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Abstract: Let V, W be representations of a cyclic group G of prime order p over a field k of characteristic p.
The module of covariants k[V, W]¢ is the set of G-equivariant polynomial maps V — W, and is a module
over k[V]¢. We give a formula for the Noether bound B(k[V, W]¢, k[V]°), i.e. the minimal degree d such that
K[V, W]¢ is generated over k[V]¢ by elements of degree at most d.
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1 Introduction

Let G be a finite group, k a field and V, W a pair of finite-dimensional kG-modules. Let k[V] denote the
symmetric algebra on the dual V* of V and let k[V, W] = k[V] ®x W. Elements of k[V] represent polyno-
mial functions V — k and elements of k[V, W] represent polynomial functions V — W; for f @ w € k[V, W]
the corresponding function takes v to f(v)w. The group G acts by algebra automorphisms on k[V] and
hence diagonally on Kk[V, W]. The fixed points K[V, W]¢ of this action are called covariants and represent
G-equivariant polynomial functions V — W. The the fixed points k[V]¢ are called invariants. For f € k[V]¢
and ¢ € k[V, W]¢ we define the product

fo) = fv)p(v).

Then k[V]6 is a k-algebra and k[V, W]€ is a finite k[V]%-module. Modules of covariants in the non-modular
case (|G| # 0 € k) were studied by Chevalley [3], Shephard-Todd [10], Eagon—Hochster [7]. In the modular
case far less is known, but recent work of Broer and Chuai [1] has shed some light on the subject. A systematic
attempt to construct generating sets for modules of covariants when G is a cyclic group of order p was begun
by the first author in [5].

Let A = @450 Aa be any graded k-algebra and M = } ;.o My any graded A-module, where Ay and My
denote the d-th homogeneous components of A and M, respectively. Then the Noether bound (A) is defined
to be the minimum degree d > O such that A is generated by the set {a : a € Ay, k < d}. Similarly, S(M, A) is
defined to be the minimum degree d > 0 such that M is generated over A by the set {m : m € My, k < d}, and
we write (M) = B(M, A) when the context is clear.

Noether famously showed that B(C[V]°) < |G| for arbitrary finite G, but computing Noether bounds in the
modular case is highly nontrivial. When G is cyclic of prime order, the second author along with Fleischmann,
Shank and Woodcock [6] determined the Noether bound for any kG-module. The purpose of this article is to
find results similar to those in [6] for covariants. Our main result can be stated concisely as follows.
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Theorem 1. Let G be a cyclic group of order p, k a field of characteristic p, V a reduced kG-module and W
a nontrivial indecomposable kG-module. Then

B[V, W1°) = BK[V]®)
unless V is indecomposable of dimension 2.

Here by reduced we mean that the direct sum decomposition of V contains no summands on which G acts
trivially; see also remarks following Proposition 4.

2 Preliminaries

For the rest of this article, G denotes a cyclic group of order p > 0, and we let k be a field of characteristic p.
We choose a generator o for G. Over k, there are p indecomposable representations Vi, ..., V, and each
indecomposable representation V; is afforded by a Jordan block of size i. Note that V), is isomorphic to the
free module kG, and this is the unique free indecomposable kG -module.

Let A = 0 — 1 € kG. We define the transfer map Tr : k[V] — k[V] by leisp o'. Notice that we also have
Tr = AP~1, Invariants that are in the image of Tr are called transfers.

Remark 2. Let eq, ..., e; be an upper triangular basis for the i-dimensional indecomposable representa-
tion V;. Then A(ej) = ej_1 for 2 < j <iand A(eq) = 0. Therefore N(V;) = 0 for all j > i. Note that for an inde-
composable module V; we have A(V;) = V;_4 for 2 <i < p and A(V7) = 0. It follows that an invariant f is in
the image of the linear map A : k[V] — k[V] if and only if it is a linear combination of fixed points in inde-
composable modules of dimension at least j + 1. In particular, an invariant is in the image of the transfer map
(= AP71) if and only if it is a linear combination of fixed points of free lkG-modules.

We assume that V and W are kG-modules with W indecomposable and we choose a basis wy, ..., w, for W
so that we have
ow; = Z 1) w;
1<j<i

for 1 < i < n. For f € k[V] we define the weight of f to be the smallest positive integer d with A4(f) = 0. Note
that A? = (0 - 1)? = 0, so the weight of a polynomial is at most p.
A useful description of covariants is given in [5]. We include this description here for completeness.

Proposition 3 ([5, Proposition 3]). Let f € k[V] with weight d < n. Then
Y NN (Hwj e K[V, WI°.
1<j<d
Conversely, if
fiwi + fowy + - + fuwy € K[V, W]E,
then there exists f € k[ V] with weight < n such that f; = N forl<j<n.

For a non-zero covariant h = fywy + fows +--- + fywy, we define the support of h to be the largest integer j
such that f; # 0. We denote the support of h by s(h). We shall say h is a transfer covariant if there exists
anon-negative integer k and f € k[V] such that f; = AX(f), o = AL(f), ..., fsny = APL(f) for some f € Kk[V].

We call a homogeneous invariant in k[V]® indecomposable if it is not in the subalgebra of k[V]¢
generated by invariants of strictly smaller degree. Similarly, a homogeneous covariant in k[V, W]€ is inde-
composable if it does not lie in the submodule of k[V, W]¢ generated by covariants of strictly smaller degree.

3 Upper bounds

We first prove a result on decomposability of a transfer covariant. In the proof below we set y = B(k[V], k[ V] Gy,
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Proposition 4. Let f € k[V] be homogeneous and let h = AK(fjwy + A (Hw + - + AP"L(H)wn) be a transfer
covariant of degree > y. Then h is decomposable.

Proof. Letgy, ..., g: be asetof homogeneous polynomials of degree at most y generating k[V] as a module
over k[V]¢. So we can write f = Y 1<i<t 9i8i> Where each g; € lk[V]f is a positive degree invariant. Since A/ is
k[V]C-linear, we have N (f) = ¥,_;, il (g;) for k < j < p - 1. It follows that

h=) qi(d g)wy +--- + A" (g)wsew).

1<i<t

Note that A¥(g;)wy +--- + AP~1(g;)ws) is a covariant for each 1 <i <t by Proposition 3. We also have
qi € k[V]¢ so it follows that h is decomposable. O

Write V = @2, Vy, as a sum of indecomposable modules. Note that
k[Ve Vi, W% = (S(V*) @ S(V7)) & W) = K[V, W]° @ k[V;].

Therefore we will assume that n; > 1 for all j; such representations are called reduced. Choose a basis
{xij : 1 <i<nj, 1<j<m}for V*, with respect to which we have

Xi,j t Xit+1,j, i< nj,
0(xij) = <|

Xij» i= nj.

This induces a multidegree on k[ V] = @5 g nm k[ V]a which is compatible with the action of G. For 1 < j < mwe
define Nj = ]'[’,Z;é 0*x4,j, and note that the coefficient of x’f’j in Nj is 1. Given any f € k[Vy,], we can therefore
perform long division, writing

f=4qjNj+r,

where g; € k[Vy,] for all j and r € k[Vy] has degree < p in the variable x; ;. This induces a vector space
decomposition
k[Vy,] = Njk[Vy,] ® Bj,

where B; is the subspace of k[Vy,] spanned by monomials with x; j-degree < p, but the form of the action
implies that Bj and its complement are kG-modules, so we obtain a kG-module decomposition. Since
Kk[V] = ®]-";1 k[V},], it follows that

K[V] = NjK[V] @ (B @ k[V']),

where V! = Vy, @---@ Vy,, @ Vy,,, --- ® Vy,,. From this decomposition it follows that if M is a kG direct sum-
mand of k[V]4, then N;M is a kG direct summand of k[V]4., with the same isomorphism type. Further, any
f € k[V]¢ can be written as

f=qNj+r

withg € k[V]®andr € (Bj ® k[V'])°.Ifinaddition deg(f) = (d1, da, . . . , dm) With dj > p — nj, then the degree
d; homogeneous component of B; is free by [8, 2.10] and since tensoring a module with a free (projective)
module gives a free (projective) module we may further assume, by Remark 2, that r is in the image of the
transfer map.

Ifh= ng{) AL (Hw; € K[V, W]°, we define the multidegree of h to be that of f. Since G preserves the
multidegree, this is the same as the multidegree of Ai=1(f) for all i < s(h). Then the analogue of this result for
covariants is the following:

Proposition 5. Let h be a covariant of multidegree d1, d, . . . , dm with dj > p — nj for some j. Then there exist
a covariant hy and a transfer covariant h; such that h = Njhy + h».

Proof. We proceed by induction on the support s(h) of h. If s(h) = 1, then by Proposition 3, we have that
h = fw; with f € k[V]S. Then we can write f = gN;j + AP~(¢) for some g € k[V]¢ and ¢ € k[V]. Then both
gwi and AP~1(t)w; are covariants by Proposition 3 and therefore h = gNjw; + AP~1(t)w; gives us the desired
decomposition.
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Now assume that s(h) = k. Then by Proposition 3 there exists f € k[V] such that
h = fwy + A(PHwa + - + A (Hwy,

with AX(f) = 0. Since AK"1(f) € k[V]® and d;j > p - nj, we can write AK"1(f) = gN; + AP~(¢) for some g € k[V]®
and ¢ € k[V]. It follows that gNj is in the image of Ak-1, But since multiplication by N; preserves the isomor-
phism type of a module, it follows that g is in the image of AK=1, Write g = A*"1(f’) with f’ € k[V]. Set

hy = f'wi + AFYWa + -+ AN ywee and  hy = AP K(Owq + - + AP (Owe.
Since A¥1(f") e k[V]C, it follows that h; is a covariant by Proposition 3. Consider the covariant
h' = h - Njhy - h,.
Since AK1(f) = AP~1(¢t) + AK"1(f")Nj, the support of h' is strictly smaller than the support of h. Moreover, h is
a transfer covariant and so the assertion of the proposition follows by induction. O
We obtain the following upper bound for the Noether number of covariants:
Proposition 6. We have S(Kk[V, w1%) < max(S(k[V], Kk[V]%), mp — dim(V)).

Proof. Leth e k[V, W]¢ with degree d > max(B(k[V], k[V]°), mp — dim(V)). Let (dy, d>, . . . , dyy) be the mul-
tidegree of h. Then we must have d; > p — n; for some j. Consequently, we may apply Proposition 5, writing

h= Njh] + hz,

where h; is a transfer covariant. Since deg(h,) > B(k[V], k[V] Gy, it follows that h; is decomposable by Propo-
sition 4, and so we have shown that h is decomposable. O

4 Lower bounds

Indecomposable transfers are one method of obtaining lower bounds for S(Ik[ V]¢). Recall that we have written
V= EB].’Zl Vy, as a sum of indecomposable modules. The analogous result for covariants is:

Lemma 7. Let n > 2 and let AP~1(f) € k[V]¢ be an indecomposable homogeneous transfer. Then the transfer
covariant
h=AP""(Owy +--- + AP L(Hwy

is indecomposable.

Proof. Assume on the contrary that h is decomposable. Then there exist homogeneous g; € k[V]¢ and
h; € K[V, W]6 such that h = Y1<i<t gihi. Write h; = hj 1wq + -+ + hj ywy, for 1 <i < t. Then we have

AN = ) gihin.
1<i<t
By Proposition 3 we have A(h; n-1) = hi,n and so h; , € Kk[V]¢ because n > 2. It follows that Y1<i<t Gihin is
a decomposition of AP~1(f) in terms of invariants of strictly smaller degree, contradicting the indecompos-
ability of AP71(f), O

Corollary 8. Suppose n > 2 and B(k[V]%) > max(p, mp — dim(V)). Then B(k[V]®) < B(k[V, W]©).

Proof. By [8, Lemma 2.12], k[V]C is generated by the norms N1, N>, ..., Ny, invariants of degree at most
mp — dim(V), and transfers. Since there exists an indecomposable invariant of degree B(kk[V]°), if the hypo-
theses of the corollary above hold, then k[V]¢ contains an indecomposable transfer with this degree. By
Lemma 7, k[V, W]C contains a transfer covariant of degree B(k[V]%) which is indecomposable, from which
the conclusion follows. O
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5 Main results

We are now ready to prove Theorem 1. Note that k[V, V1] is generated over k[V]¢ by w; alone, which has
degree zero, and therefore S(k[V, V11%) = 0. For this reason we assume n > 2 throughout.

Proof. Suppose first that n; > 3 for some j. Then by [6, Proposition 1.1 (a)], we have
BULVI®) = m(p - 1) + (p - 2).
Since V is reduced, we have dim(V) > 2m and hence
B[VI®) > m(p - 2) > mp — dim(V).

Also, B(k[V]®) > 2p - 3 > p since n; < p for all j. Therefore Corollary 8 implies that B(k[V]®) < B(k[V, W]©).
On the other hand, [6, Lemma 3.3] shows that the top degree of k[V] /Ik[V]f]k[VJ is bounded above by
m(p - 1) + (p — 2). By the graded Nakayama Lemma it follows that S(k[V], k[VI®) <m(p-1)+(p -2). We
have already shown that this number is at least mp — dim(V) + 1, so by Proposition 6 we get that

BALV, W1%) < m(p — 1) + (p - 2) = BUK[V]®)
as required.
Now suppose that n; < 3 for all i and n; = 3 for some j. Then by [6, Proposition 1.1 (b)], we have
BIIVI®) =m(p - 1) + 1.
Since V is reduced, we have dim(V) > 2m and hence
BIK[V]®) > m(p - 2) > mp — dim(V).

Also ﬁ(lk[V]G) >2p - 1> p provided m > 2. In that case Corollary 8 applies. If m = 1, then Dickson [4]
has shown that k[V]® = k[x1, X2, x3]¢ is minimally generated by the invariants x3, x3 - 2x1x3 — x2x3, N,
Ap‘l(xﬁ’flxz). It follows that AP~1 (x’fflxz) is an indecomposable transfer, so by Lemma 7, k[V, W]¢ contains
an indecomposable transfer covariant of degree p = B(Ik[V]G). In either case we obtain

B[V, WI°) > B(K[V]F).

On the other hand, by [9, Corollary 2.8], m(p — 1) + 1 is an upper bound for the top degree of k[ V]/k[V]°.
By the same argument as before we get S(k[V]®, k[V]) < m(p — 1) + 1. We have already shown that this
number is at least mp — dim(V) + 1, so by Proposition 6 we get that

B[V, W) < m(p - 1) + 1 = B(k[V]®)

as required.

It remains to deal with the case n; = 2 forall i, i.e. V.= mV,. We assume m > 2. In this case Campbell and
Hughes [2] showed that S(k[V]®) = (p — 1)m. As dim(V) = 2m, we have B(k[V]®) > m(p - 2) = mp — dim(V).
Ifm>3orm=2andp > 2, then we have

B[V]®) > p
and Corollary 8 applies.Incasem = 2 = p, k[V]® = Kklx1,1,X2,1, X1,2, xz,z]G is a hypersurface, minimally gen-
erated by {x2,1, N1, x2,2, N2, Ap‘l(xl,lxl,z)}. In particular, Ap‘l(xl,lxl,z) is an indecomposable transfer, so
by Lemma 7, k[V, W]¢ contains an indecomposable transfer covariant of degree 2. In both cases we get

B[V, WI°) = B(k[V]F).

On the other hand, by [9, Theorem 2.1], the top degree of lk[V]/]k[V]flk[V] is bounded above by m(p — 1).
We have already shown this number is at least mp — dim(V) + 1. Therefore, by Proposition 6, we get

B[V, W%) < B(k[V]%)

as required. O
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Remark 9. The only reduced representation not covered by Theorem 1 is V = V,. An explicit minimal set of
generators of k[ V>, W]C as a module over k[V>]¢ is given in [5], the result is

BK[Vy, W) =n-1.
This is the only situation in which the Noether number is seen to depend on W.

Remark 10. Suppose V is any reduced kG-module and W = B]_, W; is a decomposable kG-module. Then
r G r
K[V, W% = (S(V") ® ( P W») =Py e wy©.
i=1 i=1

So BK[V, W]%) = max{B(k[V, W;]6) :i=1,...,r} = B(k[V]%) unless V is indecomposable of dimension 2,
in which case we have

B[V, W]°) = max{B(k[V,, W;]®) :i=1,...,r} = max{dim(W;) -1:i=1,...,1}.

Thus, the results of this paper can be used to compute B(k[V, W16) for arbitrary kG-modules V and W.

Funding: The second author is supported by a grant from TUBITAK:119F181.

References

[1] A.Broer and ). Chuai, Modules of covariants in modular invariant theory, Proc. Lond. Math. Soc. (3) 100 (2010), no. 3,
705-735.

[2] H.E.A.Campbelland I. P. Hughes, Vector invariants of U, (Fp): A proof of a conjecture of Richman, Adv. Math. 126 (1997),
no. 1, 1-20.

[3] C.Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.

[4] L.E.Dickson, On Invariants and the Theory of Numbers, Dover Publications, New York, 1966.

[5] J.Elmer, Modular covariants of cyclic groups of order p, preprint (2019), https://arxiv.org/abs/1806.11024.

[6] P.Fleischmann, M. Sezer, R.J. Shank and C. F. Woodcock, The Noether numbers for cyclic groups of prime order, Adv. Math.

207 (2006), no. 1, 149-155.

[71 M. Hochsterand). A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci,
Amer. J. Math. 93 (1971), 1020-1058.

[8] I.Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm.
Algebra 28 (2000), no. 4, 2059-2088.

[9] M. Sezer and R. ). Shank, On the coinvariants of modular representations of cyclic groups of prime order, J. Pure Appl.
Algebra 205 (2006), no. 1, 210-225.

[10] G.C.Shephard and ). A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.


https://arxiv.org/abs/1806.11024

	Degree bounds for modular covariants
	1 Introduction
	2 Preliminaries
	3 Upper bounds
	4 Lower bounds
	5 Main results


