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ABSTRACT 

Global health organizations have provided recommendations regarding exercise for the general 

population. Strength training has been included in several position statements due to its multi-

systemic benefits. In this narrative review, we examine the available literature, first explaining 

how specific mechanical loading is converted into positive cellular responses. Secondly, 

benefits related to specific musculoskeletal tissues are discussed, with practical applications 

and training programmes clearly outlined for both common musculoskeletal disorders and 

primary prevention strategies.   

 

KEY POINTS: 

 Strength training confers unique benefits to the musculoskeletal system in common 

disorders and in healthy people. 

 The application of mechanical loading must be specific in order to obtain the desired 

positive adaptation 

 Healthcare professionals should promote strength training among the general 

population due to its multi-systemic and specific musculoskeletal benefits 

 

 



1.0 Introduction 

The importance of strength with regard to athletic performance has been highlighted within 

recent reviews [1, 2]. The benefits of increasing muscular strength include a positive influence 

on rate of force development (RFD) and power [1, 3, 4], improved jumping [1], sprinting [5] 

and change of direction (COD) performance [6], greater magnitudes of potentiation [1], and 

enhanced running economy [7]. Strong evidence supports the notion that maximal strength 

serves as one of the key foundations for the expression of high power outputs and that 

improving and maintaining high levels of strength are of utmost importance to best capitalise 

on these associations [8-13].  

What appears to be discussed less so is the impact of strength training on musculoskeletal 

health. This is surprising given that within previous literature it has been highlighted that 

strength training can reduce acute sports injuries by one third, and overuse injuries by almost 

half [14]. Furthermore, strength training programmes appear superior to stretching, 

proprioception training, and multiple exposure programmes for sports injury risk reduction 

[14]. Malone et al. [15] found that players with a higher relative lower body strength (3 

repetition maximum [RM] trap bar deadlift normalised to bodyweight) had a reduced risk of 

injury compared to weaker players. In addition, stronger athletes had a better tolerance to both 

higher absolute workloads and spikes in load than weaker athletes. Despite its apparent 

effectiveness for the reduction of injury risk, there is still far less coverage regarding the 

positive effect of strength training on injury risk or occurrence within the scientific literature, 

which may be due to its poor integration within musculoskeletal rehabilitation [16] and primary 

prevention strategies for sports injuries [17, 18]. This is further limited by a poor understanding 

and knowledge of physical activity guidelines among healthcare professionals [19-21], which 

provides challenges for its integration into sports medicine practice. Indeed, it is not uncommon 

for healthcare professionals to recommend  “strengthening programmes” using 10 or more 

repetitions per set without a clear indication of the intensity adopted [22, 23]. Although most 

of resistance training modes have demonstrated improvements in strength  in inactive/untrained 

individuals during the first weeks [24], it must be pointed out that “strengthening programmes” 

and “strength training” are not the same; hence, they cannot be used interchangeably. 

Strength training is not an exclusive cornerstone of sports performance or injuries. The World 

Health Organization (WHO) has provided global recommendations for the general population 

relevant to the prevention of non-communicable diseases. They recommended at least 150 



minutes of moderate-intensity aerobic physical activity (3-5.9 metabolic equivalent tasks, 

METs)[25], with muscle strengthening activities involving major muscle groups on two or 

more days a week [230-233]. The biological principles underlying these global 

recommendations rely on the unique multi-systemic and multi-dimensional benefits of exercise 

[26] (see Figure 1), its inexpensive adoption, and natural human responsiveness [27]. To 

mention the most salient point, recent evidence showed that vigorous physical activity has 

potential anti-tumorigenic properties [28]. In fact, it is associated with larger reductions on all-

cause mortality [25] and cancer mortality [29, 30]. Specifically, resistance training alone was 

associated with 21% lower all-cause mortality [31]. Furthermore, patients with breast, 

colorectal, and prostate cancer involved in superior levels of exercise following cancer 

diagnosis, were associated with a 28-44% reduced risk of cancer-specific mortality, a 21-35% 

lower risk of cancer recurrence, and a 25-48% decreased risk of all-cause mortality [32, 33].  

In this narrative review, we focus on the available literature related to strength training and 

musculoskeletal health, with the aim of providing practical recommendations in line with best 

practice for healthcare professionals involved in orthopaedic and sports medicine. Clear 

prescription details will be outlined in order to foster the best possible biological adaptations 

and thus, facilitate the use of strength training within all populations. In doing so, we will first 

outline the key principles underpinning mechano-transduction to illustrate how the body 

converts mechanical loading into cellular responses, before finally providing evidence-based 

recommendations for the safe interdisciplinary application of strength training across different 

populations.  

 

** Insert Figure 1 about here ** 

 

2.0 Strength, mechano-transduction, and the neuroendocrine system 

Strength training has been shown to demonstrate a superior, dose-dependent and safe risk 

reduction strategy for acute and overuse sports injuries [34]. Information regarding the 

underpinning qualities of muscular strength development and the interaction of both cellular 

and metabolic processes in response to specific mechanical loading will first be discussed. 

Strength training’s wide application to improved musculoskeletal tissues, and its role in the 

regulation and prevention of systemic disorders will then be examined.  



2.1 Underpinning factors 

The development of muscular strength can be broadly divided into morphological and neural 

factors [10]. The maximal force generated by a single muscle fibre is directly proportional to 

its cross-sectional area (CSA) (number of sarcomeres in parallel) [35, 36], and by the muscle 

fibres’ composition [2, 9, 10, 37], specifically, type II fibres (IIa/IIx) have a greater capacity to 

generate power per unit of CSA, than the relatively smaller type I fibres. Architectural features 

such as longer fascicle length and the pennation angle also affect the force generating capacity 

of the muscle. Longer fascicle length allow more force production through an optimal length-

tension relationship [10]. The number of sarcomeres in series influences a muscle's contractility 

and the rate at which it can shorten. As pennation angle increases, more sarcomeres can be 

arranged in parallel, thus improving the muscle force generating capacity [10]. Greater 

pennation angles are more common in hypertrophied than in normal muscles. In regards to 

neural factors, the size principle dictates that motor unit (MU) recruitment is related to MU 

type, and that MUs are recruited in a sequenced manner based on their size (smallest to largest) 

[38]. Thus, the availability of high-threshold MUs is advantageous for higher force production. 

Furthermore, a higher rate of neural impulses (firing frequency) and the concurrent activation 

of multiple motor units (motor unit synchronization) enhance the magnitude of force generated 

during a contraction. These, together with an effective neurological system and inter-muscular 

coordination (i.e., appropriate magnitude and timing of activation of agonist, synergist, and 

antagonist muscles) permit maximal force production [2, 9, 10, 37, 39, 40]. The development 

of these specific features underpinning improved force capacity, is determined by the 

mechanical stimuli applied to the musculoskeletal system. Indeed, the musculoskeletal system 

not only enables locomotion and the transmission of forces for functional movements, but also 

provides protection to vital organs. Furthermore, the musculoskeletal system stores and 

secretes key substances (e.g., amino acids, glucose, myokines, ions, etc.) that regulate whole 

body metabolism [41, 42].  

Given their mechanical role, musculoskeletal tissues are capable of responding and adapting 

to mechanical forces via a process called mechano-transduction [43]. The body converts 

mechanical loading into cellular responses, which in turn, promotes structural changes in tissue 

mass, structure, and quality [44]. For example, an appropriate increase in mechanical loading 

of skeletal muscle results in an augmented skeletal muscle mass (i.e., increased CSA). The 

same rules apply for bone and tendon properties, which are in large part, dependent on skeletal 

muscle-derived mechanical loading [41]. Both acute and chronic mechanical stressors may 



temporarily compromise the body’s “allostasis”. This refers to the process by which the body 

responds to stressors and maintains homeostasis [45, 46], with the neuroendocrine system 

responsible for regulating the maintenance of an optimal catabolic/anabolic state. 

Dysregulation induced by allostatic overload has been associated with the breakdown of 

musculoskeletal tissues, inflammation [47, 48], and delayed tissue healing [49]. The 

neuroendocrine system plays an important role not only in acute exercise performance, but also 

in tissue growth and remodelling. Relevant to mechano-transduction, the endocrine system 

secretes hormones into the circulatory system that are generally categorised as catabolic, 

leading to the breakdown of muscle proteins (e.g., cortisol), or anabolic (e.g., testosterone), 

leading to the synthesis of muscle proteins [50]. Muscle protein synthesis, recovery, and 

adaptation are the results of the dynamic interaction between these anabolic and catabolic 

hormones [51]. Although several factors such as exercise selection, intensity and volume, 

nutritional intake and training experience appear to influence the acute testosterone response 

[50-52], it has been shown that compound exercises, such as weightlifting exercises, squats, 

and deadlifts, are capable of producing larger elevations of testosterone than isolation exercises 

[52-54]. Furthermore, programmes characterized by moderate load, high total volume load and 

short rest periods (i.e. hypertrophy schemes) may produce substantial elevations in total 

testosterone; thus, reinforcing the importance of specific exercise prescription in order to reach 

the targeted physiological adaptation [51, 52]. Similarly, increases in acute cortisol levels tend 

to be influenced by high volume programs, and not by typical strength training protocols [51, 

55], thus altering the testosterone/cortisol ratio [56, 57].  

Understanding the coupling of the mechanical stimuli into molecular responses appears vital 

for regenerative medicine applied to musculoskeletal disorders and for primary prevention 

strategies in a wide range of health issues and medical specialties. Mechanical forces may be 

manipulated in such a way that maximise the positive body responses within a predictable 

physiological timeframe, and the next section includes relevant information for 

interdisciplinary care.  

 

3.0 Multi-systemic benefits 

Physical inactivity increases the risk of type 2 diabetes, cardiovascular diseases (CVD), colon 

cancer, postmenopausal breast cancer, dementia, and depression [58-60]. Furthermore, 

physical inactivity is associated with abdominal adiposity, which may carry the detrimental 



effects of visceral fat and persistent systemic low grade inflammation [61, 62]. It is suggested 

that the skeletal muscles counteract the harmful effects of inactivity via release of specific 

myokines, such as myostatin, leukemia inhibitory factor (LIF), interleukin (IL)‑6, IL‑7,  brain-

derived neurotropic factor (BDNF), insulin-like growth factor 1 (IGF‑1), fibroblast growth 

factor 2 (FGF‑2), follistatin-related protein 1 (FSTL‑1) and irisin [63]. Therefore, contracting 

skeletal muscles may be capable of releasing protective factors into the circulatory system 

during exercise. This may then mediate metabolic and physiological responses in other organs, 

such as the adipose tissue, liver, the cardiovascular system, and the brain [63].  Increased 

energy expenditure via resistance training can lead to a decrease in abdominal fat and 

specifically visceral fat, improving the catabolism and hydrolysis of very low-density 

lipoprotein-triglycerides [61]. These changes in body composition decrease inflammatory 

products; thus, reducing the risk of developing multiple associated chronic diseases such as 

type 2 diabetes and CVD [31]. Furthermore, resistance training improves mitochondrial 

function in skeletal muscles, oxidative and glycolytic enzyme capacity, and glucose 

homeostasis; thus, leading to decreased blood glucose [64] and improved type 2 diabetes 

symptoms [31, 61]. Also, resistance training is associated with reduced treatment side effects 

in cancer patient [33, 65, 66]. The anti-tumorigenic effects of exercise appear to be related to 

the suppression of cancer cells growth, restriction of inflammatory signalling pathways in 

myeloid immune cells, and regulation of acute and chronic systemic inflammatory responses 

[28, 67, 68].  

Further benefits of resistance training include a reduction in anxiety (overall mean effect ∆ = 

0.31) [69] and depressive symptoms, with a moderate effect size of 0.66 (95% CI = 0.48-0.83) 

[70, 71]. Mental health benefits may be underpinned by the social interactions typically 

experienced during exercise and by the positive expectations toward exercise [72]. However, 

alterations in the hypothalamic pituitary adrenal (HPA) axis and in the neural circuitry involved 

in affective, behavioural, and cognitive processes have been documented in anxiety and 

depression-related disorders [73]. Although still speculative, strength training may affect the 

HPA axis through modulation of cortisol activity [74] and may have antidepressant effects 

through circulation of neurotrophins such as brain-derived neurotrophic factor (BDNF) [26] 

and growth factors such as the insulin-like growth factor (IGF-1) [75]. Considering that sleep 

disturbance is one of the cardinal symptoms of depressive illness, it is not surprising that 

chronic resistance training in isolation also improves subjective sleep quality and day-time 

function, with moderate-to-large effect sizes [76].  



Furthermore, there is strong evidence that exercise, including strength training, delivered 

within a biopsychosocial approach, is effective for musculoskeletal pain [77-79]. From a 

neurobiological perspective, it can strengthen central pain inhibitory pathways and the immune 

system response to potentially nociceptive stimuli [80-85].  

In regard to coronary heart disease, progressive resistance training provides improvement in 

cardiorespiratory function comparable to aerobic training alone. When combined, they offer 

more substantiated improvements in both fitness and strength [86]. Resistance and aerobic 

training seem to increase the number of a specific subset of stem cells, broadly referred as 

circulating angiogenic cells (CAC). This enhances the vascular endothelium regeneration and 

angiogenesis; thus, improving myocardial perfusion and lowering the risk of cardiovascular 

diseases [26, 87]. Also, systolic and diastolic blood pressure may significantly be lowered by 

dynamic and isometric resistance training [88].  

 

3.1 The effect of strength training on cartilage health 

The connective tissue that lines the ends of bones in all diarthrodial joints is called articular 

cartilage. Its role is to support and distribute forces generated during joint loading [89]. The 

articular surface is covered with hyaline cartilage, which is avascular, firm, yet pliable. It adapts 

its structure under forces but may recover its original shape on the removal of such forces. Of 

note, the ability of cartilage to repair is somewhat limited, which is mainly the result of its 

avascularity [90]. Differences in cartilage morphology between individuals cannot be readily 

explained by variability in mechanical loading history. It seems that mechanical stimulation 

does not play a significant role in cartilage regulation, with evidence to suggest that cartilage 

thickness is strongly determined by genetics [91]. Although it has been demonstrated that 

immobilisation reduces cartilage thickness (range 5-7%) [92], the adaptive functional ability 

of human cartilage in relation to exercise does not seem to be linear [91]. Interestingly, 

Hudelmaier et al. [93] found that thigh muscle CSA (which is a modifiable factor) is a good 

and independent predictor of cartilage morphology in both young and elderly adults. Similarly, 

Ericsson et al. [94] showed that lower thigh muscle strength four years after partial 

meniscectomy was associated with more severe radiographic osteoarthritis (OA) in the medial 

tibiofemoral compartment of the operated and the contralateral knee eleven years later, 

suggesting that muscle strength can help to preserve joint integrity. 



For years, changes in the articular surface have been erroneously deemed the only cause of 

symptoms of patients suffering of OA. Compelling evidence shows the coexistence of multiple 

comorbidities such as obesity, cardiovascular diseases, diabetes, and metabolic syndrome in 

OA patients [21, 95]. Metabolic disturbances, chronic low-grade inflammation, and vascular 

endothelial dysfunction appear to be important factors in OA development and progression 

[21, 96]. Consistent with these findings, a negative correlation between knee cartilage volume 

and the concentration of circulating inflammatory cytokines, such as IL‑ 6 and TNF, as well as 

C‑reactive protein (CRP) has been demonstrated [95]. Therefore, contemporary evidence 

frames the definition of OA within a biopsychosocial model, in which multi-dimensional 

aspects modulate inflammatory processes and tissue sensitivity [97, 98]. Among these potential 

factors, recent reviews stated that knee extensor muscle weakness is a risk factor for knee OA 

[98, 99]. Segal et al. [100] found that thigh muscle strength did not predict incident 

radiographic, but did predict incident symptomatic knee OA. In contrast, Thorstensson et al. 

[101] showed that reduced functional performance in the lower extremity predicted 

development of radiographic knee OA 5 years later among people aged 35-55 with persistent 

knee pain and normal radiographs at baseline. Pietrosimone et al. [102] found that higher levels 

of quadriceps strength correlated with higher physical activity in knee OA patients (r = 0 .44; 

r2 = 0.18).  

Clinical guidelines for knee OA recommend strength training as one of the key elements of 

OA management [98, 103]. Indeed, the systematic review and meta-analysis conducted by Juhl 

et al. [104] showed that more pain and disability reduction occurred with quadriceps specific 

exercise than general lower limb exercise (standardized mean difference [SMD] 0.85 versus 

0.39, and 0.87 versus 0.36, for pain and disability respectively). Strength training should be an 

integral component of OA management together with education, weight loss, increase of lean 

mass, and improvement of aerobic capacity [103]. Beyond the aforementioned benefits on pain 

and disability levels, Bricca et al. [105] showed that loading the knee joint (via strength 

training) was safe and provided no detrimental effects for articular cartilage in people at 

increased risk of, or with knee OA. Although the dosage is still unclear [106], potential 

beneficial mechanisms may be related to stiffening of the pericellular and inter-territorial 

matrix in response to dynamic loading [107], increased cartilage volume and 

glycosaminoglycan [105], and the protective role of muscle strength against cartilage loss 

[108]. 

 



3.2 The effect of strength training on bone health  

Bone tissue regulates metabolic demands on the skeleton largely through calciotropic 

hormones (vitamin D3, parathyroid hormone, and calcitonin) [109]. Secondly, it maintains the 

structure needed to withstand daily loading. These structural functions are determined by 

genetic factors as well as adaptation mechanisms to the loading environment, which are 

mediated by osteoprogenitor cells, including stromal cells, osteoblasts, and osteocytes [110, 

111]. Osteocytes are believed to be the critical mechanical sensor cells. Their stimulation 

cannot be derived directly from matrix deformation, as the required magnitude of strains is so 

high that it would cause bone fracture [112, 113]. Therefore, it appears that mechanical loading 

induces the dynamic flow of the pericellular interstitial fluid in the lacunar-canalicular system. 

This seems to contribute significantly to osteocyte mechanotransduction and bone remodelling 

process [114].  

Improved bone tissue mass provides higher structural strength and better protection against 

fractures [91]. Hence, failure to maintain a positive bone adaptation needed to withstand daily 

loading might be used to define osteoporosis [110]. Indeed, according with Wolff’s Law, a 

sufficient stimulus needs to be applied to the bone tissue to promote a specific magnitude of 

positive adaptation [115]. Contrary to societal misconceptions, bone responds positively to 

mechanical loads that induce high-magnitude strains at high rates or frequencies [116-118]. 

Indeed, despite being common advice from healthcare professionals, data showed that regular 

walking has no significant effect on preservation of bone mineral density (BMD) at the spine 

in postmenopausal women [119]. In contrast, Watson et al. [120] demonstrated the superior 

benefits of high-intensity resistance and impact training (HiRIT) compared to a low-intensity 

exercise program (10-15 repetitions at < 60% 1RM) in post-menopausal women with 

osteopenia and osteoporosis. Specifically, after a first month of safe transition and 

familiarization, a supervised HiRIT program was completed over an 8-month period, twice-

weekly, for 30-minutes. Resistance exercises included compound movements such as a 

deadlift, overhead press, and back squat, performed in 5 sets of 5 repetitions at an intensity of 

80-85% 1RM. Impact loading was applied via jumping chin-ups with drop landings. HiRIT 

was significantly (p≤0.001) superior compared to the control group for lumbar spine BMD 

(+2.9% ± 3.0% for exercise group versus –1.2% ± 2.3% for control; 95% CI 2.1% to 3.6% 

versus –1.9% to –0.4% ) and femoral neck BMD (+0.1% ±2.7% versus –1.8% ± 2.6%; 95% 

CI –0.7% to 0.8% versus –2.5 to –1.0%)  and physical function (lumbar and back extensor 

strength, timed up-and-go test, 5 times sit to stand test, functional reach test, and vertical jump). 



Furthermore, it did not increase the risk of vertebral fracture, and had a clinically relevant 

improvement in thoracic kyphosis [121]. Similar results have been reported in a meta-analysis 

including 1769 postmenopausal women [122]. Combined resistance and impact training (i.e. 

jumping, skipping, hopping) are estimated to promote clinically significant gains (almost 1.8 

and 2.4%) in hip and spine BMD in postmenopausal women [122]. Considering that in the first 

few years after menopause women lose up to 5% of bone mass annually, smaller changes may 

be considered a valuable result to counteract the decline in bone mass during the aging process 

[123]. This further highlights the effectiveness of progressive resistance training combined 

with high-impact or weight-bearing exercises in increasing BMD at the femoral neck and 

lumbar spine. The cumulative body of evidence shows that the greatest skeletal benefits to the 

spine and hip are provided by progressive resistance training [124, 125] and can be achieved 

with high magnitude of loading (around 80-85% 1 RM), performed at least twice a week, 

targeting large muscles crossing the hip and spine through multi-joint movements (e.g. squats 

and deadlifts) [126, 127]. Such intervention may show positive changes after 4 or 6 months, 

although greater magnitudes are expected when the intervention is continued for more than 1 

year. Progressive resistance training, combined with weight-bearing impact training, can be 

implemented among different populations, with men and premenopausal women showing 

consistently positive adaptations [123, 128-130]. 

The transition from childhood to adolescence is critical for bone mineral accrual. During this 

phase, growth hormone (GH) and insulin-like growth factor-I (IGF-I) are major contributors 

to bone growth [131]. Participation in sports that emphasize weight-bearing, high-impact and 

multiplanar-impact (e.g., soccer and racquet games) exercises promote peak bone mass and 

geometry [132]. Exposure to mechanical loading has substantial benefits not only in youth. It 

also appears to translate to greater bone strength over a lifetime [133], with consequent reduced 

risk of fracture, as well as potential delay in osteoporosis development [134]. Consistently, 

research has showed that youth athletes exposed to high or unusual impact weight-bearing 

sports with rapid rates of loading have superior bone mass at loaded skeletal sites compared to 

non-athletes or athletes in non-weight-bearing or lower impact sports [127]. For example, 

Courteix et al. [135] found that elite pre-pubertal female gymnasts displayed significantly (p 

≤0.05) higher BMD at mid-radius (+15.5%), distal radius (+33%), L2-4 vertebrae (+11%), 

femoral neck (+15%) and Ward's triangle (+15%) than swimmers and active peers. This further 

reinforces how bone mineral accrual responds positively to physical activity and specific sites 

of impact loading. Collectively, the available data strongly suggest to include exercise that is 



weight-bearing and  characterised by impact loading in youth to promote and maintain bone 

health over one’s lifetime [131].  

Stress fractures in the lower limb account for 80%–90% of all stress fractures, representing 

between 0.7% and 20% of all sports medicine injuries [136]. The proposed mechanism 

underpinning stress fractures appears to be related to an imbalance between the rate of stress-

induced micro-fractures and the rate at which bone repairs [136]. Although it is important to 

recognise their multifactorial pathophysiology, Schnackenburg et al. [137] showed a 

correlation of impaired bone quality, particularly in the posterior region of the distal tibia, and 

decreased muscle strength with lower limb stress fractures in female athletes. Clark et al. [138] 

revealed that lower grip strength correlated with higher risk of upper limb fractures (odds ratio 

2.10, 95% CI 1.23 to 3.31) in active young people aged 12 to 16 years. They also showed that 

muscle strength was positively associated with BMD, BMC, or bone area. Popp et al. [139] 

analysed competitive distance runners with and without a history of stress fracture. Lower 

cortical bone strength, cortical area and smaller muscle CSA were present in runners with a 

history of stress fracture. Hoffman et al. [140] found that military recruits who were one 

standard deviation below the population mean in both absolute and relative strength,  had a five 

times greater risk for stress fracture than stronger recruits. This is probably related to increased 

BMD associated with greater strength levels. 

           

3.3 The effect of strength training on tendon health 

The tendon is a connective tissue that transmits the force exerted by the corresponding muscle 

to the skeleton [141]. Its key role is to store, recoil, and release energy while maintaining 

optimal efficiency in power production [142]. Hence, tendon stiffness (i.e., the slope of the 

force-elongation relationship or the resistance to deformation in response to an applied force) 

plays a critical role in athletic performance, stretch shortening cycle (SSC) activities, and 

movement economy [141]. Changes in tendon stiffness are a consequence of periods of 

increased mechanical loading. Alterations of the tendon material (i.e., increase of Young’s 

modulus) and morphological properties (i.e., increase in CSA) are the two underpinning 

mechanisms [143]. Excessive mechanical loading is commonly considered an important factor 

in the development of tendinopathy, which is an umbrella term that indicates a nonrupture 

injury in the tendon or paratendon that is exacerbated by mechanical loading [144]. Clinical 

features are activity-related pain, focal tendon tenderness, and reduced load capacity and 



performance [145, 146]. A disconnection between tendon structure and symptoms in 

tendinopathy exists [147, 148]; thus, confirming multi-factorial aspects contributing to its 

occurrence and persistence [149]. Nonetheless, loading protocols have been shown to be 

effective in the management of this condition [150, 151]. Evidence-based recommendations 

for an effective stimulus for tendon adaptation in healthy adults suggest high intensity loading 

(85-90% of maximal voluntary isometric contraction [MVIC]) applied in five sets of four 

repetitions, with a contraction and relaxation duration of 3s each, and an inter-set rest of 2-

minutes [141]. This has been shown to increase maximal strength, tendon stiffness, Young’s 

modulus, and tendon CSA [141, 143, 152, 153]. Eccentric actions are the most commonly used 

loading schemes in the management of tendinopathies, despite their non-superiority to other 

loading programmes [154-157]. The load employed is usually less than the concentric 1RM, 

which is in contrast with the documented benefits of supramaximal eccentric training stimuli 

[158, 159]. Similarly, in absence of clear supporting evidence, isometric exercise has recently 

become the latest debated trend in tendon rehabilitation in the initial phase [160-162]. Overall, 

key factors such as time under tension and load/intensity are missing in most tendinopathy 

studies [150, 154, 163], thus making unclear which physical adaptation is targeted and limiting 

the synthesis regarding optimal doses into evidence based recommendations [22]. In fact, the 

magnitude and duration of the force application on the tendon appear more relevant than the 

type of contraction [141]. This highlights the need of adequately designed studies to improve 

knowledge within this field [23]. 

Achilles tendinopathy (AT) is one of the most common tendinopathies with an incidence rate 

of 2.35 per 1,000 within the general adult population and a prevalence of 36% among 

recreational runners [164]. Reduced plantarflexor strength has been recognized to be a 

significant risk factor of AT [165, 166]. Cross-sectional studies confirm large deficits in 

plantarflexor torque between AT symptomatic subjects and healthy controls [167, 168]. 

Although it may appear intuitive that strength training could be adopted as primary prevention 

strategy for reducing the risk of tendinopathies, current literature to support this notion is 

lacking. A recent systematic review found limited evidence for the efficacy of preventative 

interventions for tendinopathies [169]. Among the studies examined, strength training was 

employed with much lighter loads and subsequently higher repetition ranges [170]; thus, not 

meeting evidence based recommendations for an effective stimulus for the tendon [141, 143]. 

Therefore, further prospective studies are needed in this area.  



Loading programmes have been shown to positively enhance structural adaptations among 

patients presenting with tendinopathy [150, 164]. However, Heinemeier et al. [171] found that 

renewal of adult core tendon tissue is extremely limited especially following adolescence. 

Kubo et al. [172] revealed that length and CSA of the patellar tendon correlated with increases 

in body size during growth, whereas Young’s modulus was lower in the pre-pubertal phase 

compared to junior high school students and adults. Waugh et al. [173] demonstrated that 

dimensional and maturational aspects of Achilles tendon stiffness were underpinned not only 

by age, but also by body mass and peak force production; thus, reinforcing the correlation 

between tendon stiffness and muscular force capacity in childhood and adolescence. In this 

regard, it should be noted that safe improvements in muscular strength are possible in youth of 

all ages and stages of maturation with resistance training [174]. Concomitant with a reduction 

in the number of sport-related injuries [175], this reinforces the importance of engagement in  

youth athletic development programmes in the pre-pubertal years with continuation throughout 

the later stages of maturation and into adulthood [176, 177]. 

      

3.4 The effect of strength training on muscle health 

Skeletal muscles are characterized by the myofibres and connective tissue. The myofibres are 

responsible for the contractile function of the muscle, whereas the connective tissue supply the 

structure that binds the individual muscle cells together during muscle contraction [178]. Both 

mechanical and metabolic stress can trigger muscle adaptation and growth [143]. A protein 

kinase called the mechanistic/mammalian target of rapamycin (mTOR) appears crucial in the 

pathway through which mechanical stimuli regulate protein synthesis and muscle mass [41]. 

Morphological factors such as CSA, muscle fibre composition, pennation angle, and fascicle 

length, are important in force production. Loss of skeletal muscle mass, reduced motor unit 

(MU) discharge rate, and impaired function is primarily associated with aging. This is defined 

as either sarcopenia (age-related loss of skeletal muscle mass and function) or dynapenia (age-

associated loss of muscle strength that is not caused by neurologic or muscular diseases) [179, 

180]. The reduction of MU discharge rate and type 2 muscle fibres lead consequently to 

reduced RFD, which is associated with impaired functional capacity during daily tasks (e.g. 

balance recovery during tripping) [3, 181, 182]. Pijnappels et al. [183] showed that the 

identification of individuals most at risk of falling could be predicted by their maximal leg 

press push-off force level. In older adults, lower muscle strength is also associated with an 



increased risk of dementia [184], loss of independence, and mortality [185-188]. However, the 

rate of strength decline is dependent on age and physical activity levels. Indeed, individuals 

participating in strength training can significantly attenuate the loss of muscle mass and 

strength, and their undesirable consequences [189]. Strong evidence suggests that an 

appropriately designed resistance training program for older adults should include an 

individualized and periodized approach working toward 2-3 sets of 1-2 multi-joint exercises 

per major muscle group, achieving intensities of 70-85% of 1RM, 2-3 times per week [126]. 

Strength training is a feasible and effective strategy to counteract muscle weakness [190], 

physical frailty, age-related intramuscular adipose infiltration, decline in physical function, risk 

for falls, and reduction in CSA [189, 191]. These benefits are underpinned by the ability of 

strength training to countermeasure age-related changes in muscle and central nervous system 

function. Specifically, strength training is highly effective in improving MU discharge rate, 

reducing loss of type 2 fibres, enhancing RFD and muscle strength, thus explaining the 

functional benefits in the older population, especially in frail elderly [3, 181]. 

Overall, strength training increases neural drive, intermuscular coordination, myofibrillar CSA 

of Type I and II fibres, lean muscle mass, and pennation angle [2, 10, 11]. Not surprisingly, 

primary prevention strategies recommend the employment of strength training for the reduction 

of acute sports injuries [15, 34]. Among these, muscle injuries are very common in sports [34, 

192], constituting 31% of all injuries in elite football [193]. For example, the Nordic hamstring 

exercise (NHE) (i.e., a form of supramaximal eccentric loading) has been shown to 

significantly reduce the risk of hamstring injuries [192, 194-196], with long-term benefits 

associated with increases in fascicle length and improvements in eccentric knee flexor strength 

[197]. The systematic review and meta-analysis conducted by van Dyk et al. [198] showed that 

programmes including the NHE reduced hamstring injuries by 51% in athletes across multiple 

sports. Zouita et al. [199] showed that strength training reduced the risk of injury in elite young 

soccer players during one season (estimated total injury rate per 1,000 hours of exposure were: 

0.70 for the experimental group and 2.32 for the control group). Of note, approximately 50% 

of the total injuries sustained were classified as “muscle strains”; thus, demonstrating the 

protective role of strength training on muscle tissues. Although not thoroughly consistent with 

strength training prescription over the study period, Harøy et al. [200] showed that a single 

exercise with different levels of targeting the adductors, reduced the prevalence and risk of 

groin injuries in semi-professional Norwegian football players by 41%. Considering the 

economic burden of muscle injuries in elite settings (e.g., a single hamstring injury resulting in 



~17days lost from training and competition is estimated to cost about €280,000 in elite soccer 

clubs) [197] and the importance of muscle tissue health for players’ availability and 

performance, implementation of accurate strength training schedule during the season appears 

vital. A summary of the benefits for various musculoskeletal tissues and disorders are depicted 

in Table 1. 

** Insert Table 1 about here ** 

  

4.0 Strength training: Practical applications 

Researchers have challenged the existence of “non-responders” to exercise. Positive 

adaptations are influenced by multidimensional aspects such as genetic factors, fitness level, 

training history, nutritional intake, psychological and social states, sleep and recovery, age, 

weight, and prescribed training workload [27] and therefore the magnitude of adaptations 

between individuals may differ. Thus, strength training prescription should begin with an 

accurate subjective and objective examination. This investigates training and injury history, 

general health status, comorbidities co-existence, single-joint and multi-joint strength 

evaluation and movement pattern analysis relevant to the potential proposed exercise 

programme. Clinical tools such as questionnaires and outcome measures may be implemented 

in the subjective examination to more accurately detect and discuss the significant aspects that 

may negatively counteract the expected positive adaptations and can be administered at specific 

timeframes at the judicious discretion of healthcare professionals. For example, specific 

questionnaires and outcomes measures can be adopted to monitor sleep [201] and stress levels 

[202, 203] over the course of an intervention. This transdiagnostic approach attempts to 

understand commonalities and shared mechanisms among different multidimensional aspects 

and to identify any adverse responses to the planned intervention that may be driven by such 

factors [204]. This enables a stratified model of care (i.e. personalised medicine) to maximise 

treatment-related benefits, reduce risk of adverse events and increase healthcare efficiency 

[205] (see examples in figure 2,3,4).  

 

** Insert Figure 2,3,4 about here ** 

 



This process allows a more complete understanding of the person, his/her past and current 

exposure to loading activities, quality of life, beliefs and attitude towards exercise, relevant 

impairment in mobility, potential site of loading, adequate skeletal muscle trophism and/or 

isolated strength deficits that may impair rapid exposure to high-load exercises; thus, requiring 

a period of familiarization and anatomical adaptation via adoption of different loading 

schemes. For example, in untrained individuals sensitive to spinal axial loading, who cannot 

tolerate large external loads, bilateral exercises, such as the back squat can be confidently 

substituted with unilateral exercises due to similar effectiveness in lower-body strength 

development, despite relative lower external loading [206]. When the goal is to elicit alterations 

in skeletal muscle hypertrophy in untrained individuals, current literature [24, 207-209] 

suggests to train with a high level of effort, irrespective of load. Whereas momentary failure is 

important during low load training to capitalise on muscular adaptations, this does not provide 

any additional benefits when training at high resistance training loads. Hence, lighter loads can 

be initially lifted until failure to maximise MU recruitment, increase muscle size and strength 

(to a certain extent). With gradual training exposure and increasing resistance training 

experience, these can be progressed to higher load-lower repetition schemes without 

momentary failure, thus providing heightened neural impulses to maximise strength gains [208, 

210-212]. 

Global recommendations suggest strength training should be performed two or more days per 

week [230-233]. Maximal strength can be defined as the upper limit of the neuromuscular 

system to produce force. Force production against an external resistance is an essential 

trainable ability [213]. It must be noted that in untrained individuals almost any resistance 

training exercise programme, load and method may increase strength, which is more likely 

attributable to neural adaptations in response to the new training stimulus [2, 24, 212, 214, 

215]. However, progressive overload stimuli appear essential to promote further strength 

adaptations in more experienced individuals [24, 214][234]. For these current evidence 

indicates that prescription of maximal strength training should involve a load (or intensity) of 

80-100% of the participant’s one RM, utilizing approximately 1-6 repetitions, across 3-5 sets, 

with rest periods of 3-5 minutes, and a frequency of 2-3 times per week [234]. This implies 

that loads are determined by percentages of 1RM, with testing potentially challenging when 

working with load compromised patients and/or pain interference. Therefore, the adoption of 

an auto-regulated approach (AR), which is based on RM training zones, rate of perceived 

exertion (RPE) and repetitions in reserve (RIR) [216, 217], may appear more feasible and 



clinically advantageous throughout the training cycle. This also accounts for fluctuations in 

strength capabilities across a training mesocycle [216, 218], which can be influenced by the 

aforementioned multidimensional aspects. In experienced individuals RPE/RIR scale can be 

used as a method to assign daily training load, aid in session to session load progression, and 

monitor individual rates of adaptation [216, 219]. Assessment of movement velocity may also 

be another valid alternative used to estimate the percentage of loading [220, 221]. This exploits 

the inverse linear relationship between load and mean concentric velocity (MCV). Indeed, 

providing that maximal concentric effort is applied during movement, MCV will decrease as 

magnitude of load increases, thus allowing estimation of relative training loads (%1RM) 

monitoring movement velocity [222]. In addition, different velocity loss (VL) thresholds across 

repetitions performed within a set may be also adopted to dictate mechanical and metabolic 

stress, hormonal responses and neuromuscular fatigue, thus inducing different adaptations. 

Small to moderate VL threshold (i.e. <20%) are recommended to maximise strength gains in 

resistance-trained individuals [223, 224]. For clarity of information, example of loading 

schemes for strength training are depicted in Tables 2.  Common subjective and objective 

variables that contribute to programming and progression decision making are illustrated in 

Figure 5. 

 

** Insert Table 2 about here ** 

** Insert Figure 5 about here ** 

 

Frequency and duration of a strength training program might be variable, although position 

statements and clinical guidelines for specific disorders and targeted populations are clearly 

outlined in the available literature [77, 122, 126, 127, 176, 189, 217, 225, 226]. However, 

significant changes in musculoskeletal tissues are generally evident after eight to twelve weeks, 

although some studies observed increases in muscle mass after only 2 to 4 weeks [37]. This 

early increase in strength is likely caused by neuromuscular and connective tissue adaptations 

[227], whereas the early increases in muscle CSA may be the result of oedema [228]. For 

tendon adaptations, longer durations (≥ 12 weeks) appears to be more effective [141]. Example 

of a potential strength training session is outlined in Table 3 and further examples can be found 

in our recent published work [229]. 



         

** Insert Table 3 about here ** 

 

5.0 Conclusion 

This article has briefly examined the mechanisms underpinning positive adaptations to strength 

training as well as potential benefits for the musculoskeletal system. An overview of training 

strategies to target these adaptations have also been discussed in both common musculoskeletal 

disorders and primary prevention strategies. The concepts expressed in this review may help 

healthcare professionals in understanding and promoting clear and evidence-based 

recommendations for strength training in musculoskeletal practice, sports medicine and a wide 

array of medical specialties. Therefore, shared interdisciplinary recommendations appear vital. 
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Table 1.  Summary of benefits for various musculoskeletal tissues and disorders associated with strength/resistance training 

Musculoskeletal 

tissue 

Function Potential beneficial 

mechanisms 

Specific 

recommendation 

Examples of application for common 

related conditions  

 

 

Cartilage 

 

 

Support and 

distribution of 

forces generated 

during joint 

loading 

 

 

Stiffening of the pericellular 

and inter-territorial matrix 

 

Increase of cartilage volume 

and glycosaminoglycan 

 

Protection against cartilage loss 

 

 

Specific exercise for 

targeted area appears 

relevant 

 

Inclusion in 

multidimensional care 

management 

 

Potential benefits 

associated to increased 

CSA 

 

Knee Osteoarthritis  

 

Joint loading exercises 

 

Optimal programme characteristics not 

identified yet  

 

Recommended frequency being 

3 times weekly with a duration of at least 12 

supervised sessions 

 

 

Bone 

 

 

Regulation of 

metabolic 

demands 

 

 

Increase of bone mineral 

density, bone mineral content, 

and bone area 

 

To target large muscles 

 

Safe transition towards 

high loads (≥80% 1RM) 

 

Osteopenia and osteoporosis 

 



Structural 

maintenance to 

withstand loading 

 

 

Familiarisation with 

movement patterns 

 

Combination with impact 

loading exercises 

 

5 sets of 5 repetitions, maintaining an 

intensity of 80-85% 1 RM performed at least 

twice per week 

 

Tendon 

 

 

Force transmission 

 

Storage, recoil and 

release of energy 

 

 

Increase of tendon stiffness, 

Young’s modulus and tendon 

cross sectional area 

 

 

To adopt muscle 

contraction 

intensities higher than 

70% of MVC or RM 

 

Type of contraction 

(isometric, concentric, 

eccentric) not relevant 

 

Longer durations (≥12 

weeks) more effective 

 

Reduction of tendon stiffness and 

Young’s modulus 

 

5 sets of 4 repetitions with high intensity 

loading (85–90% MVIC) with a contraction 

and relaxation duration of 3 s each, and an 

inter-set rest of 2 min. To be performed 3 

times per week 

 

 

Muscle 

 

 

Contraction to 

produce force and 

motion 

 

Increase of myofibrillar cross 

sectional area (CSA) of Type 

I/II fibers, lean muscle mass, 

 

Individualised and 

periodised approach 

 

 

Sarcopenia 

 



 fascicle length and pennation 

angle 

 

Multi-joint exercise per 

major muscle group in 

elderly 

 

Type of contraction 

relevant for muscle fibers 

architectural adaptations 

 

2–3 sets of 1–2 multi-joint exercises per 

major muscle group, with intensities of 70-

85% of 1RM, 2–3 times per week 

CSA (cross sectional area), RM (repetition maximum), MVC (maximal voluntary contraction), MVIC (maximal voluntary isometric contraction) 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Suggested strength training variables when employing the traditional percentage fixed loading program (TL) or the auto regulated training 

(AR). 

PROGRAM REPETITIONS SETS LOAD REST FREQUENCY 

 

TL 

 

 

1-6 

 

 

3-5 

 

@80-100% 1RM 

 

3-5 

minutes 

 

 

2-3 / week 

PROGRAM RM ZONE SETS RPE 0-10 RIR REST FREQUENCY 

 

AR 

 

 

1-6 

 

 

3-5 

 

8-10 

 

0-2 

 

3-5 

minutes 

 

 

2-3 / week 

TL (traditional loading), AR (auto regulated training), RM (repetition maximum), RPE (rate of perceived exertion), RIR (repetitions in reserve) 

 

 

 

 

 

 

 

 



Table 3. Example of a potential strength training session for postmenopausal women with low bone mass (performed at least twice per week for an 

ideal duration of at least one year). The length of each phase, exercise selection and the progressions are chosen in accordance to the participant’s 

weekly evaluation. 

Phase 1 -

Familiarisation 

Exercise Fixed loading 

prescription 

Auto-regulated 

training 

prescription 

Impact loading 

Training aim 

 

 

 

To ensure safe 

transition to high-

intensity load 

 

 

 

 

To familiarise with 

exercises and 

movement patterns  

 

 

Goblet Squat ≫ Split Squat 

 

Romanian Deadlift 

 

Box Squat  

 

Overhead press ≫ Press-up 

 

Bench Press 

 

Seated Row ≫ Bent Over Rows 

 

 

 

 

 

 

1 sets of 12 

repetitions of  ~50-

60% 1RM  

2 min inter set rest 

 

 

 

 

 

 

 

1 sets of 12 RM 

with RPE 4-6 and 

RIR 4-5  

1 min inter set rest 

 

 

 

 

 

3 repetitions x 4 sets 

 

Snap-downs ≫ jump to 

box ≫ standing broad 

jump ≫ depth land ≫ 

drop jump 

 

 

 



Phase 2 – Strength 

endurance emphasis 

Exercise Fixed Loading 

prescription 

Auto-regulated 

training 

prescription 

Impact loading 

Training aim 

 

To increase muscle 

mass, strength and 

musculotendinous 

stiffness 

 

To facilitate safe 

transition to strength 

training emphasis 

 

 

Split Squat ≫  RFESS ≫ Box Squat ≫  Trap-

bar Deadlift 

 

Romanian Deadlift 

 

Overhead Press≫ Press-up or Bench Press 

 

Seated Row ≫ Bent Over Rows 

 

 

 

 

3 sets of 8-12 

repetitions of  ~60-

75% 1RM  

1-2 min inter set rest 

 

 

 

 

3 sets of 10RM 

with RPE 6-7 and 

RIR 2-3  

2 min inter set rest 

 

 

 

3 x 20 cm depth land 

during the first 6 inter-

set rest periods 

 

2 broad jump during the 

last 6 inter-set rest 

periods 

 

Phase 3 – Strength 

emphasis  

Exercise Fixed Loading 

prescription 

Auto-regulated 

training 

prescription 

Impact loading 

Training aim 

 

To increase muscle 

mass, strength, rate of 

force development and 

musculotendinous 

stiffness 

 

 

 

 

 

Trap-bar Deadlift 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



To improve motor unit 

discharge rate 

 

To reduce loss of type 

II fibres 

 

To increase bone mass, 

bone mineral content 

and bone mineral 

density 

 

 

Romanian Deadlift 

 

Overhead Press or Bench Press 

 

Bent Over Rows 

 

 

4 sets of 5 repetitions 

of  > 85% 1RM  

3-5 min inter set rest 

 

 

4 sets of 5RM 

with RPE 8-9 and 

RIR 1-2  

3-5 min inter set 

rest 

 

4 countermovement 

jumps during the first 4 

inter-set rest periods 

 

3 x 3 hurdles jump 

during the last 4 inter-

set rest periods 

 

 

RM (repetition maximum), RPE (rate of perceived exertion), RIR (repetitions in reserve), RFESS (rear foot elevated split squat); ≫ = progress to 

these exercises during next cycle or perform these instead/if preferred and patient/client is competent  

 

 

 

 

 

 

 

 



 

Figure 1. Multi-systemic benefits of strength training. 
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Figure 2. Profile of a middle-aged man with mid-portion Achilles tendinopathy.  



 

Figure 3. Profile of an older man (73 years old) presenting with sarcopenia and a recent history of prostate cancer.  



 

Figure 4. Profile of a young runner (19 years old) with proximal hamstring tendinopathy preparing for the Marathon.  



 

Figure 5. Graphical representation of common subjective and objective variables that contribute to programming and progression decision making in 

strength training.  


