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Abstract

The cardinal secretary search problem confronts the decision maker with more or less
candidates who have identically and independently distributed values and appear succes-
sively in a random order without recall of earlier candidates. Its benchmark solution implies
monotonically decreasing sequences of optimal value aspirations (acceptance thresholds) for
any number of remaining candidates. We compare experimentally observed aspirations with
optimal ones for different numbers of (remaining) candidates and methods of experimental
choice elicitation: “hot” collects play data, “warm” asks for an acceptance threshold before
confronting the next candidate, and “cold” for a complete profile of trial-specific acceptance
thresholds. The initially available number of candidates varies across elicitation methods to
obtain more balanced data. We find that actual search differs from benchmark behavior, in
average search length and success, but also in some puzzling qualitative aspects.
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1 Introduction

In commercial and private life, one is often individually responsible to search for a qualified

candidate to fill a certain need. Since one usually interviews candidates successively, due to time

and monetary constraints, one may not be able to assess the quality - in the following we refer

to individual qualities as values - of all potential candidates. On the other hand the impossibility

to keep candidates waiting for long questions recall. Without recall, past candidates are lost.

Waiting to check the last candidate is thus very risky. Consider the example of trying to find an

apartment, an employee, or a life partner; one must often act immediately or otherwise risk to

lose an attractive option. This highlights the relevance of asking and answering “When to stop

searching?”.

The modified version of the secretary search paradigm, based on successively appearing and a priori

identical candidates and no recall, has an elegant benchmark solution. Its optimal stopping rule

does not maximize the probability to hire the best possible candidate1 but maximizes expected

quality which requires cardinal values of candidates. The decision maker confronts potential

candidates sequentially, each with quantifiable quality (an unambiguously recognizable monetary

value). Candidates become unavailable when not accepted immediately. While stylized, this

captures rather realistically the example of searching for a house in a popular area with many

competitors, provided that the values of the various properties can be assessed unambiguously

and quickly.

One important stylized aspect of this search type is that having already met more or less can-

didates is completely uninformative about the random values of later ones. This avoids, at least

theoretically, engaging in Bayesian updating and allows to focus instead on how the number of

remaining candidates affects search behavior. Behaviorally, qualities of past candidates may never-

theless matter, e.g. due to the Gambler’s fallacy, anxiety or regret when running out of candidates,
1The original secretary search paradigms focus on finding the single-best candidate out of n(≥ 2) possible ones.

The potential candidates are interviewed one by one in random order and the decision maker has to decide whether
to keep each candidate immediately after encountering it. Before making the decision, the decision maker is only
aware of the candidate’s rank among all candidates encountered so far, but does not know values of yet to be seen
ones. Once rejected, a candidate cannot be recalled.
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especially if more recent candidates turn out worse than prior ones.

In field situations, previous experiences with search episodes could account for heterogeneity in

aspiration formation and adaptation. A controlled stylized lab experiment helps to limit theo-

retically confounding effects of past experiences.2 Participants confront the various search tasks

more than once which vary in the known initial number of a priori identical candidates. Although,

theoretically, the number of remaining candidates is the only state variable, behaviorally such

pure dependency of behavior on the state variable seemed questionable. Instead, we expected the

quality of past rejected candidates and the difference between the initial and remaining number

of candidates to matter and that larger differences will let one think that it is time to stop.

Optimality in dynamic decision tasks with finite horizon relies on backward induction or dynamic

programming (see Bellman, 2013). Since the remaining number of candidates is the only state

variable, the optimal strategy is a complete profile of first more and later less ambitious accep-

tance thresholds, derived in appendix A.3 Although one could have experimentally induced risk

neutrality via binary lottery incentives (the value of the accepted candidate determines linearly the

probability of earning the larger rather than the smaller monetary amount),4 we let participants

successively confront several search tasks, each with possibly many chance moves, to reduce the

variance of earnings across all tasks.

In view of the stochastic complexity of the search tasks, optimal behavior of participants would

be explanandum rather than explanans - but we do not confirm optimality. So optimal aspiration

profiles are just benchmarks for analyzing actual search behavior of, at best, boundedly rational

participants. The choice data, in part, directly reveal the success aspirations of participants and

how they are adapted. This sheds light on the core concepts of bounded rationality theory like

aspiration formation and adaptation (see originally Lewin, 1926; Hoppe, 1930; Lewin and Denbo,
2Cox and Oaxaca (2000) confront constant priors about options with known priors for discrete values but

also differ from our setup by assuming that after stopping successive dividends are collected till the end with 0-
termination value. An even more systematic variation of conditions is provided by Schotter and Braunstein (1981)
who base their hypotheses on various (theoretical) studies.

3We gratefully acknowledge the support of Alessandro Arlotto and Marco Scarsini who supplied the recursive
formula and its algorithm which they, furthermore, adjusted to the discrete distribution, used in our experiment
(See Moser, 1956; Sakaguchi, 1961; Karlin, 1962).

4Thus, expected utility requires only that the larger monetary premium is better than the smaller one and that
probabilities are calculated properly.
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1931; Lewin et al., 1944; Heckhausen, 1955; Simon, 1955, and specifically for aspiration adaptation

Sauermann and Selten, 1962). If at all, individual differences in search behavior can be attributed

to idiosyncratic characteristics of participants,5 like regret inclinations, analytic capability, etc.6

In the experiment participants accept or reject the successively revealed value vt in trial t directly

after seeing it without recall (when rejecting vt in trial t this realization is lost and cannot be

retrieved). If the last value is reached, it is automatically accepted. Since all values vt for t =

1, . . . , n (with n(≥ 2) denoting the initial number of candidates) are randomly and independently

generated according to the uniform density distribution, concentrated on the interval [0,1], rejected

values do not inform about future ones. So the number of remaining candidates n− t is all what

theoretically matters7 when deciding whether to accept or reject vt in trial t.

The experiment relies on many integer realizations. We have shifted up and enlarged the interval

from 0 to 1 by allowing for all integer values v from 24 to 123 which are all equally probable. The

number n of candidates is either 5, 10, or 15. Figure 1 illustrates the optimal profile of aspirations

or acceptance thresholds which decrease with the remaining number of trials, i.e. the number of

remaining candidates (since the last candidate must be accepted).

We vary the initial number n (> 1) of candidates within subjects (participants confront all three

n-tasks) and between subjects only whether n increases or decreases. The other between subjects

variation of choice elicitation is more psychologically grounded. In “cold”, participants are asked

for complete strategies, i.e. a complete pattern of acceptance thresholds, before the first trial.8 For

boundedly rational participants this presupposes an awareness that nothing can be inferred from

the values of past rejected candidates and that more remaining candidates are better than less.

Data of this condition allows to assess how actual and optimal aspirations differ. For example,

whether actual aspirations are less often adapted than optimal ones when many candidates still

remain to be seen.
5This corresponds to the so-called full information condition of Palley and Kremer (2014), based on the optimality

analysis of Karlin and Carr (1962).
6In later research one should also employ personality questionnaires whose effects we expect to be minor com-

pared to the striking effects of choice elicitation methods.
7This would be different when regret, possibly measured by the positive difference between the so far highest

rejected value and the present one, would matter.
8Like for optimal strategies participants can condition only on the number of remaining candidates.
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The choice data in “hot” provide only the sequences of so far rejected values and the finally accepted

one. When confronting early on a rather high value in “hot”, one may feel compelled to accept

it in ways resembling the well known endowment effects. This likely differs from just imagining

such a high early value in “cold”. In the hot “marshmallow delay” task9 children would likely

predominantly wait when choosing “coldly” but would often fail to wait in “hot”. In our view, this

suggests, on average, earlier stopping in “hot".

The intermediate “warm” condition asks for trial-specific acceptance thresholds as in “cold” but only

before encountering that trial, respectively its candidate. Thus one successively states acceptance

thresholds in “warm” being aware of the rejected values so far. This allows for regret in “warm”,

possibly measured by how many candidates have been lost and how far the present value is below

the best former rejected one. Both aspects one can only anticipate when deciding in “cold”. We

expected sharper declines of acceptance thresholds in “warm” due to an acute awareness of lost

options. Behaviorally, post-decisional regret and how many opportunities have been lost could

affect the next stated acceptance threshold in “warm”, similar to how it may affect it in “hot”.

In view of the crucial stochastic uncertainty of the iid-cardinal secretary search tasks we have

abstained from adding another random event via experimentally inducing risk neutrality. Instead

we promote risk neutrality via "cumulative pay", i.e. participants are paid for all successive tasks

to reduce their variance of earnings when viewing the entire experiment holistically. Using (risk

neutral) optimality (RN-optimality from now on) as the benchmark, we partly focus on devia-

tions from RN-optimality and how elicitation method, the n−sequence, the number of remaining

candidates and past experiences shape them.

Participants substantially deviate from RN-optimal search, especially when there are still many

candidates to be seen. These deviations overwhelmingly let them stop too early although the

opposite can also be observed. Not only the elicitation method matters but also whether the

number n of initially available candidates increases or decreases. It seems that participants perceive

the six successive rounds rather holistically, i.e. as a single comprehensive task what seems to
9When delaying consumption of a given marshmallow by 30 minutes a child can eat two marshmallows, what is

claimed to be positively correlated with professional success in adulthood (see Mischel et al. 2010 for a thorough
review).
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justify that cumulative pay for several successive tasks reduces risk sensitivity.

In view of experimental methodology, cardinal secretary search tasks are interesting as they di-

rectly reveal success aspirations and their dependence on the remaining number of candidates but

also the considerable heterogeneity in human psychology and cognition. Furthermore, they are

suitable paradigms to shed new light on the debate among experimentalists whether to use the

“cold” strategy method or to elicit “hot” play data which so far has largely neglected individual se-

quential choice making. One wonders how the debate so far could concentrate (Sonnemans, 2000,

is an exception) on comparing elicitation methods for social and strategic interaction experiments

without a profound decision theoretic foundation. For the latter we convincingly confirm that

elicitation method and task sequencing matter crucially.

Regarding field relevance, one restriction is the known number of (remaining) attempts. In the

field this may arise due to idiosyncratic characteristics of decision makers, for example, due to them

being seriously time constrained. In the animal kingdom, an already starving predator has fewer

attempts to hunt, much like somebody urgently searching for an apartment. Financial markets

with stationary random-walk assets whose traders have to invest immediately could also be similar

to our setup. Unlike Güth and Weiland (2011) we have neglected competition in search.

Section 2 informs about the related literature. Section 3 describes the experimental protocols.

The data and main findings are described and statistically validated in section 4 before the final

discussion in section 5.

2 On the literature

Our setup is rather specific in multiple ways: rather than trying to hire the best candidate, as in

the classic secretary search task, we rely on the familiar expected profit motive in neo-classical

economics; rather than inferring aspirations from sequential search data, we directly observe in

“cold” and “warm” the stated aspiration levels which we can compare with the optimal ones. We will

diagnose “anti-monotonicity” as one crucial aspect which clearly signals a much richer motivation

of search behavior and can reject optimality simply by exploring how its only state variable fails
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to account alone for the aspiration profiles chosen by participants. Additionally, unlike the general

literature on stopping theory, our main focus is whether and how different elicitation methods and

sequencing of different n-tasks shape search behavior.

Regarding reviews of the broader stopping literature, e.g. Freeman (1983), Ferguson (1989),

Samuels (1991), Szajowski (2008), and Wu and He (2016) who provide informative overviews,

let us be rather brief. A standard text on search in economics is Phelps (1968). An influential

paradigm, which we also employ, is the so-called secretary-search task (for specific surveys see

Todd and Miller, 1999; and Stein et al., 2003) which one often relates to specific applications like

search for an employee, durable consumption goods like housing, right product design, minable

land.

Even when paying the value of the accepted candidate, the decision maker, DM, often decides to

stop or not based on additional information, e.g. whether or not the present candidate is the best

one so far, see Bearden (2006) and experimentally Bearden et al. (2006). A field example could

be a head hunter (institution) who can rank candidates relatively but not assess the firm-specific

usefulness of the candidates for the hiring firm. Altogether the theoretical and experimental

literature is still strongly influenced by the traditional incentive to hire the best, partly by paying

only when actually hiring single best candidates so far (Ferenstein and Krasnosielska, 2009).

The empirical literature often explores satisficing by employing, in analogy to the revealed pref-

erence approach of empirical neoclassical economics, the revealed aspiration approach: one infers

success aspirations from observed search data relying - in analogy to the as-if optimality in revealed

preference theory - on as-if satisficing. Güth and Weiland (2011) let participants state (binding)

aspirations first for sampling size and later for acceptance. Although aspirations can be freely

chosen, this presupposes satisficing since the aspirations are binding.

Other studies include essential search costs (Kogut, 1990; Moriguti 1993; Seale and Rapoport, 1997

and 2000; Stein et al., 2003), e.g. for random numbers of candidates (Presman and Sonin, 1972;

Ferenstein and Krasnosielska, 2009), or investigate reasons for (too little or too much) consumer

search (Zwick et al., 2003). Bayesian secretary search tasks with known priors for monetary values
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as in our own study, partly named “full-information" tasks, are studied by Cox and Oaxaca (2000),

and Schotter and Braunstein (1981), often via comparisons with other tasks which for instance

keep participants less informed. Compared to this we confine ourselves to full-information" tasks

where, theoretically, all what matters is the number of remaining candidates. So in the following

we focus on directly exploring and testing satisficing in search and relating it to optimality, which

requires “full information".

3 The choice tasks and (risk neutral) optimality

The setup features a situation where DM confronts a known number n(≥ 2) of a priori identical

candidates of whom DM has to hire one. What renders hiring difficult is that the quality or

value for all candidates is randomly determined by the same independent and identical random

move. Furthermore, candidates show-up sequentially and can be hired only when revealing their

randomly selected value at their trial without recall (one cannot go back to former candidates in

the sequence).

A strategy in such a search task is a complete profile of acceptance thresholds, one for each

subgame where a subgame is defined by the sequence of so far rejected candidates. According to

the risk neutral benchmark solution, RN-optimality, acceptance thresholds depend monotonically

only on the remaining number of candidates and not on the value sequence of candidates seen

so far. In game theoretic jargon this means to impose subgame consistency (subgames with the

same number of remaining candidates are isomorphic and should have the same solution) which,

of course, may be questionable behaviorally.

Figure 1 illustrates the pattern of optimal acceptance thresholds which with fewer remaining

candidates first decline rather weakly but more steeply towards the end. The integer k counts

the number of remaining candidates when rejecting the present one: so for n = 15 rejecting the

first, second,..., candidate leaves 14, 13, ... remaining candidates. The reason for using k is that

RN-optimal thresholds depend on k only, whereas the numbers t = 1, ..., n − 1 of decision trials

vary with n.
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Participants in “cold” and “hot” are restricted to trial-specific aspirations or acceptance thresholds10

for all possible trials: in a given trial one rejects only random values below this level. Specifi-

cally, in “cold” we elicit complete aspiration profiles; participants state, before the first trial, a

complete profile of aspiration levels for all possible trials which can condition only on the number

of remaining candidates. They are free to reduce aspirations when fewer candidates remain, as

suggested by RN-optimality, but can also increase them.11 Thus one has to distinguish two types

of monotonicity, namely the monotonicity imposed via acceptance thresholds similar to acceptance

thresholds of responder participants in ultimatum experiments, and the monotonicty of acceptance

thresholds across trials which, theoretically, should decrease with fewer candidates (see Figure 1).

So our setup guarantees the former monotonicity but allows participants to violate the latter one.

In the following we can therefore restrict ourselves to the latter type of (anti-)monotonicity, i.e.

refer to higher aspirations for fewer left candidates than for more as anti-monotonicity.12

“Warm” elicits acceptance thresholds in the same way but only sequentially, i.e. trial by trial, till

acceptance. DM states the trial-specific acceptance threshold before learning the value realization

of that trial. So one does not have to state aspirations for trials after acceptance, i.e. the first

value which is not below the trial-specific aspiration. This obviously allows comparing “cold” and

“warm” acceptance thresholds till acceptance in “warm”.

“Hot” implements the actual search dynamics. Participants confront the first value and may stop

by accepting it or continue searching till a candidate is finally accepted. So what one observes

is a shorter or longer sequence of random values of which all preceding the acceptance trial are

rejected. This illustrates the difficulties when wanting to infer aspirations from search data in the

tradition of as-if satisficing.

One can compare RN-optimality with “hot” play data by analysing acceptance of non-RN-acceptable

candidates and rejection of RN-acceptable ones. Due to the less informative choice data in “hot”
10In other choice-tasks one may accept a lower value but reject a higher one which can be rationalized (see Cox

and Oaxaca, 2000) when one can infer an unknown prior from observed values.
11In view of the large multiplicity of sub-games applying an unrestricted strategy method in the search tasks at

hand is practically impossible.
12Like acceptance thresholds of responders in ultimatum games value aspirations impose monotonic responses

(one rejects below and accepts otherwise). Here anti-monotonicity instead relies on larger acceptance thresholds
for fewer remaining candidates.
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Figure 1: RN-optimal acceptance thresholds for the number, k = 14− k, of remaining candidates
when rejecting the present one, k. The possible values v of the candidates range from 24 to 123.

we will mainly consider outcome variables like length of search and payoff when comparing the

data of “hot” with those of the other elicitation methods. To gather more of its less informative

data “hot” always relies on the largest number of initially available candidates (n = 15).

How can elicitation method influence search behavior? In “hot” awareness of what the present

value yields may trigger something close to the well known endowment effect which likely is

enhanced by the certainty of the payoff one would earn in case of acceptance.13 Knowing for sure

what acceptance yields, might trigger an even earlier acceptance when the present value is the

upper value range. Prospect theory could suggest the value of the so far best rejected value as

the reference point, meaning to view later lower (higher) value realizations as losses (gains). This

could trigger and explain path dependent behavior due to the robust confirmed higher evaluation

of losses over gains. “Cold” and “warm” differ in how they trigger feelings of regret, actual ones

in “warm” and only anticipated ones in “cold”, as well as in urgency, like feelings of stress in

“warm”, especially when few trials remain. We expected similar patterns for early trials of “cold”
13When employing binary-lottery incentives, acceptance of a known value would still imply only an uncertain

expectation and question the latter argument.
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and “warm” but lower ones in “warm” in later trials due to an acute awareness of running out of

candidates.

Our design does not only vary the elicitation method but also the sequence of n-tasks. Whereas a

larger n allows for more trials and in all likelihood implies longer search length, the smaller n−tasks

might be viewed as more stressful since, for instance, the probability of the first candidate being

best is much higher for n = 5 than for n = 15. So experiencing n = 15 before n = 10 and then

n = 5 may imply a more relaxed attitude when later on encountering shorter n-tasks compared

to facing n = 5 before n = 10, 15. Since a larger n should yield a larger expected payoff (compare

in Figure 1 the optimal aspiration for 14, 9, respectively, 4 remaining candidates14), participants

perceiving the whole experiment holistically might let them feel deprived in case of a decreasing n

and more eager to stop when confronting a satisfactory option early, i.e. they would stop on average

earlier when encountering a given n after larger ones. “Cold-increasing” and “cold-decreasing” are

therefore especially suited for analysing n−sequence effects. We expected some sequence effects,

but were surprised by how large they are.

The three protocols (“cold”, “warm” and “hot”) require different instructions (see Appendix B for

the “Cold-increasing” instructions). Participants obtained a show-up fee of 5 Euro, plus the sum

of earnings of all the six rounds. The experiment was run at the CESARE lab in Rome, lasted on

average 1 hour and 40 minutes. In total 194 participants participated; 48 in “cold-increasing”, 47

in “cold-decreasing”, 47 in “warm”, and 52 in “hot”. The four between-subjects conditions, listed

in Table 1, inform about the sequence of tasks in the six successive rounds of each condition and

the elicitation mode.

Since in “hot” one does not observe success aspirations but would have to infer them from (non)

accepted values in the tradition of the revealed aspiration approach, we try to compensate for that

by always employing n = 15 in “hot” (a larger n triggers higher aspirations initially and thereby

longer expected search, see Figure 1).
14The optimal aspirations are the values when searching optimally, i.e. the (discrete) value function.
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Table 1: Condition design

“Cold-Increasing” “Cold-Decreasing” “Warm” “Hot”
Round 1 n=5 n=15 n=5 n=15 -"hot"
Round 2 n=5 n=15 n=5 n=15 -"hot"
Round 3 n=10 n=10 n=10 n=15 -"hot"
Round 4 n=10 n=10 n=10 n=15 -"hot"
Round 5 n=15 n=5 n=15 n=15 -"warm"
Round 6 n=15 n=5 n=15 n=15 -"cold"

Notes: Columns feature between subjects conditions with partly varying n across rounds

In all conditions (except “hot”) participants repeat the same task once to distinguish pure learning

when confronting the same number n again from adapting to new numbers n of initially available

options (see Table 1 for details). “Hot” is run for n = 15 only: in the first four rounds as

required by “hot”, followed by one round of “warm” and “cold” in rounds 5 and 6, respectively,

again based on n = 15, to possibly compare with the fifth, respectively sixth round of “warm” and

“cold-increasing”, respectively.

In summary, our experimental attempt is to answer “when to stop searching?” by trying to avoid

confounding effects of sequential search15 like having

• first to sample candidates before being able to form value aspiration for candidates (Güth

and Weiland, 2011, elicit sampling aspirations when initially little is known),

• to update beliefs about the likely values of future candidates.

Additionally we focus on an environment for which it can be assessed how far at best boundedly

rational search behavior deviates from RN-optimality and explore how aspects like

• elicitation method of choice data,

• sequencing of search tasks

with no relevance for benchmark behavior may matter behaviorally. The partly systematic non-

monotonicity of aspirations across search in “cold” was unexpected. If expected, we might have

run a “cold” condition with imposed monotonicity to learn whether this aligns actual aspirations
15Once again we could have experimentally induced risk neutrality via employing binary-lottery incentives (see

Di Cagno et al., 2017, for a simpler choice task). Here we were afraid to cognitively overburden participants.
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closer to optimal ones.

4 Data analysis

Due to less informative data in “hot”, we compare between-subjects conditions mainly via outcome

data like average stopping times, payoffs, and standard deviations for n = 15 when distinguishing

only whether n = 15 has been experienced first, respectively last (see Table 1). For n = 15 one

can also compare across “cold-increasing”, “warm”, and “hot” the frequencies of accepted but RN-

unacceptable and rejected but RN-acceptable values till acceptance, i.e. omitting later evidence of

such deviations after acceptance in “cold”. We, however, mainly focus on choice data of “cold” and

“warm” for which one can compare trial-specific acceptance thresholds. For these conditions we

first analyze the surprising anti-monotonicity, i.e. when later acceptance thresholds exceed earlier

ones in the same search task.

4.1 Anti-monotonicity

When considering anti-monotonicity, we focus on rounds 3 & 4 which are most suitable for its

comparison (due to n = 10 in rounds rounds 3 & 4 in all conditions which elicit acceptance

thresholds). Anti-monotonicity16 is defined by at least one such observation in rounds 3 & 4. It is

a decisive advantage of “cold” choice elicitation that one can assess “anti-monotonicity”, irrespective

of when it occurs. In our view, consciously behaving anti-monotonically indicates rather clearly

that behavior is not driven by trial-specific expected payoffs but by other motives like anticipated

regret, e.g. in the form of trying to gain more than the highest rejected value so far, or risk seeking

after a loss. Such motives suggest rare occurrence of “anti-monotonicity”. We therefore distinguish

participants whether they behave anti-monotonically at least once or not at all.

According to Table 2 the share of anti-monotonic participants depends strongly on the format

of choice elicitation: it is naturally lowest for “warm” which provides fewer opportunities to

reveal anti-monotonicity, compared to “cold”. In “cold” we distinguish between increasing and
16The other form of anti-monotonicity, namely to accept smaller values than rejected ones or to reject larger

values than accepted ones in the same trial, has been excluded by eliciting trial-specific acceptance thresholds.
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decreasing sequence of n. Of all participants in “cold-in(de)creasing” 27.08% (42.55%) reveal anti-

monotonicity in rounds 3 and 4, compared to 6.38% in “warm” in the same two rounds. The

difference between the share of anti-monotonic participants in “warm” significantly differs from

the share of “cold-increasing” (z = −2.681, p = 0.008) as well as “cold-decreasing” (z = −4.057,

p = 0.000) using the two-tailed Wilcoxon Rank-sum Test (henceforth WRST). The difference

in anti-monotonicity shares between “cold-increasing” and “cold-decreasing” is just short of being

(marginally) significant (z = 1.575, p = 0.115, two-tailed WRST).

Since participants in “warm” have fewer opportunities to reveal potential anti-monotonicity, it is

more appropriate to compare anti-monotonicity shares across “cold” and “warm” when balancing

their frequencies for observing monotonicity violations. We have randomly simulated shorter

acceptance profiles for “cold-increasing” (with the lower anti-monotonicity share and same sequence

of n) according to actual search lengths in “warm”.17 When taking into account only the randomly

simulated shorter profiles (based on the stopping times in “warm”) the anti-monotonicity rate in

“cold-increasing” drops to 14.5% but is still higher than “warm” with 6.38%, which is marginally

significant (z = −1.295, p = 0.097, two-tailed WRST).

Result 1 “Cold”, increasing and decreasing, triggers significantly higher shares of anti-monotonicity

than “warm” in rounds 3 and 4.

Table 2: Percentage of anti-monotonic participants

“Cold-increasing” “Cold-decreasing” “Warm”
n=10 n=10 n=10

End-game Anti-monotonic (%) 6.25 17.02 0.00
Other Anti-monotonic (%) 20.83 25.53 6.38
Total (%) 27.08 42.55 6.38

Notes: Total number of participants: 48 in “cold-increasing”, 47 in “cold-decreasing”, 47 in “warm”

One might have expected a lower share of monotonicity violations for “cold” due to the obvious

intuition that fewer remaining candidates are worse. On the other hand, anticipating a long
17We randomly matched “cold” and “warm” search profiles of same n sequence and shortened the “cold” profiles

based on their matched “warm” profile’s actual stop times. Given that in “warm” one has fewer opportunities to
reveal anti-monotonicity, looking at the acceptance thresholds of search profiles of same length makes them more
comparable.
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unsuccessful search in “cold” could trigger attempts to avoid possible failures by a final high

aspiration which, when satisfied, would render a too long and possibly even the longest search

successful. We identify such (end-game) anti-monotonicity in “cold” elicitation methods by an

increase of acceptance thresholds when only one or two candidates remain (see top row of Table

2 whose 0-share for “warm” is due to missing data). The substantial share of end-game anti-

monotonic participants in “cold” seems closely related to becoming (more) risk loving after losing

(see Kahnemann and Tversky, 1984). A participant in “cold” stating last aspirations seems to

reason like: “I may search too long and be unlucky, but I can still try to make it a real success".

Result 2: “Cold”, especially “cold-decreasing”, let many participants (17.02%) adapt their last

aspirations upwards.

So the format of choice elicitation crucially affects anti-monotonicity. Many participants seem to

view fewer remaining candidates as a loss and reveal risk tolerance via anti-monotonicity, especially

in “cold-decreasing” whose participants may already consider the decrease of n between rounds as

a loss.

4.2 Acceptance Data

We compare the four between-subjects conditions of Table 1 by outcome data, separately for

monotonic and anti-monotonic participants although this is more selective in “cold”. According

to Table 3, which shows average search length of all and participants without monotonicity18,

average search is longest for monotonic participants in “cold-increasing”. The shorter search in

“cold-decreasing” is mainly due to its shorter n = 15 plays (in round 1 & 2) by inexperienced

participants. The positive difference between “cold-increasing” and “cold-decreasing” is significant

for all participants and marginally significant for participants with no anti-monotonicity (z =

2.376, p = 0.018 for all participants, z = 1.707, p = 0.088 when considering participants with no

anti-monotonicity, two-tailed WRST’s).

While search length is comparable across all elicitation methods, the chances of revealing at least
18Anti-monotonic participants in “Hot” are assessed based on “Hot-Warm” and “Hot-Cold” data in rounds 5 and

6, respectively.
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one anti-monotonicity in “warm” and “hot” are fewer since they depend on search length. Average

lengths of search in “cold-increasing” and in “warm” are closest (5.05 versus 5.01 for all partici-

pants, 5.51 versus 4.91 for only monotonic ones) suggesting that n-sequence affects search length

more than the elicitation format.

Table 3: Stopping Time - Average number of participants drawn (seen) before accepting for n = 15

Cold-Increasing Cold-Decreasing Warm Hot
Mean Sdt. Dev. Mean Sdt. Dev. Mean Sdt. Dev. Mean Sdt. Dev.

All 5.052 3.985 3.936 3.704 5.011 3.947 4.051 3.391
No Anti-Monotonicity 5.614 3.987 4.426 3.456 4.909 3.891 4.149 3.478

Result 3 (i) In “cold” participants search significantly longer when n is larger. “Warm” relies on

the same n-sequence and triggers a similar average search length as “cold-increasing”.

(ii) “Hot” induces significantly shorter plays than “cold-increasing” and “warm”, though the dif-

ference is partially marginally significant (p = 0.027 when comparing “hot” with “cold-increasing”

and p = 0.059 when comparing “hot” with “warm”; two-tailed WRST). “Cold-decreasing” with its

high anti-monotonicity share seems strikingly different.

(iii) When combining all elicitation methods participants without anti-monotonicity (in rounds 3

and 4) search longer than anti-monotonic ones (z = 3.417, p = 0.000, two-tailed WRST).19 Their

longer search is aligned with more intuitive behavior, and suggests that monotonicity in aspiration

formation goes hand in hand with more rationality.

Based on the range of possible iid-value realizations, for each n−task, we have calculated the

theoretically expected RN-optimal search length. The cumulative distributions of actual as well

as theoretically expected stopping times (based on RN-optimal acceptance thresholds), for each

n−task, are illustrated by Figures 10, 11 and 12 in Appendix C.
19We couldn’t do this analysis by conditions as the share of anti-monotonic participants is low for some conditions;

see Table 2.
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Figure 2: Stopping time for n = 15

Additionally, when comparing RN-optimal search length we can exploit that for each n−task and

each participant the software generated a random sequence of n successive iid-value realizations.

This allows to assess for each n-task and each participant the RN-optimal search length, based

on RN-optimal play and actual iid-value realizations (RN-optimal stop would occur in the first

instance in which the RN-optimal acceptance threshold is below the actual iid-value realization),

which can be confronted with the actual search length of participants (based on both actual

participant play and the same iid-value realizations).

Figure 2 visualizes the distributions of actual and RN-optimal stopping times for n = 15. Im-

mediate, first trial, stopping is more frequent in “cold decreasing” than in “cold increasing” due

to participants confronting n=15 earlier what triggers the largest difference of actual and RN-

optimal stopping. Immediate acceptance in non-cold elicitation methods may be explained by

participants naively comparing the first value with its expectation and stopping when the former

is larger. Overall, participants in all cases, on average, stop significantly earlier than suggested by
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RN-optimality (p = 0.000 for “cold increasing”, “cold decreasing”, “warm” and “hot-hot”, p = 0.004

for “hot-warm”, and p = 0.001 for “hot-cold” using a two-tailed Wilcoxon sign-rank test).

For n = 15, “cold increasing” and and “warm” have the longest search, yet stopping in the first two

draws occurs in around 33% of cases in “Cold increasing” and around 38% of cases in “warm” but are

much higher than predicted by RN-optimal stopping (See Figure 2). For n = 10 and n = 5 there

exist only three comparisons each (see Figure 3). Differences across between-subject conditions

are minor due to fewer candidates. Part (ii) of Result 3 suggests a possible important advice,

namely to rely on self-delegation via committing to a complete aspiration profile already before

the first trial. One could describe this as self-nudging (see Thaler and Sunstein, 2009). Rather

than engaging trial-by-trial sequential choice making and becoming stressed and emotionally upset

when running out of candidates; one should decide for all trials before beginning to search, i.e.

when still being patient.

Figure 3 provides the same information for n = 10 and n = 5. “Cold increasing” and “cold

decreasing” in case of n = 5 reveal a striking similarity of actual and RN-optimal stopping. These

two conditions are the only ones for which the null hypothesis of no difference between actual and

RN-optimal stopping cannot be rejected (using a two-tailed Wilcoxon sign-rank test).

We readily admit that information about individual characteristics, for example, elicited by post-

experimental personality questionnaires and possibly complemented by cognitive reflection tasks

could be helpful when wanting to account for heterogeneity in stopping. Here the focus has been

on whether and how elicitation mode and n−sequencing affects search. In a follow-up study we

want to induce risk-neutrality (and pay one random round20) and let participants answer post-

experimental questionnaires suitable to shed light on the reasons of more or less heterogeneity.

When doing so one may want to avoid the striking effects of elicitation format and n-sequence

and focus instead on the condition with the highest (end game) anti-monotonicity share for which

heterogeneity in idiosyncratic characteristics may be more crucial.
20This would have the additional advantage that both stopping and continuing to search yield expected payoffs.

In the field, stopping often offers only stochastic payoff.
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Figure 3: Stopping time for n = 10 and n = 5

In three of the four conditions n = 10 is played in the 3rd and 4th round which avoids the effect

of differences in experienced number of rounds. Table 4 compares the stopping times of these

rounds. There is no significant difference when considering all participants. When excluding

the anti-monotonic, however, “cold-increasing” leads to significantly longer search than “warm”

(z = 2.132, p = 0.033, two-tailed WRST). The difference between “cold-decreasing” and “warm”

is larger, however just marginally significant due to the low frequency of participants with no

anti-monotonicity in “cold-decreasing” (z = 1.576, p = 0.115, two-tailed WRST).

Table 4: Stopping Time - Average number of participants drawn (seen) before accepting in rounds
3 & 4 when n = 10

Cold-Increasing Cold-Decreasing Warm
Mean Std. Dev. Freq. Mean Std. Dev. Freq. Mean Std. Dev. Freq.

No Anti-monotonicity 4.129 2.854 70 4.241 2.642 54 3.386 2.539 88
All 3.823 2.828 96 3.872 2.791 94 3.543 2.691 94
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4.3 Payoff Comparisons

Average payoffs are visualised by the kernel densities in Figures 4 and 5 for participants without

any anti-monotonicity (for all participants see Figure 9 in Appendix C). “Hot” payoffs are higher

due to 6 rounds with n = 15. To account for this difference, the left panel of Figure 5 presents

the kernel densities of payoffs only for the first two rounds of “cold-decreasing” and “hot”, and

the right panel of Figure 5 for the last two rounds of “cold-increasing”, “warm” and “hot”, all

relying on n=15. Table 5 lists for participants without anti-monotonicity the average payoffs and

their standard deviations, separately for n = 15, 10, and 5. Table 6 includes all participants.

The obvious increase in payoffs, due to more candidates, is missing in “cold-decreasing" (see the

difference between n = 15, 10, and 5 in Tables 5 and 6) even when considering only participants

without anti-monotonicity. Altogether, repeating the same n-task, avoiding anti-monotonicity and

increasing numbers n of candidates enhance payoffs at best slightly.

Figure 4: Kernel density of profits (n = 15) - monotonic participants only
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Figure 5: Kernel density of profits (n = 15) in the first two rounds of “cold-decreasing” and “hot”
(left panel), respectively of “cold-increasing”, “warm” and “hot” for the last two rounds (right panel)
- monotonic participants only

Based on the simulated RN-optimal search we can compute for each participant and each task

what (s)he has actually earned and what (s)he would have earned by RN-optimality (see the

Figures 13 and 14 in Appendix C for actual average and RN-optimal individual earnings). As

expected, actual earnings in most tasks are below RN-optimal ones. Except for “cold-increasing”

and “cold-decreasing” in the case of n = 5 and “hot-hot” tasks, participants in all other tasks earn

significantly less than they would have under RN-optimal search.21

21Using a 2-tailed Wilcoxon sign rank test, p = 0.060 for “cold-increasing” when n=5, p = 0.000 for “cold-
increasing” when n=10, p = 0.005 for “cold-increasing” when n=15, p = 0.556 for “cold-decreasing” when n=5,
p = 0.001 for “cold-decreasing” when n=10, p = 0.000 for “cold-decreasing” when n=10, p = 0.000 for “warm” when
n=5, p = 0.003 for “warm” when n=10, p = 0.000 for “warm” when n=15, p = 0.000 for “hot-hot”, p = 0.002 for
“hot-warm”, p = 0.175 for “hot-cold”.
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Table 5: Payoff per round - participants without anti-monotonicity only

Cold-Increasing Cold-Decreasing Warm Hot (n = 15)
Play 5 10 15 5 10 15 5 10 15 Hot Warm Cold

1st 96.91 102.14 108.49 102.00 111.11 106.96 92.36 107.11 105.55 106.45 112.13 113.66
(19.13) (17.87) (15.18) (21.55) (8.84) (11.49) (26.35) (15.97) (17.47) (15.38) (11.09) (8.04)

2nd 99.34 104.51 110.06 105.19 101.93 108.67 92.89 105.73 108.14 108.72
(20.8) (19.94) (11.23) (17.42) (21.03) (11.29) (23.47) (11.58) (11.87) (8.20)

3rd 109.45
(8.99)

4th 109.15
(8.25)

Table 6: Payoff per round - all participants

Cold-Increasing Cold-Decreasing Warm Hot (n = 15)
Play 5 10 15 5 10 15 5 10 15 Hot Warm Cold

1st 94.92 100.42 107.98 98.32 102.47 101.83 92.83 106.87 106.15 105.17 109.81 112.02
(21.02) (19.23) (15.61) (23.15) (19.59) (21.83) (25.82) (15.55) (17.07) (15.85) (15.43) (11.40)

2nd 99.42 103.50 106.04 100.04 98.53 106.60 93.91 105.66 107.91 108.72
(20.13) (19.27) (19.09) (22.16) (22.19) (14.97) (23.12) (11.34) (11.54) (8.20)

3rd 108.69
(9.71)

4th 109.65
(8.06)

Result 4 (i) Repeating the same n-task in round t = 2, 4, 6 after round t − 1 with the same n,

does not significantly increase payoffs across conditions (p = 0.232 in “cold-increasing"; p = 0.994

in “cold-increasing"; p = 0.479 in “warm"; and p = 0.924 in the first 2 rounds of “hot", when

comparing round t = 2, 4, 6 with t− 1 for all n in a treatment using a two-tailed WRST).

(ii) Anti-Monotonicity reduces payoffs in all conditions except “warm”, possibly due to its low share

of anti-monotonic participants (p = 0.088 in “cold-increasing", p = 0.000 in “cold-decreasing", and

p = 0.003 in “hot” using a two-tailed WRST), though for “cold-increasing" the reduction is only

marginally significant.

(iii) For participants without anti-monotonicity, larger n yields larger average payoffs (p = 0.001

when comparing n = 10 with n = 5, and p = 0.018 when comparing n = 15 with n = 10, pooling

across conditions and using a two-tailed WRST).

Altogether anti-monotonicity leads to shorter search for which one pays by lower average payoffs,

similar to the lower success of children (in life income) who behave myopically in the marshmallow
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task.

4.4 Choice Data

We begin with graphical illustrations. Figure 6 plots for the number of remaining candidates (on

the abscissis) the average aspirations (acceptance thresholds) for n = 15 across the 14 trials of

“hot” (based on "hot-cold" data from round 6 only), “cold-increasing” and “cold-decreasing” and

confronts them with RN-optimal ones (dotted).22 Playing “cold” after “hot” play triggers average

aspirations closest to RN-optimality. Except for overshooting at the end, “cold-decreasing” differs

most from RN-optimality with “cold-increasing” in between. The striking difference between “cold-

increasing” and “cold-decreasing” (see Figures 6 and 8) confirms, in our view, that a decreasing n

is perceived as more stressful and as a deprivation to which one reacts by shorter search what, in

turn, lowers average payoffs.

Figure 6: Acceptance thresholds for n = 15

Result 5 (i) for n = 15 average “hot” aspirations are closest to RN-optimal ones, when neglecting

their overshooting in the last four draws. “Cold-increasing” average aspirations for n = 15 are
22“Warm", which does not ask for a complete sequence of aspirations in any of the six rounds, is not included in

Figures 6, 7, and 8 since its successive means would rely on fewer threshold data.
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closer to RN-optimality than those for “cold-decreasing” (Figure 6),23

(ii) Comparing average choice behavior for n = 15 between “cold-increasing” and “cold-decreasing”

reveals a striking and significant sequence effect (p = 0.000 using a two-tailed WRST) whereas

average aspirations for n = 5 and n = 10 do not differ significantly between the two “cold”

conditions (see Figures 6, 7, and 8). In our view, playing the more rewarding n = 15 tasks first

when being still inexperienced, lets one stop on average too early via lower n = 15-acceptance

thresholds.

Figure 7: Acceptance thresholds for n = 10 and n = 5

In “cold-increasing”, “cold-decreasing”, and “warm” participants experience the n = 10 task in

rounds 3 and 4. We compare the acceptance thresholds in rounds 3 and 4 in Table 7 which

neglects the differences in experience before round 3. It reveals a surprising stationarity of average
23This result also holds when only regarding round six for “cold-increasing”, see Table 9 in Appendix C. We

have done this to avoid confounding condition differences in aspirations with experience (in “hot” participants state
complete profiles with 14 aspirations only in round six).
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Figure 8: Acceptance thresholds with cold elicitation methods

acceptance thresholds in “warm” whereas they steadily decrease for both “cold” conditions. This,

again, highlights the importance of relying on self-delegation or self-nudging via committing to an

aspiration profile at the beginning rather than trial-by-trial sequential aspiration formation which

leads to overshooting (higher than optimal thresholds) when the number of remaining candidates

gets small.
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Table 7: Acceptance thresholds in rounds 3 & 4 (when n = 10), and RN-optimal thresholds.

Number of remaining trials Cold-Increasing Cold-Decreasing Warm RN-Optimal

9
Mean 100.594 95.989 99.000 108.480

Std. Dev. 20.271 27.419 15.414
Freq. 96 94 94

8
Mean 97.479 95.968 100.197 107.143

Std. Dev. 18.523 22.983 14.217
Freq. 96 94 66

7
Mean 94.458 91.798 98.102 105.528

Std. Dev. 19.513 23.625 16.224
Freq. 96 94 49

6
Mean 91.719 91.394 98.029 103.535

Std. Dev. 19.349 19.804 15.905
Freq. 96 94 35

5
Mean 88.135 86.074 96.207 101.007

Std. Dev. 20.282 22.504 20.897
Freq. 96 94 29

4
Mean 86.615 86.660 94.818 97.671

Std. Dev. 19.177 21.829 20.953
Freq. 96 94 22

3
Mean 82.677 82.479 94.938 93.030

Std. Dev. 21.251 24.606 20.978
Freq. 96 94 16

2
Mean 79.021 80.649 95.583 86.000

Std. Dev. 22.653 22.662 17.059
Freq. 96 94 12

1
Mean 74.771 74.755 98.000 73.500

Std. Dev. 25.513 24.811 19.235
Freq. 96 94 5

Table 8 looks at the difference between stated acceptance thresholds and optimal thresholds in both

“cold” conditions, separated by monotonicity of each sequence.24 It confirms that the decreasing

sequence triggers a larger share of anti-monotonicity: the largest difference occurs for n = 15

(though the monotonicity share is in “cold-increasing” larger for all three n−values). The average

acceptance thresholds of monotonic sequences are, for all n−parameters, lower than the optimal

ones. While monotonic sequences of “cold-increasing” are on average closer to RN-optimal ones

than “cold-decreasing”, the difference is not statistically significant. This allows us to conclude

that the differences, reported in Result 5, are largely due to the higher frequency of non-monotonic

plays in “cold-decreasing”.
24Unlike in Section 4.1, here we differentiate between (anti-) monotonic participants for each of the six sequences

(rounds) asking participants for acceptance thresholds.
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Table 8: Differences between actual and optimal thresholds in Cold conditions - by monotonicity

Cold-Increasing Cold-Decreasing
n=5 n=10 n=15 n=15 n=10 n=5

Non Anti-Monotonic
Mean -1.909 -7.533 -8.396 -10.825 -6.092 -2.497

Std. Dev. 13.317 13.223 9.996 15.580 12.666 15.230
Freq. 74 70 66 46 54 67

Anti-Monotonic
Mean -10.405 -14.561 -12.962 -23.382 -16.486 -4.269

Std. Dev. 16.472 17.829 16.309 21.617 20.807 23.092
Freq. 22 26 30 48 40 27

Table 9 reports the share of participants with lower acceptance thresholds than RN-optimal ones

during the first three draws. For “cold” conditions the first aspiration is more frequently below

the RN-optimal one when n is larger (p = 0.008 when comparing n = 5 & n = 10, p = 0.009

when comparing n = 10 & n = 15, and p = 0.000 when comparing n = 5 & n = 15, using a logit

regression and pooling both conditions).

Table 9: Percentage of aspirations profiles with three initial aspirations below the optimal ones

Cold-Increasing Cold-Decreasing Hot
Draw 1 Draw 2 Draw 3 Draw 1 Draw 2 Draw 3 Draw 1 Draw 2 Draw 3

n=5 49.74% 43.75% 30.21% 39.36% 35.11% 25.53%
n=10 56.25% 86.05% 68.12% 54.26% 65.96% 74.47%
n=15 68.75% 72.92% 73.96% 68.09% 76.60% 77.66% 71.15% 76.92% 75.00%

Result 6 Initial aspirations below RN-optimal ones occur more often for n = 15 than for n = 10

and least often for n = 5.

Stopping too early (compared to RN-optimality) had to be expected as RN-optimality neglects

regret concerns. Anticipating that one may have rejected a better option earlier only to accept

a worse one later lets participants anticipate regret and conclude “I should have stopped earlier!”

what strongly discourages to state initial aspirations which are as ambitious as the RN-optimal

ones. Even when regret has to be coldly anticipated it strongly affects decision making.
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5 Conclusions

Let us begin by what can be learned from our analysis, especially in view of the different results due

to variations in experimental choice elicitation (see first paragraph of Section 2). Clearly the famil-

iar motive of neo-classical economics, expected profit, cannot account alone for how participants

form value aspirations and adjust them across trials. This is obviously true quantitatively (see the

striking differences between various conditions) but also partly qualitatively as revealed by the

partly substantial and significant shares of aspiration profiles with at least one anti-monotonicity.

In our view, these rather systematic deviations from RN-optimality are often due to anticipation

of regret and loss perception.

Although we expected elicitation method (“cold”, “warm” and “hot”) and sequencing of n-tasks

(“increasing” versus “decreasing”) to matter, the large effects are surprising. Many participants

seemingly viewed the experiment with its six rounds rather holistically, whereas RN-optimality

neglects how a specific n-task is embedded in a sequence of n-tasks and also how many candidates

were initially available. The theoretical neglect of path dependence with its conditioning only

on the state variable, the number of remaining candidates, is the main reason for behaviorally

rejecting RN-optimality.

The cardinal iid-secretary search task avoids complications like unknown priors, costs of search,

future dividends, and competition in search. It thus limits confounding aspects like belief updat-

ing, learning across trials, etc. Theoretically, there is nothing to learn from the past: all what

should matter is the number of remaining candidates. In spite of this our data analysis identifies

and confirms purely behavioral effects of path and context dependence, temperature of choice

elicitation, experience, and how these affect the proximity of behavior to the benchmark predic-

tion. Although choice elicitation methods leave optimality intact, they as expected were shown to

trigger different emotions and aspirations.

The “cold” data especially allow to compare optimal and actual conditioning on the number of

remaining candidates. Another advantage of the “cold” and “warm” conditions is rendering aspi-

ration formation and adaptation directly observable whereas “hot” instead provides only values
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of rejected, respectively accepted candidates. To infer aspirations from the latter choice data in

the tradition of the revealing aspiration approach would have to assume satisficing, similar to

presupposing optimality in revealed preference theory.

RN-optimal search behavior describes optimal satisficing (when accepting risk neutrality). Sat-

isficing as such does not require optimality but is experimentally imposed in “cold” and “warm”

via eliciting binding acceptance thresholds. Such induced satisficing is more rational when avoid-

ing anti-monotonicity of aspirations across trials. There is striking heterogeneity in individual

behavior: participants partly form more and partly less ambitious aspirations than RN-optimal

ones where the latter dominates. Other surprising findings, also varying interpersonally, are the

strong n-sequence effect for “cold” and the widely differing degrees of anti-monotonicity shares

across elicitation modes. Attributing anti-monotonicity to noise is questioned by the high anti-

monotonicity shares even in later rounds, and by the considerable sequence and elicitation effects

on anti-monotonicity, specifically on end-game anti-monotonicity (see Table 2 and its discussion).

An important conclusion of comparing “cold” and “hot” is that self-delegation or self-nudging is

prolonging search and slightly improves average payoffs.

In future research we plan to employ binary lottery incentives what requires to pay only for one

randomly selected round to experimentally induce risk neutrality. We will probably focus on “cold-

decreasing” with its high shares of anti-monotonicity to investigate whether and how heterogeneity

can be attributed to idiosyncratic characteristics.

One could also elicit choice behavior via employing multiple choice elicitations. One possibility

is using all three via employing the CWH-method: participants state, as in “cold”, a complete

aspiration profile before the first trial and additionally, trial after trial as in “warm”, an acceptance

threshold which possibly differs from the one chosen “coldly”. Then as in “hot”, they learn the

value and decide whether to accept the known value at the given trial or not. Incentivizing the

CWH-method could rely on positive probabilities for all three choices being applied randomly trial

by trial. So, when wanting to stop as in “hot”, one stops with the probability for “hot” but may

continue the search with the complementary probability when the choices in “cold”, respectively

29



“warm” each with the respective probability suggest it. The CWH-method obviously allows to

control intra-personally, rather than inter-personally as in this paper, how elicitation formats

affect search behavior.
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Appendix A - RN Optimal Strategy

The rational and risk neutral decision maker (DM) is sequentially presented with n “secretaries”

with independent, non-negative qualities X1, X2, . . . , Xn with common continuous distribution F .

At any trial t, 1 ≤ t ≤ n, DM sees the quality realization Xt = vt and decides whether to recruit

this “secretary” and stop searching or to reject the secretary and continue searching. Rejected

“secretaries” cannot be recalled. DM maximizes the expected quality of the recruited “secretary”.

Thus, DM’s objective when n secretaries are available is given by

En = sup
1≤τ≤n

E[Xτ ], (1)

where E denotes the expectation operator, τ the stopping time with respect to the increasing

sequence of σ-fields Ft = σ{X1, . . . , Xt} and the trivial σ-field F0.

The optimal stopping problem (1) can be solved by dynamic programming. To do so set v0 = 0, and

let Ek denote the optimal expected quality of the recruited secretary when there are k secretaries

still to be seen. The principle of optimal dynamic programming says that Ek obeys the following

recursion

Ek =
∫ ∞
0

max{v,Ek−1} dF (v) = E[X1] +

∫ Ek−1

0

F (v) dv, for 1 ≤ k ≤ n. (2)

The left term (2) E[X1] is the pay-off that the decision maker obtains by recruiting the secretary

currently under evaluation with quality Xn−k+1 = vn−k+1, while the right term is the pay-off for

rejecting the current secretary and continuing to search optimally in the next trial k − 1. Due

to our special choice task the RN-optimal payoffs, when continuing search, coincide with the RN-

optimal acceptance threshold, i.e. acceptance thresholds are also optimal aspirations. We also see

from (2) that the “secretary” inspected, at time t with quality Xt, is an optimal recruit at time t

if and only if

Xt > vn−t for all 1 ≤ t ≤ n− 1
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and that the sequence of optimal thresholds is monotonically increasing in the number of (remain-

ing) trails:

0 = v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn.

Moreover, if the random qualities X1, X2, . . . , Xn have the uniform distribution on [0, 1], then

F (v) = v for all v ∈ [0, 1] and

v0 = 0 andvk =
1

2
(1 + v2k−1), for 1 ≤ k ≤ n.

The experiment actually uses discrete integer qualities and one derives (2) when the cumulative

distribution function F has discrete support. Specifically, we choose two integers a ≥ 0 and J ≥ 0

and suppose that the random qualities X1, X2, . . . , Xn have support on the integers {a + 1, a +

2, . . . , a+ J}. Setting v0 = a and for any vk−1 ∈ [a, a+ J ] we have the recursion

vk = E[max{Xn−k+1, vk−1}] = E[X1] + (vk−1 − bvk−1c)F (bvk−1c) +
bvk−1c−1∑
j=a+1

F (j).

When F is the discrete uniform distribution on {a+1, a+2, . . . , a+ J}, then F (j) = (bjc− a)/J

for a+ 1 ≤ j ≤ a+ J and the right hand side becomes

vk = a+
1

2
(J + 1) +

1

2J
(bvk−1c − a)(2vk−1 − bvk−1c − a− 1), for 1 ≤ k ≤ (3)

Is optimal to accept the secretary, inspected at time t, if and only if

Xi > vn−t

The optimal thresholds (3) when n = 15, a = 24 and J = 99 are graphically shown in Figure 1 in

the main text.
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Appendix B - Instructions: Cold-Increasing

Welcome! This is an experiment on how individuals make decisions. We are only interested in your

choices. Be careful how you take your decisions as your behavior will determine the amount of

money that you will receive and which will be paid out at the end of the experiment. In addition,

you will gain an amount of 5(e) as a show up fee.

The following instructions will explain what choices you make and the gains associated with each

choice.

Expected gains from this experiment are defined in ECUs (Experimental Currency Unit), converted

at the following rate:

1 ECU = 2cents (e)

This experiment is computerized and is based on individual decisions. All decisions will be taken

anonymously through the computer in front of you. It is forbidden to communicate in any way

with other participants for the duration of the experiment. At the end of the experiment there

will be a questionnaire. At the end of the questionnaire you will be called individually to receive

the final payment. Please wait in silence until the experimenters call your number.

After reading the instructions by the experimenter you’ll have some minutes to read: If something is not clear please raise your hand and be silent, one of the experimenters will come to help you individually.

Please do not disturb other participants during the experiment.

Design

In this game you will play 6 rounds. In each round there will be made a number of draws, namely:

- In round 1 and round 2 there will be up to 5 draws

- In round 3 and round 4 there will be up to 10 draws

- In round 5 and round 6 there will be up to 15 draws

We’ll call the drawn values (v): each value v is randomly drawn by the computer from a range of

integers between 24 to 123, where all possible 100 integers are equally likely, i.e. every value v is
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chosen with probability 1/100. In round 1 and round 2 a maximum of 5 values (v) will be drawn,

values v1, v2, v3, v4, v5, in round 3 and 4 a maximum of 10 values (v) will be drawn, that is, v1,

v2, ..., v9, v10 etc..

The round ends when a draw is accepted (so if you accept the first draw, remaining draws for that

round will not be carried out); in case no extraction is accepted then the round will end at last

draw for that round. The procedure for acceptance will be explained in detail below.

In each round your gain is defined by the accepted draw, or the last draw if no earlier draw has

been accepted. In particular the ECU’s (Experimental Currency Unit) is equal to the accepted

value v in that particular round (so, in each round you can earn minimum 24ECU, and maximum

123ECU).

Acceptance and choosing acceptance thresholds

At the beginning of each round, before the draws begin, you will be asked to define your acceptance

thresholds (t) for all potential draws that round. The acceptance threshold t is the value you

choose, from 24 to 124, in order to define what value you are willing to accept for each draw. For

example in rounds 1 and 2:

Draw Acceptance Threshold
1 t1
2 t2
3 t3
4 t4

In particular: in round 1 and round 2 you define four acceptance thresholds t1, t2, t3, t4 for the first

4 draws (the last value, value v5 is automatically accepted if no other draw has been accepted).

In round 3 and round 4 you will have to define nine acceptance thresholds t1, tt, ..., t8, t9 for the

first 9 draws, and in rounds 5 and 6 you will have to define fourteen acceptance thresholds t1, t2,

..., t13, t14 for the first 14 draws.

After you define all the acceptance thresholds t1 − tn−1 , the draw of the first value v1 is made

and:
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a) If the extracted value v1 is greater or equal than the threshold of acceptance (v1 ≥ 51), the

draw is accepted and the round ends;

b) If the extracted value is below the threshold of acceptance (v1 < 51), the draw is not accepted

and you move on to the second draw for which you have already defined an acceptance threshold

t2. Since you may want to reject any value of a certain draw, we included the acceptance threshold

t = 124 which automatically rejects any possible value drawn. t = 24, on the other hand, accepts

every possible drawn value.

Please take your time in making your decisions, there is no point in rushing as the next round

starts only when all participants concluded their decision and extractions.

The final gain from this experiment

Your final gain of the experiment will be determined by the sum of earnings for each round and

the amount that you are paid for your participation, specifically:

- 5ero as a fixed participation fee;

- the gain equal to the value v of the accepted draw (value v of the last draw if no earlier is

accepted) in round 1;

- the gain equal to the value v of the accepted draw (value v of the last draw if no earlier is

accepted) in round 2;

- the gain equal to the value v of the accepted draw (value v of the last draw if no earlier is

accepted) in round 3;

- the gain equal to the value v of the accepted draw (value v of the last draw if no earlier is

accepted) in round 4;

- the gain equal to the value v of the accepted draw (value v of the last draw if no earlier is

accepted) in round 5;

- the gain equal to the value v of the accepted draw (value v of the last draw if no earlier is

accepted) in round 6;
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Appendix C - Additional Tables and Figures

Figure 9: Kernel density of profits (n = 15) - all participants

Figure 10: Cumulative actual vs. theoretically expected RN-optimal stopping times (n = 15)

38



Figure 11: Cumulative actual vs. theoretically expected RN-optimal stopping times (n = 10)

Figure 12: Cumulative actual vs. theoretically expected RN-optimal stopping times (n = 5)
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Figure 13: Actual vs. RN-optimal profits (n = 15) - all participants

Figure 14: Actual vs. RN-optimal profits (n = 10 & n = 5) - all participants
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Table 10: Acceptance thresholds in round 6 (when n = 15) and RN-optimal ones

Number of Remaining Trials Cold-Increasing Hot RN-Optimal

14 Mean 99.854 104.404 112.784
Std. Dev. 22.834 14.465

13 Mean 100.313 104.192 112.139
Std. Dev. 19.684 12.020

12 Mean 101.208 103.077 111.408
Std. Dev. 15.623 16.525

11 Mean 101.188 104.038 110.573
Std. Dev. 13.807 10.456

10 Mean 98.333 102.865 109.608
Std. Dev. 14.755 12.711

9 Mean 97.417 102.115 108.480
Std. Dev. 12.391 9.298

8 Mean 95.521 100.538 107.143
Std. Dev. 14.447 12.586

7 Mean 96.104 101.135 105.528
Std. Dev. 13.071 10.462

6 Mean 93.375 100.000 103.535
Std. Dev. 14.627 12.692

5 Mean 91.188 100.288 101.007
Std. Dev. 17.523 10.615

4 Mean 90.854 97.904 97.671
Std. Dev. 16.461 14.209

3 Mean 84.438 97.231 93.030
Std. Dev. 18.014 12.200

2 Mean 83.167 97.096 86.000
Std. Dev. 19.243 14.159

1 Mean 75.000 87.808 73.500
Std. Dev. 24.466 23.787
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