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Fig. 1: Car Equipped with LiDAR - Example Scenario

that could use cost effective equipment and return reliable
results are very much sought after.

The majority of pedestrian recognition approaches are based
on camera systems because of their high-resolution, the eas-
ily classifiable information they provide (like shape, colour,
brightness), and their availability in vehicles, which already
use them for multiple other purposes, like lane-assist systems
and dashcams. However, these methods increase in complexity
and requirements with the increase in demands like spatial
positioning and 24/7 availability.

LiDAR (Light Detection and Ranging)-based systems pro-
vide cost-efficient and simple solutions to issues left unre-
solved by image processing. LiDARs are systems that emit
layers of lasers with high-directivity that reflect on all sur-
rounding objects and return information about their relative
distance and material properties as illustrated in Figure 1.
These aspects make LiDARs extremely suitable for pedestrian
recognition applications in intelligent vehicles, where correct
distance estimation is an important parameter for collision
avoidance.

Abstract—The advent of driverless and automated vehicle 
technologies opens up a new era of safe and comfortable 
transportation. However, one of the most important features that 
an autonomous vehicle requires, is a reliable pedestrian detection 
mechanism. Many solutions have been proposed in the literature 
to achieve this technology, ranging from image processing al-
gorithms applied on a camera feed, to filtering L iDAR scans 
for points that are reflected o ff p edestrians. To t his e xtent, this 
paper proposes a machine learning-based pedestrian detection 
mechanism using a 16-layer Velodyne Puck LITE LiDAR. The 
proposed mechanism compensates for the low resolution of the 
LiDAR through the use of linear interpolation between layers, 
effectively introducing 15 pseudo-layers to help obtain timely 
detection at practical distances. The pedestrian candidates are 
then classified u sing a  S upport Vector M achine ( SVM), a nd the 
algorithm is verified by accuracy testing using real LiDAR frames 
acquired under different road scenarios.

Index Terms—pedestrian detection, LiDAR, interpolation, ve-
hicular networks, Support Vector Machine, Velodyne.

I. INTRODUCTION

The significant advancements in sensor, perception and on-
board computation technologies has resulted in the rapid de-
velopment of autonomous vehicles aiming at increasing human
life quality by decreasing the number of traffic a ccidents and
reducing the traffic jams. However, one of the major challenges
when it comes to autonomous driving networks, is dealing
with different uncertainties (e.g., pedestrian/objects detection,
emergency braking, etc.). The autonomous vehicles need to be
able to identify the surrounding environment and provide an
accurate, reliable and quick response to various situations [1]. 

Over the years, pedestrian detection algorithms have
evolved, ever-increasing in complexity and requirements in
order to overcome limitations and achieve great accuracy.
Advancements in autonomous vehicles and the advent of
Intelligent Transportation Systems have increased demand for
fail-proof systems that can pinpoint pedestrians in all kinds of
driving conditions. Whatever the method used, the algorithms
that reached peak accuracy and versatility are understandably 
either very complex, very expensive, or both, making them
unattractive for car manufacturers. As such, simple algorithms



This paper proposes a new method for achieving pedestrian
detection using low-resolution equipment complemented by
simple processing techniques. The system uses a 16-layer
Velodyne Puck LITE LiDAR and an algorithm rooted in
linear interpolation for data pre-processing and Support Vector
Machine (SVM) for classification.

The rest of the paper is divided as follows: Section II
explores related work on this topic, Section III provides an
overview of the system, then offers an in-depth look into its
work-flow, Section IV is focused on a discussion based on the
technique’s results, and Section V brings our conclusions and
insights for future work.

II. RELATED WORK

In the research literature, there are several approaches pro-
posed that aim at achieving object classification and pedestrian
detection and tracking using LiDAR technology, some of
which will be summarised below. The common challenge
researchers face when designing such a system is the op-
timisation of the trade-off between the pre-processing part,
where data is filtered, and the classification model used. Both
components, if poorly chosen and configured, can induce
undue latency, create a large processing load, or increase
the costs of implementation. The LiDAR’s specifications also
play an important role in the complexity and limitations of
the proposed algorithms and their use-cases. High-resolution
LiDARs provide large amounts of data per each scan, which
requires more processing power to work with to avoid slowing
down the algorithm. They are also more expensive.

Ogawa et al. [2] used DENSO’s in-vehicle high-resolution
LiDAR to capture point clouds, which were then clustered
according to the points’ position and reflection intensity. The
authors also propose a tracking method using an Interactive
Multiple Model filter. The pedestrian objects are identified
using a Bayesian Classifier. The algorithm has a high accuracy
for obstacle detection, before classification, and it obtains
better results for long-distance detection than camera-based
techniques. However, there is a drop in accuracy after classi-
fication due to the weak classification algorithm.

Lin et al. [3] used a 64-layer Velodyne LiDAR to distinguish
pedestrian and vehicle objects. The candidate objects are
extracted by subtracting the previously obtained background
point cloud from the object-populated point cloud. The points
are then clustered together and an eight elements long feature
vector is formed to train a Support Vector Machine. The algo-
rithm returns excellent results for linearly separable feature
vectors, but a previously acquired background scan is not
always feasible in driving scenarios. Similarly, Kidono et al.
[4] used a 64-layer Velodyne LiDAR and a nine elements long
features vector, including the distribution of reflection intensity
and an innovative slicing feature. The data is classified using a
Support Vector Machine, obtaining good classification results.

Kunisada et al. [5] proposed a pedestrian detection
method using one-dimensional Convolutional Neural Net-
works (CNN), in which the approach is to decide whether
each individual point is part of a pedestrian object, instead

of first clustering points together and passing clusters through
classifiers. This work evaluates the distance information ob-
tained from each virtual Velodyne VLP-16 LiDAR layer as a
1D waveform, and feeds the concatenation of all 16 waveforms
into a CNN, obtaining good accuracy for classification at very
low latency. The method manages to avoid the problem of
conventional approaches that use distance-based clustering,
which is that two objects would be clustered together as an
individual object because they were too close to each other.
However, to achieve this performance, the algorithm requires
significant processing power.

While the LiDAR provides excellent ranging, reflectance
information and day-long availability, it does not supply
enough deterministic information for some classifiers to re-
liably identify pedestrians. For this reason, research has been
carried out to develop joint camera and LiDAR systems
that harness the advantages of both devices to obtain better
accuracy results in a variety of driving scenarios. Jun et al.
in [6] and [7] proposed a camera and LiDAR fusion method
in which pedestrian detection is achieved in three stages:
LiDAR subsystem, in which a Velodyne HDL-64E LiDAR
is used to capture point clouds that are further filtered using a
sliding window mechanism scanning across the ground plane,
a camera subsystem where image features are extracted and
scored, then finally a fusion subsystem that gives a final
decision based on the results of both subsystems. Another
approach was put forward by Melotti et al. [8] who studied
the use of CNN to identify pedestrians using LiDAR-generated
depth and reflectance maps. The authors implemented a binary
classification algorithm using early and late fusion strategies
in CNN and concluded that these fusion schemes greatly
increase detection accuracy between the ”pedestrian” and
”non-pedestrian” classes.

Yamamoto et al. [9] studied the use of the Active Scan
LiDAR to leverage its ability to control the direction of its
lasers in order to develop an algorithm that first estimates a
pedestrian candidate’s position, then uses those coordinates
to concentrate the LiDAR’s lasers on the object, obtaining a
dense point cloud to classify. However, the paper does not
present a method for accurate pedestrian detection.

III. PEDESTRIAN DETECTION ALGORITHM

A. Overview

An overview of the proposed pedestrian detection algorithm
is depicted in Figure 2. The model is split into several
functional components: (1) LiDAR Measurements - LiDAR
data is acquired and usually represented by a cloud of 3D
points dense enough to provide the shapes of the surrounding
environment (e.g., cars, pedestrians, objects, curbs, etc.); (2)
the pre-processing block - where the LiDAR point cloud is
clustered, filtered and interpolated, and (3) the detection block
- in which the feature vector is extracted and used to train a
Support Vector Machine classifier. A detailed explanation of
these functional blocks is given in subsequent subsections.



Fig. 2: Algorithm overview

B. Pre-processing

The pre-processing block focuses on extracting pedestrian
candidates from the point cloud measured by the LiDAR. The
block takes as input a frame of LiDAR data, where each
point is characterized by location data expressed in a three
dimensional Cartesian coordinates system with the point of
origin around the LiDAR. Additionally, the points contain
information about the intensity of the reflected laser light,
a parameter that depends on the material properties of the
reflective object.

In order to make sense of the data, the point cloud is
segmented into three classes: ego-vehicle points, ground points
and obstacle points. The ego-vehicle is extracted by removing
all the points in the close vicinity of the LiDAR corresponding
to the vehicle’s real dimensions. The ground points are the
points which are located below a certain elevation angle
difference threshold. The remaining points belong to obstacles.

The obstacle points have been clustered according to a given
minimum Euclidean distance. Furthermore, since the distance
between layers increases with the distance from the LiDAR,
the chosen minimum Euclidean distance used for clustering
needs to be at least equal to the maximum vertical distance
between two adjacent layers at the minimum detection range.
In other words, it needs to be large enough that all the points
from layers reflected off a single obstacle at the minimum de-
tection distance are clustered together. The minimum detection
range is defined as the distance necessary for the vehicle to
completely stop moving once a pedestrian appeared in front of

it. In order to obtain the minimum detection range, one must
consider the following:

• the ego-vehicle speed;
• the braking deceleration, which depends on the vehicle’s

characteristics and road conditions;
• the reaction time (processing time) of the algorithm.
Figure 3 illustrates the assumptions, limitations and logic

behind this process, where ω is the maximum angular reso-
lution between layers, a is the braking deceleration, v is the
vehicle’s speed, R is the minimum detection range, and d is
the minimum Euclidean distance for clustering.

Fig. 3: Detection limit scenario

Once distance-based clustering is applied, the obtained
clusters are filtered according to the number of points they
contain. The threshold is chosen as the number of points that
would normally be reflected off a pedestrian candidate object
that is R meters away from the vehicle.

Depending on the boundary conditions chosen for the exper-
iment, the resulting minimum Euclidean distance for clustering
may be unreasonably large due to the low vertical resolution of
the LiDAR. This may result in unreliable clustering, affecting
the reliability of the pedestrian detection algorithm. To fix
this issue, one can either impose new boundary conditions for
the experiment, i.e. have no objects within a d radius of the
pedestrians, or compensate through software improvement.

In order to preserve the minimum detection range needed for
collision avoidance and obtain accurate distance-based clus-
tering in reasonable conditions, this paper proposes linearly
interpolating the LiDAR layers as illustrated in Figure 4.

Fig. 4: Layer interpolation

This results in additional pseudo-layers which are placed at
half the distance between the real layers, effectively reducing



the minimum Euclidean distance needed for clustering by half.
The algorithm then applies distance-based clustering again on
the remaining point cloud using the new Euclidean distance
as a radius. Then, it filters the obtained clusters according to
the new number of points a pedestrian candidate object at the
distance R would reflect. Each cluster is then encapsulated in
a bounding box with corresponding height, length and width
to fit all its points.

C. Detection

The Detection block focuses on the training of a Support
Vector Machine model to classify the pedestrian candidates
identified in the pre-processing phase into two categories:
pedestrian and non-pedestrian. Each pedestrian candidate gets
described by a set of features which are defined in Table I.

TABLE I: Features selection

Feature Description

f1
Number of points on the pedestrian
candidate object

f2
Distance from the LiDAR to the
pedestrian candidate object

f3 Body proportion - Height/Length

f4 Body proportion - Height/Width

f5 Bounding box volume

f6
Mean of the distribution of points
intensities for the object

f7
Standard deviation of the distribution
of points intensities for the object

The SVM is a supervised machine learning model that
analyzes an object’s feature vector to classify it into two
different classes. In this case, the feature vector is defined
as fi = (f1, f2, f3, ...f7)

T , where i is an iterative index for
the pedestrian candidates. For training, individual frames of
LiDAR data are captured and filtered in the Pre-processing
phase of the algorithm, obtaining a corresponding number of
pedestrian candidates per frame. These are further labeled as
pedestrian or non-pedestrian with the help of a classifying
vector y, which contains values of +1 for the pedestrian class
and −1 for the non-pedestrian class for each observation.

Consequently, the decision boundaries are given by:

yi(ω · fi + b)− 1 = 0 (1)

where ω is a parameter used to describe the margin between
the two classes, and b is a real number.

In order to maximize the optimal margin between the
classes, the non-separable character of the feature vector has
been taken into consideration, resulting in a maximization
problem as defined below:

max
α

[∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjfi · fj

]
(2)

s.t. ∑
i

αiyi = 0 (3)

0 6 αi 6 C

where C is the box constraint, a parameter equal to the
maximum penalty for features that violate margins. In this
case, the SVM uses a soft margin, meaning that it will allow
some misclassification to happen in order to obtain a better
classification accuracy overall.

The Support Vector Machine separates the observations
in two classes with the help of a hyperplane, or a flat
affine subspace, bounded by the decision boundaries described
above. In cases where the chosen features do not clearly divide
the two classes, with many overlaps between observations, the
SVM can use kernel functions to describe the observations
in a higher dimensional feature space, where separation by a
hyperplane is feasible. There are many popular kernels, but for
this work, the Radial Basis Function (RBF) proved to greatly
increase accuracy.

IV. EXPERIMENTAL RESULTS

A. Implementation and evaluation

The algorithm has been developed using Matlab, running
on a machine using an Intel(R) Core(TM) i7-6700HQ @ 2.60
GHz CPU with 8 GB RAM, and Windows 10 Pro operating
system.

The proposed algorithm takes as input a frame of LiDAR
data, a point cloud structured in 16 layers of 1806 points each,
captured using a Velodyne Puck LITE installed on top of a
vehicle at the height of 1.8 meters. The device has a range of
100 meters, a 30° vertical field of view distributed amongst
the 16 layers, resulting in a 2° vertical angular resolution. The
horizontal angular resolution varies between 0.1° and 0.4°, and
the rotations frequency is equal to 10Hz, which translates into
10 frames per second. The captured frames are fed into the
Pre-processing block which extracts the pedestrian candidates.

Before the first filtering, the minimum detection range, R
has been determined by taking the following considerations
into account:

• the ego-vehicle moves at a maximum speed of 50 km/h;
• the braking deceleration is equal to 9.8 m/s2 [10];
• the reaction time (processing time) of the algorithm is at

most 1s, which is the average reaction time of a normal
driver attentive to the road, driving at the aforementioned
speed [11].

The resulting value for R in these conditions is 22 meters
and it serves as a reference distance at which to compute the
vertical distance between points belonging to two different
adjacent layers, previously defined as the minimum Euclidean
distance for clustering, d. This distance is equal to 0.76 meters.
As such, at this point in the algorithm, all the points belonging
to objects that are at least 0.76 meters apart are clustered
together. The resulting clusters are filtered according to the
number of points they have, in order to remove the outlier
data.



After the layer interpolation, the remaining data points are
clustered again, this time with a minimum Euclidean distance
of 0.38 meters, and filtered yet again.

Pedestrian candidates are extracted from the remaining
clusters. Here, a pedestrian candidate object is defined as a
cluster of points that is situated at a certain maximum height
above the ground level and would fit in a bounding box of the
following dimensions: 200x100x100cm.

For the purpose of this work, approximately 10,000 consec-
utive Velodyne Puck LITE LiDAR frames were recorded in
a busy intersection, near a school and a university, capturing
plenty of pedestrians passing by, as shown in Figure 5.

Fig. 5: LiDAR recording with four pedestrians in the frame.

Furthermore, to obtain a diverse range of non-pedestrian
objects, the Velodyne Puck sample data set [12] has been used,
with an additional 5,000 frames.

Out of these consecutive frames, 600 unique frames were
extracted to build a data set of different scenarios, with various
pedestrians and non-pedestrians.

Fig. 6: Average number of clusters per frame at different
filtering stages.

Figure 6 shows the effect of the filtering actions taken
in the Pre-processing block, illustrating the mean number of
clusters per frame at different stages. On average, 578 clusters
were formed according to a minimum Euclidean distance of

0.76 meters, out of which 48 were extracted after the first
filtering. After the layer interpolation, the remaining points
were clustered again with the Euclidean distance of 0.38
meters, resulting in 350 clusters. Out of the 28 clusters that
resulted after the second filtering, an average of 3 pedestrian
candidates were extracted per frame.

Figure 7 illustrates the effects of the filtering stages on the
point cloud, while Figure 8 shows the effect of the layers
interpolation on a couple of pedestrian candidates.

Fig. 7: Effects of the filtering stages on the point cloud.

(a) Before interpolation.

(b) After interpolation.

Fig. 8: Effects of the layer interpolation on pedestrian candi-
dates.

After passing the 600 frames through the Pre-processing
block, 1,610 pedestrian candidate were obtained. After remov-
ing duplicate objects, 1,015 pedestrian candidates remained
to train and test the Support Vector Machine, which were
distributed as shown in Table II.



TABLE II: Data set for SVM

Total Pedestrians Non-pedestrians
1015 518 497

The data set has been used to train and validate a Support
Vector Machine with and without RBF, using 5-fold cross-
validation. Additionally, the model has been validated using
random frames extracted from the original recordings, other
than the ones used to train and test the SVM. Table III shows
the resulting accuracy of the model with and without the
kernel, a comparison between the theoretical detection range
and the empirical range, and the expected processing time
versus the real processing time.

TABLE III: Results

Description Results
Accuracy of the model without RBF 91.53%

Accuracy of the model with RBF 95.86%

Theoretical detection range, R 22 m

Experimental detection range 21.54 m

Assumed processing time 1 s

Real processing time 3.1 s

B. Challenges
The main challenge with the proposed method is overcom-

ing the limitations imposed by the low-resolution LiDAR in
order to obtain a working algorithm, with a good detection
range, and low latency. This work introduces the use of linear
interpolation to reduce the requirement of minimum distance
between objects for correct identification and extraction. Thus,
the algorithm manages to detect singular objects 21.54 meters
away from the LiDAR, as long as there is no other object
within a 0.38 meters radius. Another way to put it is that
the method uses pseudo-layers as a means to connect the
distant real layers reflected off an object at the edge of the
detection range. However, it is worth mentioning that in some
instances this restriction is violated, because the interpolated
layers manage to connect layers belonging to two different
objects, thus allowing the algorithm to cluster them together.
Then, the resulting cluster gets dropped because it does not fit
in the bounding box dimensions, which could mean that the
model ignores some objects that do not respect the boundary
conditions.

Another challenge is minimising the processing time, which
could be done by running the model on machines that have bet-
ter specifications. The algorithm involves performing several
operations on large point clouds which can be computationally
taxing, so another direction would be optimising the code to
minimise the order of complexity. Furthermore, the model was
developed in Matlab, using interpreted code, which could be
a source of latency. Translating the algorithm into a compiled
language would reduce run time.

V. CONCLUSION

This paper proposed a method for achieving accurate pedes-
trian detection using a 16 layer LiDAR by compensating for
the device’s low resolution leveraging simple processing and
data manipulation techniques, such as linear interpolation and
distance-based clustering, to successfully extract pedestrian
candidates under reasonable constraining conditions. Exper-
iments have been run on point clouds captured using a Velo-
dyne Puck LITE LiDAR in a busy intersection, as well as the
Velodyne Puck Sample Data, from where diverse pedestrian
candidates have been extracted to train, test, and validate a
Support Vector Machine classifier, obtaining great accuracy.
The theoretical expectations for the detection range of the
system have been matched by empirical results, while the
algorithm’s shortcomings in latency are caused by the lack
of processing power of the host machine and the nature of the
development environment.

Further work includes experiments with larger data sets,
testing the system on high-performance machines, comparing
the performance of the proposed solution with others from the
industry or literature, and optimising the algorithm to minimise
latency and processing requirements.
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