and therefore $\beta(\mathbb{k}[V, V_1]^G) = 0$. For this reason we assume $n \ge 2$ throughout.

Proof. Suppose first that $n_j > 3$ for some *j*. Then by [6, Proposition 1.1 (a)], we have

$$\beta(\mathbb{k}[V]^G) = m(p-1) + (p-2).$$

Since *V* is reduced, we have $\dim(V) \ge 2m$ and hence

 $\beta(\Bbbk[V]^G) > m(p-2) \ge mp - \dim(V).$

Also, $\beta(\Bbbk[V]^G) \ge 2p - 3 > p$ since $n_j \le p$ for all j. Therefore Corollary 8 implies that $\beta(\Bbbk[V]^G) \le \beta(\Bbbk[V, W]^G)$. On the other hand, [6, Lemma 3.3] shows that the top degree of $\Bbbk[V]/\Bbbk[V]^G_+ \Bbbk[V]$ is bounded above by m(p-1) + (p-2). By the graded Nakayama Lemma it follows that $\beta(\Bbbk[V], \Bbbk[V]^G) \le m(p-1) + (p-2)$. We have already shown that this number is at least $mp - \dim(V) + 1$, so by Proposition 6 we get that

$$\beta(\mathbb{k}[V, W]^G) \le m(p-1) + (p-2) = \beta(\mathbb{k}[V]^G)$$

as required.

Now suppose that $n_i \leq 3$ for all *i* and $n_i = 3$ for some *j*. Then by [6, Proposition 1.1 (b)], we have

$$\beta(\Bbbk[V]^G) = m(p-1) + 1.$$

Since *V* is reduced, we have $\dim(V) \ge 2m$ and hence

$$\beta(\Bbbk[V]^G) > m(p-2) \ge mp - \dim(V).$$

Also $\beta(\mathbb{k}[V]^G) \ge 2p - 1 > p$ provided $m \ge 2$. In that case Corollary 8 applies. If m = 1, then Dickson [4] has shown that $\mathbb{k}[V]^G = \mathbb{k}[x_1, x_2, x_3]^G$ is minimally generated by the invariants x_3 , $x_2^2 - 2x_1x_3 - x_2x_3$, N, $\Delta^{p-1}(x_1^{p-1}x_2)$. It follows that $\Delta^{p-1}(x_1^{p-1}x_2)$ is an indecomposable transfer, so by Lemma 7, $\mathbb{k}[V, W]^G$ contains an indecomposable transfer covariant of degree $p = \beta(\mathbb{k}[V]^G)$. In either case we obtain

$$\beta(\Bbbk[V, W]^G) \ge \beta(\Bbbk[V]^G).$$

On the other hand, by [9, Corollary 2.8], m(p-1) + 1 is an upper bound for the top degree of $\mathbb{k}[V]/\mathbb{k}[V]_+^G$. By the same argument as before we get $\beta(\mathbb{k}[V]^G, \mathbb{k}[V]) \le m(p-1) + 1$. We have already shown that this number is at least $mp - \dim(V) + 1$, so by Proposition 6 we get that

$$\beta(\Bbbk[V, W]^G) \le m(p-1) + 1 = \beta(\Bbbk[V]^G)$$

as required.

It remains to deal with the case $n_i = 2$ for all i, i.e. $V = mV_2$. We assume $m \ge 2$. In this case Campbell and Hughes [2] showed that $\beta(\mathbb{k}[V]^G) = (p-1)m$. As dim(V) = 2m, we have $\beta(\mathbb{k}[V]^G) > m(p-2) = mp - \dim(V)$. If $m \ge 3$ or m = 2 and p > 2, then we have

$$\beta(\mathbb{k}[V]^G) > p$$

and Corollary 8 applies. In case m = 2 = p, $\mathbb{k}[V]^G = \mathbb{k}[x_{1,1}, x_{2,1}, x_{1,2}, x_{2,2}]^G$ is a hypersurface, minimally generated by $\{x_{2,1}, N_1, x_{2,2}, N_2, \Delta^{p-1}(x_{1,1}x_{1,2})\}$. In particular, $\Delta^{p-1}(x_{1,1}x_{1,2})$ is an indecomposable transfer, so by Lemma 7, $\mathbb{k}[V, W]^G$ contains an indecomposable transfer covariant of degree 2. In both cases we get

$$\beta(\Bbbk[V, W]^G) \ge \beta(\Bbbk[V]^G).$$

On the other hand, by [9, Theorem 2.1], the top degree of $k[V]/k[V]^G_+k[V]$ is bounded above by m(p-1). We have already shown this number is at least $mp - \dim(V) + 1$. Therefore, by Proposition 6, we get

$$\beta(\mathbb{k}[V, W]^G) \leq \beta(\mathbb{k}[V]^G)$$

as required.

Remark 9. The only reduced representation not covered by Theorem 1 is $V = V_2$. An explicit minimal set of generators of $\mathbb{K}[V_2, W]^G$ as a module over $\mathbb{K}[V_2]^G$ is given in [5], the result is

$$\beta(\Bbbk[V_2, W]) = n - 1.$$

This is the only situation in which the Noether number is seen to depend on *W*.

Remark 10. Suppose *V* is any reduced $\Bbbk G$ -module and $W = \bigoplus_{i=1}^{r} W_i$ is a decomposable $\Bbbk G$ -module. Then

$$\mathbb{k}[V, W]^G = (S(V^*) \otimes \left(\bigoplus_{i=1}^r W_i\right)^G = \bigoplus_{i=1}^r (S(V^*) \otimes W_i)^G$$

So $\beta(\mathbb{k}[V, W]^G) = \max\{\beta(\mathbb{k}[V, W_i]^G) : i = 1, ..., r\} = \beta(\mathbb{k}[V]^G)$ unless *V* is indecomposable of dimension 2, in which case we have

 $\beta(\mathbb{k}[V_2, W]^G) = \max\{\beta(\mathbb{k}[V_2, W_i]^G) : i = 1, \dots, r\} = \max\{\dim(W_i) - 1 : i = 1, \dots, r\}.$

Thus, the results of this paper can be used to compute $\beta(\Bbbk[V, W]^G)$ for arbitrary $\Bbbk G$ -modules V and W.

Funding: The second author is supported by a grant from TÜBITAK:119F181.

References

- [1] A. Broer and J. Chuai, Modules of covariants in modular invariant theory, *Proc. Lond. Math. Soc. (3)* **100** (2010), no. 3, 705–735.
- [2] H. E. A. Campbell and I. P. Hughes, Vector invariants of U₂(F_p): A proof of a conjecture of Richman, Adv. Math. 126 (1997), no. 1, 1–20.
- [3] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782.
- [4] L. E. Dickson, On Invariants and the Theory of Numbers, Dover Publications, New York, 1966.
- [5] J. Elmer, Modular covariants of cyclic groups of order *p*, preprint (2019), https://arxiv.org/abs/1806.11024.
- [6] P. Fleischmann, M. Sezer, R. J. Shank and C. F. Woodcock, The Noether numbers for cyclic groups of prime order, *Adv. Math.* 207 (2006), no. 1, 149–155.
- [7] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, *Amer. J. Math.* **93** (1971), 1020–1058.
- [8] I. Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, *Comm. Algebra* **28** (2000), no. 4, 2059–2088.
- [9] M. Sezer and R. J. Shank, On the coinvariants of modular representations of cyclic groups of prime order, J. Pure Appl. Algebra 205 (2006), no. 1, 210–225.
- [10] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.