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Abstract—Division is considered as the slowest and most diffi-
cult operation among four basic operations in microprocessors.
This paper proposes a unique division algorithm using a new
approach of simulated annealing algorithm. A heuristic function
is proposed to determine the global and local optimum value,
whereas the conventional approaches use random values to reach
the target value. In addition, a new temperature schedule is
introduced for faster computation of global maxima/minima.
The proposed simulated annealing performs better than the
best known existing method of simulated annealing algorithm
for smooth energy landscape due to the introduction of a
new goal-based temperature. Thus, the proposed division al-
gorithm computes the current partial remainder and quotient
bits simultaneously per iteration which reduces the delay of the
proposed divider circuit significantly. Moreover, the proposed
divider circuit requires only two operations per iteration, whereas
the exiting best one requires three operations per iteration. The
proposed divider circuit is coded in VHDL and implemented in
a Virtex-6 platform targeting XC6VLX75T Xilinx FPGA with a
-3 speed grade by using ISE 13.1. The proposed divider circuit
achieves an improvement of 36.17% and 44.67% respectively in
terms of LUTs and delay factor for a 256 by 128 bit division over
the best known contemporary FPGA-based divider circuit. It can
be used into the designs of arithmetic logic unit, image processing
and robotics system. The experimental result indicates that the
divider takes fewer resources, and its performance is steady and
reliable.
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I. INTRODUCTION

Among the basic operations division being the slowest
operation on a modern microprocessor, is the prerequisite
for faster mathematical and computational operation in pro-
cessor [1]. In this paper, a divergent approach for division
algorithm is proposed using modified simulated annealing. As
simulated annealing guarantees a statistically optimal solution
for arbitrary problem, proposed algorithm provides solution in
optimum time.

The advancement in Field Programmable Gate Array
(FPGA) technology has emerged a new horizon of technical
progress due to its long time availability, rapid prototyping
capability, reliability and hardware parallelism [2] [12]. FPGA-
based technology being a part of today’s advancement, an
FPGA-based divider circuit is proposed with reduced number
of Look-Up Tables (LUTs) and slices.

Three main contributions are addressed in this paper:
1) A new approach of simulated annealing algorithm has

been introduced which can be substantiated in any
scientific and arithmetic computation.

2) A new division algorithm using the proposed simulated
annealing technique has been presented with less num-
ber of iterations as well as number of operations per
iterations than the best known exiting approaches.

3) Finally, an FPGA-Based Divider Circuit has been elu-
cidated requiring optimum number of LUTs, Slices and
delay.

The organization of this paper is as follows: In the next
section, basic definitions and properties of simulated annealing
and the earlier approaches of FPGA-based dividers along
with their limitations are described. Section III introduces the
proposed division algorithm along with the divider circuit.
In Section IV, analyses of the performance of the proposed
algorithm and circuits are demonstrated. Lastly, the paper is
concluded in Section V.

II. PRELIMINARIES AND PRIOR WORKS

This section outlines the properties and shortcomings of
the simulated annealing algorithm. Besides, analysis of the
existing FPGA-based dividers are also discussed later.

A. Simulated Annealing

Simulated Annealing (SA) is a technique to find a good
solution to an optimization problem by trying random varia-
tions of the current solution [3] [4]. Let us consider a positive
real-valued temperature T which is used to control how
many worsening steps are accepted. Suppose A is the current
assignment of a value to each variable. Suppose that h(A) is
the evaluation of assignment A to be minimized. For solving
constraints, h is typically the number of conflicts. Simulated
annealing selects a neighbor at random, which gives a new
assignment A′. If h(A′) ≤ h(A), it accepts the assignment and
A′ becomes the new assignment. Otherwise, the assignment is
only accepted randomly with probability following Equation
1:

e(h(A)−h(A′))/T (1)
Thus, if h(A′) is close to h(A), the assignment is more

likely to be accepted. If the temperature is high, the exponent



TABLE I: Probability of simulated annealing accepting wors-
ening steps

Temperature Probability of acceptance
1-worse 2-worse 3-worse

10 0.9 0.82 0.74
1 0.37 0.14 0.05

0.25 0.018 0.0003 0.000006
0.1 0.00005 2× 10−9 9× 10−14

will be close to zero, and so the probability will be close to 1.
As the temperature approaches zero, the exponent approaches
infinity, and the probability approaches zero.

Fig. 1 shows the probability of accepting worsening steps
at different temperatures. In this figure, k-worse means that
h(A′) − h(A)=k. If the temperature is high, as in the T=10,
the algorithm tends to accept steps that only worsen a small
amount; it does not tend to accept very large worsening
steps. There is a slight preference for improving steps. As
the temperature is reduced (e.g., when T=1), worsening steps,
although still possible, become much less likely. When the
temperature is low (e.g., T=0.1), it is very rare that it chooses
a worsening step as shown in Table I.

B. Shortcomings of Existing Simulated Annealing [3] [4]

The disadvantages of existing simulated annealing is listed
below:
• Heuristic methods, which are problem-specific or take

advantage of extra information about the system, will
often be better than general methods.

• The method itself cannot determine whether it has found
an optimal solution. Some other method (e.g. branch and
bound) is required to do this.

• Repeatedly annealing with a 1/ log k schedule is very
slow, especially if the cost function is expensive to
compute.

• For problems where the energy landscape is smooth, or
there are few local minima/maxima, SA is overkill and
consumes more computation time.

To solve the noted existing problems of simulated annealing
algorithm, modification of the algorithm is proposed in Section
III-A.

C. Analysis of Existing FPGA-based Divider Circuits

Division algorithms can be categorized into two parts: 1)
Digit recurrence and 2) Digit convergence. Digit recurrence
algorithms are considered suitable than digit convergence
method for hardware implementation [1]. Researchers also
showed that non restoring algorithms are simpler and takes
small area than restoring and Sweeny, Robertson, Tocher
(SRT) method [1]. Authors in [1] proposed a modified non
restoring algorithm by reducing one unit delay of the n-bit
multiplexer per iteration, where n=number of bits in dividend
and removes the error of quotient bits in conventional non
restoring algorithm. Their proposed design reduced the delay
by 21% but area had been increased by 70% which is a
major drawback. However, the most recent improvement over
the non-restoring division algorithm has been demonstrated
in [5]. Their proposed modified and improved non-restoring

algorithm reduced the number of bits in shift operation during
non restoring operations. The upper half of the dividend is
shifted instead of whole dividend. The least significant bit
of the shifted number is set to the value in lower half of
the dividend depending on the iteration. Though the number
of shifted operations are reduced to half, it requires three
operations of addition, subtraction and multiplexing and suffer
a significant amount of delay. A new division approach based
on Vedic mathematics has been proposed for ultra-high-speed
by the authors in [10]. Their proposed approach was applied
in (32 ÷ 16) division and it was found that it involves
minimum memory space of the processor as compared with
the conventional [6] [7] [11] methods. Authors in paper [9]
and [8] had introduced the power model for the FPGA-based
dividers. Their performance showed a significant improvement
in terms of estimated power consumption over the Xillinx Core
Divider 3.0. However, their design require a significant amount
of delay, hardware complexities and more operations in trade
of low power consumption.

III. PROPOSED METHOD

In this section, firstly, a new approach of simulated an-
nealing is presented. Then, the advantages of the proposed
simulated annealing algorithm is described. The proposed al-
gorithm for simulated annealing is presented later on. Finally,
a division algorithm using the proposed simulated annealing
along with the FPGA-based divider circuit are presented.

A. A New Approach of Simulated Annealing

In this paper, a new approach of simulated annealing is
used for division operation. The distinguishes between the
conventional simulated annealing [3] [4] and the proposed
simulated annealing are as follows:
• The proposed method of simulated annealing models the

physical process of heating a material and then slowly
lowering the temperature to decrease the defects by filling
the remaining pits.

• The goal is to reach a target firstly by choosing a global
optimal value and with the reduction of temperature, the
local optimal values are chosen to fill the gap between
the target and the current value.

• The temperature schedule might be non-increasing while
in conventional approach, it is always decreasing.

• A heuristic function is used to find the global and lo-
cal optimal, whereas the conventional approach chooses
random value.

The details of the proposed simulated annealing is exhibited
in Section III-C.

B. Advantages of the Proposed Simulated Annealing

The advantages of the new approach of simulated annealing
over the existing [3] [4] are specified below with correspond-
ing reasoning.
• Heuristic methods, which are problem-specific or take ad-

vantage of extra information about the system, will often
be better than general methods [3]. So in new simulated



(a) At Temperature 1.5 (b) At Temperature 1.00 (c) At Temperature 0.20

Fig. 1: The Probabilistic Acceptance of Optimal of Simulated Annealing at Different Temperatures.

annealing, a heuristic function is incorporated where the
global and local optimal values will be determined by
using the problem specific heuristic function.

• The method can guarantee to reach the optimal solution
as the choices of global optimal values are selected at the
first step and then, to fill the defected emptiness the local
optimal values are chosen to fill the target.

• Temperature being unaware of the problem knowledge
is tough to determine in simulated annealing on which
the efficiency of the algorithm depends, whereas in the
proposed modified simulated annealing, temperature is
problem goal-specific. As in simulated annealing, it may
be the case that, in spite of the optimal values are found
(since the temperature is not diminished), it keeps moving
back and forth unnecessarily or may be, though the
optimal result is not found yet (since the temperature
is cooled to zero), the simulation is to be terminated
without finding the optimal result. So, the problem goal-
based temperature would solve the noted two deficits of
simulated annealing.

• For problems where the energy landscape is smooth, or
there are few local minima/maxima, proposed simulated
annealing will provide faster results as there will be few
defects to fill with local minima/maxima.

C. Proposed Algorithm for the New Approach of Simulated
Annealing

The distinguishes of the proposed simulated annealing with
conventional simulated annealing is noted in Section III-A.
The following pseudocode of Algorithm 1 presents the pro-
posed simulated annealing. It starts from a state s with a
goal, G where s is obtained using a heuristic function to
find global optimal value, heuGlobalOpt(). The algorithm
continues until a state with an energy of emin or less is
found. In the process, the call heuLocalOpt() will generate
a local maximal number using a heuristic function to fill the
distance from the goal, G. The probability of acceptance is
1 if current condition satisfies the requirement else it is zero.

ALGORITHM 1: Proposed Algorithm for Simulated Annealing

Input: goal, G;
Output: The final state s;
s← heuGlobalOpt();
repeat

T ← temperature(r);
snew ← heuLocalOpt(G, s);
if P (E(s), E(snew), G, T ) > 0 then

Accept the new state:
s+ = snew;

end
until T > emin;

The annealing schedule is defined by the call temperature(r),
which would yield the temperature to use, given the fraction
r of the distance to goal traversed so far. To apply this
algorithm the following parameters are to be defined: the
state, the energy (goal) function E(), the candidate generator
heuristic function of finding global and local optimal values,
the acceptance probability function P (), and the annealing
schedule temperature() and initial temperature init temp.
The following section performs division operation using this
algorithm.

D. Proposed Division Algorithm Using New Approach of
Simulated Annealing

Suppose, X is the m bit divisor and Y is the n bit dividend.
The targeted quotient is Q and remainder is R. To perform
the modified simulated annealing firstly a heuristic function is
required to find the global and local optimal values. In division
operation, the global optimal value is considered as possible
safe nearer value of Y and local optimal values depicts the
possible nearer value of updated Y , depicted as Y ′ value.
Hence, a single heuristic function can be used for both global
and local optimal value.
If a heuristic function is based on A = n−m, then multiplying
n−m bits with m bits will create a maximum value of n bits
that is n − m + m = n bits. The maximum binary value
of n −m bits is a sequence of n −m number of 1 such as
111213...1n−m−11n−m. After multiplying the maximum value



of n−m bits with X may create a large number greater than
Y which may produce a negative value after subtraction. To
avoid that complication this paper considers a possible optimal
value of n−m− 1 number of zeros following only a one at
the MSB (Most Significant Bit) such as 100102...0n−m.
Considering Y > X , initially the minimum value of A can
be zero that means the quotient would be 1 and remainder
would be Y −X . Otherwise, the proposed algorithm considers
a new value optimal value B which is as earlier mentioned
is 100102...0n−m. Now, considering emin as 1 initially, a
loop is considered with terminating condition variable T as
temperature, where temperature is calculated on condition
when updated Y (Y ′) is less than or equal to X , that is the
remainder is less than the divisor. At that point, remainder and
accumulated quotient Q is provided as output.
As a probabilistic condition of a step being accepted is whether
B is less than Y ′ or not. Then, divisor, X is subtracted from
(m + 1) number of MSB (Most Significant Bit) bits of Y ,
stored in diff variable, which is a noticeable improvement
as previously in other division mechanisms n-bit subtraction
was required at each step whereas, in proposed algorithm the
subtraction of (m + 1) bits is sufficient reducing the math-
ematical complexity and delay as subtraction is a sequential
procedure. Y ′ is then updated by appending (m+2)th to 0th

LSB bits of Y after diff making Y ′ = diff ||(m + 2)th to
0th bits of Y . The value of n is updated with the length of
updated Y ′. This step is accepted with probability 1 and the
value of the resultant quotient is updated by adding B to the
current value of Q. This process continues until temperature
T is less than emin. Finally, the remainder R is updated
with the value of Y ′ and the quotient and remainder is given
as output. The proposed algorithm has been illustrated in
Algorithm 2 and a flowchart of the proposed division approach
has been shown in Fig. 2. Moreover, an illustrated example is
demonstrated in Fig. 3 which accomplishes the division of a
binary number (101110)2 (dividend) by (10111)2 (divisor) in
2 iterations (8 steps), whereas the existing [1] non-restoring
division algorithm requires 7 iterations (20 steps) and paper
[5] requires 5 iterations (17 steps) for the same dividend
and divisor. Moreover, the proposed division method does not
require any multiplexing for selection of quotient bit due to
the application of the proposed simulated annealing algorithm
which subsequently reduces the number of operations, requir-
ing only two operations (addition and subtraction), whereas
three operations (addition, subtraction and multiplexing) are
required to perform the division operation in [1] and [5].
The proposed divider circuit has been exhibited in Fig. 4.
Subtractor S1 computes the number of bit differences between
divisor and dividend, whereas S2 finds the updated Y ‘ by
subtracting X from first (m + 1)th-bit of Y . Register A, B,
R and Q stores the dividend Y , number of bit differences
between divisor and dividend, partial remainder or updated
Y ′ and final quotient, respectively. It is noted from the
architecture that the quotient bits and partial remainders are
generating simultaneously. The path constitutes of subtractor
S1, subtractor S2, Register Q and Register R (shown as red

Fig. 2: Flowchart of the Proposed Division Algorithm.

Fig. 3: Example Simulation of Proposed Division Algorithm.

path in Fig. 4) produces the partial remainder. On the other
hand, subtractor S1, Register B, Adder and Register Q forms
the path for calculating the quotient bits (marked as blue path
in Fig. 4).

Lemma 1 presents the proof for the required number of
iterations by the proposed division approach.
Lemma 1: The proposed division algorithm requires at most
(n−m+ 1) number of iterations, where n is number of bits
in dividend, m is number of bits in divisor and n ≥ m. �
Proof: The above statement is proved by the mathematical
induction.
Basis: The basis case holds for the number of bits in divisor
and dividend are equal that is n = m and (m−m+1) = 1.
Hypothesis: Assume that the statement holds for n = k. So,



ALGORITHM 2: Proposed Algorithm for Division Operation Using
Proposed Simulated Annealing

Input: m-bit divisor X and n-bit dividend Y ;
Output: The quotient Q and Remainder R;
Y ′ = Y ;
emin = 1;
Q = 0;
T = 0;
Q← heuOpt();
repeat

T ← temperature();
Q← heuOpt();
if Prob() > 0 then

Accept the new state:
Q+ = B;

end
until T > emin;
heuOpt()
A = n−m; if A=0 then

Q+=1;
R=Y ′ −X;

else
B = 1 || (A− 1) number of 0’s at LSB of B;

end
return Q;
temperature()
if Y ′ ≤ X then

T=1;
R← Y ′;

else
T=0;

end
return T ;
prob()
if B < Y ′ then

diff=(m+ 1)th MSB of Y ′ −X;
Y ′ = diff || (m+ 2)th to n bits of Y ′;
n=length of Y ′;
p=1;

else
p=0;

end
return p;

a k-bit dividend requires (k −m+ 1) number of iterations.
Induction: Now, considering n = k+1, a (k+1)-bit dividend
requires (k+1−m+1) = (k−m+2) number of operations.
Now, reduce the number of bit in dividend by one to produce
n = k. Then, a k-bit dividend requires (k − m + 2 − 1) =
(k−m+1) number of iterations which holds the hypothesis.
So, the statement holds for n = k + 1 �

Example 1: For n = 6 and m = 5, the proposed algorithm
performs the division operation in (6-5+1) = 2 iterations which
has been also illustrated in Fig. 3.

IV. SIMULATION RESULTS & PERFORMANCE ANALYSIS

The proposed divider circuit is coded in VHDL and im-
plemented in a Virtex-6 platform targeting XC6VLX75T Xil-
inx FPGA with a -3 speed grade by using ISE 13.1. The
results are shown in Table II in terms of LUT, slices and
delay. The proposed algorithm outperforms the best known
existing [7] approach in terms of delay by an improvement
of 40% for 16-bit by 16-bit, 41.2% for 32-bit by 32-bit,

Fig. 4: Architecture of the Proposed Divider Circuit.

41.55% for 64-bit by 32-bit and 44.67% for 256-bit by 128-bit
division, respectively. Moreover, the proposed design achieves
an enhancement of 31.8% for 16-bit by 16-bit, 32.9% for 32-
bit by 32-bit, 34.85% for 64-bit by 32-bit and 36.17% for
256-bit by 128-bit, respectively in terms of number of LUTs
used for division operation. Fig. 5 and Fig. 6 demonstrate
the efficiency of the proposed division algorithm using the
new approach of simulated annealing for the calculation as
well as the generation of partial remainders and the number
of iterations required to obtain the final quotients, respectively.
The proposed algorithm requires only 3 iterations producing
the partial remainders with the value of (10001)2, (101)2
and (10)2, respectively for dividend (11101)2 and divisor
(11)2, whereas the best known existing [10] method requires
5 iterations producing the partial remainders with the value
of (11100)2, (1011)2, (111)2, (101)2 and (10)2, respectively
for the same set of divisor and dividend as shown in Fig. 5.
In addition, the proposed approach requires 50% less number
of iterations over the best known existing approach [7] as
depicted in Fig. 6. Table III refers to the comparison with
respect to logic gates used in division operation along with
the average improvements. It is shown that the improvements
are increasing for higher bit division which is a clear indica-
tion of the prominent performance of the proposed division
algorithm. The CPU execution time has been calculated in
a dual core CPU, 4 GHz clock cycle, 4 Gigabytes of RAM
and 64-bit operating system as illustrated in Fig. 7 which
reflects the superiority of the proposed division algorithm
over the contemporary approaches. The main reason behind
the enhancement of the proposed division algorithm is the
using of new simulated annealing technique. Firstly, it uses
a heuristic function to compute the number of bit-differences
between the dividend and divisor. Secondly, the proposed
method defines the number of quotient bits (global optimal).
Thirdly, the temperature schedule is calculated which might
be non-increasing depending on how the local optimal fills
the defects to reach global optimal. Fourthly, less number of
partial remainders (local optimal) are generated on basis of
temperature schedule. Finally, during subtraction operation, X
is subtracted from the first (m + 1)th-bit of Y , where X is
the divisor, Y is the dividend and m is the number of bits
in dividend. Thus, the proposed method of division algorithm
optimizes the required number of LUTs, slices, delay, logic



TABLE II: Analysis Between Existing and Proposed FPGA-
based Dividers in Terms of LUTs, Slices and Delay

Divider 16-bit by 16-bit
Method Existing[6] Existing[7] Existing[11] Proposed

LUT 1060 712 320 218
Slice 620 417 191 133

Delay(ns) 48.7 28.4 31 17.04
Method 32-bit by 32-bit

LUT 4172 2704 1152 773
Slice 2275 1713 687 464

Delay(ns) 102.5 74.6 85 43.8
Method 64-bit by 32-bit

LUT 665 591 482 314
Slice 503 371 291 197

Delay(ns) 274.4 204.8 243.2 119.7
Method 256-bit by 128-bit

LUT 2247 1473 1435 916
Slice 1952 1045 1016 652

Delay(ns) 2066.8 1715.2 1894 949.02

Fig. 5: Graphical Representation of Generation of Partial
Remainders.

gates and number of iterations.

V. CONCLUDING REMARKS

This paper presents a novel divider circuit using a new ap-
proach of simulated annealing, an algorithm which overcomes
the deficits of existing simulated annealing [3] [4] algorithm
providing guaranteed optimal solution with intelligent temper-

Fig. 6: Graphical Analysis of Number of Iterations.

TABLE III: Complexity Analysis Among the Proposed &
Existing Methods in Terms of Number of Logic Gates

Method 8-bit 16-bit 32-bit 64-bit 128-bit
Existing[8] 90 177 348 680 1351
Existing[9] 76 130 267 520 1102
Proposed 45 78 157 306 628

Avg.
Improvement 45.39% 47.96% 48.04% 48.07% 48.26%

Fig. 7: CPU Time Requirement for Division Operation.

ature parameter using the problem specific heuristic functions
to find optimal values. The proposed division algorithm out-
performs the existing algorithms [1], [5] and [10] in terms
of number of iterations required to obtain the final quotient
and generation of partial remainders. Moreover, the proposed
FPGA-based divider circuit shows better performances over
the existing approaches [6], [7] and [11]. These improvements
in FPGA-based divider circuit will consequently influence the
advancement in many FPGA-based applications like cryp-
tography, image processing, scientific computations, signal
processing and many more [2].
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