
SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING OF
DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received November 7, 2019, accepted November 21, 2019, date of publication November 29, 2019,
date of current version December 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2956823

Incremental Association Rule Mining Based
on Matrix Compression for Edge Computing
DONGDAI ZHOU 1, MENG OUYANG 1, ZHEJUN KUANG 2, ZHEN LI 1,
JIN PENG ZHOU 3, AND XIAOCHUN CHENG 4, (Senior Member, IEEE)
1School of Information Science and Technology, Northeast Normal University, Changchun 130021, China
2College of Computer Science and Technology, Changchun University, Changchun 130012, China
3Division of Engineering Science, University of Toronto, Toronto, ON M5S2E8, Canada
4Faculty of Science and Technology, Middlesex University, London NW4 4BT, U.K.

Corresponding authors: Zhejun Kuang (kuangzhejun@ccu.edu.cn) and Xiaochun Cheng (x.cheng@mdx.ac.uk)

This work was supported in part by the National Natural Science Foundation of China under Grant 61977015, in part by the Twelfth
Five-Year Plan of Jilin Provincial Department of Education under Grant 557, and in part by the EU FP7 Programme under Contract
FP7-IP-608142.

ABSTRACT A growing amount of data is being generated, communicated and processed at the edge
nodes of cloud systems; this has the potential to improve response times and thus reduce communication
bandwidth. We found that traditional static association rule mining cannot solve certain real-world problems
with dynamically changing data. Incremental association rule mining algorithms have been studied. This
paper combines the fast update pruning (FUP) algorithm with a compressed Boolean matrix and proposes
a new incremental association rule mining algorithm, named the FUP algorithm based on a compression
matrix (FBCM). This algorithm requires only a single scan of both the database and incremental databases,
establishes two compressible Boolean matrices, and applies association rule mining to those matrices. The
FBCM algorithm effectively improves the computational efficiency of incremental association rule mining
and hence is suitable for knowledge discovery in the edge nodes of cloud systems.

INDEX TERMS Edge computing, association rule, Boolean matrix, fast update pruning algorithm, matrix
compression.

I. INTRODUCTION
Since Nature published its special issue on big data in
2008 [1], big data research has rapidly developed and become
a hot research topic that has attracted substantial attention
[2]–[4]. Currently, as an integral part of every industry and
business function, data represent an important production
factor [5]–[7]. The proliferation of the Internet of Things
(IoT) and the success of cloud services have attracted research
into new computing paradigms. Edge computing is being
developed to achieve better response times with satisfactory
safety and security [8]–[10]. However, data analysis solutions
at edge nodes must use limited storage, limited computing
power and limited communication bandwidth.

As an important field in data mining, the concept of asso-
ciation rule mining was first proposed by Agrawal et al. [11].
The purpose of association rule mining is to identify the con-
nections among the items in a database and the hidden depen-
dency relationships. This relevance of the data can bring great

The associate editor coordinating the review of this manuscript and
approving it for publication was Ying Li.

value to businesses [12]–[15]. The algorithmic complexity is
important for edge computing [16]–[18]. Research on tradi-
tional association rule mining has mainly considered static
databases [19]–[21]. However, most real-world transaction
databases change continuously. Changes in transaction data
mainly take on one of two forms: an increase or a decrease.
Association rule mining in the first case is called incremental
association rule mining.

The incremental association rule mining that is consid-
ered in this paper mainly relates to the case in which the
data volume increases. When the size of the transaction
database increases, if the minimum support threshold is cal-
culated according to the percentage, then an initially fre-
quent item may become an infrequent item, and an initially
infrequent item may become a frequent item. The famous
fast update pruning (FUP) algorithm has been used to solve
this type of problem [22]. The FUP algorithm is a substan-
tial improvement compared with traditional static association
rulemining algorithms. First, the FUP algorithm prunes exist-
ing frequent items. Second, it receives new frequent item-
sets from incremental databases. These advantages reduce

173044 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-2338-5164
https://orcid.org/0000-0002-8534-9193
https://orcid.org/0000-0001-5632-7596
https://orcid.org/0000-0003-1414-0226
https://orcid.org/0000-0001-8407-1110
https://orcid.org/0000-0003-0371-9646

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

unnecessary calculations. However, two problems associated
with the FUP algorithm need to be considered in the big data
environment. On the one hand, the FUP algorithm needs to
scan a database many times. The overhead that is needed for
a large number of scans becomes a performance bottleneck
whereby the results can be improved when the amount of
transaction data is large. On the other hand, each iteration
requires the entire transaction database to be scanned; thus,
the search space of the solution is very large.

To solve these two problems, this paper combines the FUP
algorithm with the idea of a compressed Boolean matrix and
proposes the algorithm FUP based on a compression matrix
(FBCM), which is a new, improved algorithm. The main
advantages of the algorithm are as follows. First, the FBCM
algorithm scans the transaction database only once, which
reduces the time overhead. Second, the FBCM algorithm
accelerates the computation using a binary AND operation
to replace the string operation. Third, the FBCM algorithm
compresses and prunes the transaction matrix in each iter-
ation to further reduce the storage space and the number
of computations.

This paper uses the contrast method to compare the per-
formance of the FBCM algorithm. The experimental datasets
are obtained from a frequent item mining warehouse. The
experimental environment includes laboratory computers.
A detailed configuration of the experimental environment and
the experimental process are provided in the latter part of the
paper. The comparative analysis is carried out from multiple
dimensions, including a comparison between an incremental
algorithm and a non-incremental algorithm and a comparison
between a matrix algorithm and a non-matrix algorithm. The
experimental results reflect the advantages of the incremental
algorithm compared with the non-incremental algorithm. The
results also show that the above-mentioned three advantages
improve the performance of the FBCM algorithm. In addi-
tion, the greater the number of iterations is, the more obvious
the advantage of the FBCM algorithm.

This paper is divided into five sections. The first section
introduces the research background, the limitations of the
FUP algorithm and the advantages of the FBCM algorithm.
The second section presents relevant work. The third section
introduces the formalisation of the concepts, including the
concept of the incremental association rules, a review of
the FUP algorithm and the general procedure of the matrix-
based association rule mining algorithm. The fourth section
describes the FBCM algorithm in detail, introduces the algo-
rithm’s main steps and explains the algorithm through a
specific case study. The fifth section presents experimental
details for comparison of the FBCM algorithm with the clas-
sical FUP algorithm to demonstrate the advantages of the
FBCM algorithm.

II. RELATION WORK
We review the main studies on incremental association
rule mining methods. References [23]–[25] summarized the
research methods for incremental association rule mining.

The current main research methods can be divided into two
main types.

The first type involves mining based on tree structures.
Representative mining methods are the compressed and
arranged transaction sequences (CATS) tree algorithm [26]
and the canonical-order tree (CanTree) algorithm [27]. The
CATS Tree algorithm is based on the frequent pattern tree
(FP-Tree) [28] and the prefix tree, and it was proposed by
Cheung et al. in 2003. The algorithm scans the data only
one time and establishes a CATS tree. The algorithm then
mines the tree scanning data only once, which makes it easy
to add and delete data. The algorithm has an obvious problem,
i.e., the greater the influence of the transaction sequence is,
the greater the number of tree branches and the more complex
the structure. Based on the CATS tree, Leung and others pro-
posed an improved algorithm named CanTree in 2005 [27].
Unlike the CATS tree, CanTree requires the nodes to be
sorted in a certain order, such as dictionary order, before
construction such that adding and deleting operations will not
cause changes in the tree structure. Although the incremental
association rule solution based on trees does not require the
frequent scanning of the transaction database, a disadvantage
is often observed. In particular, under large amounts of data,
the irregular tree structure itself will be very complex, and the
implementation costs will be relatively high. This condition
is not promising for solving problems in contemporary big
data environments.

The other type includes mining algorithms based on iter-
ation. The main performance bottleneck of the FUP algo-
rithm, which was proposed by Cheung et al. [22], is the
overhead that is caused by conducting multiple scans of a
transaction database. The FUP algorithm is used to mine the
association rules when the data volume is increasing. For the
case with a decreasing amount of data, Cheung proposed the
FUP2 algorithm, which is based on the FUP algorithm [29].
The algorithm is similar to the FUP algorithm when the
amount of data is increasing. While the FUP2 algorithm
can address reductions in the amount of data, a performance
bottleneck occurs similar to that of the FUP algorithm.

To address the problem resulting from the frequent
scanning of the transaction database, most studies are cur-
rently conducted in a mining environment based on classical
non-incremental association rules. Reference [30] provided
a detailed summary of classical non-incremental algo-
rithms, of which the most popular algorithm is the Apriori
algorithm [31]. References [32]–[34] proposed an association
rule mining algorithm based on the Boolean matrix. The main
idea to generate a Boolean matrix with transaction data as the
rows and all individual items as the columns after scanning
the transaction database once instead of scanning the database
based on the matrix operation. Essentially, the iterative pro-
cess of this algorithm is the Apriori algorithm; however,
it reduces the costs of the frequent scanning of the operation.
The limitation is that the iterative process, i.e., the Apri-
ori algorithm, produces a number of infrequent candidates
and wastes valuable computing resources. To address the

VOLUME 7, 2019 173045

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

bottleneck of the algorithm, Liu and Wang [35] improved the
Apriori algorithm based on a matrix. The main process was to
introduce the concept of matrix compression, adopt the corre-
sponding compression strategy based on the Boolean matrix
affair after each iteration, and delete the rows and columns
that conform to the strategy. Compared with the work in
[32]–[34], reference [35] reduced the number of infre-
quent candidate items and the computational complexity via
matrix compression. Based on the idea of matrix compres-
sion, the studies in [36]–[38] proposed various improve-
ment schemes, which improved matrix compression in many
aspects, including matrix storage, itemset sorting, the com-
pression matrix, and support computations, thus reducing the
time and spatial costs of the algorithm.

The studies in [32]–[35] proposed a matrix association
rule mining algorithm and a variety of improvement strate-
gies for static databases. The algorithm complexity is also
a problem that must be considered; the studies in [39]–[41]
improved the fault tolerance and robustness of the algorithm.
However, incremental matrix mining algorithms are currently
relatively scarce. Therefore, this paper proposes the FBCM
algorithm, which is an incremental association rule mining
improvement algorithm based on matrices. The technique
first introduces the matrix method to the FUP algorithm to
solve the bottleneck problem caused by the frequent scanning
of the transaction database and then compresses the matrix
in each iteration to further improve the mining efficiency of
the algorithm by reducing the search space of the solution.
The FBCM algorithm is designed to solve the problem of
incremental association rule mining in the case of a growing
database.

III. FORMALISATION OF THE CONCEPTS
A. INCREMENTAL ASSOCIATION RULE MINING
The essence of association rule mining is to discover the fre-
quent itemsets in transaction data. The concept of association
rule mining can be described as follows [42]:
Definition 1: Let the dataset DB = {T1,T2,T3, . . . ,Tn}.

The size of the dataset is N = |DB|, and the transactions
Ti ∈ DB, where I = {I1, I2, . . . , Im}, are an itemset of
transactions, and Ti ⊂ I . For Itemset X ,Y (X ⊂ I ,Y ⊂ I)
and X

⋂
Y = ∅, X ⇒ Y are the association rules. The

number of times that X appears in the dataset is count(X), and
its support is support(X) = count(X)/N . For the minimum
support minsup, if support(X) ≥ minsup, it is regarded as a
frequent item.

In the association rule mining research, the main task is to
identify all frequent itemsets in a fast and efficient manner.
The fundamental properties of association rules are often
used in this process. Specifically, a subset of frequent itemsets
is also a frequent itemset, and a superset of the infrequent
itemsets is an infrequent itemset. This property can help in
pruning the candidates during the mining process to sidestep
a large number of calculations.

As previously mentioned, we generally call the above
description static association rule mining. However, the size

FIGURE 1. General transformation rule based on a matrix.

of a database is not static in most real situations since the
amount of data will increase or decrease. For example, a shop-
ping list tends to increase in commodity mining. The require-
ments of themining can also change, such as by strengthening
the connections between items that require mining, which
corresponds to increasing the support threshold. Incremental
association rule mining involves the mining of changes in
the data quantity or changes in the support degree. In this
paper, we mainly study association rule mining in the case
of an increasing amount of data. The incremental database is
represented by db, and the size of the dataset is n = |db|.

B. ASSOCIATION RULE MINING BASED ON A MATRIX
According to [32]–[34], we know that mining association
rules based on a Boolean matrix are generally divided into
two steps. The first step is to build a Boolean matrix and
set up the transaction database DB = {T1,T2,T3, . . . ,Tn}
and itemset I = {I1, I2, . . . , Im}. For a transaction item
that contains n transactions and m entries, a Boolean matrix
M is established, with transactions as the rows and entries
as the columns. The established rule is as follows. Every
transaction is scanned.When an item appears in a transaction,
the coordinate value is 1; otherwise, it is 0. The first step is
shown in Figure 1.

In Figure 1, f represents the mapping of the transaction
matrix D to the Boolean matrixM . The value in the first row
and first column is ‘‘1’’, representing the existence of item a
in transaction T1, and the value in the second row and first
column indicates that item a does not exist in the transaction
T2. Similarly, if the value in column j and line i is ‘‘1’’, then
the term that is represented by column j in the matrix exists in
the transaction Ti and vice versa. The second step is frequent
item mining based on the Boolean matrix via various mining
strategies. The mining process mainly considers the nature of
a vector. The association rule mining algorithm based on a
matrix depends on the following four properties:
Property 2: The number of ‘‘1’’s in the column vector

represents the support count of the column in the matrix [32].
As an example of column a in the above graph, the number

of ‘‘1’’s in column a is count(a) = 2; thus, the support of term
a is support(a) = 2.
Property 3: In a matrix, if the result of the AND operation

between column i and column j is the column vector k , and the
number of ‘‘1’’s in the column vector k represents the support
count of two frequent itemsets < i, j > [32].
Consider column a and column d in Figure 1. The result

of the AND operation between column a and column d
is 0001; thus, the support count of ad is support(ad) = 1.

173046 VOLUME 7, 2019

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

If two columns have a ‘‘1’’ in the same row, then the rep-
resentative items of the two columns appear together in the
transaction; thus, the support count should be increased by
one. All other cases indicate that the representative items
of the two columns do not appear together. When the two
operands are ‘‘1’’, the result of the AND operation is ‘‘1’’.
If one of the two operands is ‘‘0’’, then the result of the
AND operation is ‘‘0’’. This phenomenon is a feature of the
AND operation.
Property 4: For the Boolean matrix, if the number of

column vectors with a value of ‘‘1’’ is less than the minimum
support threshold s in the kth iteration, then the column can
be deleted [35].
Property 5: For the Boolean matrix, if the number of row

vectors with a value of ‘‘1’’ is less than k in the kth iteration,
then the row can be deleted [35].

Property 2 and Property 3 are the basic properties of
association rule mining based on matrices, while Property
4 and Property 5 are the matrix compression strategies that
were proposed in [35]. The compression strategy in the static
association rules is effective. Using these two properties, this
paper will incorporate the properties that are suitable for
incremental association rule mining. The details of the new
properties and their validity will be given in the next section.

C. FUP ALGORITHM
The FUP algorithm is a classical incremental association rule
mining algorithm. The algorithm mainly solves the associa-
tion rule mining problem under the condition of an increase
in the amount of data [22]. The algorithm can be divided
into two steps. The first step uses existing frequent itemsets
L(DB) to determine and delete the items of infrequent item-
sets that are called losers, which the original frequent itemsets
become. The remaining items in L(DB) are called winners.
Winners are added to the frequent itemsets L(DB+ db), and
then, a new winner is found in the incremental database db
(the original infrequent itemsets become frequent itemsets),
which is then added to the total number of frequent itemsets
L(DB+db). The new frequent itemsets can be generated only
in the original DB frequent itemset L(DB) and the new data
db frequent itemset L(db). The process is shown in detail in
the following pseudocode:

Compared with the Apriori algorithm, the FUP algorithm
does not need to calculate all candidates from the beginning.
The FUP algorithm uses several existing frequent itemsets
to perform many iterations of pruning to somewhat reduce
the number of unnecessary scanned operations. The basis of
this pruningmainly involves the following two properties (for
details regarding the specific correctness proofs, please read
the original text regarding the FUP algorithm.)
Property 6: The necessary and sufficient condition of

itemset X becoming a frequent itemset is SUPDB+db(X) =
(|DB| + |db|) ∗ s [22].
Property 7: If itemset X does not belong to a primary

frequent itemset, then the necessary condition for itemset X
to become a frequent itemset is SUPdb(X) ≥ |db| ∗ s [22].

Algorithm 1 FUP Algorithm
Input: Original dataset, DB

Frequent itemsets in DB: L(DB)
Incremental dataset: db
Support threshold: s

Output: Frequent itemsets on DB + db: L(DB+ db)

1: L(db) = UkLk (db)
2: for all item in L(db) do
3: if item ∈ L(DB) then
4: add(item) to L(DB+ db)
5: delete(item) from L(db)
6: // Frequent itemset item ∈ L(db)-L(DB)
7: for all T in DB do
8: if T contain(item) then
9: Item.count ++
10: L(DB+ db)+ = Item(item.count ≥ s)
11: // Frequent itemset item ∈ L(DB) -L(db)
12: for all item in L(DB) do
13: for All T in db do
14: if T contain(item) then
15: Item.count ++
16: L(DB+ db)+ = Item(item.count ≥ s)
17: return L(DB+ db)

The experimental results obtained by Cheung et al. [22]
indicate that the FUP algorithm is faster than the Apriori
algorithm and prove that FUP is more suitable for solving
the problems of incremental association rule mining when
the amount of data increases. Based on property 6, FBCM
performs the matrix operation of incremental association rule
mining. Property 7 provides a pruning method for the FBCM
algorithm and reduces the computational complexity. The
details of the FBCM algorithm are introduced in the next
section.

IV. FBCM ALGORITHM
A. ALGORITHM DESCRIPTION
The FBCM algorithm is an incremental association rule min-
ing algorithm that is used to solve the problem of increasing
the amount of data. Based on the FUP algorithm, the algo-
rithm transforms the FUP scan operation into the calculation
of a matrix. The first step transforms the original transaction
databaseDB and incremental database db into two transaction
matrices. This step transforms the database DB into a matrix
DB and transforms database db into a matrix db. This step
is one of the main aspects of this paper. To scan the database
only once to generate a Boolean matrix, we need to transform
the matrix once. The second step performs association rule
mining based on the transaction matrix. In the mining pro-
cess, each iteration requires that two matrices be separately
compressed to reduce the search space of the solution. The
detailed pseudo-code of the algorithm is as follows.

VOLUME 7, 2019 173047

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

Algorithm 2 FBCM Algorithm
Input: Original dataset, DB

Frequent itemsets on DB: L(DB)
Incremental dataset: db
Support threshold: s

Output: Frequent itemsets on DB + db: L(DB+ db)
1: MatrixDB = convert(DB),Matrixdb = convert(db)
2: L1(db) = getL1(Matrixdb)
3: for all items in L1(db) ∩ L1(DB) do
4: add(item) to L1(DB+ db)
5: delete(item) from L1(db)
6: for all items in L1(db)− L1(DB) do
7: item.count+ = MatrixDB.getCount(item)
8: L1(DB+ db)+ = item(item.count ≥ s)
9: for all items in L1(DB)− L1(db) do
10: item.count+ = Matrixdb.getCount(item)
11: L1(DB+ db)+ = item(item.count ≥ s)

//Compressing matrix based on frequent ‘‘1’’ itemsets
12: MatrixDB = compress1(MatrixDB,L1(DB+ db))
13: Matrixdb = compress1(Matrixdb,L1(DB + db)) // Fre-

quent multiple set calculation, first compression and
recalculation

14: MatrixDB = compress2(MatrixDB, s, k)
15: //s: support threshold. k: frequent K itemsets
16: Matrixdb = compress2(Matrixdb, s, k)
17: L(db) = UkLk (db) /k ≥ 2
18: for all item in L(db) ∩ L(DB) do
19: add(item) to L1(DB+ db)
20: delete(item) from L(db)
21: for all item in L(db)− L(DB) do
22: item.count+ = MatrixDB.getCount(item)
23: L(DB+ db)+ = item(item.count ≥ s)
24: for all item in L(DB)− L(db) do
25: item.count+ = Matrixdb.getCount(item)
26: L(DB+ db)+ = item(item.count ≥ s)
27: return L(DB+ db)

Research on the FBCM algorithm emphasizes two main
points. The first point is the transformation of the matrix.
Step one of the pseudocodes expresses that the transaction
database is transformed into a matrix via one database scan.
The detailed transformation process is shown in Figure 2,
where the numerical record is the transaction number. This
is an ordered process. For example, I2 is in T2 and T3;
thus, the corresponding numerical vector of I2 is < 2, 3 >.
Then, the tensile transformation of the numerical matrix is
carried out. Four transactions exist in the database, and each
vector should be stretched to 4. In the same way, taking I2
as an example, the numbers 2 and 3 exist in the vector I2.
The corresponding positions of numbers 2 and 3 should be
replacedwith a 1, while the other positions should be replaced
with a 0; thus, < 2, 3 > is stretched to < 0, 1, 1, 0 >.
The second research emphasis is matrix compression.

The previous step constructs a complete transaction matrix.

FIGURE 2. Boolean matrix matrix DB.

This step will compress the entire matrix with the following
method, which is of one of two types. The first type involves
deleting the column in which the number of itemsets is not
‘‘1’’ in the Boolean matrix after confirming that the num-
ber of itemsets is 1. The compression process is shown in
steps 6 and 7 of the pseudocode. From the basic nature of the
frequent itemsets, a subset of frequent itemsets is necessarily
a frequent itemset, and a superset of infrequent itemsets is
an infrequent itemset. The second compression is for those
frequent itemsets whose number is 2, and compression occurs
before the subsequent iterations, which is represented by
steps 8 and 9 of the pseudocode.

When the number of iterations is k , if the count of a row
vector whose value is ‘‘1’’ is less than k , then the row can
be deleted. In addition, if the number of column vectors
whose number is ‘‘1’’ in the two matrices is less than the
support threshold, then the column can be deleted. In the
FBCM algorithm, the matrix compression strategy is mainly
dependent on the following two properties:
Property 8: For the original Boolean matrix and the incre-

mental Boolean matrix, if the number of row vectors whose
number of ‘‘1’’ is less than k , the row is deleted.
Proof of Property 9: According to Property 5, we know

that for any row X , the necessary and sufficient condition
for X not being deleted is count(X) ≥ k , where count(X)
is the number of row vectors X , whose number is ‘‘1’’ in
the matrix. Assuming that the original Boolean matrix isM1,
the incremental Boolean matrix is M2, and k represents the
number of iterations. For any row Y , this can be divided into
three situations. (1) Y exists in M1 but does not exist in M2;
if count(Y) < k , row Y in M1 can be deleted since property
5 is satisfied. (2) Y exists in M2 but does not exist in M1;
if count(Y) < k , it can be deleted similarly. (3) Y exists in
both M1 and M2. The original Boolean matrix M1 and the
incremental Boolean matrix M2 are independent. Therefore,
the same rules apply here.
Property 10: For a Boolean matrix, for k iterations, if the

sum of the number of matrixDB column vectors whose num-
ber is ‘‘1’’ and the number of matrix db column vectors whose
number is ‘‘1’’ is less than the minimum support threshold
s ∗ (|DB| + |db|), the column is deleted.
Proof of Property 11: If item X ⊂ I , then

supportDB+db(X) = supportDB(X) + supportdb(X). From
Property 2 of the vector, supportDB(X) is the number of
column vectors X whose number is ‘‘1’’ in the matrix DB.

173048 VOLUME 7, 2019

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

TABLE 1. Original database DB.

TABLE 2. Incremental database db.

FIGURE 3. Boolean matrix matrix db.

Similarly, supportdb(X) is the number of column vectors
X whose number is ‘‘1’’ in the matrix db. Therefore,
supportDB+db(X) = the number of column vectors X whose
number is ‘‘1’’ in the matrix DB + the number of column
vectors X whose number is ‘‘1’’ in the matrix db. If the right
side of the equation is less than the minimum support thresh-
old, then supportDB+db(X) is less than the minimum support
threshold; thus, item X is unlikely to be in the frequent ‘‘1’’
itemset. According to the frequent items, itemsets including
X cannot become frequent itemsets and thus can be deleted.

Based on properties 8 and 10, the FBCM algorithm com-
presses the original data and incremental data via matrix
compression. Most of the invalid data are pruned by matrix
compression, which greatly reduces the cost of the subse-
quent kth iteration. For sparse data sets, the compression
effect is more obvious. The efficiency of the algorithm after
matrix compression will be verified experimentally in the
fifth section of this paper.

B. EXPLANATION USING AN EXAMPLE
This section explains the key steps of the FBCMalgorithm via
a simple example. The known conditions are as follows. The
support threshold is set as s = 0.4. The original transaction
database DB is shown in Table 1. The number of transactions
is N = 5, andM = 5. The incremental database db is shown
in Table 2. The number of transactions is n = 3, and m = 5.
The frequent itemsets in the DB include L1(DB) = {I1 :
3, I2 : 4, I3 : 3, I5 : 3} and L2(DB) = {I1I2 : 2, I1I3 :
2, I2I3 : 3, I2I5 : 3, I3I5 : 2}. The first step of the algorithm
is to transform DB and db into Boolean matrices, as shown
in Figures 2 and 3.

FIGURE 4. Matrix DB after the first compression.

FIGURE 5. Matrix db after the first compression.

FIGURE 6. Matrix DB after the second compression.

We now present the calculation of the frequent ‘‘1’’ item-
sets. We know that L1(db) = {I2 : 3, I5 : 2} based on
c.count in the matrix db and that L1(DB) = {I1 : 3, I2 :
4, I3 : 3, I5 : 3} based on the minimum support count of the
frequent itemset (|DB| + |db|) ∗ s = 3.2. Finally, we obtain
L1(DB + db) = {I2 : 7, I5 : 6}. Since the superset of
infrequent itemsets is an infrequent itemset, no items except
for I2 and I5 need to be calculated in the subsequent iterations.
The other set can be deleted using the compressed matrix.
The matrices after the first round of compression are depicted
in Figures 4 and 5.

Before mining the frequent 2 itemsets, we need to com-
press the matrix. Similarly, in subsequent iterations, we need
to compress the matrix before each iteration. We take the
mining process of the frequent 2 itemsets as an example to
introduce the compression operation. First, we delete all rows
of r .count < 2, i.e., we delete the rows of T1, T5 and T ′1 in
this case. Then, we delete the column ofmatrixDB(c.count)+
matrixdb(c.count) < (|DB| + |db|) ∗ s = 3.2. Nothing
needs to be deleted in this example. The results are shown
in Figures 6 and 7.

VOLUME 7, 2019 173049

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

FIGURE 7. Matrix db after the second compression.

FIGURE 8. Experimental contrasting diagram under different data
volumes.

Now, we extract the frequent 2 itemsets based on the
matrix. We obtain L1(DB + db) = {I2 : 7, I5 : 6}. The db
frequent 2 itemset candidates are generated via the result of
L1(DB + db); thus, the candidates are only < I2I5 >. The
support degree of < I2I5 > in db is 2 based on the AND
operation between column I2 and column I5 in the matrix db.
Given L2(DB) = {I1I2 : 2, I1I3 : 2, I2I3 : 3, I2I5 : 3, I3I5 : 2},
we can determine that SupportU (I2I5) = 5 and that the count
of the matrix db is always 0 after the compression of the other
items in L2(DB). Finally, we obtain L2(DB+db) = {I2I5 : 5}.
There are only two columns in the matrix, and the frequent
3 itemsets are empty; thus, the mining ends.

V. EXPERIMENT AND RESULT ANALYSIS
The test environment utilizes the Windows 10 64-bit operat-
ing system and 8 GB of memory. The CPU is an Intel Core
i7-3770 operating at 3.40 GHz.
Experiment 12: The experiment uses the T10I4D100K

dataset. The incremental database db is acquired by sampling
on the T10I4D100K dataset, and |db| = 100. The given
minimum support threshold is s = 0.02. The incremental
database db corresponds to the original transaction database
DB obtained from sampling on T10I4D100K. Using the run
time, this experiment compares the execution efficiency of
the Apriori algorithm, the Apriori matrix algorithm, the FUP
algorithm and the FBCM algorithm.

Since this study is based on the idea of the classical
non-incremental algorithm in many ways, the comparison in
experiment 12 includes the classical non-incremental Apriori
algorithm. Experiment 12 compares the matrix algorithm

FIGURE 9. Diagram of the experimental comparison under different
support thresholds.

based on an Apriori method called the Apriori Matrix algo-
rithm, which was proposed in [32]; the FUP incremental
algorithm; and the FBCM algorithm proposed in this paper.
The experimental results are shown in Figure 8. The abscissa
indicates that the transaction data volume increases from
0.2 ∗ 104 to 10 ∗ 104. The ordinate indicates the runtimes of
the algorithms.When the transaction data volume is 0.2∗104,
the times required by the Apriori algorithm, Apriori Matrix
algorithm, FUP algorithm and FBCM algorithm are 2.79,
0.77, 0.29, and 0.15 s, respectively. When the transaction data
volume increases to 10 × 104, the times needed by the four
algorithms are 177.58, 31.71, 12.83, and 5.07 s, respectively.

The experimental results show that under the experimental
conditions, the Apriori algorithm is the slowest. The Apri-
ori Matrix algorithm is the second slowest; however, it has
been greatly improved compared with the Apriori algorithm.
These first two algorithms are non-incremental algorithms.
The FUP algorithm is superior to the two Apriori algorithms
on the incremental problem. The efficiency of the FBCM
algorithm is the highest. In addition, when the transaction
data volume increases, the gap between these algorithms
becomes increasingly obvious. The insufficient speed of the
Apriori algorithm affects the results of the experiment; hence,
the comparison with this algorithm will be omitted in the
follow-up experiment.
Experiment 13: This experiment considers the

T10I4D100K dataset. The incremental database db is
acquired by sampling on the T10I4D100K dataset, and
|db| = 100. The given original database is T10I4D100K, and
the incremental database is db. With the minimum support
threshold s as the abscissa, this experiment compares the
execution efficiency of the Apriori Matrix algorithm, the FUP
algorithm and the FBCM algorithm in terms of time.

Figure 9 presents the runtime of the Apriori Matrix, FUP
and FBCM algorithms when the support threshold changes
from 0.01 to 0.03. In this experimental environment, when
the threshold is s = 0.03, the runtimes of the Apriori Matrix

173050 VOLUME 7, 2019

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

FIGURE 10. Diagram of the experimental comparison under different
datasets.

algorithm, FUP algorithm and FBCM algorithm are 14.05,
9.89 and 4.08 s, respectively. The computation speed of the
FBCM algorithm is higher than that of the FUP algorithm.
At this point, there are few frequent itemsets in the incremen-
tal datasets. The FUP algorithm does not need to frequently
scan the DB transaction datasets. However, the first step of
the FBCM algorithm scans the transaction data to construct
a matrix, which requires a non-negligible amount of time.
Hence, the advantage is not obvious.

When the support threshold is reduced to 0.012, the three
curves all have an obvious inflection point. The three inter-
secting points between the vertical line K and the curves are
shown in Figure 9. When s < 0.012, the runtime of the FUP
algorithm rapidly increases.

To achieve point P in the figure, the runtime of the FUP
algorithm had to exceed that of the Apriori Matrix algorithm.
Since the dataset produces a large number of frequent mul-
tiple set calculations, FUP requires frequent scanning of the
database, which increases the overhead, even more so than
the Apriori Matrix algorithm. However, the FBCM algorithm
needs to operate on and scan the database only one time; thus,
it is faster. When the threshold is s = 0.01, the computing
speed of the FBCM algorithm is much higher than that of
the FUP algorithm. This experiment shows that the FBCM
algorithm is more suitable for frequent itemset mining with
smaller thresholds, that is, for frequent itemset mining with
many computations.
Experiment 14:We know that the incremental database db

and the minimum support threshold s correspond to different
original transaction databases DB. Considering the time that
is required, this experiment compares the FUP algorithm and
FBCM algorithm in terms of their execution efficiency.

Figure 10 shows the performances on different datasets
by the algorithms. The abscissa depicts the datasets and the
threshold values. The incremental dataset include 100 sam-
ples from the original dataset. The detailed experimental
dataset and the corresponding results of the experiment are
presented in Table 3.

TABLE 3. Detailed experimental data and results.

From the efficiency ratios shown in Table 3, we know
that the running efficiency of the FBCM algorithm is higher
than that of the FUP algorithm on our experimental datasets.
On the T10I4D100K and T40I10D100K datasets, the mining
speed is increased approximately 1.95 to 2.81 times, respec-
tively. The improvement is more significant when consider-
ing the Groceries and Mushroom datasets.

Based on the analysis of the datasets and the results
of the algorithms, we know that the Mushroom datasets
have a stronger relationship between items. The datasets can
produce high-frequency itemsets under a higher threshold
setting; however, more iterations are needed, which means
numerous scans of the transaction database by FUP, which
increases the costs. Therefore, the performance of the FBCM
algorithm is better.

From the above three experiments, we can draw the fol-
lowing conclusions. (1) The computational efficiency of the
FBCM algorithm is significantly higher than that of the tra-
ditional algorithm. (2) The FBCM algorithm is suitable for
large dataset cases involving a large number of computations.
The greater the number of calculations is, the greater the
efficiency of FBCM. (3) As the matrix algorithm, the recal-
culation efficiency of the FBCM algorithm based on the
incremental dataset is much higher than that of the Apriori
Matrix algorithm. Conclusion ‘‘1’’ and Conclusion 3 can be
directly drawn from Figures 8, 9 and 10. However, Conclu-
sion 2 requires the analysis as well as the results of algorithm
operations. The smaller the threshold is, the greater the num-
ber of frequent items; additionally, the greater the number
of calculations is, the higher the efficiency of the FBCM
algorithm. The larger the datasets are, the greater the number
of frequent items; additionally, the greater the number of
calculations of the FBCM algorithm is, the higher the FBCM
algorithm’s efficiency.

VI. CONCLUSION
Considering the computing capacity and network bandwidth
constraints of edge nodes, this paper proposes an incremental
association rule mining algorithm based on matrix compres-
sion. This algorithm constructs a Boolean matrix by scanning
a transaction database once, carries out incremental asso-
ciation rule mining using the matrix, and compresses the
matrix during the mining process. Given these limitations,
our solution uses two techniques to improve the efficiency on
large databases. First, the operation of the Boolean matrix is
used to replace the original transaction record scan. Second,

VOLUME 7, 2019 173051

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

the compression of the matrix can decrease the search space
of the solution. The experimental results show that the FBCM
algorithm improves the efficiency of incremental association
rule mining in edge computing.

REFERENCES
[1] M. Waldrop, ‘‘Big data: Wikiomics,’’ Nature, vol. 455, no. 7209,

pp. 22–25, 2008.
[2] J. Y. Liang, C. J. Feng, and P. Song, ‘‘A survey on correlation analysis of

big data,’’ Chin. J. Comput., vol. 39, no. 1, pp. 1–18, 2016.
[3] Y.-S. Jeong, H. Hassan, and A. K. Sangaiah, ‘‘Machine learning on big

data for future computing,’’ J. Supercomput., vol. 75, no. 6, pp. 2925–2929,
2019.

[4] H. Gao, W. Huang, and X. Yang, ‘‘Applying probabilistic model checking
to path planning in an intelligent transportation system using mobility tra-
jectories and their statistical data,’’ Intell. Automat. Soft Comput., vol. 25,
no. 3, pp. 547–559, Jan. 2019.

[5] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, Big Data: The Next Frontier for Innovation, Competition, and
Productivity. 2011.

[6] Y. Yin, J. Xia, Y. Li, Y. Xu, W. Xu, and L. Yu, ‘‘Group-wise itinerary
planning in temporary mobile social network,’’ IEEE Access, vol. 7,
pp. 83682–83693, Jun. 2019.

[7] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, ‘‘QoS prediction
for service recommendation with deep feature learning in edge computing
environment,’’ Mobile Netw. Appl., to be published.

[8] G. Xu, B. Guo, C. Su, X. Zheng, K. Liang, D. S. Wong, and H. Wang,
‘‘Am I eclipsed? A smart detector of eclipse attacks for Ethereum,’’ Com-
put. Secur., vol. 88, Jan. 2020, Art. no. 101604.

[9] L. Li, G. Xu, L. Jiao, X. Li, H. Wang, J. Hu, H. Xian, and W. Lian,
‘‘A secure random key distribution scheme against node replication attacks
in industrial wireless sensor systems,’’ IEEE Trans Ind. Informat., to be
published.

[10] X. Zhang, K.-K. R. Choo, and N. L. Beebe, ‘‘How do I share my IoT
forensic experience with the broader community? An automated knowl-
edge sharing IoT forensic platform,’’ IEEE Internet Things J., vol. 6, no. 4,
pp. 6850–6861, Apr. 2019.

[11] R. Agrawal, T. Imieliński, and A. Swami, ‘‘Mining association rules
between sets of items in large databases,’’ in Proc. ACM SIGMOD Rec.,
vol. 22, no. 2, 1993, pp. 207–216.

[12] W. Altaf, M. Shahbaz, and A. Guergachi, ‘‘Applications of association rule
mining in health informatics: A survey,’’ Artif. Intell. Rev., vol. 47, no. 3,
pp. 313–340, 2017.

[13] S. Gole and B. Tidke, ‘‘Frequent itemset mining for big data in social media
using clustbigfim algorithm,’’ in Proc. Int. Conf. Pervasive Comput., 2015,
pp. 1–6.

[14] K. Bartos, ‘‘Association rules in the study of consumer behaviour,’’ in
Europejska przestrzeń komunikacji elektronicznej. T. 2 (Ekonomiczne
Problemy Usług), no. 105. Szczecin, Poland: Zeszyty Naukowe Uniwer-
sytetu Szczecińskiego, 2013, pp. 279–286.

[15] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques
(Series in Data Management Systems), 3rd ed. San Mateo, CA, USA:
Morgan Kaufmann, 2011, pp. 83–124.

[16] M. Cheng, Y. Ling, and W. B. Wu, ‘‘Time series analysis for jamming
attack detection in wireless networks,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2017, pp. 1–7.

[17] W. Yang, J. Yuan, W. Wu, J. Ma, and D. Z. Du, ‘‘Maximizing activity
profit in social networks,’’ IEEE Trans. Comput. Social Syst., vol. 6, no. 1,
pp. 117–126, Jan. 2019.

[18] Y. Shi, Z. Zhang, Y. Mo, and D.-Z. Du, ‘‘Approximation algorithm for
minimum weight fault-tolerant virtual backbone in unit disk graphs,’’
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 925–933, Sep. 2017.

[19] C. Y. Jia, ‘‘Association rule mining: A survey,’’Comput. Sci., vol. 30, no. 4,
pp. 147–151, 2003.

[20] S. Ziauddin, K. Kammal, and M. I. Z. Khan, ‘‘Research on association rule
mining,’’ J. Acoust. Soc. Amer., vol. 117, no. 4, p. 2392, 2012.

[21] J. Kaur and N. Madan, ‘‘Association rule mining: A survey,’’ Int. J. Hybrid
Inf. Technol., vol. 8, no. 7, pp. 239–242, 2015.

[22] D. W. Cheung, C. Y. Wong, J. Han, and V. T. Ng, ‘‘Maintenance of
discovered association rules in large databases: An incremental updating
technique,’’ in Proc. 12th Int. Conf. Data Eng., Feb. 1996, pp. 106–114.

[23] S. Bhanderi, S. Shah, and N. C. Chauhan, ‘‘Incremental mining of asso-
ciation rules: A survey,’’ Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 3,
pp. 4071–4074, 2013.

[24] B. Nath, D. K. Bhattacharyya, andA. Ghosh, ‘‘Incremental association rule
mining: A survey,’’ Wires Data Mining Knowl. Discovery, vol. 3, no. 3,
pp. 157–169, 2013.

[25] B. Z. Zhang, K. Q. Jiang, and Y. Z. Zhang, ‘‘Survey on incremental
association rule mining research,’’ J. Chin. Comput. Syst., vol. 37, no. 1,
pp. 18–23, 2016.

[26] W. Cheung and O. R. Zaiane, ‘‘Incremental mining of frequent patterns
without candidate generation or support constraint,’’ in Proc. 7th Int.
Database Eng. Appl. Symp., 2003, pp. 111–116.

[27] C. K.-S. Leung, Q. I. Khan, and T. Hoque, ‘‘CanTree: A tree structure for
efficient incremental mining of frequent patterns,’’ in Proc. 5th IEEE Int.
Conf. Data Mining, Nov. 2005, pp. 274–281.

[28] J. Han, J. Pei, and Y. Yin, ‘‘Mining frequent patterns without candidate
generation,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2000,
pp. 1–12.

[29] W. L. Cheung, S. D. Lee, and B. Kao, ‘‘A general incremental technique
for maintaining discovered association rules,’’ in Proc. Int. Conf. Database
Syst. Adv. Appl., 1997, pp. 185–194.

[30] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, ‘‘Algorithms for association
rule mining—A general survey and comparison,’’ SIGKDD Explor., vol. 2,
no. 1, pp. 58–64, 2000.

[31] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules,’’
in Proc. 20th Int. Conf. Very Large Data Bases, 1998, pp. 487–499.

[32] Y. Yuan and T. Huang, ‘‘A matrix algorithm for mining associa-
tion rules,’’ in Advances in Intelligent Computing, vol. 3644. Berlin,
Germany: Springer, 2005, pp. 370–379.

[33] N. Khare, N. Adlakha, and K. R. Pardasani, ‘‘An algorithm for mining
multidimensional association rules using Boolean matrix,’’ in Proc. Int.
Conf. Recent Trends Inf., Telecommun. Comput., Mar. 2010, pp. 95–99.

[34] X. W. Luo and W. Wang, ‘‘Improved algorithms research for association
rule based on matrix,’’ in Proc. Int. Conf. Intell. Comput. Cogn. Inform.,
Jun. 2010, pp. 415–419.

[35] H. Liu and B. Wang, ‘‘An association rule mining algorithm based on a
Boolean matrix,’’ Data Sci. J., vol. 6, pp. 559–565, Sep. 2007.

[36] Y. Zhong and D. Liu, ‘‘An efficient association mining method via matrix
compression,’’ in Proc. Int. Symp. Comput. Intell. Design, Dec. 2017,
pp. 188–192.

[37] T. Li and D. Luo, ‘‘A new improved apriori algorithm based on compres-
sion matrix,’’ in Proc. Int. Conf. Adv. Data Mining Appl., vol. 8933. Berlin,
Germany: Springer-Verlag, 2014, pp. 1–15.

[38] S. Shu, ‘‘A new association rule mining algorithm based on compres-
sion matrix,’’ in Computer Engineering and Networking (Lecture Notes
in Electrical Engineering), vol. 277. Shanghai, China: Springer, 2014,
pp. 281–289, doi: 10.1007/978-3-319-01766-2_33.

[39] X. Zhan, F. F.-H. Nah, and M. X. Cheng, ‘‘An assessment of users’ cyber
security risk tolerance in reward-based exchange,’’ in Proc. Int. Conf. HCI
Bus., Government, Org. Cham, Switzerland: Springer, 2018, pp. 431–441.

[40] J. Zhou, Z. Zhang, S. Tang, X. Huang, and D.-Z. Du, ‘‘Breaking theO(ln n)
barrier: An enhanced approximation algorithm for fault-tolerant minimum
weight connected dominating set,’’ INFORMS J. Comput., vol. 30, no. 2,
pp. 225–235, 2018, doi: 10.1287/ijoc.2017.0775.

[41] A. Goli, E. B. Tirkolaee, B. Malmir, G.-B. Bian, and A. K. Sangaiah,
‘‘A multi-objective invasive weed optimization algorithm for robust
aggregate production planning under uncertain seasonal demand,’’ Com-
puting, vol. 101, no. 6, pp. 499–529, Jun. 2019. [Online]. Available:
https://doi.org/10.1007/s00607-018-00692-2

[42] C. Zhang and S. Zhang, Association Rule Mining: Models and Algorithms.
Berlin, Germany: Springer-Verlag, 2002.

DONGDAI ZHOU received the B.Eng. and M.Sc.
degrees from the ChangchunUniversity of Science
and Technology, China, in 1992 and 1997, respec-
tively, and the Ph.D. degree from Jilin University,
China, in 2001. He is currently a Professor with the
School of Information Science and Technology,
Northeast Normal University, China. His research
interests include software architecture and soft-
ware code auto-generation, education data mining,
and deep learning.

173052 VOLUME 7, 2019

http://dx.doi.org/10.1007/978-3-319-01766-2_33
http://dx.doi.org/10.1287/ijoc.2017.0775

D. Zhou et al.: Incremental Association Rule Mining Based on Matrix Compression for Edge Computing

MENG OUYANG received the B.E. degree from
the School of Software Engineering, Northeast
Normal University, China, in 2016, and the M.S.
degree from the School of Information Science and
Technology, Northeast Normal University, China,
in 2019. His research interests include big data and
data mining.

ZHEJUN KUANG received the B.E. degree in
computer science and information system from
Massey University, New Zealand, in 2008, and
the M.S. and Ph.D. degrees from the School of
Computer Science and Technology, Jilin Univer-
sity, China, in 2011 and 2014, respectively. He is
currently an Assistant Professor with the School
of Computer Science and Technology, Changchun
University, China. His research interests are in
cyber-physical systems, the Internet of Things, and
data mining.

ZHEN LI received the B.E. and M.S. degrees from
the School of Software Engineering, Northeast
Normal University, in 2012 and 2015, respectively,
where he is currently pursuing the Ph.D. degree
with the School of Information Science and Tech-
nology. His research interests include educational
data mining and learning analytics.

JIN PENG ZHOU is currently pursuing the
bachelor’s degree in engineering science program
machine intelligence option with the University
of Toronto. He is currently a Machine Learning
Researcher at Layer 6 AI, working on recom-
mender system. Before this, he has worked on
eye tracking on embedded devices at MIT and
text generation using deep reinforcement learning
at the Vector Institute. His research areas include
big data mining, recommender systems, and
computer vision.

XIAOCHUN CHENG (SM’04) received the
B.Eng. degree in computer software engineering
and the Ph.D. degree in computer science from
Jilin University, in 1992 and 1996, respectively. He
has been a Coordinator of the Computer Science
EU Project, Middlesex University, since 2012.
He is a member of the IEEE SMC Technical
Committee on Enterprise Information Systems,
the IEEE SMC Technical Committee on Com-
putational Intelligence, the IEEE SMC Technical

Committee on Cognitive Computing, the IEEE SMC Technical Committee
on Intelligent Internet Systems, the IEEE Communications Society Commu-
nications and Information Security Technical Committee, BCS Information
Security Specialist Group, BCS Cybercrime Forensics Specialist Group, and
BCS Artificial Intelligence Specialist Group.

VOLUME 7, 2019 173053

	INTRODUCTION
	RELATION WORK
	FORMALISATION OF THE CONCEPTS
	INCREMENTAL ASSOCIATION RULE MINING
	ASSOCIATION RULE MINING BASED ON A MATRIX
	FUP ALGORITHM

	FBCM ALGORITHM
	ALGORITHM DESCRIPTION
	EXPLANATION USING AN EXAMPLE

	EXPERIMENT AND RESULT ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	DONGDAI ZHOU
	MENG OUYANG
	ZHEJUN KUANG
	ZHEN LI
	JIN PENG ZHOU
	XIAOCHUN CHENG

