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Abstract
There is fast-growing literature on provenance-related research, covering aspects such as its theoretical framework, use cases,
and techniques for capturing, visualizing, and analyzing provenance data. As a result, there is an increasing need to identify
and taxonomize the existing scholarship. Such an organization of the research landscape will provide a complete picture of
the current state of inquiry and identify knowledge gaps or possible avenues for further investigation. In this STAR, we aim to
produce a comprehensive survey of work in the data visualization and visual analytics field that focus on the analysis of user
interaction and provenance data. We structure our survey around three primary questions: (1) WHY analyze provenance data,
(2) WHAT provenance data to encode and how to encode it, and (3) HOW to analyze provenance data. A concluding discussion
provides evidence-based guidelines and highlights concrete opportunities for future development in this emerging area. The
survey and papers discussed can be explored online interactively at https://provenance-survey.caleydo.org.

1. Introduction

The definition of provenance is “The place of origin or earliest
known history of something” [oxf89]. The term is often used in
the context of “the history of ownership of a valued object or work
of art or literature” [mer19]. The notion of provenance has been
adopted and extended in the field of Computer Science and applied
to concepts such as data, computation, user interaction, and rea-
soning. In this context, provenance is no longer limited to origin or
history, but also includes the process and other contextual informa-
tion. Provenance is a growing topic in the visualization and visual
analytics subfields, and includes the development of systems to vi-
sualize provenance data, analyzing such data to understand user be-
havior, and personalizing systems in response to user interactions.

One of the key goals of visualization and visual analytics is to
support data analysis and sensemaking – “how we structure the un-
known so as to be able to act in it” [Anc12]. In the context of data
analysis, sensemaking involves understanding the data, generating
hypotheses, selecting analysis methods, creating novel solutions,
and critical thinking and learning wherever needed. Due to its ex-
ploratory and creative nature, the research and development of vi-
sualization approaches and techniques to support sensemaking lags
behind the quickly-growing user needs. As a result, sensemaking is
often performed manually, and the limitations of human cognition
can become a bottleneck [LS10].

Provenance supports a variety of sensemaking tasks, such as re-
call of the analysis process by visualizing the provenance informa-
tion, including the sequence of the investigations performed with
contextual information (such as parameters and motivation). Prove-
nance consists of the results of each analysis stage (including the
final results) as well as the process that leads from data to conclu-
sion. Such information can also be used to communicate analysis

outcomes. Examples include providing an overview of what has
been examined, revealing gaps such as unexplored data or solution
possibilities, and supporting collaborative sensemaking and com-
munication by sharing the rich context of the analysis process.

The literature on provenance analysis research is growing
rapidly, covering aspects such as its conceptual framework, use
cases and user requirements, and techniques that are designed to
capture, visualize, and analyze provenance data. As a result, there
is an increasing need to better organize the provenance-related re-
search landscape, categorizing and connecting current work, and
identifying knowledge gaps. In this state-of-the-art report, we struc-
ture our survey of provenance-related research around three pri-
mary questions: WHY analyze provenance data, WHAT provenance
data to encode and ways to encode it, and HOW to analyze prove-
nance data. Those three aspects can be embedded along the overall
process of analytical provenance outlined in Figure 1.

Through our survey, we identified a broad variety of purposes
that underlie the analysis of provenance data, ranging from user-
centric goals such as storytelling and modeling to system-centric
goals like creating adaptive systems and evaluating algorithms. To
perform such analysis, we note four overarching methods for en-
coding provenance data: sequences, grammars, models, and graphs.
Given such data, researchers then analyze user provenance through
a variety of classification and probabilistic models, pattern analy-
sis, and program synthesis. We note that fuzzy boundaries exist in
our categorization schema, as these methods of provenance analy-
sis often overlap and blur.

Following our survey of provenance-related research, we discuss
opportunities for future research in provenance analysis, including
both fundamental problems and long-standing challenges. These
include active areas of research such as inferring high-level prove-
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Figure 1: A summary of the flow and structure of provenance-related research activities. We organize the survey around three primary
questions: WHY analyze provenance data, WHAT provenance data to encode and how to encode it, and HOW to analyze provenance data.

nance from low-level data, identifying groups within interaction
sequences, and the use of provenance data to create truly adaptive
systems. We discuss the need within the community for provenance
standards, cross-tool integration, and reproducibility.

2. Related Work

In Computer Science, provenance has been studied in many fields,
often under different names. The Human-Computer Interaction
community relies on the analysis of protocols to understand user
behaviors and intentions [DFAB03, PSR15]. Such protocols in-
clude audio/video recording, computer logging, and user note-
books. Their analysis goals are similar to those of provenance. The
Database, Semantic Web, and e-Science communities have been
studying provenance for almost two decades [BTC19]. Data lin-
eage [BF05] and data provenance [LPG05] are used interchange-
ably in the discussion of provenance-related work [HDBL17] tar-
geting issues such as process debugging, data quality, and account-
ability. This is closely related to work in the reproducible science
community that aims to make complex scientific experiments re-
usable [FKSS08, ODOB18] and repeatable [CF17, IT18].

There is active ongoing research within the visualization com-
munity from both the scientific visualization [SFC07] and in-
formation visualization/visual analytics perspectives [NCE∗11,
XAJK∗15, RESC15]. Many of the existing works focus on captur-
ing [NXW∗16] and visualizing [WSD∗13,SLSG16,LAN19] prove-
nance. There are few surveys or overviews on visualization-related
provenance work. Xu et al. [XAJK∗15] discussed the common
techniques and open questions during the process of provenance
analysis, namely modeling, capture, visualization, and its applica-
tion in collaboration and trust. The work by Ragan et al. [RESC15]
categorizes existing work based on the types of provenance infor-
mation (data, visualization, interaction, insight, and rationale) and
the purposes of the provenance (recall, replication, action recovery,
collaborative communication, presentation, and meta-analysis). At
a recent Dagstuhl workshop [FJKTX19b], leading researchers from
the various provenance-related disciplines discussed the open chal-
lenges and outlined directions for possible solutions.

3. Definition and Scope

In this survey we focus on the analysis of user interactions and
provenance data, whose main purpose is similar to the “meta-
analysis” as defined by Ragan et al. [RESC15]. However, instead
of a comprehensive review on all aspects of analytic provenance
and the visualization of user histories, this survey focuses on the
analysis of interaction and provenance in the field of visualization.
As such, we only include existing work that incorporates meta-
analysis based on user-generated (interaction) provenance data with
the high-level goal of improving, enhancing, or understanding a vi-
sual analysis system, visualization process, or visual artifact.

To be included in this survey, we require the provenance data
to constitute a cohort of recorded information from multiple users,
a series of information from the same user, or both. As a result,
a paper is not included if it only involves the analysis of a single
piece of information provided by a user during an interactive visual
analysis session. The same is true for non-trivial machine learning
approaches, such as active learning methods. Here, the criteria is
not the level of sophistication of the machine learning approach,
but the amount and complexity of user input required. For exam-
ple, it is not included if a sophisticated active learning technique
only requires simple yes/no decisions from a user and requires no
meta-analysis of the interaction data. We exclude user studies that
collect user-generated data and work on collaborative sensemak-
ing, if there is no additional analysis of the provenance information
performed beyond recording and sharing.

4. Survey Methodology

Before diving into the review of provenance analytics, we describe
our methodology for collecting the research papers that are in-
cluded in this survey. For our literature review, we followed a three-
stage systematic process as applied by Beck et al. [BBDW14]. We
used tagging as a main instrument, starting with a list of freely as-
signed reasonable tags that are then iteratively merged, extended,
and grouped to categories while working through the literature. As
a result, we developed a typology for areas of application (WHY),
encoding techniques (WHAT), and analysis methodologies (HOW)
of provenance data. Even though we are aware that, for instance, the
database provenance community already makes use of a three W
terminology, namely WHY, WHAT, and WHERE, their application
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2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

CG&A 3 1 - - - 1 2 - - - 3
CHI - - 1 2 - - 2 - - - 4

EuroVis - - - - 1 - 2 2 1 3 5
IUI 1 - - - 1 1 - 1 3 2 3

TIIS - - - - 2 - 1 1 1
TIST - 1 - - - - - - - - -

TVCG - - 1 2 3 1 1 1 - 2 1
UIST - - - - - 1 1 1 1 - 1

VIS 5 1 - 3 4 3 3 7 3 6 2

Sum ∑ 9 3 2 7 9 9 11 13 9 14 19

Figure 2: Number of candidate papers for the four journals and
five conferences/symposium we screened from 2009-2019.

is not the same [CCT07]. Thus, we particularly want to highlight
that our state-of-the-art review puts emphasis on the meta-analyses
of provenance data.

4.1. Corpus

To form the corpus of papers we discuss in this survey, we started
by collecting work that we were aware of from our previous re-
search and that were discussed in provenance-related survey papers
as well as the report from the recent Dagstuhl workshop on ’Prove-
nance and Logging for Sense Making’ [FJKTX19a] (https:
//www.dagstuhl.de/18462). We continued with a system-
atic approach by manually scanning all issues from four journals
and all proceedings from five conferences/symposia over the last
eleven years (2009-2019):

• Journals

– IEEE Computer Graphics and Applications (CG&A)
– ACM Transactions on Interactive Intelligent Systems (TiiS)
– ACM Transactions on Intelligent Systems and Technology

(TIST)
– IEEE Transactions on Visualization and Computer Graphics

(TVCG)

• Conferences and Symposium

– ACM Conference on Human Factors in Computing Systems
(CHI)

– EuroVis
– ACM Conference on Intelligent User Interfaces (IUI)
– IEEE Visualization Conference (VIS)
– ACM Symposium on User Interface Software and Technol-

ogy (UIST)

Figure 2 shows the number of publications per year from these
journals and conferences that we included in this survey. The two
main visualization conferences, VIS and EuroVis, have the largest
number of relevant papers, which is not surprising. The IUI confer-
ence is a close third. Also, the total number of papers per year from
all the journals and conferences have been increasing steadily over

the ten years, and this topic is likely to receive even more attention
in the near future.

4.2. Coding Process

For the systematic approach by screening the papers from the last
eleven years, we continued with the tagging following the three
stage process inspired by Beck et al. [BBDW14]:

1. Explorative Tagging: Every author screened at least one con-
ference/journal. In the first round, we manually surveyed the ti-
tle, keywords (e.g., provenance analytics and model steering),
and the abstract, and used an open-coding approach to identify
potential papers that make use of provenance data. This manual
tagging allowed us to get an overview of relevant literature that
deals with provenance analytics with the high-level goal of im-
proving, enhancing, or understanding a visual analysis system.
In total, this process resulted in a collection of 266 papers. The
first coding round allowed us to review the entire body of work
and prepared us for the second round of categorizing the tags
into the three main sections: WHY to analyze, WHAT prove-
nance data to analyze, and HOW to analyze provenance data.

2. Category Tagging: The aim of the second round of coding was
to unify the categories and narrow down the scope. To achieve
this, we developed a closed set of keywords for the spectrum of
possible reasons (WHY) for doing meta-analysis on provenance
data as well as for the state of the art of user interaction analy-
sis (HOW). The process of categorizing the papers was reminis-
cent of a ‘peer-review’ because two of the authors independently
revised the paper collection and coded the papers respectively.
They analyzed only those papers from conferences/journals that
they were not initially assigned to. In the case of an ambigu-
ous and uncertain classification, all authors were in constant
exchange. During this stage, we also continuously refined our
scope and excluded papers accordingly.

3. Supplementary Tagging: In the last stage, we decided to fur-
ther split up the two main categories, WHY and HOW, into sub-
categories. Therefore, we came up with six subcategories for
WHY and five subcategories for the HOW. Some papers showed
multiple reasons for conducting meta-analysis, for which we
added more than one distinct subcategory to one paper. Simi-
larly, when multiple techniques were applied to analyze prove-
nance data, we accepted both categories. In the course of the
analysis, we came to the conclusion that exclusively tagging the
HOW section for provenance analytics is not sufficient, To ad-
dress this, we introduced an additional WHAT aspect that al-
lowed us to characterize the different encodings of provenance
data in more detail. Similar to the WHY and the HOW, the
WHAT shows double tags as well as no tags at all if no tags
were applicable. After going through all three phases, we ended
up with 105 papers, as summarized in Table 1.

The companion website, available at https://provenan
ce-survey.caleydo.org, provides an overview of the WHY,
WHAT, and HOW categories and allows users to filter and order the
full list of publications by the categories and sub-categories inter-
actively.
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Classification Models 14 4 11 4 5 19 57
Pattern Analysis 9 7 6 5 3 13 43
Probabilistic Models 17 1 11 3 4 20 56
Program Synthesis 3 1 7 2 3 5 21
Interactive Visual Analysis 6 3 7 4 7 10 37

Sum ∑ 49 16 42 18 22 67

Figure 3: The number of papers for each category in the HOW and
WHY.
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Classification Models 3 0 8 15 26
Pattern Analysis 3 5 4 11 23
Probabilistic Models 5 1 10 9 25
Program Synthesis 10 2 1 3 16
Interactive Visual Analysis 1 8 2 7 18

Sum ∑ 22 16 25 45

Figure 4: The number of papers in the HOW and WHAT category.

5. Structure of Survey

The structure of our survey is based on a high-level provenance
analysis model (Figure 1) that we created to describe the impor-
tant factors and their internal relationships in provenance analytics.
All of the included works are based on user-generated (interaction)
provenance data, wherefore we assume that the user interacts with
a system. Analysis goals (WHY) are the reasons for provenance
analysis and give rise to requirements such as what data to capture
and how the data is encoded (WHAT). The encoded provenance
data is then further evaluated by analysis techniques (HOW) such
as classification methods or probabilistic models. At the end of this
process, users gain either user-specific or system-specific knowl-
edge that can be used to improve or adapt any of the process model
components to enhance the overall provenance analysis iteratively.
Based on this model, our survey aims to addresses the three main
questions that will be faced by any researcher who chooses to con-
duct provenance analysis:

• WHY analyze provenance data?
• WHAT types of provenance data and ways to encode it?
• HOW to analyze provenance data?

Figure 3 and Figure 4 summarize the number of papers within
each sub-category under WHY, WHAT, and HOW. These will be
discussed in more details in the following sections. Section 6 pro-
vides an overview of the spectrum for possible purposes for con-
ducting meta-analyses and outline six essential drivers for prove-
nance analysis (WHY), followed by the encoding, representation,
and storing of provenance data (WHAT) in Section 7. Section 8
continues the discussions by categorizing current provenance anal-
ysis methods according to their various approaches (HOW). We
summarize our observations on goals, encoding methods, and anal-
ysis approaches in Section 9 and examine opportunities for further
research in Section 10.

6. Goals: WHY Analyze Provenance Data

The spectrum of possible reasons for conducting meta-analyses on
provenance data is broad. Our goal is to provide a comprehensive
overview of the existing body of literature that analyzes provenance
data for specific purposes. At a high-level, we can categorize the
goals of the existing work as:

Understanding the User
Evaluation of System and Algorithms
Adaptive Systems
Model Steering
Replication, Verification, and Re-Application
Report Generation and Storytelling

6.1. Understanding the User

The goal of visualization is to create visual represen-
tations to support the user’s reasoning and decision-
making with data. Consequently, one of the primary
reasons for analyzing provenance data is to understand
the user and their sensemaking process [PJ09]. The ultimate goal
of this category of research is to create theoretical and compu-
tational models that can describe the human analytical reasoning
process. Some of the earlier research in the area works to uncover
analysis patterns from interaction log data. For example, Dou et
al. [DJS∗09] demonstrated that it is possible to recover analysts’
findings and strategies from log data. More recent work uses com-
putational methods to uncover analysis patterns and workflows
(e.g., [FPH19], [MRB19], and [LWD∗17]). A promising set of
work has also started to learn individual user characteristics, such
as expertise, personality traits, and cognitive abilities from prove-
nance data [BOZ∗14, KWRK12, OYC15, SCC13]. Also in this cat-
egory is work on modeling attention [OGW19] and exploration bi-
ases [GSC16, LDH∗19, WBFE17] during analysis.

6.2. Evaluation of System and Algorithms

A few of the prior works have leveraged provenance
data to understand the visualization system itself and
to evaluate its usefulness [BKO∗17, GL12, SML∗09].
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Here, it is important to distinguish between conducting
statistical analysis on coarse user study metrics (e.g., speed, ac-
curacy, and preference) and the non-trivial analysis of provenance
data for the primary purpose of evaluating a visualization design
or system. For instance, Bylinskii et al. [BKO∗17] trained a neu-
ral network on mouse click data to create an automated model that
learns the relative importance of visual elements for a given design.
Smuc et al. captured the provenance to identify when users have in-
sights [SML∗09]. Gomez and Laidlaw modeled task performance
on crowd workers to evaluate system design and help guide en-
coding choices [GL12]. Blascheck et al. [BJK∗16] created a visual
analytics system for evaluating an interactive visualization system.
Among other techniques, they used pattern matching methods to
uncover similarities within the provenance data of multiple users.

6.3. Adaptive Systems

A better understanding of the system and the user’s an-
alytic process give rise to opportunities to create adap-
tive systems. Such approaches are prominent in the ex-
isting literature and seek to improve the usability and
performance of a visualization system, or the collaborative po-
tential of the visual analytics tool. The body of prior work in-
cludes a wide variety of systems that recommend visualizations
based on inferred tasks [GW09], provide guidance for a given in-
terface [CGM∗17,CGM19,CAS∗18,WSL∗19], or prefetch data to
improve system performance [BCS16, KN19]. For example, Gotz
and Wen [GW09] proposed behavior-driven visualization recom-
mendation that infers a user’s task in real-time and suggests an al-
ternative visualization that might support the task better. A sim-
ilar approach was adopted by Mutlu et al. [MVT16] by adapt-
ing visualization recommendations to the users’ preferences. Fan
et al. [FH18] trained a convolutional neural network on interac-
tion data to create a faster and more accurate scatter plot brush-
ing tool. By analyzing real-time interactions, Battle et al. [BCS16]
demonstrated that incorporating provenance data into the prefetch-
ing pipeline improved system latency by 430%. To explore event
sequence predictions, Guo et al. [GDM∗19] preserve and aggregate
records by their top prediction. In order to achieve a higher accep-
tance rate of the predictions, they showed multiple predictions and
let the user choose.

6.4. Model Steering

Modeling steering leverages provenance data to im-
prove the underlying data representations, machine
learning models, or projection calculations in the case
of high-dimensional datasets. Much of the work in this area uses
active and reinforcement learning methods to learn from real-
time interaction data and interactively improve the visualization.
One noteworthy approach to model steering is Semantic Interac-
tion, which defines the process of inferring model parameters as
users directly manipulate data visualization components [EFN12a,
EFN12b, ECNZ15]. For example, the IN-SPIRE system allows
the user to directly manipulate the spatial layout of text docu-
ments to express perceived document similarity. Similarly, with
Dis-Function [BLBC12] an analyst can update the parameters of

a distance function in a two-dimensional data projection by adjust-
ing the positions of visual points. A similar approach is used by
Hu et al. [HBM∗13] with a spatialization algorithm to preserve se-
mantics by allowing the user to move objects or highlight unmoved
ones. Other research has applied model steering to refine data sim-
ulations [RWF∗13a,SWR∗13] or to steer approximation models of
real-time streaming data [RWF∗13b].

6.5. Replication, Verification, and Re-Application

Another usage of provenance data is to verify, repli-
cate or re-apply analysis sessions. Here, we consider
the body of work that goes beyond action recovery such
as undo/redo. This category of research uses interaction
logs to perform real-time or post-hoc quantification to validate the
analysis results or to replicate the process when a similar problem
arises. For example, in VisTrails [CFS∗06] an analyst can create,
edit, and compare the results of provenance dataflows. The Har-
vest [SGL09] system tracks interactions with data elements and
recommends both notes and relevant views based on previous anal-
yses in a collaborative environment. It is also common to convert
the user interactions into executable scripts using a process called
program synthesis – generating a script or executable sets of oper-
ations. Wrangler [KPHH11], for example, creates data transforma-
tion scripts based on passive observations of the user interactions.
The scripts can then be re-applied to similar datasets. Knowledge-
Pearls [SGP∗19] allows users to rank and retrieve previous visual-
ization states by formulating a string-based query. The query oper-
ates on a provenance graph containing automatically recorded user
interactions and visualizations.

6.6. Report Generation and Storytelling

Finally, research has analyzed provenance data to au-
tomatically generate summary reports of an analysis
session. Since a user’s interaction history can be long
and varied, “chunking” [HMSA08] to reduce the com-
plexity of the history log, and “authoring” to generate reports and
stories to reflect the relevant of the analysis are two common
challenges. For example, Click2Annotate [CBY10] uses low-level
tasks results to create insight summaries with automated anno-
tations. Similarly, InsideInsights [MHK∗19] produces automated
data-driven reports that allow the analyst to edit and structure in-
sights into hierarchical views. Chart Constellations [XBL∗18] gen-
erates summary insights from observations in a collaborative sys-
tem. Lastly, CLUE [GLG∗16] supports a user to directly interact
with the history (provenance) graph to generate a story from the
user’s analysis history.

7. Encodings: WHAT Types of Provenance Data to Analyze

Now that we have considered the different reasons WHY re-
searchers analyze provenance data (see Section 6), the next chal-
lenge is to determine how the user’s interactions can be encoded,
represented, and stored. The choice of the encoding has a direct
impact on the downstream analysis of the provenance data as well
as the expected outcome. For example, recording the user’s inter-
actions as low-level keystroke or mouse movement events is apt for
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the goal of reproducibility, but isn’t adequate for higher level anal-
ysis for the purpose of real-time analysis recommendation or guid-
ance. Conversely, representing a user’s interactions as a sequence
of discrete events has been successful for the purpose of user mod-
eling. However, this encoding is not as flexible as a grammar-based
approach that allows for future modification and reuse of the anal-
ysis process.

From the perspective of analysis techniques (see Section 8), the
decision of how to encode the provenance data can also dictate the
types of analyses that can be applied. For example, string analy-
sis such as sequential pattern mining are best applied to sequence-
based encoding, whereas signal-based analysis such as the use of
Fourier and wavelet transform would assume that the data is repre-
sented as a continuous stream. Given the importance of encoding,
in this section we categorize how provenance data have been rep-
resented in existing literature. In particular, we find four common
encoding schemes:

Sequence
Grammar
Model
Graph

7.1. Sequence

Perhaps the most common of the encoding schemes, a
sequence-based encoding records a user’s interactions
with a visualization tool into a temporally ordered list.
This list is often represented as a string that consists of
a discrete number of symbols, in which each symbol represents a
type of interaction event.

Depending on the goal, the choice of the symbols may differ.
For example, the symbols may be used to represent the interactive
elements in a specific visualization (e.g., range selection in scatter
plot), the data elements that the user interacted with (e.g., a page
from a clickstream data), captured information about a user (e.g.,
the user’s eye gaze movement), etc. In this section, we identify pub-
lications that: (1) record the user’s interactions as a linear sequence
of events, and (2) perform analysis over such sequences. Based on
the representation of sequence-based encoding, we further group
these publications into six types: Interaction Type, Application
State, User State, Taxonomy-Based Abstraction, Image Space,
and Temporal Signal.

7.1.1. Interaction Type

Arguably the most direct approach for recording a user’s interac-
tions with a visualization interface, this encoding approach can be
considered as a log of all user actions. Typically, this log is gener-
ated from recording the callback functions executed during a user’s
session interacting with a visualization.

In some cases, the logged information can be low-level, such as
keystrokes and the (x, y) positions of the mouse [GL12]. While
these types of interactions do not contain semantic information, re-
searchers have found that the analysis of such information can be
used to classify types of users [BOZ∗14]. More typically, interac-
tions are captured at a higher semantic level that reflect the specific

capabilities afforded by the visualization tool itself. For example,
Battle and Heer [BH19] record user interactions with Tableau, in-
cluding actions such as “shelf-add,” “shelf-remove,” “show-me,”
etc. which are interaction elements specific to Tableau.

Since the captured interactions are application-specific, the anal-
ysis of the provenance data is largely focused on the understand-
ing of the user and their reasoning processes. For example, Dou et
al. [DJS∗09] log interactions of expert financial analysts to exam-
ine how much of their reasoning process can be recovered. Simi-
larly, Brown et al. [BOZ∗14], Cho et al. [CWK∗17], and Feng et
al. [FPH19] use the interaction logs to classify users based on their
performance, whether they might be under the influence of anchor-
ing bias, and exploration strategies, respectively.

7.1.2. Application State

Instead of logging the user’s interactions with a visualization, a sys-
tem can also log the resulting state of the visualization. The reason
for choosing an Application-State-based encoding over an Inter-
action-based encoding is often because the visualization itself af-
fords few interaction elements to differentiate a user’s exploration
or analysis intent.

For example, clickstream data from a user’s web-browsing his-
tory has low granularity in terms of a user’s interactions (i.e., there
are few types of actions that a user can perform, such as click
on a link, refresh, go-back, etc.), but can be very rich if the sys-
tem logs the specific (types of) websites that the user examined.
In the work by Wei et al. to analyze users’ purchase patterns on
eBay [WSSM12], the authors encode the clickstream data into cat-
egories such as Title, Description, Pricing, Shipping, Picture, etc.
Related, works by Liu et al. [LKD∗17, LWD∗17] use a similar ap-
proach to analyze branching behaviors and detect uncommon pat-
terns in clickstream data.

Beyond clickstream data, researchers have used the Application
State encoding approach in a variety of other contexts. Cavallo
and Demiralp [CD18] log changes to a machine learning model
(and its corresponding changes in performance metrics) in a col-
laborative data analysis task. Stitz et al. [SGP∗19] record past vi-
sualization states and allow a user to retrieve the state (and the
visualization) by querying the system. Guo et al. [GDM∗19] use
the recorded application-state log to predict and recommend possi-
ble visualizations using a recurrent deep learning model. Moritz et
al. [MHHH15] capture the query execution trace to help improve
query performance.

7.1.3. User State

In addition to recording user interactions or the states of the ap-
plication, there are often additional data and information generated
from the use of a visualization such as insights, annotations, etc.
In our survey, we identify two types of such information: active
user annotations and labels and passive user information such as
eye-tracking data.

Active Actions: Instead of analyzing interaction history, Smuc et
al. [SML∗09] develop a tool to analyze the insights of the user as
sequential data. The tool takes into account three such sequences:
insights about the tool, insights about the data, and interactions with
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the tool. Similarly, work by Choe et al. [CLs15] correlate fitness
data with the user’s annotations of their health state.

Related, researchers can manually code users’ analysis sessions
to identify patterns, commonalities, etc. For example, Boukhelifa et
al. [BBT∗19] perform an exploratory study on how experts collab-
oratively perform sensemaking with machine learning models. The
experts’ interactions are encoded as one of six possible high-level
operations: initial exploration, new exploration, refine, compare, al-
ternative, storytelling.

Passive Actions: In contrast to user’s annotations and self-reported
insights – which are data actively generated by the user – re-
searchers have also included the use of passive data such as eye-
tracking information and brain signals into the analysis of interac-
tion logs. Works by Blascheck et al. [BJK∗16,BBB∗16] combine a
number of data sources, including eye-tracking, audio, video, and
other provenance information into an analysis environment to bet-
ter understand and evaluate how a user uses a visual analytics tool.

Eye-tracking data have also been used in the visualization
for other inferencing tasks. Bylinkskii et al. [BKO∗17] use eye-
tracking data to learn visually salient features in graphic and visual-
ization design. Steichen et al. [SCC14] and Smith et al. [SLMK18]
demonstrate that analysis of eye-tracking data can be used to in-
fer task difficulty and the user’s confidence, respectively. Ottley et
al. [OKCP19] track user’s eye movements when reading texts that
are embedded with visualizations and find that users do not inte-
grate information well across the two representation styles.

In addition to eye-tracking data, recently researchers began using
brain-sensing technologies to monitor a user’s mental state when
using a visualization. For example, Anderson et al. [APM∗11] an-
alyze EEG signals to determine a user’s cognitive load when using
different designs of box plots. Similarly, Peck et al. [PYO∗13] use
functional near-infrared spectroscopy (fNIRS) to compare users’
levels of cognitive effort when using bar charts and pie charts.

7.1.4. Taxonomy-Based Abstraction

One shortcoming of an Interaction Type encoding strategy is that
the interaction logs are specific to the application. As a result, if
the goal of analyzing the provenance data is to compare users using
different visualization systems, the use of an application-specific
encoding strategy would be ineffective.

To generalize the user interactions, researchers have made use
of taxonomies in the visualization of interaction types [YaKS07,
LS10], task types [BM13], and analysis models [PC05]. Instead of
recording each of the user’s interactions at the application level,
each interaction is first converted to an element in the taxonomy,
thus unifying the symbols used to encode users’ interactions in
multiple visualizations.

In particular, Pohl et al. [PWM∗12] and Guo et al. [GGZL15] en-
code user’s interactions using the taxonomy by Yi et al. [YaKS07]
to compare analysis paths from the use of different visualizations
and identify interaction trails that lead to user insights, respectively.
Xu et al. [XBL∗18] develop a tool that organizes a user’s analysis
history (and the corresponding visualizations) using the task tax-
onomy by Brehmer and Munzner [BM13]. Loorak et al. [LTC18]
take a similar approach to examine changes between visualizations

in Tableau. However, instead of utilizing an existing taxonomy, the
authors proposed their own categorization consisting of six task
types: encoding, filtering, analytics, arrange, data, and formatting.

Also using a model, Perry et al. [PJ09] take a different approach
from the previously described work. Instead of encoding a user’s
interactions using an existing taxonomy, the authors first associate
a user’s interaction with one of the analysis states in the Sensemak-
ing Loop by Pirolli and Card [PC05]. Treating the Sensemaking
Loop as a Markov model, over time the system learns the transition
probability of the edges and can therefore predict or recommend
future analysis actions.

7.1.5. Image Space

Since many of the operations in a visualization relate to the user’s
interactions with the visual representations, these interactions can
be encoded directly in the image space. Most common use cases
of image-based encoding are visualization systems that support
sketch-based query construction. In these systems, a user draws a
pattern in the visualization and the system searches through the
data to find data items that exhibit similar patterns. This tech-
nique has been demonstrated to work well for querying tempo-
ral [Wat01, CG16, MVCJ16] and spatial data [WCW∗14].

In addition to sketches, Fuches et al. [FWG09] present a sys-
tem that uses a genetic algorithm to learn interesting visual features
from user-highlighted regions in the generated visualizations. Bat-
tle et al. [BCS16] analyze images produced by a visualization and
extract features to predict a user’s interests and future actions.

7.1.6. Temporal Signal

Lastly, we find one example of a sequence-based encoding scheme
that makes use of the temporal aspect of the interaction logs. In-
stead of converting the interaction log into a string of discrete sym-
bols, in the work by Feng et al. [FPH19] the authors treat the se-
quence as a continuous temporal signal. As a result the authors are
able to apply signal analysis techniques such as wavelet transforms
to analyze the interaction data.

7.2. Grammar

While the Sequence-based encoding scheme is robust
and faithful in recording a user’s interactions with a
visualization, it is a static representation that does not
afford future modifications and therefore reuse. In cases where a
user’s provenance information needs to be examined and re-applied
to automate future analyses, researchers have developed techniques
for recording the user’s actions using rules and grammars. An early
example of this approach is the HomeFinder system by Williamson
and Shneiderman [WS92]: a user’s interactions with the Home-
Finder visualization result in the generation of SQL queries that
are then executed by a back-end database.

Outside of the visualization community, one popular example of
a Grammar-based encoding scheme is Excel’s AutoFill and Flash
Fill techniques. In Excel, a user can provide a few example val-
ues in cells and “drag” those values to other cells that are then
automatically populated. Under the hood, Excel uses the few ex-
amples to learn regular expression rules [Gul11, GHS12] that are
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then applied to the empty cells – a technique in the programming
languages community known as program synthesis.

In this section, we identify publications in visualization and an-
alytic provenance that encodes user interactions using a Grammar-
based approach. We group these techniques into three categories:
Logic Rules, Languages and Scripts, and Specifications.

7.2.1. Logic Rules

A common approach, especially when encoding a user’s interac-
tions with a multiple coordinated visual analytics system, is to en-
code each user interaction as a simple rule using first-order logic.
For example, a user brushing over a range of values in the x-axis
of a scatter plot can result in the rule (x < 5). These rules can
then be chained together using Boolean or first-order logic that can
be stored, modified, and reused. A paper by Weaver describes this
type of encoding in a visualization system as “Conjunctive Visual
Forms” [Wea09].

In the paper by Xiao et al. [XGH06], the authors apply this
method to perform network traffic analysis. A user’s interactions
with their system results in queries in first-order logic with domain-
specific clauses relating to network information (e.g., IP source,
IP destination, etc.). Garg et al. [GNRM08] adopt a similar first-
order logic representation based on Prolog, but uses an Inductive
Logic Programming method for learning the rules. Srinivasan et
al. [SPEB18] present the Graphiti system that learns Boolean logic
rules based on a user’s interactions when constructing a graph from
a tabular data. Lastly, using a more explicit approach (instead of the
implicit learning of rules), Koch et al. present a system that allows
a user to interactively construct (Boolean logic) queries in patent
search [KBGE09].

In a slightly different vein, Mutlu et al. [MVT16] use rules ex-
tracted from past visualization examples to recommend new visu-
alization. Their system, VizRec, learns visual-data mappings from
previous visualizations generated by the user and stores them as
rules. These rules are then used to automatically map data attributes
in a new dataset to visual attributes.

7.2.2. Languages and Scripts

In addition to first-order logic, researchers have used a range of
other grammars and domain-specific languages to represent the
user’s interactions. While a full treatment of formal languages and
their power is beyond the scope of this paper, the encoding methods
using these grammars and languages often have higher expressive
power over the use of first-order logic for capturing the nuances in
a user’s interactions with a visualization. For example, in the paper
by Dabek and Caban [DC16], the authors encode the user’s inter-
actions as a deterministic finite automaton and leverage existing al-
gorithms to learn a compact grammar from the user’s interactions.
These learned grammars encode sequence information that cannot
be easily captured using the Logic Rules approaches.

Beyond formal grammars, researchers have developed their own
domain-specific languages to encode the user’s interactions with
their system. In the papers by Kadivar et al. [KCD∗09] and Chen et
al. [CQW∗14], the authors present the CzSaw system that generates
a reusable script based on the user’s interactive analysis of graphs.

Kandel et al. [KPHH11] propose the Wrangler system that helps a
user perform data cleaning. In Wrangler, the system generates mul-
tiple plausible scripts from a user’s interaction. A user can choose
one of those scripts and apply them to the rest of the data (simi-
lar to AutoFill) or make modifications to them before the applica-
tion. Muthumanickam et al. [MVCJ16] and the Zenvisage system
by Siddiqui et al. [SKL∗16] apply a similar technique to query-
ing temporal data. Using a sketch-by-example approach, a user’s
drawing of a desired temporal pattern is first converted into a shape
grammar whose design is inspired by regular expression. A user
can edit and modify the expression to further refine the degree of
smoothing and approximation of the query.

Lastly, although not strictly a grammar or language, in the works
by Hoque et al. [HSTD18] and Setlur et al. [SBT∗16a], the authors
make use of principles from linguistic theory to disambiguate nat-
ural language queries. These systems augment a user’s query with
annotation functions like Continue, Retain, Shift to maintain the
context of a continuous analysis session and make potentially am-
biguous user queries meaningful to the visualization system.

7.2.3. Specifications

In some cases, each user interaction with the visualization might
not be meaningful or relevant to the user’s goal. Instead, through
iterative interactions with the visualization, the user aims to popu-
late a specification that in turn can be used for generative purposes.
Note that our distinction between a specification-based encoding
and a language-based encoding is not strictly based on formal pro-
gramming language theory. Instead, it reflects how the user’s inter-
actions are represented – either as a script that is open-ended, or as
a means to generate a specification with prescribed properties.

For example, similar to the HomeFinder example [WS92], in the
work in Ferreira et al. [FPV∗13] for visual exploration of large-
scale urban data, the user’s interactions are translated into parts of
the WHERE clause in a SQL query. In this case, each of the user’s
interactions is not of particular relevance and does not need to be
recorded. Instead, it is the final constructed query that is of inter-
est to the system and the analysis. Walker et al. [WSD∗13] take
a similar approach in developing their visual analytics tool to an-
alyze “human terrain” information. Users’ interactions and analy-
sis states are stored in a specification format called ProvML that
is XML-based extension of the Open Provenance Model. Simi-
larly, Rubel et al. [RB18] store user analysis of mass spectrome-
try imaging (MSI) data in a format proposed by the authors to en-
able sharing and reproducibility of analysis. Lastly, Voyager, a sys-
tem by Wongsuphasawat et al. [WMA∗16], can recommend new
visualizations based on the user’s previous exploration pattern. In
Voyager, visualizations are specified using the Vega-Lite specifica-
tions [SMWH16] and the system identifies patterns between these
specifications to make future recommendations.

Recently, there has been a number of papers on the interactive
specification and generation of bespoke visualizations. Although
the goals of these research projects are not for the purpose of ana-
lytic provenance or tracking of the user’s interaction histories, some
of them use similar encoding techniques. For example, Lyra [SH14]
uses the Vega specification [SRHH15], and the framework of Char-
ticulator [RLB19] is a new specification proposed by its authors. In
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both cases, a user’s interaction with the systems result in populat-
ing fields in these specifications, which are then used to generate a
bespoke visualization design.

7.3. Model

In visual analytics systems, the goal of provenance and
interaction analysis is often expressed as the (machine
learning) model that a user is constructing, steering, or
exploring. In these cases, how the user interacts with
the data or the visualization might not be the primary focus and
are therefore not directly encoded. Instead, the visual analytics sys-
tem performs inferencing over the user’s interactions that results in
updates to the underlying models.

Sometimes known as interactive model steering, in this section
we identify publications that: (1) use a sequence of interactions to
derive the model, (2) make explicit, quantitative, and recordable
representations of these models, or (3) present novel inferencing
techniques for analyzing a user’s interactions. We categorize papers
in this section into two groups: Machine Learning Models and
User Models.

7.3.1. Machine Learning Models

In interactive model steering, a common way to record the history
of the analysis process is to encode the state of the model itself. An
example of such model steering is the work in learning a distance
function for a 2D projection of high dimensional data by Endert et
al. [EHM∗11] and Brown et al. [BLBC12]. In these systems, the
user manipulates the positions of data points in a 2D projection,
and the system learns the parameters of the underlying distance
function that would make such a projection possible. For example,
when using a weighted Euclidean distance function, the model can
be represented as a vector where each value in the vector represents
the weight of a dimension. Users’ provenance data from interacting
with such a system can then be visualized as trails for the purpose
of cohort analysis and comparison [BYC∗19].

Similar model steering techniques can be applied to other types
of models, such as those to learn the relative importance of doc-
uments and keywords in texts [BNHL14, EFN12b], temporal se-
quences [KC14], ranking [WDC∗18], projection planes [KCPE16,
KKW∗17], concept graphs [CCI∗15, MSW10], visual fea-
tures [FWG09], and visualization recommendation [BCBL13].

While most of these works do not directly record the user’s in-
teractions, in the work by Hossain et al. [HOG∗12] the authors ex-
plicitly models a user’s interactions with the underlying clustering
model as a matrix of constraints. Each row and column of the ma-
trix represents one cluster, and by toggling on or off each cell, the
user can interactively “gather” or “scatter” the data points and steer
the clustering model.

7.3.2. User Models

In some cases, the purpose of tracking a user’s analysis behavior is
to learn a model about the user. For example, Gotz et al. [GSC16]
model a user’s interactions with a visual analytics system to detect
selection bias during a user’s analysis of high-dimensional data.

Each of the user’s interactions is modeled as a probability distribu-
tion over the data space, and bias is defined by measuring differ-
ences in these distributions. Wall et al. [WBFE17] take as similar
approach to detect bias, but instead model the user’s interactions as
Markov chains.

Similarly, Healey and Dennis [HB12] and Ottley et al. [OGW19]
both aim to model “user interests” in a visualization. Healey and
Dennis develop a Bayesian user model using a boosted Bayesian
network classifier that takes into account the user’s explicit and im-
plicit inputs on their interests in the shown visualization and the un-
derlying data attributes. Ottley et al. use a Hidden Markov Model
approach that models the user’s attention, where low-level features
in a visualization (e.g., color, size, positions, etc.) are modeled as
hidden states and the user’s interactions as the observable states in
the model.

Lastly, Nguyen et al. [NHC∗20] model a user’s interactions
as probability distributions over analysis sessions. Using Latent
Dirichlet Allocation, each of the user’s interactions is considered a
“word” and each analysis session is a “document.” With this model,
the authors can generate hierarchical profiles of users based on their
analysis behaviors.

7.4. Graph

Since the purpose of using a visualization is to ex-
plore data, discover patterns and relations, and eventu-
ally build knowledge, many visualization systems en-
code the user’s interactions as knowledge graphs, con-
cept graphs, or history graphs. In most cases, the nodes in these
graphs represent a data item (e.g., a document, a location, an en-
tity), an abstract concept (e.g., user annotations), or a visualization
state (e.g., user histories). Edges then represent connections or re-
lations between these entities. In this section, we identify publi-
cations that that use a Graph-based encoding approach and group
them into two categories: Entity and Concept Graphs and His-
tory Graphs.

7.4.1. Entity and Concept Graphs

The use of entity or concept graphs is most commonly associ-
ated with sensemaking and collaboration. In these applications, the
user’s interactions with a visualization or visual analytics system
result in some modification to the graph. Similar to the Model-
Based encoding strategy, since the goal of the visual analysis pro-
cess is defined (in this case, the construction of the graph itself), a
user’s interaction log can be modeled as changes to the graph over
time.

In these systems, the choice of the representations of the nodes
and edges reflect the purpose of the system. For example, the Viz-
Cept system [CYM∗10] is designed for the purpose of collabora-
tive sensemaking. In VizCept, a node represents a concept, which
can be an entity such as a name, a location, an object (extracted
from text documents) or a word that a user types in. Multiple users
can simultaneously interact with these nodes by connecting them,
forming relations. The CLIP system by Mahyar and Tory [MT14]
and the KTGraph system by Zhao et al. [ZGI∗18] use a similar
encoding of nodes and edges. The CLIP system has an additional
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emphasis on the temporal order of events over the VizCept system,
whereas the KTGraph system is designed specifically for asyn-
chronous collaboration.

We find one example where the authors make additional use of a
entity or concept map beyond sensemaking. In the Candid system
by Shadoan and Weaver [SW13], the user interactively constructs
an entity (attribute) relations graph, which is then translated into
a hypergraph querying language that can express complex n-ary
multi-dimensional conjunctive relations.

7.4.2. History Graphs

Closely related to Sequences of Application States, the History
Graph encoding strategy records a user’s interactions as a graph
structure instead of a linear list of temporal events in the Sequence-
based approach. Although more complex, the graph-based ap-
proach can reveal patterns in the graph structure that cannot be eas-
ily found in a sequence-based representation, such as cycles (rep-
resenting repeated analysis steps), high vertex connectivity (repre-
senting a commonly re-visited analysis state), cliques (potentially
representing detailed analysis), etc. Further, with additional analy-
sis to identify semantically meaningful labels for the nodes, these
graph representations can be used for the purpose of reporting and
storytelling.

Systems such as VisTrails [CFS∗06], Graphical Histo-
ries [HMSA08], GraphTrails [DHRL∗12] all use a graph-based
encoding of a user’s interactions. Each node in these graphs repre-
sents an action taken by the user. After the construction of a graph,
the system can then perform additional operations over the graph,
for example to reduce the graph’s size and complexity [HMSA08].
Dabek and Caban [DC16] take a similar approach, but use a finite
automaton (which is a directed acyclic graph) as its internal repre-
sentation. Also using a directed acyclic graph (or more precisely a
hierarchy), Dextras-Romagnino and Munzner [DM19] present the
Segmentifier system that helps a user iteratively refine sequences of
interaction data into meaningful segments.

For the purpose of reporting and storytelling, in the work by
Gratzl et al. [GLG∗16] a user directly interacts with the history
(provenance) graph to generate a story from the user’s analysis.
Mathisen et al. [MHK∗19] present the InsideInsights system that
generates a report of a user’s analysis by first annotating the visu-
alization states and aggregating the states into narrative schemas.

History graphs can also be used to represent steps in data trans-
formation and cleaning. In the work by Bors et al. [BGM19], data
cleaning (wrangling) operations are stored as a directed acyclic
graph. The user can explore the graph and evaluate the quality
of the data cleaning along the process. Similarly, Schlinder et
al. [SWR∗13] present a dataflow model for data transformation.
Although this model is not specific to recording user interactions,
it uses a graphical encoding to represent the stages of data trans-
form and analysis that is similar to provenance graphs.

Lastly, we find two examples of a hybrid approach that combines
both a concept graph with a history graph. In the work by Shrini-
vasan et al. [SvW08, SvW09, SGL09], the authors present systems
that track and maintain a history graph while allowing a user to

manually construct a concept graph that represents the user’s anal-
ysis process. The two graphs are coordinated such that a user click-
ing on a node in the concept graph will take the user back to the cor-
responding analysis step(s) in the history. In SenseMap [NXB∗16],
user online browsing history is shown as a graph (“history map”)
with webpages as nodes and visited links as edges. There is a ad-
ditional “knowledge map” in which user can create concept graph
with information collected during online exploration as node and
the edges are created by user (not the visited link) to connect simi-
lar or relevant items.

8. Techniques: HOW to Analyze Provenance Data

User interactions collected from a visual data exploration or anal-
ysis session can be analyzed in a variety of ways. In the most sim-
plistic cases, the user interaction data can be stored as part of the
“undo/redo” mechanism with little data processing required. In this
section, we focus on complex analysis methods that researchers ap-
ply to the interaction data to derive insight into the user’s analysis
intent, re-purpose past analyses, predict future user actions, or cre-
ate analysis summaries. We organize the observed methods into five
primary categories:

Classification Models
Pattern Analysis
Probabilistic Models / Prediction
Program Synthesis
Interactive Visual Analysis

8.1. Classification Models

The most common technique for evaluating provenance
data is the use of classification and statistical model-
ing techniques to differentiate sequences of user ac-
tions [BOZ∗14, WBFE17, GGZL15, KPS∗17, OYC15,
BCN∗19, DC16]. The overarching goal of such techniques is to
map a user action to one or more categories. A number of surveys in
the literature have demonstrated the application of these techniques
to a variety of data types relevant to provenance analysis, includ-
ing text [AZ12, SYD∗14] and images [LW07, NMK∗14]. Indeed,
many of the common types of insights that users wish to identify in
data necessitate a classification phase, including comparison, corre-
lation, distribution, and trend insights [CLs15]. In this section, we
identify publications that classify provenance data into groups of
similar user actions via a variety of methods, ranging from straight-
forward clustering through complex machine learning processes.

Perhaps the most frequently applied method for classification
in general research is k-means clustering. The goal of this unsu-
pervised method is to partition a collection of observations into k
clusters such that each observation is assigned to the cluster with
the nearest mean. The standard algorithm for k-means is straight-
forward to implement, leading to the popularity of this technique.
However, k-means has limitations, and is best able to identify clus-
ters that are convex and with similar covariance [Llo82], a property
that is not guaranteed in interaction logs. The algorithm is found
in systems such as Chart Constellations [XBL∗18], which permits
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an analyst to interact with a collection of charts: projecting, clus-
tering, filtering, and connecting results. Sherkat et al. [SNMM18]
develop an interactive k-means approach to permit users to interact
with eye-gaze patterns. A similar approach that is less-frequently
used is the k-nearest neighbors classifier, in which an observation
is assigned to the class most common among the k nearest observa-
tions. Pezzotti et al. [RWF∗13b] use a similar Forest of Random-
ized KD-Trees approach to create a steerable t-SNE (t-Distributed
Stochastic Neighbor Embedding) method for data exploration.

A common supervised method for classification is regression
analysis, which attempts to determine the relationship between a
dependent variable and a collection of independent variable inputs.
Regression models appear in a variety of forms, including linear,
logistic, and polynomial regression. The difference between these
models lies in the type of function used to model the dependent
variable. Toker et al. [TLC17] experiment with linear regression,
among other techniques, to predict the phase of a user’s skill acqui-
sition when interacting with bar graphs, but separately use logistic
regression in a previous experiment with similar eye tracking data
and goals [TSG∗14]. Hu et al. [HDG∗19] also make use of linear
regression in their VizNet experiments, working to understand the
influence of user task and data distribution on visual encoding ef-
fectiveness.

Support-vector machines (SVMs) present another method for
classification analysis, though the goal of the algorithm switches
from approximating a relationship to identifying an optimal bound-
ary between classes. SVMs can also efficiently perform non-linear
classification by means of a kernel function that maps the input
space into another that is more computationally tractable. SVMs
are found classifying provenance data in a study processing eye-
gaze data by Steichen et al. [SCC14], as well as in “Finding
Waldo” [BOZ∗14]. Toker et al. [TLC17] also test SVMs against
linear regression in their prediction study.

Topic modeling reduces a broad collection of terms into a
smaller collection of topics, simplifying the analysis and of-
ten enabling the outcome to be more easily visualized in a
two-dimensional projection [ECNZ15]. Techniques such as Non-
negative Matrix Factorization (NMF) and Latent Dirichlet Alloca-
tion (LDA) are used by Sherkat et al. [SNMM18] in their adaptive
clustering implementation. Latent Semantic Analysis (LSA) and
Latent Semantic Modeling (LSM) work similarly, demonstrated
by Wegba et al. [WLLW18] as their work identifies a relation-
ship between users and movie recommendations. Boukhelifa et
al. [BBT∗19] use dimensionality reduction more generally to re-
duce a model exploration space, aiding analysts in exploring com-
plex model results.

Artificial neural networks are learning methods inspired by bio-
logical neural networks. These come in a broad variety of forms,
such as the Fully Convolutional Networks (FCNs) used by Bylin-
skii et al. [BKO∗17] to predict important regions in an interface, en-
abling automatic design retargeting and thumbnailing by analyzing
user interactions. Steichen et al. [SCC14] and Toker et al. [TLC17]
also experiment with neural networks in their studies.

Hierarchical techniques such as decision trees model sequences
of decisions and their consequences. The techniques are particu-
larly suited for provenance analysis, as sequences of interactions in-

clude similar branching behavior, as seen in CoreFlow [LKD∗17].
Similarly, hierarchies can be used to map low-level interactions to
higher-level intents and reasoning processes [BWD∗19, DJS∗09].

8.2. Pattern Analysis

Pattern analysis refers to the detection of patterns in
data or logs. Such analysis often comes in two forms.
First, Automated Pattern Analysis often consists of
the stages leading up to a prediction or classification,
mapping the detected patterns in the provenance data to an outcome
either as part of a continuing automated process or as a preprocess-
ing step before an analyst begins exploration of the patterns. Sec-
ond, Manual Pattern Analysis refers to user-driven exploration
and analysis of patterns in provenance data. When considering the
analysis of provenance data, detecting patterns in interaction logs
by either the manual or automated approach can enable systems to
predict future interactions, as well as providing users with insight
into their own behaviors. In this section, we identify publications
that examine large-scale patterns in provenance data, classifying
these works into automated or manual groups by the initiator of the
analysis.

8.2.1. Automated Pattern Analysis

One common method for automated pattern analysis is to traverse
a graph representation of the provenance data. For example, Dabek
et al. [DC16] encode a collection of user interactions as a di-
rected acyclic graph, and then extract common sequences from the
graph for later analysis. Shrinivasan et al. [SGL09] also traverse
a graph generated from provenance data to identify patterns and
sequences for the purpose of automated annotation and recommen-
dation. Shadoan et al. [SW13] take a similar approach, representing
user queries as a hyper-graph that can be used in future analysis.

Systems and studies also use machine learning and similar intel-
ligent approaches to identify patterns in provenance data. Gotz et
al. [GSC16, GSC∗17] use Adaptive Contextualization, monitoring
and modeling a user’s data selection activity and computing metrics
over that model. Bylinksii et al. [BKO∗17] use a neural network to
extract and prune patterns that are later presented to users for in-
teraction. Nguyen et al. [NTA∗18] make use of the Generalized
Sequential Patterns algorithm to identify frequent patterns from a
set of user sessions.

Other approaches for automated pattern analysis include tech-
niques such as the automatic extraction and visualization of branch-
ing patterns in event sequences as seen in CoreFlow [LKD∗17]. In
a similar visualization-centric approach, Liu et al. [LWD∗17] use
sequence clustering and sequential pattern matching on collections
of websites visited by users, permitting patterns to be automatically
extracted and pruned before presenting the patterns to users for in-
teraction. HARVEST is used by Shrinivasan et al. [SGL09] to cre-
ate a context-based retrieval algorithm that uses notes, views, and
concepts from past analyses to identify patterns most relevant to a
user, providing these patterns to a user within a web-based visual
analytic system.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

767



K. Xu et al. / Survey on the Analysis of User Interactions and Visualization Provenance

8.2.2. Manual Pattern Analysis

Sketches are a common means for manually presenting patterns to
a system, representing a user-driven approach for pattern matching.
The type of sketch varies across systems. Wang et al. [WCW∗14]
permit users to sketch 2D maps for querying trajectory information.
Both Correll et al. [CG16] and Muthumanickam et al. [MVCJ16]
support sketches of time series, which are then converted to queries
for pattern retrieval.

Rule-based systems are a second approach for user-driven pat-
tern matching. Cappers et al. [CvW18] present a system that al-
lows users to construct rules to encode events, after which queries
are automatically generated into a format similar to regular expres-
sions. The KnowledgePearls system [SGP∗19] supports a similar
query-based approach for searching for past visualization states.

A variety of other techniques also permit analysts to query in-
formation about patterns in past interactions. Segmentifier [DM19]
iteratively refines collections of interactions into meaningful se-
quences, which can subsequently be queried through a visual in-
terface. Perfopticon [MHHH15] provides a similar interactive tool
to explore query execution traces in distributed databases, while
MacInnes et al. [MSW10] present an expert-guided clustering tech-
nique to identify patterns and link those patterns to their semantic
meaning.

8.3. Probabilistic Models / Prediction

Precise classifications are not necessarily the only pre-
dictions that can result from the analysis of provenance
data. Indeed, the nuance and randomness inherent in in-
terpreting and inferring from such imprecise data often necessitates
probabilistic interpretations [MA19]. In this section, we identify
publications that make use of probabilistic techniques to identify
trends and predict possible future interactions in provenance data.

The most straightforward probabilistic approaches rely on tradi-
tional statistical models. For example, the approximated and steer-
able t-SNE created by Pezzotti et al. relies on the underlying t-
distribution to model data via this dimensionality reduction strat-
egy [RWF∗13b]. Similarly, Feng et al. explore multiple metrics
for visualization interaction behavior to cluster groups of users, in-
cluding the chi-square distribution among others such as frequency
counts and TF-IDF [FPH19].

The next stage beyond basic probablistic approaches is the use of
Bayesian probability and inference. Naive Bayes classifiers are rel-
atively simple probabilistic classifiers that incorporate substantial
independence assumptions between the features under considera-
tion, and are used as one of the models tested in the pupillome-
try and head distance analysis by Toker et al [TLC17]. Healey et
al. [HB12] also make use of Bayesian classification to identify data
items within large datasets that are of potential interest to the user.

The output of the neural networks discussed in Section 8.1
are often fuzzy classification results, not precise predictions.
The Time-Aware Neural Networks (TRNNs) used by Guo et
al. [GDM∗19] and the Convolutional Neural Networks used by
Smith et al. [SLMK18] demonstrate two separate prediction ap-
proaches, supporting the ability to predict tasks as distinct as next

actions and user confidence. Probabilistic prediction models can be
simpler than neural networks as well, even including probabilis-
tic views on regression approaches such as logistic [BCN∗19] and
linear [MSM∗17] prediction models.

Markov models are used to model randomly changing systems,
assuming that future states are only dependent on the current state
rather than events that occurred previously. Predicting such future
states often makes use of a state-based approach, in which edges
represent transitions between the states [PWM∗12,PSM12,BCS16,
PJ09]. Ottley et al. use a hidden Markov model to learn from
and anticipate mouse interactions during exploratory data analy-
sis [OGW19], while Wei et al. [WSSM12] follow a similar ap-
proach for Web clickstream data.

The nuances in provenance data are also apparent in natural lan-
guage interfaces. These systems must interpret ambiguous or com-
plex instructions provided by users [SBT∗16b], who could adopt
a number of different means to express the same goal. Such ap-
proaches range from the use of standard libraries such as word2vec
for keyword tagging [XBL∗18] to the use of topic modeling, a clas-
sification method also addressed in Section 8.1 that is probabilistic
in nature [CWK∗17, NHC∗20]. Linguistic theory can aide in the
analysis of sentences to understand queries that are generated by
users for these approaches [HSTD18].

8.4. Program Synthesis

Another provenance analysis approach is to perform
program synthesis – generating a script or executable
sets of operations based on past user interactions. In
these systems, a common goal is to convert the user in-
teractions into an executable script that can be applied to a new
dataset. However, it is also possible to perform additional analyses
over these higher-level scripts or grammar to extract additional in-
formation. In this section, we identify publications that present such
provenance analysis as grammars or scripts, noting an emphasis on
visual history and recall in this area of the literature.

There is substantial overlap between the first stage of this ap-
proach and the discussion of grammar-based encodings in Sec-
tion 7.2, as the use of a grammar-based approach [DC16], or the de-
sign of a domain specific language [KPHH11,KCD∗09,CQW∗14]
to encode the provenance data often underlies this approach. These
approaches are varied, with analysis taking place on encodings
ranging from text-based approaches such as SQL queries [FPV∗13]
and regular expressions [MVCJ16] to more complex forms like
graphs [KCD∗09, SPEB18] and Boolean logic [KBGE09, Wea09].
We point the reader to Section 7.2 for a more thorough discussion
of these encodings.

Expanding the discussion in this section more broadly than only
the analysis of these scripts and grammars, we find studies de-
tailing ways in which reviewing provenance data permits a user
to both better explore past actions and to understand the effects
of potential future actions within a system. For example, Ragan
et al. [RGT15] performed a controlled study to evaluate how the
presence of a visual history aid affects the memory of a user with
recalling the details of their exploration process, finding that pro-
viding such an aide for a user to explore their past interactions
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was a substantial benefit. A similar conclusion was reached by
Chen et al. [CQW∗14] in their propagation-based parametric model
approach, also noting that analysts were better able to recall the
chronological states of the analysis process with their symbolic
model. In terms of future effects, Wrangler [KPHH11] enables an-
alysts to understand the effects of a variety of potential operations
in the interaction space.

Understanding the cognitive behavior and strategies of users
from interaction logs is a further benefit in this area. A think-aloud
study by Dou et al. [DJS∗09] was able to identify several strate-
gies, methods, and findings of an analysis process through the ex-
amination of an analyst’s interaction log. Similarly, Blascheck et
al. [BVV∗18] performed an analysis of interaction logs and eye
movement data to identify analyst exploration strategies. An inter-
view study of data analysts by Madanagopal et al. [MRB19] further
demonstrated that the need for provenance information changes
during the course of the analysis process and dependent upon the
role of the analyst who is performing that analysis.

8.5. Interactive Visual Analysis

Beyond these common methods, researchers have also
explored other types of data representations and analy-
sis methods for a variety of purposes. There are a wide
variety of internal representations and user interactions
that can be supported for provenance analysis, as demonstrated by
Liu et al [LS10]. This section summarizes publications that repre-
sent these additional analysis methods, with an overarching theme
of interacting with visual representations of provenance data and
generating insight from such interactions.

8.5.1. Semantic Interaction

Semantic interaction is a demonstrational technique for model ma-
nipulation introduced by Endert et al [EFN12a]. Analysts provide
feedback to an underlying learning routine by demonstrating a re-
lationship that they seek in the visualization, and the system in turn
attempts to produce this relationship across all observations by al-
tering the models that produce the visualization. As such, these
models are indirectly the altered analysis object, leading to a great
deal of overlap with the Model discussion in Section 7.3.1.

The interaction techniques supported by these semantic interac-
tion systems are the direct means by which an analyst evaluates and
updates the model state. The variety of supported interactions is
quite broad, ranging from interactions on observations in the form
of projected glyphs [BLBC12,BNHL14] and table rows [WDC∗18]
to interactions on the axes [KCPE16] and background [KKW∗17]
of the plot. These interactions often involve manipulating layout
constraints or coordinates [HBR14,KC14], but can also include in-
teractive clustering [HOG∗12] or simply highlights regions of in-
terest [FWG09].

8.5.2. Analysis Via Visual Analytics

Semantic interaction represents one portion of the overall space of
using visual analytics techniques and systems to analyze prove-
nance data. For example, Blascheck et al. [BBB∗16, BJK∗16]
developed a visual analytics tool to analyze multiple streams

of user interaction data, including audio, video, eye gaze, con-
tent of analysis, and more. Similarly, SensePath [NXW∗16],
SenseMap [NXB∗16], and InsideInsights [MHK∗19] provide web-
based interfaces for the analysis and exploration of provenance
data. These techniques further allow for the exploration of large
provenance data collections, which can benefit safety and secu-
rity tasks [SMvdWvW15] as well as scientific research [GLG∗16].
The analysis can also be collaborative, as seen in the study using
RCloud by North et al [NSUW15].

A further set of systems made use of graph-based approaches,
in which the graph is central as both an interaction target and
analysis goal. Continuing the collaborative theme, Mahyar et al.
create an evidence graph or collaborative sensemaking, making
use of visual analytics techniques on this graph to gain insight
from its structure [MT14]. Zhao et al. further discuss the construc-
tion of a knowledge graph for the purpose of collaborative analy-
sis [ZGI∗18], while Vizcept records user insights in a concept graph
structure for further analysis [CYM∗10].

Using visual analytics approaches for evaluating provenance
data is not only limited to the creation of visualization and inter-
action techniques. Indeed, other systems make use of provenance
analysis as an analysis component connecting the visualization out-
put to the underlying models. Setlur et al. [STD19] demonstrate this
in their technique using rule-based inferencing to obtain missing
information necessary to process natural language queries, mak-
ing use of concepts known by the system to refine user utterances.
A similar approach is used by Flux Capacitor [KN19] to reduce
queries, prefetch, and cache data to minimize intensive workloads
on databases, using knowledge of user interactions to perform these
operations.

8.5.3. Generation and Analysis of Visual Design

The analysis of provenance data can also be used to generate new
visualization designs, as well as to analyze the quality of existing
visualizations. Smuc et al. [SML∗09] develop a methodology that
makes use of participatory design processes and formative eval-
uation strategies to design novel analytical tools, while Choe et
al. [CLs15] discuss an empirical study to inform the design of sys-
tems for personal data systems. In both cases, the proposed and
actual interactions of users drove the design process. New visual-
izations can also be generated automatically from user interactions,
as seen in both the Visualization-by-Sketching [SK16] and “Visual-
ization by Demonstration” [SKBE17] techniques.

9. Discussion

Figure 3 and 4 provide an interesting overview of the WHY, WHAT,
and HOW questions among the papers we surveyed. It was to be ex-
pected that “Understanding the User” is the most common analysis
goal: besides being an interesting research topic itself (particularly
in the field of HCI), it is also the foundation of other analysis goals
such as “Adaptive Systems” and “Evaluation of Systems and Al-
gorithms.” These two rely on the user knowledge to provide better
support and evaluate analysis performance respectively.

While understanding users is undoubtedly useful, there are po-
tential ethical and privacy concerns. For example, while the data
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collection and analysis in user studies undergo the scrutiny of eth-
ical approval process, the resulting methods or tools can be poten-
tially used by third parties to recover sensitive data from user prove-
nance or inferring individual characteristics (such as the method
described in “Finding Waldo” [BOZ∗14]). There is limited work
on this so far, and it is a topic that certainly deserves more attention
from us as a community.

Adaptive systems is the second most common goal. Understand-
ably, it is over-represented in the IUI community, and to a lesser ex-
tent in the CHI community. In addition to the examples discussed
in this survey, they are now commonly deployed in smart phone
systems with the ability to for example notify users about traffic
conditions based on previous travel records and calendar events.
However, it can be difficult to create effective adaptive systems and
there are many examples of failed attempts, with Microsoft Office
Clippy being the most well-known example. Therefore, the com-
munity needs carefully and thoroughly investigate when and how
to adapt. Guidance and adaptive systems can also introduce explo-
ration bias into the sensemaking process if not carefully checked.

Our organization of WHAT (Sequence, Grammar, Model, and
Graph) is meant to provide a broad overview of existing tech-
niques. We acknowledge that encoding techniques can be impre-
cisely categorized resulting in overlaps or ambiguities. For exam-
ple, should a user model based on a Bayesian model (such as the
work by Healey and Dennis [HB12]) be categorized under User
Model or a probabilistic Graph? In this survey, we do not clearly
define these boundaries and hope that the high-level abstraction of
the categories serves the purpose of an overview.

In addition, we recognize that data science “notebooks” such as
Jupyter Notebook and RStudio can be considered a form of analy-
sis provenance. Systems like RCloud [NSUW15] that support col-
laborative analysis with R intrinsically encodes and visualizes user
analysis history. While the encoding strategy can be considered as
a Sequence of commands, we do not include these tools because
they are not strictly visualization or visual analytics systems. A
more nuanced example that is also not included in this survey is
the Literate visualization work by Wood et al. [WKD18]. Using a
“notebook-like” approach, the authors present a system for docu-
menting the process of designing a visualization. Since the purpose
of this system is to record the changes to a visualization design but
not to perform analysis over these visualizations, it is out of the
consideration of this survey.

Figure 3 also demonstrates the diverse application of prove-
nance analysis. More recent topics, particularly the Model Steer-
ing and Active Learning, have already received considerable atten-
tion within the provenance research community. The reflects the
trend of growing popularity of machine learning-related work in the
larger Visualization field, and illustrates the effectiveness of prove-
nance as a viable approach to this type of problems.

Reproducibility is one of the important use cases for provenance.
However, we noticed that not many papers make their implementa-
tion, methods, or datasets available. This make these works less re-
producible. As a field that is a major contributor to the reproducible
science research, we as a community should make sure the wide
adoption of practices for research transparency and reproducibility,
sharing our “research provenance.”

9.1. WHEN to Analyze Provenance Data

Along the line of WHY, WHAT, and HOW, a few patterns emerged
with respect to WHEN to perform provenance analysis. However,
we think the related contents are not as substantial as the other
three, so we include it in the discussion here instead of as a indi-
vidual section. There are three common approaches: retrospective
analyses that occur after the task is completed, real-time applica-
tions that happens during analysis, or hybrid approaches that mix
the two.

Retrospective Analyses. The literature contains numerous ex-
amples of techniques for analyzing provenance data from past
user sessions. For example, a series of researchers have exam-
ined batches of interaction logs to uncover reasoning processes
and insights [BH19, DJS∗09, FPH19, GGZL15]. The Inside In-
sights [MHK∗19] system leveraged observations to generate a re-
port of the user session automatically. When facing the timestamp
for the analysis, post-hoc analyses were applied to uncover corre-
lations between user attributes and interaction patterns [BOZ∗14,
OYC15].

Real-Time Applications. An emerging topic in the provenance lit-
erature focuses on leveraging interaction data to perform real-time
predictions, system adaptations, or offer guidance to the user. Com-
mon examples apply techniques from machine learning and artifi-
cial intelligence to make inferences based on behavioral patterns.
ForeCache, for instance, used provenance data to improve pre-
fetching and system performance [BCS16]. Wall et al. [WBFE17]
proposed using real-time interaction to identify and mitigate ex-
ploration bias, and Ottley et al. [OGW19] inferred future clicks
from real-time observations. Brown et al. [BLBC12] and Endert
et al. [EFN12a] demonstrated how mouse interaction could steer
data projection models.

Hybrid Approaches. Although less common, the growing avail-
ability of large interaction datasets has led to hybrid approaches
that leverage data from past sessions to refine the analytic process.
One example, Scented Widgets [WHA07], exploited historical us-
age data to improve interface controls. Other work by Fan et al. cre-
ated machine learning models based on past user data to improve
the accuracy and speed of a real-time brushing tool [FH18].

10. Opportunities for Future Research

As a rapidly-growing field, provenance analysis faces many open
challenges and research opportunities. In this section, we organize
these following the WHY, WHAT, and HOW structure of the paper,
with some additional discussions on provenance standards. The list
is not meant to be exhaustive, but we aim to cover the critical gaps
and emerging topics that we believe deserve more attention. Some
are similar to those discussed in the recent literature, such as the
report from the Dagstuhl Seminar on Provenance [FJKTX19b].

10.1. WHY

There are still many opportunities for further development within
the use cases discussed in Section 6. For example, user intent mod-
eling (Section 6.1) is still an open problem, and a fully automated
solution is unlikely in near future. Any progress in improving or
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supporting this process can not only enhance the efficacy and ef-
ficiency of visualization tools, but also can help to advance ap-
plications such as evaluation (Section 6.2), adaptive systems (Sec-
tion 6.3), and storytelling (Section 6.6).

Among the use cases, we see a growing interest in support-
ing machine learning, demonstrated by the works discussed in the
Model Steering section (6.4). It is not far-fetched to envision that
such techniques can also be beneficial to critical, emerging topics
in the machine learning field, such as model transparency and ex-
plainable AI.

Another potentially impactful use case is exploration optimiza-
tion: analyses, particularly those involved in data science, often re-
quire exploration in three different spaces: the data space, which is
the input data, the approach space, which consists of all possible
approaches to the problem, and the parameter space, which is part
of the approach space and can have a large impact on the effec-
tiveness of the approach. These three spaces share two properties:
(1) often large in size and (2) of high dimensionality. Without a
systematic approach, exploration within these spaces can be time-
consuming and ineffective.

There are a few attempts that aim to guide a user during such ex-
ploration by analyzing the results of completed prior explorations.
The Evolutionary Visual Exploration (EVE) system [BCBL13] uses
an evolution algorithm that learns optimization criteria from user
interactions to help user explore large multivariate datasets. The
GEMSe [FMH16] system provides users with the provenance of
parameter space exploration of multi-channel segmentation algo-
rithms, which was shown to considerably improve the efficiency
of finding suitable parameters. The open challenge is to have more
general methods that can be adapted to various data, approach, and
parameter spaces. A similar effort is the Visual Parameter Space
Analysis (VPSA) [SHB∗14], designed to find the optimal settings
for simulation models. The main difference is that VPSA focuses
on visualization parameters, and the quality of the results can of-
ten be quantified. In contrast, exploration optimization also consid-
ers the data space, and the optimization function has to be learned
from analysis provenance. Given the prevalence of exploratory data
analysis, such a solution will have significant impact in many fields
beyond provenance and visualization.

10.2. WHAT

Many of the long-standing challenges in provenance analysis re-
late to the multi-layer nature of provenance: from the low-level
system logs such as mouse movement, through more abstract and
system-independent analysis actions such as searching and compar-
ison, and to reasoning-related provenance such as insight and ratio-
nale [RESC15]. This adds an extra dimension to the four encoding
schemes discussed in Section 7: each scheme, such as a sequence
or a graph, can have multiple layers. For example, a provenance se-
quence can have several layers, such as events (system log), (user)
actions, sub-tasks, and tasks [GZ08]. While most existing methods,
such as those covered in Section 7.1, choose to target a single layer,
there are efforts that investigate the connections between the lay-
ers. For an example, see the encoding schemes that uses taxonomy-
based abstraction (Section 7.1.4).

It has been argued that it is increasingly difficult to capture
provenance when moving up through the layers: it is often straight-
forward to record system logs, but capturing abstract actions is
much harder [GZ08]. Further, there is no effective solution to au-
tomatically capture user insights or reasoning process. However,
many of the use cases discussed in Section 6 heavily rely on high-
level provenance. For example, adaptive systems require the knowl-
edge of user analysis preference and strategy to provide customiza-
tion or prediction, and user modeling represents a similar case. Be-
cause of this difficulty, there are few successful examples. One suc-
cessful example is the InsideInsights system [MHK∗19] that uti-
lizes this hierarchy for report generation. Such analysis is often
done manually, such as the study by Dou et al. [DJS∗09], and is
usually time consuming.

The existing efforts either attempt to infer higher-level prove-
nance automatically from lower-level data or encourage external-
ization through annotation and note taking. Neither approach has
been very successful, both because of the poor inference perfor-
mance (even human experts can only achieve about 2/3 accuracy)
and because of the distraction and cognitive load introduced by the
externalization. While there are conceptual models, such as the one
by Bors et al. [BWD∗19], that can guide such inference, there are
still no concrete implementations, and its efficacy is still an open
question.

There is a new provenance encoding paradigm that may bring a
new perspective to some existing challenges. This approach models
provenance as a high-dimensional vector sequence: each vector in
such a sequence is a step in the analysis interaction, and the dimen-
sions of the vector are the information that constitutes provenance,
including the visualization state, data displayed, user interaction,
and any other provenance captured. This encoding approach pro-
vides new perspectives for examine provenance data, such as trans-
forming provenance analysis into problems that may have been
studied in related fields. For one example, provenance visualiza-
tion can be performed via projecting a vector sequence from high-
dimensional space to 2D (or 3D) space, providing a perspective that
is different from treating the provenance as a sequence or graph.
This has been shown to be effective for analyzing dynamic net-
works [vHBv16], in which each snapshot of the network at a time
point is represented as a high-dimensional vector. This approach
can be a potential fit for the exploration optimization problem de-
scribed earlier, with the provenance vector capturing the informa-
tion from the data, approach, and parameter space.

10.3. HOW

There are many opportunities to apply different types of analysis
techniques, such as those discussed in Section 8, to provenance
use cases, particularly the more difficult ones such as user mod-
eling and exploration optimization. Many of the existing works
rely on the relatively simple form of these techniques, such as k-
means clustering, and have already demonstrated considerable im-
provements. The rapid development of new techniques from fields
like machine learning provide an ever-increasing collection of new
power tools to tackle provenance challenges. Machine learning
methods based on the deep neural networks proved to be wildly
successful in the breakthroughs of some of the long-standing ma-
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chine learning challenges. However, these methods often require
large amount of data for initial training, and it will be interesting to
explore how such methods can be adapted to provenance problems,
in which user data is usually much smaller than those available
from an image or text collection.

There are still some fundamental provenance analysis problems
that await better solutions. One such problem is provenance chunk-
ing, which groups the steps in an interaction sequence based on the
analysis actions that they belong to. In stock analysis for example,
all of the steps involved in trend analysis would be in one chunk,
and steps related to comparing company performance would be in
a different chunk. Chunking is fundamental to other provenance
analyses. For example, once chunking is completed, it will be eas-
ier to infer the higher-level abstract task for each chunk, which is
an important open question itself.

Chunking can be treated as either a classification problem, i.e.,
whether there should be a break between the current and next step,
or as a clustering problem, i.e., all the consecutive steps belong to
the same cluster will be in one chunk. The classification approach
is suitable when real-time chunking is needed, as it only requires
the knowledge of a number of prior steps, whereas the clustering
may work better in post-hoc analysis as the global knowledge of all
the steps may help produce higher quality clustering.

The boundary between chunks may not always be clear-cut.
There can be a transition between two groups of actions, and the
steps within such transitions are better served with probabilities
of belonging to either of the chunks. Chunking can also be hier-
archical due to the hierarchical nature of analysis task. For exam-
ple in stock analysis, steps belonging to price trend analysis can
be separated from company performance comparisons. Within the
latter, steps related to company financial status can be separated
from those pertaining to company executive track records. Such
sub-divisions can be recursive and have multiple levels.

Existing works related to chunking, such as those discussed in
Section 7.4.2, often link to the graphical and multi-layer nature
of provenance data. It is possible that these properties can be ex-
ploited to improve chunking performance. The report from the re-
cent Dagstuhl Seminar on Provenance [FJKTX19b] contains a sec-
tion on this topic (“Machine Learning and Provenance in Visual
Analytics”).

10.4. Provenance Standard and Cross-Tool Integration

Most of the techniques and systems reviewed here contain some
provenance format that is specifically designed for the tool and/or
analysis need. However, real-world analysis is rarely completed
within a single tool or with a single dataset. Instead, it often in-
volves integrating provenance data from multiple tools, requiring
a provenance data format that is compatible with a wide range of
tools. This is currently not possible, and leads to the need for a
common standard that supports provenance capturing from multi-
ple applications, as well as inter-application provenance analysis.

Ideally, such a standard will accommodate the requirements of a
variety of use cases, such as those discussed in Section 6. It should
also support the diverse types of provenance information and meth-
ods for encoding them (as discussed in Section 7, including the

multi-layer structure of provenance. Finally, such a format must be
compatible with various downstream analyses, such as those dis-
cussed in Section 8.

There is likely to be a trade-off between compatibility and se-
mantic richness. At one end of this spectrum, provenance is cap-
tured as a screenshot, which makes it compatible with all visu-
alization systems. However, the amount of semantic information
that can be used for down-stream analysis is very limited. At the
other end of the spectrum, a provenance standard meets all of the
requirements discussed earlier and can store detailed descriptions
such as system state, data involved, and user actions and intentions.
These are valuable to down-stream analysis, but designing such a
rich standard that can accommodate different systems, data, and
user requirements presents difficulties.

This will be a challenging task, but essential and beneficial to
the entire field and the wider research community. Any progress
on this front will be valuable, encouraging new collaborations and
enabling new research. It can start with a simpler standard or a
set of related standards, or alternatively can build upon existing
standards, such as the provenance formats used by popular visual
analytics tools such as W3C PROV. Additionally, it may be use-
ful to learn from the experience of designing similar standards in
fields beyond visual analysis. This was also discussed at the recent
Dagstuhl Seminar on provenance, and the details are recorded in its
report [FJKTX19b].

11. Conclusion

In this survey, we present a systematic review of provenance-related
research in data visualization and visual analytics. Focusing on the
analysis of provenance data, we explore three primary questions:
(1) WHY analyze provenance data, (2) WHAT provenance data
to encode, and how to encode it, and (3) HOW to analyze prove-
nance data. However, the work in the paper provides only a nar-
row perspective of analytic provenance. As outlined by Ragan et
al. [RESC15] the field of provenance extends beyond meta-analysis
and encompasses other goals such as collaborative communication
and presentation.

Beyond visualization, the analysis of user interaction is an active
area of research in a variety of domains such as Artificial Intelli-
gence, Machine Learning, Databases, and Human-Computer Inter-
action. The body of work in this manuscript reveals a clear trend
of adapting and extending knowledge from other fields. For ex-
ample, a large portion of the literature employed either machine
learning, dimensionality reduction, or even signal processing tech-
niques. These techniques are essential to the provenance analysis
innovation, and the research development in these fields can bring
considerable improvement to provenance analysis. Similarly, as de-
tailed in Section 7, there are many types of provenance data that we
can collect, ranging from sequence and scripts to graphs and im-
ages. Storing and managing such data can be an issue (e.g., Glass-
box), and specialized methods are often required from other fields
for their analysis.

Looking forward, capturing and examining provenance data
holds the potential to realize many of the untapped capabilities of
visualization systems, such as expanding its role in data science and
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contributing to the current problems in other fields such as explain-
able AI. It will be beneficial for the provenance community to ex-
pand collaboration across disciplines, increase the awareness of the
provenance literature, and jointly develop new techniques that can
be applied to provenance analysis. There is much work ahead for
the visualization community, and we detail some of these research
opportunities in Section 10. We hope that this report will serve as a
central resource for researchers and inspires new investigations that
build on the surveyed literature.
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Table 1: The 105 articles we reviewed in terms of WHY, WHAT, and HOW to analyze provenance data. The table is sorted first by WHY and
then by WHAT. It shows single tags as well as more than one tag per category and paper as well as uncategorized ones, when no WHY,
WHAT, or HOW was applicable.
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Srinivasan et al. (2018) [SPEB18]
Setlur et al. (2016) [SBT∗16b]

Dabek and Caban (2016) [DC16]
Mutlu et al. (2016) [MVT16]

Chen et al. (2014) [CQW∗14]
Koch et al. (2014) [KBGE09]

Scheepens et al. (2015) [SMvdWvW15]
Shrinivasan and van Wijk (2009) [SvW09]

Gotz and Wen (2009) [GW09]
Endert (2014) [End14]

Endert et al. (2012) [EFN12a]
MacInnes et al. (2010) [MSW10]

Boukhelifa et al. (2013) [BCBL13]
Endert (2015) [ECNZ15]

Ottley et al. (2019) [OGW19]
Gotz et al. (2016) [GSC16]

Healey and Bennis (2012) [HB12]
Hu et al. (2019) [HBL∗19]

Correll and Gleicher (2016) [CG16]
Setlur et al. (2019) [STD19]

Steichen et al. (2014) [SCC14]
Guo et al. (2019) [GDM∗19]

Wang et al. (2014) [WCW∗14]
Lee et al. (2019) [LDH∗19]

Ceneda et al. (2019) [CGM19]
Ragan et al. (2015) [RESC15]

Micallef et al. (2017) [MSM∗17]
Wegba et al. (2018) [WLLW18]

Toker et al. (2014) [TSG∗14]
Steichen and Conati (2013) [SCC13]

Khan and Nandi (2019) [KN19]
Sacha et al. (2018) [SKB∗18]

Walch et al. (2019) [WSL∗19]
Dextras-Romagnino and Munzner (2019) [DM19]

Ren et al. (2019) [RLB19]
Bors et al. (2019) [BGM19]

Shadoan and Weaver (2013) [SW13]
Gomez and Laidlaw (2012) [GL12]

Liu et al. (2017) [LWD∗17]
Smuc et al. (2009) [SML∗09]

Bylinksii et al. (2017) [BKO∗17]
Fröhler et al. (2016) [FMH16]

Blascheck et al. (2016) [BJK∗16]
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Table 1: The 105 articles we reviewed in terms of WHY, WHAT, and HOW to analyze provenance data. The table is sorted first by WHY and
then by WHAT. It shows single tags as well as more than one tag per category and paper as well as uncategorized ones, when no WHY,
WHAT, or HOW was applicable.

WHY WHAT HOW

A
da

pt
iv

e
Sy

st
em

s
E

va
lu

at
io

n
of

Sy
st

em
s

an
d

A
lg

or
ith

m
s

M
od

el
St

ee
ri

ng
an

d
A

ct
iv

e
L

ea
rn

in
g

R
ep

lic
at

io
n

R
ep

or
tG

en
er

at
io

n

U
nd

er
st

an
di

ng
th

e
U

se
r

G
ra

m
m

ar

G
ra

ph

M
od

el

Se
qu

en
ce

C
la

ss
ifi

ca
tio

n
M

od
el

s

Pa
tte

rn
A

na
ly

si
s

Pr
ob

ab
ili

st
ic

M
od

el
s

/
Pr

ed
ic

tio
n

Pr
og

ra
m

Sy
nt

he
si

s

In
te

ra
ct

iv
e

V
is

ua
lA

na
ly

si
s

Moritz et al. (2015) [MHHH15]
Wongsuphasawat et al. (2016) [WMA∗16]

Muthumanickam et al. (2016) [MVCJ16]
Hoque et al. (2018) [HSTD18]

Weaver (2009) [Wea09]
Ferreira et al. (2013) [FPV∗13]

Kadivar et al. (2009) [KCD∗09]
Shrinivasan et al. (2009) [SGL09]
Schlinder et al. (2013) [SWR∗13]

Kwon et al. (2017) [KKW∗17]
Bradel et al. (2014) [BNHL14]

Pezzotti et al. (2015) [RWF∗13b]
Brown et al. (2012) [BLBC12]
Endert et al. (2012) [EFN12a]

Cook et al. (2015) [CCI∗15]
Kunkel et al. (2017) [KLZ17]

Kim et al. (2016) [KCPE16]
Fuchs et al. (2009) [FWG09]

Brown et al. (2014) [BOZ∗14]
Cavallo and Demiralp (2018) [CD18]

Ribicic et al. (2013) [RWF∗13a]
Hossain et al. (2012) [HOG∗12]
Sherkat et al. (2018) [SNMM18]

Gao et al. (2015) [GDA∗15]
Hottelier et al. (2014) [HBR14]

Callahan et al. (2006) [CFS∗06]
Rübel and Bowen (2018) [RB18]

Kandel et al. (2011) [KPHH11]
Chung et al. (2010) [CYM∗10]

Gotz et al. (2017) [GSC∗17]
Xu et al. (2018) [XBL∗18]

Loorak et al. (2018) [LTC18]
Smith et al. (2018) [SLMK18]

Stitz et al. (2019) [SGP∗19]
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Mathisen et al. (2019) [MHK∗19]
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Choe et al. (2015) [CLs15]
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Table 1: The 105 articles we reviewed in terms of WHY, WHAT, and HOW to analyze provenance data. The table is sorted first by WHY and
then by WHAT. It shows single tags as well as more than one tag per category and paper as well as uncategorized ones, when no WHY,
WHAT, or HOW was applicable.
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Willett et al. (2013) [WGS∗13]
Bors et al. (2019) [BWD∗19]
Wall et al. (2018) [WDC∗18]

Liu et al. (2017) [LKD∗17]
Cho et al. (2017) [CWK∗17]
Blascheck (2018) [BVV∗18]

Dou et al. (2009) [DJS∗09]
Boukhelifa (2019) [BBT∗19]
Guo et al. (2015) [GGZL15]

Feng et al. (2019) [FPH19]
Battle and Heer (2019) [BH19]
Nguyen et al. (2018) [NTA∗18]

Wei et al. (2012) [WSSM12]
Blascheck et al. (2016) [BBB∗16]

Toker et al. (2017) [TLC17]
Yu and Silva (2020) [YS20]

Mannino and Abouzied (2019) [MA19]
Kodagoda et al. (2013) [KAW∗13]

Madanagopal et al. (2019) [MRB19]
Kondo and Collins (2014) [KC14]
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New York, NY, 2017, pp. 1–5. URL: https://doi.org/10.1007/
978-1-4899-7993-3_80747-1, doi:10.1007/978-1-4899-
7993-3_80747-1. 2

[CFS∗06] CALLAHAN S. P., FREIRE J., SANTOS E., SCHEIDEGGER C. E.,
SILVA C. T., VO H. T.: Vistrails: visualization meets data management. In
Proceedings of the 2006 ACM SIGMOD international conference on Man-
agement of data (2006), pp. 745–747. 5, 10, 19

[CG16] CORRELL M., GLEICHER M.: The semantics of sketch: Flexibility
in visual query systems for time series data. In 2016 IEEE Conference on
Visual Analytics Science and Technology (VAST) (Oct. 2016), pp. 131–140.
ISSN: null. doi:10.1109/VAST.2016.7883519. 7, 12, 18

[CGM∗17] CENEDA D., GSCHWANDTNER T., MAY T., MIKSCH S.,
SCHULZ H.-J., STREIT M., TOMINSKI C.: Characterizing Guidance in Vi-
sual Analytics. IEEE Transactions on Visualization and Computer Graphics
23, 1 (Jan. 2017), 111–120. doi:10.1109/TVCG.2016.2598468. 5

[CGM19] CENEDA D., GSCHWANDTNER T., MIKSCH S.: A Review of
Guidance Approaches in Visual Data Analysis: A Multifocal Perspective.
Computer Graphics Forum 38, 3 (2019), 861–879. URL: https://onli
nelibrary.wiley.com/doi/abs/10.1111/cgf.13730, doi:
10.1111/cgf.13730. 5, 18

[CLs15] CHOE E. K., LEE B., SCHRAEFEL M.: Characterizing Visualiza-
tion Insights from Quantified Selfers’ Personal Data Presentations. IEEE
Computer Graphics and Applications 35, 4 (July 2015), 28–37. doi:
10.1109/MCG.2015.51. 7, 10, 13, 19

[CQW∗14] CHEN Y. V., QIAN Z. C., WOODBURY R., DILL J., SHAW
C. D.: Employing a Parametric Model for Analytic Provenance. ACM
Trans. Interact. Intell. Syst. 4, 1 (Apr. 2014), 6:1–6:32. URL: http://do
i.acm.org/10.1145/2591510, doi:10.1145/2591510. 8, 12,
13, 18

[CvW18] CAPPERS B. C., VAN WIJK J. J.: Exploring Multivariate Event
Sequences Using Rules, Aggregations, and Selections. IEEE Transactions
on Visualization and Computer Graphics 24, 1 (Jan. 2018), 532–541. doi:
10.1109/TVCG.2017.2745278. 12, 19

[CWK∗17] CHO I., WESSLEN R., KARDUNI A., SANTHANAM S.,
SHAIKH S., DOU W.: The Anchoring Effect in Decision-Making
with Visual Analytics. In Proceedings of IEEE Conference on Vi-
sual Analytics Science and Technology (Oct. 2017). URL: ht
tps://ieeexplore.ieee.org/document/8585665, doi:10.
1109/VAST.2017.8585665. 6, 12, 20

[CYM∗10] CHUNG H., YANG S., MASSJOUNI N., ANDREWS C., KANNA
R., NORTH C.: Vizcept: Supporting synchronous collaboration for con-
structing visualizations in intelligence analysis. In 2010 IEEE Symposium
on Visual Analytics Science and Technology (2010), IEEE, pp. 107–114. 9,
13, 19

[DC16] DABEK F., CABAN J. J.: A Grammar-based Approach for Model-
ing User Interactions and Generating Suggestions During the Data Explo-
ration Process. IEEE Transactions on Visualization and Computer Graph-
ics (Jan. 2016). URL: https://www.ncbi.nlm.nih.gov/pubme
d/27514057, doi:10.1109/TVCG.2016.2598471. 8, 10, 11, 12,
18

[DFAB03] DIX A., FINLAY J., ABOWD G. D., BEALE R.: Human-
Computer Interaction, 3 edition ed. Prentice Hall, Harlow, England ; New
York, Sept. 2003. 2

[DHRL∗12] DUNNE C., HENRY RICHE N., LEE B., METOYER R.,
ROBERTSON G.: Graphtrail: Analyzing large multivariate, heteroge-
neous networks while supporting exploration history. In Proceedings of
the SIGCHI conference on human factors in computing systems (2012),
pp. 1663–1672. 10

[DJS∗09] DOU W., JEONG D. H., STUKES F., RIBARSKY W., LIPFORD
H. R., CHANG R.: Recovering Reasoning Processes from User Interactions.
IEEE Computer Graphics and Applications 29, 3 (May 2009), 52–61. doi:
10.1109/MCG.2009.49. 4, 6, 11, 13, 14, 15, 20
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