
Combining Secure System Design with Risk
Assessment for IoT Healthcare Systems

Florian Kammüller
Middlesex University London, UK

f.kammueller@mdx.ac.uk

Abstract—In this paper, we show how to derive formal spec-
ifications of secure IoT systems by a process that uses the risk
assessment strategy of attack trees on infrastructure models. The
models of the infrastructure are logical models in the Isabelle
Infrastructure framework. It comprises actors, policies and a
state transition of the dynamic evolution of the system. This
logical framework also provides attack trees. The process we
propose in this paper incrementally uses those two features to
refine a system specification until expected security and privacy
properties can be proved. Infrastructures allow modeling logical
as well as physical elements which makes them well suited for
IoT applications. We illustrate the stepwise application of the
proposed process in the Isabelle Insider framework on the case
study of an IoT healthcare system.

I. INTRODUCTION

Secure systems are a moving target in the literal sense since
they are targeted by attackers but also for system engineers:
they need development methods that allow for dynamic change
to make up for continuously arising new vulnerabilities of
systems previously believed (and maybe even proved) to be
secure. System models need to be concise which is achieved by
omission of details; refinement into concrete systems adds de-
tails not present in the abstract model. Systems may be proved
to be secure on the abstract specification and yet attacks may
arise that exploit details added by those refinements. In short,
attacks unforeseen by security proved system specifications
come from outside the model. A real challenge worthwhile to
be master-minded is to build a dynamic development process
that pre-meditates unforeseen vulnerabilities. Such a process
must integrate good engineering practice of co-designing the
system together with the attacker’s possibilities: a process that
interleaves secure system design methods with security risk
assessment methods. Established industry-strength methods
for secure system design as well as security risk assessment
exist: for example formal system specification, quantitative
model checking and attack tree analysis. Distributed systems
based on the Internet of Things (IoT) seem to allow building
more flexible human centered systems. However, a malicious
attacker can easily exploit IoT devices to build botnets, lock
them with ransomware, or use them as a bridgehead into less
accessible networks.

Dynamic risk assessment using attack formalism, like attack
graphs, has recently found great attention, e.g. [3]. However,
usually, the focus of the process lies on attack generation
and response planning while we address the design of secure
systems. Rather than incident response, we intend to use early

analysis of system specification to provide a development
of secure systems. This includes physical infrastructure, like
IoT system architecture, as well as organisational policies
with actors. The means to enable us to integrate security at
such an early phase at design time is that we use powerful
logical specification of high-level system designs and machine
assisted proof of security properties to enhance the process.

The contributions of this paper are: (a) we present an
iterative process of system specifications with attack tree
analysis that incrementally refines a system specification; (b)
we illustrate and thus validate the process on an IoT healthcare
example from our CHIST-ERA project SUCCESS [2].

We first summarise the Isabelle Infrastructure frame-
work and the IoT healthcare case study (Section II). Next,
we present the Refinement-Risk-Loop (RR-Loop) and an
overview of its application to the case study (Section III).
Then we provide technical details of the loop’s application
by the stepwise system refinement steps triggered by attacks
(Section IV and V) before we conclude in Section VI.

II. BACKGROUND

A. Isabelle Infrastructure Framework

Isabelle is a generic Higher Order Logic (HOL) proof
assistant. Its generic aspect allows the embedding of so-
called object-logics as new theories on top of HOL. There
are sophisticated proof tactics available to support reasoning:
simplification, first-order resolution, and special macros to
support arithmetic amongst others. Object-logics are added
to Isabelle using constant and type definitions forming a so-
called conservative extension. That is, no inconsistency can
be introduced: new types are defined as subsets of existing
types; properties are proved using a one-to-one relationship
to the new type from properties of the existing type. The use
of HOL has the advantage that it enables expressing even the
most complex application scenarios, conditions, and logical
requirements. Isabelle enables the analysis of meta-theory, that
is, we can prove theorems in an object logic but also about it.

This allows the building of telescope-like structures in
which a meta-theory at a lower level embeds a more concrete
“application” at a higher level. Properties are proved at each
level. Interactive proof is used to prove these properties but
the meta-theory can be applied to immediately produce results.
Figure 1 gives an overview of the Isabelle Infrastructure
framework with its layers of object-logics – each level below
embeds the one above.



Kripke structures & CTL

Attack trees

Infrastructure S&P

IoT healthcare

Fig. 1. Generic framework for infrastructures embeds applications.

The Isabelle Infrastructure framework has been created
initially for the modeling and analysis of Insider threats
[12]. Its use has been validated on the most well-known
insider threat patterns identified by the CERT-Guide to Insider
threats [1]. More recently, this Isabelle framework has been
successfully applied to realistic case studies of insider attacks
in airplane safety [7] and on auction protocols [8]. These
larger case studies as well as complementary work on the
analysis of Insider attacks on IoT infrastructures, e.g. [9], have
motivated the extension of the original framework by Kripke
structures and temporal logic as well as a formalisation of
attack trees [4]. Recently, GDPR compliance verification has
been demonstrated [5].

In the course of this extension, the Isabelle framework has
been restructured such that it is now a general framework for
the state-based security analysis of infrastructures with policies
and actors. Temporal logic and Kripke structures build the
foundation. Meta-theoretical results have been established to
show equivalence between attack trees and CTL statements.
This foundation provides a generic notion of state transition on
which attack trees and temporal logic can be used to express
properties.

We apply Kripke structures and CTL to model state based
systems and analyse properties under dynamic state changes.
Snapshots of systems are the states on which we define a state
transition. The temporal logic CTL is then employed to express
security and privacy properties. The meta-theory can be used
to navigate between CTL and attack trees establishing attacks.
In this paper, we present an integrated process showing how
refinements of the system specification can be interleaved with
attack analysis to iterate until security properties can be proved
in Isabelle.

B. IoT Healthcare System

The example of an IoT healthcare systems is from the
CHIST-ERA project SUCCESS [2] on monitoring Alzheimer’s
patients. Figure 2 illustrates the system architecture where data
collected by sensors in the home or via a smart phone helps
monitoring bio markers of the patient. The data collection
is in a cloud based server to enable hospitals (or scientific

institutions) to access the data which is controlled via the smart
phone.

cloud

hospital

home 

Patient

sensor hub

sphone

Doctor

Fig. 2. IoT healthcare monitoring system for SUCCESS project

III. THE REFINEMENT-RISK-LOOP FOR SECURE IOT
SYSTEM

We first introduce the iterative process of refinement and
attack tree analysis (the “Refinement-Risk-Loop”) and give a
tabular overview of the steps taken for the case study. How
the models are expressed and refined in each iteration as well
as the attack trees that exhibit vulnerabilities, is discussed
afterwards.

As an initial step, we propose the Fusion/UML method for
developing a system architecture from early requirements. This
system architecture is translated into the Isabelle Infrastructure
framework: actors in UML become Isabelle Infrastructure
actors, UML system classes are represented by locations in
the infrastructure graph, and the class attributes and pre- and
postconditions of methods are formalised in the local and
global policies. The identification of attacks, using for example
invalidation [11], can then reveal paths of state transitions
through the system model where the global security policy
is violated. In an iteration, these attack paths provide details
useful for refining the system specification by adding security
controls, for example, access control, privacy preservation,
or blockchain. The addition of detail, however, may in turn
introduce new vulnerabilities that lead to new iterations of
the process. Security properties may be proved at each level
of the iteration. They are true for this abstraction level of the
system model. However, as is known in the “security paradox”:
attacks mostly come from outside the model. Attacks may
be found despite proved security. If these attacks undermine
the proven properties, it is because they use information not
present in the model. But this yields the key to finding a
refinement: introducing a level of detail that enables a formal
or computational representation of the details used in the attack
incarnates the next refinement. This process is graphically
depicted in Figure 3.

Following the RR-Loop, we have modelled and analysed
the IoT healthcare application in four iterations summarised
in the following table. The technical details of these steps are
discussed next.



System Model Attack Tree

Refined 
System

Refinement

System Model Attack Tree

Refined 
System

Refinement

System Model Attack Tree

Refined 
System

Refinement

Fusion/UML Initial System Design

Fig. 3. Refinement-Risk-Loop iterates design, risk analysis, and refinement

System Attack
Initial Fusion system
home-cloud-hospital

Eve can perform action get at
cloud

Refinement-Risk-Loop Iteration 1
Access control by DLM
labels

Eve can perform action eval at
cloud; changes label to her own

Refinement-Risk-Loop Iteration 2
Privacy preserving func-
tions type label_fun

Eve puts Bob’s data labelled as
her own

Refinement-Risk-Loop Iteration 3
Global blockchain Eve is an insider impersonating

the blockchain controller
Refinement-Risk-Loop Iteration 4

Consensus (for example
Nakamoto) blockchain

no attack known yet

IV. APPLYING RR-LOOP TO IOT HEALTHCARE EXAMPLE

A. Initial Step: Fusion/UML for System Architecture

We have used the Fusion/UML process for object oriented
design and analysis to derive a system design for the ap-
plication scenario. For reasons of conciseness, we omit here
the details presenting just one of the main outcomes of the
analysis process: the system class model as depicted in Figure
4. Note that, within the security perimeter, we place only
the cloud server and the connected hospital (or other client
institutions). The smartphone and the home server feature
as data upload devices and the smartphone additionally as a
control device that is included in some of the use cases. This is
a consequence of the GDPR [5] and immediately settled in the
initial architecture. Another result of the Fusion/UML analysis
along with this system architecture is a set of operation
schemas based on the system class model, additional use cases
and object collaborations. For details see [10].

A major observation in the system architecture depicted
in Figure 4 is that the security perimeter stretches over two
separate distributed systems.

B. Infrastructures, Policies, and Actors

The Isabelle Infrastructure framework supports the repre-
sentation of infrastructures as graphs with actors and policies
attached to nodes. These infrastructures are the states of the
Kripke structure.

The transition between states is triggered by non-
parametrized actions get, move, eval, and put executed
by actors. Actors are given by an abstract type actor and
a function Actor that creates elements of that type from
identities (of type string written ”s” in Isabelle). Actors are
contained in an infrastructure graph constructed by Lgraph –
here the IoT healthcare case study example.

ex_graph ≡ Lgraph
{(home, cloud), (sphone, cloud), (cloud,hospital)}
(λ x. if x = home then {’’Patient’’} else

(if x = hospital then {’’Doctor’’} else {}))
ex_creds ex_locs

This graph contains a set of location pairs representing
the topology of the infrastructure as a graph of nodes and a
function1 that assigns a set of actor identities to each node (lo-
cation) in the graph. The last two graph components ex_creds
and ex_locs are here abbreviated only (for the definitions
see [6]). The function ex_creds associates actors to a pair
of string sets by a pair-valued function whose first range
component is a set describing the credentials in the possession
of an actor and the roles the actor can take on; ex_locs defines
the data residing at the component. Corresponding projection
functions for each of the components of an infrastructure graph
are provided; they are named gra for the actual set of pairs
of locations, agra for the actor map, cgra for the credentials,
and lgra for the data at that location.

Infrastructures contain an infrastructure graph and a policy.
There are projection functions graphI and delta when
applied to an infrastructure return the graph and the policy,
respectively.

Policies specify the expected behaviour of actors of an in-
frastructure. They are given by pairs of predicates (conditions)
and sets of (enabled) actions. They are defined by the enables
predicate: an actor h is enabled to perform an action a in
infrastructure I, at location l if there exists a pair (p,e) in
the local policy of l (delta I l projects to the local policy)
such that the action a is a member of the action set e and the
policy predicate p holds for actor h.

enables I l h a ≡ ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

The function local_policies gives the policy for each loca-
tion x over an infrastructure graph G as a pair: the first element
of this pair is a function specifying the actors y that are entitled
to perform the actions specified in the set which is the second
element of that pair.

local_policies G x ≡
case x of

home ⇒ {λ y. True, {put,get,move,eval})}
| sphone ⇒ {((λ y. has G (y, ’’PIN’’)),

{put,get,move,eval})}
| cloud ⇒ {(λ y. True, {put,get,move,eval})}
| hospital ⇒ {((λ y. (∃ n. (n @G hospital) ∧

Actor n = y ∧ has G (y, ’’skey’’))),
{put,get,move,eval})}

1We use the common λ-abstraction, e.g. λx. True, to define functions
with parameters, here the function returning True for any input x.



home
∗ 1

sphone

PIN

∗

1

system border security perimeter

Auth

patients

reg_usrs

1 Has ∗

DB

table

1

1
Controls

hospital

staff

table

Fig. 4. System class model for IoT healthcare system

| _ ⇒ {})

The global policy is ‘only the patient and the doctor can access
the data in the cloud’:

global_policy I a ≡ a /∈ hc_actors −→
¬(enables I cloud (Actor a) get)

C. Infrastructure State Transition

The state transition relation uses the syntactic infix notation
I → I’ to denote that infrastructures I and I’ are in this
relation. To give an impression of this definition, we show here
just one of several rules that defines the state transition for the
action get because this rule will be adapted in the process of
refining the system specification. Initially, this rule expresses
that an actor that resides at a location l and is enabled by the
local policy in this location to “get” can change the state of
that location to the string value s representing data stored in
location l’.

get_data: G = graphI I =⇒ h @G l =⇒
enables I l’ (Actor h) get =⇒ s ∈ lgra G l’ =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)
lgra G (l := lgra G l ∪ {s}))

(delta I)
=⇒ I →n I’

D. Attack: Eve can get data

How do we find attacks? The key is to use invalidation [11]
of the security property we want to achieve, here the global
policy. Since we consider a predicate transformer semantics,
we use sets of states to represent properties. The invalidated
global policy is given by the following set shc.

shc ≡ {x. ¬ (global_policy x ’’Eve’’)}

The attack tree calculus [4] exhibits that an attack is possible.

hc_Kripke ` EF shc

V. ENTERING THE LOOP

A. First Refinement Iteration: Adding DLM Access Control

The Decentralised Label Model (DLM) [14] allows labelling
data with owners and readers. We adopt it for our model.
Labelled data is given by the type data × dlm where data
can be any data type. We provide functions owns and readers
that enable specifying when an actor may access a data item.

has_access G l a d ≡ owns G l a d ∨ a ∈ readers d

In the first refinement of the model in the RR-Loop, we thus
use labeled data to adapt the infrastructures. Also the state
transition now implements access control. The refined rule
get_data’ checks the labels for the data item stored in a
location l’ and only gives access if – in addition to get being
enabled for an actor h – also this actor is among the readers
or is the owner. In this case the data item including the label
can be copied to the location l where h resides.

get_data’:
G = graphI I =⇒ h @G l =⇒
enables I l’ (Actor h) get =⇒
(n, (Actor h’, hs)) ∈ (lgra G l’) =⇒
Actor h ∈ hs ∨ h = h’ =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)
lgra G (l := lgra G l ∪ {(n, (Actor h’, hs))}))
(delta I)

=⇒ I →n I’

B. Attack: Eve can change labels

The above “get” attack is still valid in the refined model but
this does not matter any more since the global policy changes.
We cannot quite express the new policy yet before refining the
model but we can already observe another attack. Eve can also
process data using the eval action at the cloud: we can prove
there is a path (EF) in the system leading to the corresponding
attack state.

hc_Kripke `
EF {I. enables I cloud (Actor ’’Eve’’) eval}

Using the Completeness theorems for the attack tree calculus
[4] we can thus derive that an attack exists: Eve can tamper
with the access control labels by processing labeled data. We
need to prove privacy preservation, i.e. that labels are pre-
served. As a countermeasure to this attack, the next iteration
of the refinement loop thus enforces label preserving functions.

C. Second Iteration: Privacy Preservation

The labels of data must not be changed by processing.
This invariant can be formalized in our Isabelle model by a
type definition of functions on labeled data that preserve their
labels.

typedef label_fun = {f :: data × dlm =⇒ data × dlm.
∀ x. snd x = snd (f x)}

We also define an additional function application operator m
on this new type. Then we can use this restricted function
type to implicitly specify that only functions preserving labels



may be applied in the definition of the system behaviour in
the state transition rules.

Furthermore, we can prove now that only entitled users
(owners and readers) can access data: privacy is preserved by
the use of label preserving functions. We can prove that pro-
cessing preserves ownership for all paths globally (expressed
using the CTL quantifier AG), That is, in all states of the
Kripke structure and all locations of the infrastructure graph
we have that the ownership in the initial state hc_scenario
will persist.

theorem priv_pres: h ∈ hc_actors =⇒
l ∈ hc_locations =⇒
owns (Igraph hc_scenario) l (Actor h) d =⇒
hc_Kripke ` AG {x. ∀ l ∈ hc_locations.

owns (Igraph x) l (Actor h) d }

D. Attack: Eve can simply put data

When trying to prove a theorem to express that different
occurrences of the same data in the system must have the same
labels, we fail. The reason for this is the following attack.

hc_Kripke `
EF {I. enables I cloud (Actor ’’Eve’’) put}

Eve could learn the data by other means than using the privacy
preserving functions and using the action put to enter that data
as new data to the system labelled as her own data. As a
countermeasure, we need a concept to guarantee consistency
across the system: blockchain.

E. Third RR-Loop Iteration: Blockchain Consistency

One major achievement of a blockchain is that it acts like
a distributed ledger, that is, a global accounting book. A
distributed ledger is a unique consistent transcript keeping
track of protected data across a distributed system. In our
application, the ledger must mainly keep track of where the
data resides for any labelled data item. We formalize a ledger
thus as a type of functions that maps a labelled data item to a
set of locations. In this type, we further constrain each data to
have at most one valid data label of type dlm. This is achieved
by stating that there exists a unique (∃!) label l for which the
location set ld(d, l) assigned to by the ledger is not empty
– unless it is empty for all labels for d.

typedef ledger = { ld :: data × dlm ⇒ location set.
∀ d. (∀ l. ld (d, l) = {}) ∨

(∃! l. ld (d, l) 6= {}) }

The addition of set makes the range of the ledger a set of sets
of locations which allows for none (empty set) or a number
of locations to be assigned to a data item.

F. Ledger enables Data Protecting State Transition

The set of rules for defining the state transition of infrastruc-
tures needs to be adapted to the refined model. The refinement
by a ledger is incarnated into the system specification to
guarantee consistency across distributed units.

1) The get data rule: now requires that the ledger be
updated by noting that the data item also resides in the new
location l. This is achieved by unifying the existing set of
locations L for this data item with the new location l. The
existing set of locations L is simply retrieved by applying the
ledger ledgra G to the data item n and its label (Actor h’,
hs). The update of the ledger at the position ledgra G (n,
(Actor h’, hs)) of this data item uses the operator := to
change the ledger to contain the new list of locations L ∪
{l}.

get_data’’: G = graphI I =⇒ h @G l =⇒
enables I l’ (Actor h) get =⇒ Actor h ∈ hs ∨ h = h’
=⇒ ledgra G (n, (Actor h’, hs)) = L =⇒ l’ ∈ L =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)(lgra G)
(ledgra G (n, (Actor h’, hs)) := L ∪ {l})

(delta I)
=⇒ I →n I’

2) The put data rule: assumes an actor h residing at a
location l in the infrastructure graph G and being enabled the
put action. If infrastructure state I fulfils those preconditions,
the next state I’ can be constructed from the current state
by adding the data item n with label (Actor h, hs) at
location l. The addition is given by updating (using :=) the
existing ledger legdra G. The ledger is set for this labelled
data item (n, (Actor h, hs)) initially as the singleton set
{l} containing just this location. Note that the first component
Actor h marks the owner of this data item as h. The other
components are the reader list hs, and the actual data n.

put: G = graphI I =⇒ h @G l =⇒
enables I l (Actor h) put =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)(lgra G)
(ledgra G (n, (Actor h, hs)) := {l}))

(delta I)
=⇒ I →n I’

In the extended Infrastructure of the refined system the
infrastructure graph needs to be extended by the ledger.

ex_graph ≡ Lgraph
{(home, cloud), (sphone, cloud), (cloud,hospital)}
(λ x. if x = home then {’’Patient’’} else

(if x = hospital then {’’Doctor’’} else {}))
ex_creds ex_locs ex_ledger

The data and its privacy access control definition is given
by the parameter ex_ledger specifying that the data 42, for
example some bio marker’s value, is owned by the patient and
can be read by the doctor and is currently only contained in
location home.

ex_ledger ≡ (λ (d, l).
if d = 42 ∧ l = (Actor’’Patient’’,{Actor’’Doctor’’})
then {home} else {})

G. Ledger Guarantees Consistent Data Ownership
We can now prove that data protection is consistent across

the infrastructure. If in any two locations the same data item n
resides, then the labeling must be the same. That is, the owner
and set of readers are identical.



theorem Ledger_con: h, h’ ∈ hc_actors =⇒
l, l’ ∈ hc_locations =⇒
l ∈ ledgra G (n, (Actor h, hs)) =⇒
l’ ∈ ledgra G (n, (Actor h’, hs’)) =⇒
(Actor h, hs) = (Actor h’, hs’)

This property immediately follows from the invariant property
of the type definition of the type ledger (see Section V-E)
and privacy preservation given by the label function type (see
Section V-A). This means that the corresponding interactive
proofs that we have to provide to Isabelle are straightforward
and largely supported by its automated tactics (see the Isabelle
source code [6] for details).

H. Attack and Fourth RR-Loop: Eve can overwrite blockchain

Despite the above proved theorem, there is yet another
aspect – as usual outside the model – that leads to an attack.
In the abstract specification of a ledger, we have omitted the
implementation of a blockchain. We could have a centrally
controlled blockchain in which one part signs the entire
blockchain to guarantee consistency. Eve could be an insider
impersonating the blockchain controller. In that case, she could
just overwrite the entry made by Bob and add his data as her
own. Formally, we can re-use the put attack of the previous
level using the rule put above to overwrite Bob’s entry by
Eve’s.

As a refinement for the RR-Loop, we need to consider
a consensus algorithm, like Nakamoto’s used in Bitcoin,
between the participants in the distributed system to chose
a different leader for each blockchain commitment to avoid
the attack. Adding a refinement with a Nakamoto consensus
to our model is possible but rather complex. However, we
can simply specify the effect of this refinement in the system
specification by adding ∀a as. ledgra G (n, (Actor a,
as)) = {} as a precondition to the rule put, that is, the data
item must not yet be assigned to anyone in the ledger in order
to allow a put action.

VI. CONCLUSION

In this paper, we have presented the Refinement-Risk-Loop
as a method that interleaves formal system specification in
the Isabelle Infrastructure framework with attack tree analysis
thereby refining the security of a system. The method is
particularly useful for IoT systems since it allows modeling
physical as well as logical realities. We have illustrated the
RR-Loop process on an IoT healthcare example running four
iterations adding access control, privacy preservation, and a
ledger for global consistency.

Compared to other verification techniques, like Mod-
elchecking, Isabelle requires user interaction. However, Mod-
elchecking is restricted to finite models and first order logic. Is-
abelle enables the use of higher order quantification and induc-
tion necessary for invariant proofs (like Theorem priv_pres
in Section V-C).

The use of a distributed ledger, also known as a blockchain,
is new for formal system specification and verification. There
are currently many attempts to formalize blockchains but most

of them are very close to technical implementations, e.g. [13],
thus obliterating the possibility to provide clear specification
of legal requirements like we do with respect to the GDPR [5].
Moreover, to our knowledge, none of these formal models has
been produced in Isabelle or similar Higher Order Logic tools.
Our formalization uses a generic notion of a ledger that may
simply control consistency in the distributed application.

Risk assessment loops exist for secure systems, e.g. [3].
There the process generates attacks in order to plan incident
responses. By contrast, we use the risk assessment to improve
the design of secure systems by refinement. The novelty
of our approach is to integrate the dual of risk assessment
with attack trees into a constructive development of system
specifications. This approach clearly demands a certain level of
familiarity with logical specification. However, abstract system
specifications can be provably refined and finally code can be
extracted to major programming languages, e.g. Scala.

REFERENCES

[1] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak. The CERT Guide to
Insider Threats: How to Prevent, Detect, and Respond to Information
Technology Crimes (Theft, Sabotage, Fraud). SEI Series in Software
Engineering. Addison-Wesley Professional, 1 edition, Feb. 2012.

[2] CHIST-ERA. Success: Secure accessibility for the internet of things,
2016. http://www.chistera.eu/projects/success.

[3] G. Gonzalez-Granadillo, S. Dubus, A. Motzek, J. Garcia-Alfaro, E. Al-
varez, M. Merialdo, S. Papillon, and H. Debar. Dynamic risk man-
agement response system to handle cyber threats. Future Generation
Computer Systems, 83:535–552, 2018.

[4] F. Kammüller. Attack trees in isabelle. In 20th International Confer-
ence on Information and Communications Security, ICICS2018, volume
11149 of LNCS. Springer, 2018.

[5] F. Kammüller. Formal modeling and analysis of data protection for
gdpr compliance of iot healthcare systems. In IEEE Systems, Man and
Cybernetics, SMC2018. IEEE, 2018.

[6] F. Kammüller. Isabelle infrastructure framework with iot healthcare s&p
application, 2018. Available at https://github.com/flokam/IsabelleAT.

[7] F. Kammüller and M. Kerber. Investigating airplane safety and security
against insider threats using logical modeling. In IEEE Security and
Privacy Workshops, Workshop on Research in Insider Threats, WRIT’16.
IEEE, 2016.

[8] F. Kammüller, M. Kerber, and C. Probst. Towards formal analysis of
insider threats for auctions. In 8th ACM CCS International Workshop
on Managing Insider Security Threats, MIST’16. ACM, 2016.

[9] F. Kammüller, J. R. C. Nurse, and C. W. Probst. Attack tree analysis
for insider threats on the IoT using Isabelle. In Human Aspects of Infor-
mation Security, Privacy, and Trust - Fourth International Conference,
HAS 2015, Held as Part of HCI International 2016, Toronto, Lecture
Notes in Computer Science. Springer, 2016. Invited paper.

[10] F. Kammüller, O. O. Ogunyanwo, and C. W. Probst. Using fu-
sion/uml for iot architecures for healthcare applications. arXiv,
https://arxiv.org/abs/1901.02426, 2018.

[11] F. Kammüller and C. W. Probst. Combining generated data models
with formal invalidation for insider threat analysis. In IEEE Security
and Privacy Workshops (SPW). IEEE, 2014.

[12] F. Kammüller and C. W. Probst. Modeling and verification of insider
threats using logical analysis. IEEE Systems Journal, Special issue on
Insider Threats to Information Security, Digital Espionage, and Counter
Intelligence, 11(2):534–545, 2017.

[13] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In IEEE Symposium on Security and Privacy, pages 839–
858. IEEE, 2016.

[14] A. C. Myers and B. Liskov. Complete, safe information flow with
decentralized labels. In Proceedings of the IEEE Symposium on Security
and Privacy. IEEE, 1999.


