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Abstract

We study how different forms of social capital lead to different distributions of multidi-

mensional opinions by affecting the channels through which individuals communicate.

We develop a model to compare and contrast the evolution of opinions between societies

whose members communicate through bonding associations (i.e., which bond similar

people together) and societies where communication is through bridging associations

(i.e., which bridge the gap among different people). Both processes converge towards

opinion distributions where there are groups within which there is consensus in all is-

sues. Bridging processes are more likely to lead to society-wide consensus and converge

to distributions that have, on average, fewer opinion groups. The latter result holds

even when the confidence bound that allows successful communication in the bridging

process is much smaller than the respective bound in the bonding process.
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1 Introduction

People’s opinions are not fixed. Once an individual has formed an opinion about an issue,

she may revisit it in the future, once she gets more information about it. Arguably, one
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of the most important avenues through which information is exchanged is by individually

meeting and discussing with others. Of course, one might not necessarily take another’s

opinion into account when updating her own, especially if this opinion is very different than

hers. Oftentimes though, when two individuals who hold different opinions discuss, they see

each others’ points; this way their opinions on the subject they discuss become more similar.

The opportunities available to people to meet, interact and exchange opinions measure

the stock of social capital of the community they live in. Depending on whether these

opportunities result in individuals meeting other individuals similar to them, or individuals

quite different to them, social capital can be classified as bonding or bridging respectively.

In this paper, we present a theoretical framework that incorporates the existence of

communication channels with different features into a standard model of multidimensional

opinion formation with bounded confidence (Deffuant et al., 2000; Lorenz, 2005). These

differences are driven by the type of social capital of the community they live in (Putnam,

1995). Our goal is then to study how different types of social capital, bonding or bridging,

affect the distribution of opinions within a society. Of particular interest to our analysis

is the comparison between the two processes with respect to the likelihood of leading to

society-wide consensus and the expected level of opinion fractionalization.

In order to do that, we formulate two dynamic processes of opinion formation with

bounded confidence, based on Deffuant et al. (2000), that capture the features of communi-

cation through bonding and bridging associations respectively. In each of the two processes,

citizens hold opinions over two issues, which they revise after meeting and discussing with

other citizens of the society. A society in which citizens interact predominantly through

bonding associations is modeled by a process in which two citizens may discuss and agree

only as long as their current opinions are sufficiently close in both issues, henceforth called

bonding process. On the contrary, a society in which citizens interact predominantly through

bridging associations is modeled by a process in which two citizens may discuss and agree

as long as their current opinions are sufficiently close in at least one of the two issues (and

irrespectively of how far they might be in the other one), henceforth called bridging process.

We find that both processes lead societies to an “island”-type distribution of opinions,

where groups of citizens reach consensus between them in both issues,1 and we also show

that these islands are sufficiently far from each other with probability one. Despite this

similarity in the shape of the final distributions, we show that the two processes have distinct

characteristics that determine how these groups are formed and how many of them survive

in the long run. In particular, we show that it is tougher for a group of citizens to form a

stable common neighborhood, i.e. a group of people who can communicate successfully only

with each other and who will eventually converge towards a common opinion in all issues,

in a bridging process than in a bonding process.

1This is in fact a recurrent result in this type of processes, see Deffuant et al. (2000) and Lorenz (2005).
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We then consider a simplified setup of a small society of three citizens for which we obtain

additional results. We show that for any confidence bound d of the bonding process, there

exists a confidence bound k of the bridging process, such that for any bridging process with a

confidence bound larger than k the society is more likely to reach society-wide consensus and

has a lower expected number of islands compared to the bonding process with confidence

bound d. Importantly, this lower bound is always strictly lower than d and in fact it is

typically much lower than d, at a similar order to d2. Given the limitations of our simplified

setup, we also perform an extensive set of simulations on larger societies and we find that

our results are not only robust to larger societies but are in fact strengthened.

These last results contain the main message of the paper. They suggest that even

minimally outward-looking bridging processes lead to more cohesive societies than modestly

outward-looking bonding processes. This means that enhancing social capital that bridges

distinct social groups is essential for reducing opinion fractionalization within societies. Note

that this might seem as an unquestionably positive feature, yet it is probably more accurate

to consider it as an opinion coordination mechanism, as there is no guarantee that societies

will converge towards opinions that are necessarily positive from a social point of view. For

instance, Satyanath et al. (2017) find that in Weimar Germany participation in bridging

associations was strongly related to higher enrollment in the Nazi party.

2 Literature Review

A large branch of the literature on opinion formation has focused on conditions that allow

individuals to reach consensus (or learn some “correct” action) via communication, consider-

ing both Bayesian and non-Bayesian updating processes.2 Probably closer to the spirit of our

analysis is Golub and Jackson (2012) where the authors study the speed of convergence in a

fixed network of individuals that update their opinions using average-based updating (DeG-

root, 1974) and find homophily to speed down the process. Here, we consider a process that

allows the network to coevolve with opinions (on that, see also Holme and Newman, 2006)

and second, the connection between the updating process and the forms of social capital

allows us to capture the impact of different forms of homophily on the network structure.

Social capital is a term that has been used to refer to a variety of things. According

to Putnam (1995), social capital refers to “features of social organization such as networks,

norms, and social trust that facilitate coordination and cooperation for mutual benefit”.3 In

this sense the stock of social capital is greater where individuals have many opportunities to

2See Bala and Goyal (1998); Gale and Kariv (2003); Banerjee and Fudenberg (2004); Acemoglu and
Ozdaglar (2011); DeMarzo et al. (2003); Golub and Jackson (2010); Mueller-Frank (2013, 2015) and also
Golub and Sadler (2017) for an excellent review of the different branches of literature on learning on networks.

3For other definitions of social capital and for a research survey on the topic see Durlauf and Fafchamps
(2005). For an empirical decomposition of the concept see Bjørnskov (2006).
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interact and cooperate within a community. This would seem to imply that social capital is

associated with good social outcomes. For instance, Knack and Keefer (1997) and Tabellini

(2010) find that social capital is associated with stronger economic performance and Guiso

et al. (2004) show that social capital brings more trust in a community which improves its

level of financial development. On the other hand, social capital can have negative effects

on society (see discussion on results by Satyanath et al., 2017, above).

In an attempt to understand more deeply the distinct forms of social capital, Putnam

(2000) makes the distinction between bonding and bridging social capital. The first type

“bonds” similar individuals with each other and the second one “bridges” the gap between

different individuals.4 Different forms of social capital are implicitly present also in the

seminal work of Granovetter (1973), who pointed out the importance of weak (versus strong)

ties within a society. Strong and weak ties in the Granovetter sense can be seen as resulting

from bonding and bridging social capital, respectively.

In general, different categorizations of social capital can be defined based on the charac-

teristics that determine the perception of social distance among citizens. Although without

referring to social capital, Iijima and Kamada (2017) look at the impact of different per-

ceptions of social distance on network formation, with the two main cases of comparison

coinciding with our definitions of bonding and bridging social capital. Nevertheless, the

framework they study is totally different, as opinions are fixed and the agents form costly

links whose benefits depend on the relative social distance between the connected agents.

With respect to non-consensus opinion formation Axelrod (1997) posed the question of

why even though people tend to become more alike when they interact, the differences across

them do not eventually disappear. Even though individuals are becoming more similar with

every interaction, the fact that similarity itself leads to the interaction makes individuals

who are quite different very unlikely to interact, thus making consensus unattainable. This

observation pertains the key idea of homophily as a possible explanation for the persistence

of disagreement, which is also present here. This is prominent in Melguizo (2018), where in

a variation of the average-based updating model the network of interactions to coevolve with

opinions, in a way that sharing of a common attribute strengthens the interaction between

individuals. The driving force of these results is still the intensity, rather than the form, of

homophily in the network. Other explanations for the persistence of disagreement contain

anchoring to initial opinions (Friedkin and Johnsen, 1990), biased assimilation (Dandekar

et al., 2013) and opinion fluctuations (Acemoglu et al., 2013).

Our analysis is based on the model of average-based updating introduced by DeGroot

4There are also two forms of “bridging”, internal and external. Internal bridging brings together the
members of a given association, whereas external bridging brings together members of different associations
(see Geys and Murdoch, 2008). Moreover, Geys and Murdoch (2010) discuss how the bridging and bonding
nature of networks can be measured. Following the discussion on social capital and redistribution, Borisova
et al. (2015) show that it is in fact the bridging social capital that has positive effects on redistribution.
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(1974), with the addition of bounded confidence. The seminal papers by Deffuant et al.

(2000), Krause (2000) and Hegselmann and Krause (2002) introduce the concept of bounded

confidence, according to which citizens whose opinions are too far away from each other

do not take each other’s opinions into account. This introduces implicitly a notion of ho-

mophily, not on interactions per se, but on interactions that influence individuals’ opinions.5

A recurrent feature of these processes is that multiple opinions can survive, with the frac-

tionalization being negatively related to the size of confidence bound (Ben-Naim et al., 2003;

Blondel et al., 2007; Lorenz, 2007).

The “island”-type distribution of opinions for the model of Deffuant et al. (2000) is proven

analytically in Lorenz (2005). The main result of that paper provides a clear intuition of

the general long-run properties of these processes, and its proof is essential for establishing

Theorem 1 of this paper. Moreover, Fortunato et al. (2005) and Lorenz (2003, 2008) extend

the original models of Deffuant et al. (2000) and Hegselmann and Krause (2002) to multidi-

mensional opinions. More specifically, Lorenz (2003) and Fortunato et al. (2005) look at the

multidimensional version of the model of Hegselmann and Krause (2002), both considering

confidence bounds with similar shape as that of our bonding process. The former proves

a similar theoretical result as Lorenz (2005), whereas the latter provides some additional

theoretical results and an extensive set of simulations that supports the emergence of the

“island”-type structure, focusing more on the impact of the size of the confidence bound on

the number of islands. Lorenz (2008) looks at both types of models and allows for other

shapes of confidence bounds, with the focus being again on the impact of the confidence

bound on the number of islands. Finally, Kurahashi-Nakamura et al. (2016) allow individ-

uals to interact with others who hold distant opinions, similarly to our bridging process.

Yet, their main interest is on the distribution of opinions is affected by random changes that

are not associated with the opinion formation process. Overall, this paper can be seen as a

revisit to the problems of opinion formation, fractionalization and consensus seeking from a

social capital perspective.

3 Empirical Motivation

Using the last wave of the European Values Study,6 we can compare the attitudes of cit-

izens of various European countries, given their participation or not in different kinds of

associations.

5For an excellent survey on opinion dynamics and bounded confidence see Lorenz (2007) and for some
empirical evidence see Lorenz (2017). Moreover, a stream of the literature on average-based updating looks
at the shape of persisting disagreement without considering bounded confidence (see DeMarzo et al., 2003;
Louis et al., 2017).

6EVS (2011): European Values Study 2008: Integrated Dataset (EVS 2008). GESIS Data Archive,
Cologne. ZA4800 Data file Version 3.0.0, doi:10.4232/1.11004
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The dataset contains a very rich set of variables spanning the whole spectrum of social

life. The data has been collected around the whole of Europe and the place of residence

of the participants is recorded at the regional level. This allows us to construct aggregated

data points for each region, without restricting the size of our data too much, as it would

be the case if location was measured at the national level.

For each country, we observe whether a participant has indicated to be an active member

of a number of different associations, as well as whether a participant has declared spon-

taneously to be a member of no association at all.7 We aggregate these observations at

the regional level and obtain the share of the population that participates in each type of

association at each region. The results for each association are presented separately.

In addition to participation in associations, we observe the self-declared position of the

participants on the left–right political spectrum, which is measured on a scale from 1 (extreme

left) to 10 (extreme right). Using this measure we are able to construct a fractionalization

index for the given region. We use the standard version of the Ethnolinguistic Fractionaliza-

tion Index ELF = 1−
10∑
i=1

s2i , where i ∈ {1, . . . , 10} corresponds to a stated position on the

political spectrum and si is the share of participants from the region who declared to have

position i.

The aim of this empirical exercise is to check whether the level of participation at a given

type of association is correlated with the observed level of fractionalization in the given

region. Note that the fractionalization index can be affected by the size of the population

used for its calculation, as larger populations are expected to be more fractionalized than

smaller ones just because of the fact that their calculation is based on a higher number of

opinions. For this reason, the size of the sample for each region is taken into account in

our regressions and indeed seems to have a positive and significant effect. In addition to

this, we drop regions with fewer than twenty observations, as the results in such cases are

affected very much by individual observations, thus being not representative of the entire

population.8

We regress the calculated fractionalization indices on the participation level for each of

the associations, including as regressors the sample population, the average age, education

and wage levels and the share of each gender. All data are aggregated at the regional level.

Table 1 presents the coefficients for each of the association in the relevant regression, together

with their significance level.9

7We focus on the variable that indicates whether or not someone has provided voluntary work for the
given organization, rather than just having participated, as this provides a stronger indication on the extent
of involvement in the organization.

8The choice of twenty observations as a threshold is obviously ad hoc, as there is not standard way of
making this choice. The idea is that on the one hand a small number of observations induces a lot of noise
in the ELF, on the other hand setting a high threshold will lead us to drop too many observations, thus
altering the nature of the total sample.

9The complete table of regression results is available upon request.
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Religious 0.122∗∗ Women 0.233∗

(0.0446) (0.101)
Sports 0.132∗ Environment 0.273∗∗∗

(0.0518) (0.0808)
Arts 0.186∗∗ Health 0.295∗∗∗

(0.0580) (0.0722)
Professional 0.194 Political Party 0.300∗∗∗

(0.101) (0.0826)
Trade Union 0.206∗ Community 0.325∗∗∗

(0.0889) (0.0870)
Welfare 0.213∗∗∗ Human Rights 0.397∗∗∗

(0.0567) (0.0895)
Youth 0.221∗∗ Peace 0.404∗∗∗

(0.0756) (0.116)
None -0.0749∗∗

(0.0235)

Observations 386

Sample population ≥ 20. Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1: OLS coefficients of participation in various associations on fractionalization.

Overall, we find that the share of participation in almost any type of association is

positively related with the fractionalization of a society and analogously participating in no

association is negatively related with it.10 Regarding differences between bridging and bond-

ing associations, despite the fact that there is no commonly accepted way of characterizing

particular associations, some types of organizations are often associated with bridging social

capital, such as sports, arts, religious and youth associations, whereas others are more often

associated with bonding social capital, such as political parties and other politically involved

associations, as well as activist organizations. For instance, sports or arts related associa-

tions are more likely to bring together enthusiasts of a specific activity (people who like the

same sport, or who play the same instrument), without restricting participation based on

other social characteristics. On the other hand, associations such as political parties and

community groups have more strictly-defined requirements to allow a person’s participation

in them, either social or political. For a more detailed discussion of classification of associa-

tions see Geys and Murdoch (2008), Geys and Murdoch (2010), Coffé and Geys (2008) and

Satyanath et al. (2017).

Having said that, we observe that associations of a more “bridging nature”, such as, for

example, arts and sports associations, are found to have the lowest impact among all others

10In a different set of regressions we found the same result to be true if one looks at partisanship levels
instead of the ELF. By partisanship level we mean the average absolute distance from the average opinion
of 5.5. This result could be connected with the findings of Satyanath et al. (2017) where the authors find
participation in associations to be linked with increased entry level in the Nazi party before WWII.
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and on the contrary associations of a more “bonding nature”, such as peace and human

rights associations, are found to have the largest impact among all others.

The result does not impose any causal effect, but indicates a different relation between

different associations and the observed fractionalization in a society. Our subsequent theo-

retical analysis provides a framework that could potentially explain the observed differences

based on the process of opinion formation that is induced by the participation in differ-

ent types of associations. Note that we intend to explain the observed differences across

associations and not why participation per se is associated with higher fractionalization.

4 Model

We examine a dynamic model of multidimensional opinion formation, á la Deffuant et al.

(2000), in a population of n citizens, denoted by N = {1, . . . , n} with typical elements i, j.

Citizens are considered to hold opinions over two issues x and y which can be represented

as points on the Euclidean space [0, 1]× [0, 1]. Citizens may meet via two different processes

that are described later and upon communication they may adjust their opinions.

Initially, each citizen holds a pair of opinions (x0i , y
0
i ). Initial opinions are summarized

by the vectors x(0) and y(0) respectively. In each period, starting from period t = 1

onwards, two citizens i, j are randomly selected to communicate. If their opinion profiles

are sufficiently “close” to each other then their communication can be successful, in which

case the two citizens’ opinions come closer on the issue they discussed. Otherwise, their

opinions do not change. In our setup, successful communication means that the two citizens

understand the opinions of each other and they are able and willing to find some common

ground; thus, their opinions will become more similar. Unsuccessful communication means

that the citizens are unwilling or unable to find common ground and as a result their opinions

remain unchanged. Formally, if two citizens are selected to meet and discuss issue x on which

they hold opinions xti, x
t
j (with xti < xtj) and communicate successfully, then their opinions

become

xt+1
i = xti + µ(xtj − xti) and xt+1

j = xtj − µ(xtj − xti)

respectively. The parameter µ ∈ (0, 1/2] denotes the extent to which opinions come closer

to one another upon successful communication.

On the contrary, if the two citizens’ opinion profiles are very “far” from each other

then their communication can never be successful, in which case no adjustment is made in

their opinion profiles.11 This is a model of bounded confidence, where citizens are willing to

exchange opinions only with those with whom there is some common ground for meaningful

11Alternatively, one could think that two citizens with very distant opinions can never be chosen to interact.
The qualitative results of this alternative mechanism are identical and the only feature that is affected is the
speed of convergence and some increased consistency of extreme opinions.
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discussion.

We consider two distinct processes that differ with respect to the meaning of two citizens’

opinions being “close” or “far”. The two processes reflect the underlying effect of participa-

tion in certain associations on whether two citizens can meet and subsequently communicate

successfully. The relationship between opinions and associations is the following: There

are as many potential associations as there are opinions, and people can always find, and

participate in, associations that are close to their opinions. Since there is a continuum of

opinions there is a continuum of potential associations as well. As their opinions change,

the associations that individuals can potentially participate in change as well. At the same

time, each individual can potentially participate in any association that represents opinions

that are “close” to hers.

Therefore, when we examine if two individuals can meet, we implicitly examine whether

there are associations both individuals would potentially participate in. For instance, indi-

vidual A might participate in a basketball association, but not in a volleyball association.

While participating in the basketball association A might meet individual B who partici-

pates both in basketball and volleyball associations. On the other hand, individual B can

also meet individual C who only participates in volleyball associations. Therefore A can

meet and communicate with B, C can meet and communicate with B, but A cannot meet

and communicate with C unless B convinces A to try volleyball, or C to try basketball.

We differentiate between two main types of associations, bonding associations versus

bridging associations and analyze the respective processes in which citizens interact via one

of these two types of associations.

Bonding process: Bonding associations are associations whose members tend to be

quite similar to each other in all respects. Therefore, a citizen participating in a bonding

association expects to communicate with citizens whose opinions are not too far away from

her own in all issues. We formalize this by considering that citizens i, j with opinions (xti, y
t
i)

and (xtj, y
t
j) respectively at time t, may communicate successfully only as long as:

Confidence bounds in a bonding process: |xti − xtj| ≤ d and |yti − ytj| ≤ d

where the parameter d ∈ (0, 1] determines the confidence bounds. Geometrically, that

means that a citizen may successfully communicate with others whose opinions on the two-

dimensional Euclidean space lie on a square of size 2d centered at the citizen’s opinion.

Obviously, the higher the value of d the larger the set of citizens who may successfully

communicate with each other. For a schematic representation see the left sub-figure of

Figure 1. A citizen i located at the dot may successfully communicate with a citizen j if

and only if j’s opinion at the time of communication lies in the shaded area.

9



Bridging process: Bridging associations are associations whose members share a com-

mon interest, therefore they tend to share ex-ante similar opinions only on some issue.

Therefore, a citizen participating in a bridging association expects to meet and discuss with

citizens with whom she shares a very close opinion in the issue related to the association,

but whose opinions might be very different on the other issue. For example, if x would rep-

resent sports associations in general, then if the citizen likes football, she will participate in

a football association where she expects to meet other football enthusiasts. However, liking

football is not necessarily a predictor for a citizen’s stance on issue y. Football lovers come

from all walks of life; therefore if issue y represented “politics” then we can reasonably think

that football fans attending football associations span the entire political spectrum, from left

to right.12 As such, when meeting with other citizens in the football association, a citizen

may end up discussing with someone with vastly different political opinions than her. This

is exactly the reason why these types of associations are called “bridging”.

To formalize this consider that citizens i, j with opinion profiles (xti, y
t
i) and (xtj, y

t
j) may

communicate successfully only as long as:

Confidence bounds in a bridging process: |xti − xtj| ≤ k or |yti − ytj| ≤ k

Schematically, this defines a “cross”-shaped area in the two-dimensional space centered at

the citizen’s opinion (see right subfigure of Figure 1). In general, it makes sense to assume

that k < d, meaning that when opinions need to be similar only with respect to a single issue

in order to make successful communication possible, this similarity should be stronger than

when successful communication requires opinions to be similar in both issues. Intuitively,

k > d would mean that a bonding process would leave unambiguously smaller common

ground for successful communication between two citizens compared to a bridging process,

because it would require the citizens’ ex-ante opinions in both issues to be more similar than

they would need to be in even one of the issues in a bridging process.13

By comparing the two processes, the different shape of the areas within which successful

communication is possible becomes apparent. On the one hand, the convex shape of the

area in the bonding process induces some type of, loosely speaking, “monotonicity” in the

likelihood of successful communication. On the other hand, the cross-shaped area of the

bridging process can lead two agents who hold quite close opinions in both issues to be

unable to successfully communicate, because of not being “too similar” in any of them,

12There might be cases where these two opinions might be ex-ante correlated, but this would not add
anything to our model.

13Later in the paper, for some results we will impose the normalization k = 1
2 −

√
1
4 − d2 which ensures

that the areas within which successful communication is possible cover the same area in each case. Observing
at Figure 1 the area in which a citizen may find others to agree is 4d2 in the bonding case and 2 · 2k − 4k2

in the bridging case. Equating the two quantities yields the normalized value of the parameter k.
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Figure 1: Neighboring areas given the type of process.

while at the same time citizens with extremely distant opinions in one of the subjects may

have the chance to communicate successfully.

In what follows, we define the set of citizens with whom citizen i can communicate

successfully at period t as i’s neighborhood. Formally:

Definition 1. The neighborhood of a citizen i at period t consists of all the citizens with

whom i faces a strictly positive probability of communicating successfully. Formally:

• Bonding: N t
i = {j ∈ N \ {i} : |xti − xtj| ≤ d and |yti − ytj| ≤ d}

• Bridging: N t
i = {j ∈ N \ {i} : |xti − xtj| ≤ k or |yti − ytj| ≤ k}

The nature of both processes imposes an undirected relationship between citizens in the

sense that if citizen i is in the neighborhood of citizen j, then j is in the neighborhood of i,

i.e. j ∈ N t
i ⇔ i ∈ N t

j .

In both processes, the pair of citizens that is chosen to interact discusses one of the

two issues, chosen randomly.14 The probability of discussing each issue can depend on the

citizens’ current opinions or not, but this is inconsequential for our qualitative results, as

long as each issue is chosen to be discussed with a strictly positive probability. Moreover,

the probability that communication is successful is assumed to be non-increasing in the

distance of opinions in the issue discussed and strictly positive as long as opinions are within

14We consider that the citizens discuss a single issue at a time, however all results directly extend to
the case in which both issues are discussed simultaneously. Such an assumption would only speed up the
convergence of the process
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the respective confidence bounds of each process. Note that one might argue that the

bridging process would be associated also with a lower frequency of interactions, as it is

not uncommon that people with very different opinions might avoid interacting often. This

assumption would also leave our process unaffected except for its impact on the speed of

convergence.

Overall, the evolution of both processes depends on a randomly generated sequence of

pairs of citizens who communicate in each period, the issue they discuss and whether commu-

nication is successful or not. Namely, the sequences of opinions {(xti, yti)}∞t=1 for each i ∈ N
can be fully characterized from the sequence of interactions {zt}∞t=1, where zt = ((it, jt), st, ct).

For each period t, (it, jt) denotes the pair that communicates, st ∈ {x, y} denotes the is-

sue discussed and ct ∈ {0, 1} denotes whether communication was successful (ct = 1) or

not (ct = 0). Hence, zt is randomly drawn from a finite set P × {x, y} × {0, 1}, where

P := {(i, j) ∈ N2 : i 6= j}. However, the probability with which each element can be drawn

is not fixed and depends on the state at which the process is. The only restriction we impose

in all distributions is that at each period t each element that contains a pair of citizens

who could potentially communicate successfully at this period is drawn with strictly positive

probability that is bounded away from zero, i.e. if it ∈ N t
j , then P [zt = ((it, jt), ·, 1)] ≥ β, for

some β > 0. Some further restrictions on these draws will be imposed in order to establish

some of the results.

Having stated the basic elements of the model, we now present some additional definitions

that will be used in subsequent results.

Definition 2. The neighboring area of a point (x, y) consists of all points (x̂, ŷ) such that

two citizens with opinion profiles (x, y) and (x̂, ŷ) face a strictly positive probability of

communicating successfully. Formally:

• Bonding: N(x,y) = {(x̂, ŷ) ∈ [0, 1]2 : |x− x̂| ≤ d and |y − ŷ| ≤ d}

• Bridging: N(x,y) = {(x̂, ŷ) ∈ [0, 1]2 : |x− x̂| ≤ k or |y − ŷ| ≤ k}

In a completely analogous manner, we can define the neighboring area of a set of multiple

opinion profiles as follows:

Definition 3. The neighboring area of set of points S consists of all points (x̂, ŷ) such that

a citizen with some opinion profile (x, y) ∈ S and another citizen with opinion profile (x̂, ŷ)

face a strictly positive probability of communicating successfully. Formally:

• Bonding: NS = {(x̂, ŷ) ∈ [0, 1]2 : |x− x̂| ≤ d and |y − ŷ| ≤ d for some (x, y) ∈ S}

• Bridging: NS = {(x̂, ŷ) ∈ [0, 1]2 : |x− x̂| ≤ k or |y − ŷ| ≤ k for some (x, y) ∈ S}
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The last related area we are interested in is the smallest rectangle that surrounds the

opinions of a group of citizens. Namely:

Definition 4. Consider a group of citizens I ⊆ N and let StI = {(x, y) ∈ R2 : (x, y) =

(xti, y
t
i) for some i ∈ I}, i.e. the set of opinions of I’s members. Then, the minimum

bounding rectangle of StI is defined as follows:

MBRt
I = {(x, y) ∈ R2 : min

i∈I
xti ≤ x ≤ max

i∈I
xti and min

i∈I
yti ≤ y ≤ max

i∈I
yti}

Observe that MBR is defined over a set of points, thus we can also consider the neigh-

boring area of a minimum bounding rectangle, which is a quantity that will be proven handy

in subsequent results.

Finally, it should be noted that Definitions 1 and 2 refer to different sets, but share some

similarities. For instance, a citizen j belongs to the neighborhood of citizen i at a given

period if and only if her opinion profile (xtj, y
t
j) belongs to the neighboring area N(xti,yti)

of

i’s current opinion profile, i.e. j ∈ N t
i ⇔

(
xtj, y

t
j

)
∈ N(xti,yti)

.

5 Results

A useful initial observation is that both processes are mean preserving, meaning that the

average opinion in the population remains the same in all periods. This is a well-known

feature of processes that are variants of Deffuant et al. (2000). Moreover, the variance of

opinions is weakly decreasing, as in each period either some opinions move closer to each

other, or they remain unchanged.15

Note that mean preservation does not imply that all opinions will converge to this mean.

In fact, our first result shows that for any finitely large population both processes converge

to an “island”-type structure. That is, we observe the emergence of groups of citizens whose

opinions converge to the same values in both issues. However, the opinions across groups

may differ. When opinions within a group converge, we will say that this group reaches

consensus and refer to these groups as islands. If a single island emerges, then we will say

that a society-wide consensus is reached.

Notably, convergence is proven in a deterministic way, meaning that it is achieved for any

sequence of interactions. Of course, both the number of islands and the opinions to which

each group will converge will depend on the sequence of interactions. This result can be seen

as an adaptation of the result of Lorenz (2005) in the current framework. The result provides

a clear and intuitive sense of how the long run distributions of opinions in such processes

will look like, as well as that the societies indeed move towards these long-run outcomes.

15The proofs of these arguments are omitted as they are rather straightforward and well–established in
the literature and are available upon request.
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Moreover, it shows that the geometry of the distribution of opinions does not depend on the

actual process, as long as it satisfies certain mild conditions.

Definition 5. A group of citizens I ⊆ N reaches consensus if

lim
t→∞

xti = x and lim
t→∞

yti = y for all i ∈ I

for some x, y ∈ [0, 1].

Theorem 1. Both in a bonding and in a bridging process, for any vectors of initial opin-

ions x(0) and y(0) and for any sequence of interactions {zt}∞t=1, opinions converge to form

pairwise-disjoint groups of citizens I1 ∪ · · · ∪ Ip = N such that each group of citizens,

g ∈ {1, . . . , p}, reaches consensus.

The deterministic nature of the Theorem 1 allows it to capture even cases where little or

no updating occurs. Yet, it does not say much about the relative position of the opinions to

which different groups are expected to converge. Intuitively, we would expect islands to be

located far from each other, in the sense that citizens located around different islands can

no longer communicate successfully. Otherwise further updating between citizens located

close to different islands could substantially affect the distribution of opinions. Nevertheless,

although this is something we would expect to happen most of the times, it will always be

possible to find sequences of interactions for which this would fail, thus the result should

be stated probabilistically. Think, for instance, a trivial sequence in which all realized

interactions are unsuccessful, thus the initial opinion profile remains unchanged forever. In

the next result, we show that the probability of converging to an “island”-type structure

with several islands located close to each other is zero.

Proposition 1. Consider an arbitrary collection of non-empty pairwise-disjoint groups of

citizens I1, . . . , Ip such that I1∪· · ·∪Ip = N and a collection of opinions (x1, y1), . . . , (xp, yp)

such that (xm, ym) ∈ Int
(
N(xl,yl)

)
for some l,m ∈ {1, . . . , p} and l 6= m. Both in a bonding

and in a bridging process, the probability that opinions converge to form groups I1, . . . , Ip
such that citizens belonging to group Ig reach consensus at (xg, yg) for all g ∈ {1, . . . , p} is

zero.

Int(·) denotes the interior of a set.16 The setup we describe in Proposition 1 is one in

which the population is split into disjoint groups of citizens, where each group Im consists

of citizens whose opinions converge to a profile (xm, ym) –thus, creating an “island”-type

structure– and some of these opinion profiles are sufficiently close to allow the possibility

of further successful communication –i.e., for some l,m ∈ {1, . . . , p}, it holds that (xm, ym)

16A short discussion on why focusing on the interior of the neighboring area is provided in the Appendix
after the proof of the proposition.
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(a) Opinion distribution in a bonding process

x

y

(b) Opinion distribution in a bridging process

Figure 2: The dots represent the consensus opinions of different sets of citizens and the hatched
grey areas represent the respective neighboring areas for each set of citizens that has reached
consensus.

is in the neighboring area of (xl, yl). Proposition 1 shows that the probability that such

a configuration will emerge as a long-run outcome of the process is zero. Therefore, the

islands that will eventually be created (as a consequence of Theorem 1) will almost certainly

be located sufficiently far from each other. A graphical representation of the “island”-type

structure presented in Theorem 1 and Proposition 1 is presented in Figure 2.

By this point, we have a clear idea about the opinion distributions societies are expected

to converge to. Note that Proposition 1 suggests that after a sufficiently long number of

periods we expect to have well-formed stable groups, whose members may communicate

successfully only among themselves. This in turn means that, before opinions within each

group converge to very similar values, the society passes through a phase of (what we will

call) neighborhood stabilization. That is, there is some time period at which members of

different groups come sufficiently close to each other and far from everyone else, which in

turn means that for each citizen there is a group of fellow citizens with whom she can

currently communicate successfully and this does not change from that period onwards.

Formally,

Definition 6. A process reaches neighborhood stabilization at period t if for all i ∈ N and

t′ > t holds that N t
i = N t′

i .

A first (rather straightforward) remark regarding neighborhood stabilization is that it

is associated with the emergence of common neighborhoods, meaning that after neighbors

stabilize, all members of a groups are sufficiently close to each other to make successful
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communication within group possible.17

Remark 1. For both a bonding and a bridging process, neighborhood stabilization at period

t implies that for all t′ > t and i, j ∈ N such that j ∈ N t′
i holds that N t′

i ∪{i} = N t′
j ∪{j}.

Therefore, a necessary condition for neighborhoods to stabilize is the emergence of disjoint

groups of agents who have common neighbors. However, observing such groups at some

time period is not sufficient to ensure neighborhood stabilization for two reasons, one of

which applies only to the bridging process. First, in both processes and absent of any

other conditions, successful communication between two citizens who belong to the same

group might lead one or both of them inside the neighboring area of some other group, thus

destabilizing the current neighborhood structure. See for instance an example of this for a

bonding process in Figure 3. Second, only in the bridging process, successful communication

between two citizens who belong to the same group might lead one of them outside of the

neighboring area of some other member of the group. Formally,

Remark 2. Consider a group of citizens I ⊆ N such that, at some period t, N t
i = I \ {i}

for all i ∈ I. If citizens j, l ∈ I communicate successfully at period t, then:

i In a bonding process, at period t+ 1 for sure N t+1
i = I \ {i} for all i ∈ I.

ii In a bridging process, at period t+ 1 maybe N t+1
i 6= I \ {i} for some i ∈ I.

Remark 2 is suggestive of the fact that neighborhood stabilization is tougher in bridging

processes and therefore opinion updating might be more common in them. The reason why

this remark holds has to do with the shape of the neighboring areas of groups of citizens

and their minimum bounding rectangle (MBR). Note that, by construction, if two citizens

of group I communicate successfully at period t then their opinions at t+1 will still trivially

belong to MBRt
I , i.e. MBRt+1

I ⊆MBRt
I . In a bonding process, the shape of the confidence

bounds guarantees that MBRt
I ⊆ N(xti,y

t
i)

for all i ∈ I, therefore successful communication

between members of the same group cannot unsettle the common neighborhood property.

On the contrary, in a bridging process, this need not be the case, as it can be that MBRt
I 6⊆

N(xti,y
t
i)

for some i ∈ I, which in turn means that successful communication between two

members of the same group can lead one of them far from some other member of the group.

A graphical representation of Remark 2 is presented in Figure 4.

Therefore, any condition that guarantees neighborhood stabilization must take into ac-

count these two factors. Intuitively, in order to overcome the additional restrictions for the

bridging process, neighborhood stabilization would require a distribution of opinions that

would induce the inclusion of the MBR of each group in its neighboring area. The following

17The proof is readily available upon request.
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(b) Final configurations

Figure 3: Bonding process: The red rectangle is the MBR of group I and the shaded area is the
MBR’s neighboring area. After successful communication, citizen j enters the neighboring area of
group I.

two propositions formalize these arguments. Note that, the conditions we present are not

necessary, but sufficient. Nevertheless, they suffice for neighborhood stabilization to hold

deterministically, i.e. irrespective of the realization of subsequent draws.

Proposition 2. In a bonding process, a population reaches neighborhood stabilization at

period t if the following two conditions hold at that period:

• there exist disjoint groups of citizens I1 ∪ · · · ∪ Ip = N such that N t′
i = Ig \ {i} for all

g ∈ {1, . . . , p} and for all i ∈ Ig.

• MBRt
Ig′ ∩NMBRt

Ig
= ∅ for all g, g′ ∈ {1, . . . , p} with g 6= g′.

The first condition is necessary, as a consequence of Remarks 1 and 2. The second

condition ensures that no citizen can potentially enter the neighboring area of a group of

citizens other than the one she currently belongs to. A graphical example in which this might

occur is presented in Figure 3. The provided condition is still not necessary, despite being

quite strict, as there are opinion profiles within the MBR of a group which can never be

reached by any citizen, for any sequence of interactions. Therefore, in some cases, although

the MBR of a group intersects with the neighboring area of another group, no citizen may

reach an opinion profile within this intersection. Notice that, the condition is stricter than

considering the intersection between one group’s MBR and the union of neighboring areas

of another group’s members. The reason is that successful interactions between members
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(a) Common neighbors in bonding process
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(b) Common neighbors in bridging process

Figure 4: The red rectangles are the groups’ MBRs, the grey hatched areas are the neighboring
areas of citizen i’s opinion. For the bonding process, any neighboring area would contain the MBR
of the group.

of a group may change their neighboring areas, without necessarily shrinking them. This

means that in subsequent periods the two sets may intersect. On the contrary, both MBRt
Ig

and NMBRt
Ig

shrink over time, i.e. MBRt+1
Ig ⊆ MBRt

Ig and NMBRt+1
Ig
⊆ NMBRt

Ig
, which is

sufficient to guarantee neighborhood stabilization. A visual representation of a population

that satisfies the conditions of Proposition 2 is presented in Figure 5(a).

As we have already said, neighborhood stabilization is tougher to be achieved in a bridging

process, because a citizen may exit the neighboring area of some neighboring citizen, even

if she interacts only with other members of the group. This is a consequence of Remark 2.

For this reason, we need an additional condition to guarantee neighborhood stabilization in

a bridging process.

Proposition 3. In a bridging process, a population reaches neighborhood stabilization at

period t if the following two conditions hold at that period:

• there exist disjoint groups of citizens I1 ∪ · · · ∪ Ip = N such that N t
i = Ig \ {i} for all

g ∈ {1, . . . , p} and for all i ∈ Ig,

• for each group Ig, there is a rectangular area Rg of size k × 1 or 1 × k such that

(xti, y
t
i) ∈ Rg for all i ∈ Ig and

• MBRt
Ig′ ∩NMBRt

Ig
= ∅ for all g, g′ ∈ {1, . . . , p} with g 6= g′.

18



x

y

(a) Neighborhood stabilization (Bonding)

x

y

(b) Neighborhood stabilization (Bridging)

Figure 5: The red rectangles are the groups’MBRs and the grey hatched areas are the neighboring
areas of each MBR. The neighboring areas may intersect, but they cannot intersect with another
group’s MBR.

The other two conditions of Proposition 3 are the same as those of Proposition 2. A

visual representation of the result for the bridging process is shown in Figure 5(b).

A final useful remark is that the conditions presented in Propositions 2 and 3 are sufficient

to ensure that a consensus will be eventually reached among the members of each of these

groups, as successful communication after period t would only be possible between members

of each of the groups, which in turn can never break the existing neighborhoods. In fact,

given this and the property of mean preservation in the process, we also know that the

consensus opinions towards which each group will converge will be simply the average of its

members opinions at t.

Remark 3. Consider a bonding (resp., bridging) process such that at some period t the

conditions of Proposition 2 (resp., Proposition 3) hold. Then, the probability that for all

g ∈ {1, . . . , p} opinions of citizens belonging to group Ig will converge towards consensus

opinions (xg, yg) =

(
1
|Ig |

∑
i∈Ig

xti,
1
|Ig |

∑
i∈Ig

yti

)
is one.

Before moving on, it should be noted that none of the previous results depends on

the probabilities with which different sequences of interactions appear. More specifically,

nothing would change if instead of the probability of successful communication being a

decreasing function of distance we would have assumed that communication is successful with

probability one. Our idea of having the more general decreasing probability of successful

communication is meant to capture the feature that people with too diverging opinions
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might communicate (because of the social capital that connects them) on an issue, but not

necessarily agree.

Specific Results on a Restricted Setup

We have still not provided a conclusive comparison between the two processes, as far as

the relative likelihood of consensus and the expected number of islands are concerned. In

most of the related literature, these problems have been approached mainly via numerical

simulations. The reason is that tractable analytical results are quite hard to obtain for two

main reasons: First, the evolution of a process depends heavily not only on initial conditions,

but also, especially in the case of bridging process, on the exact sequence of meetings. Second,

bounded confidence naturally gives rise to discontinuities, which prevents the use of several

standard results from Markov processes. Similar problems arise in our setup as well.

For this reason, in order to obtain some analytical results that still capture the main ideas

of the two processes, we restrict our attention to a simpler case. More specifically, we analyze

the simplest non-trivial case: a society with three citizens, n = 3, whose initial opinions are

drawn uniformly at random from [0, 1] for each issue, with confidence bounds d ∈ (0, 1/2]

and k ∈ (0, 1/4], with µ = 1/2, and in which interactions are chosen such that the pair that

interacts can communicate successfully and communication is always successful.18 Among

the interactions that satisfy these assumptions, each one is chosen with the same probability,

which also implies that each issue is discussed with probability 1/2. In what follows, we refer

to this as the Restricted Setup.

The results we present for the Restricted Setup are obtained following constructive ap-

proach. More specifically, we intend to calculate at the best precision possible the probability

with which the society ends up consisting of one, two or three islands respectively in each

process. For the bonding process we provide the exact probabilities that each of these events

occur, whereas for the bridging process we provide bounds, which are nevertheless sufficient

to establish the desired results. We consider ex-ante probabilities and expectations, meaning

that they are calculated before the realization of initial opinions.

The first result tackles the problem of inward versus outward-looking societies. Namely,

one would expect that societies whose members have larger confidence bounds (i.e. are more

outward looking) will end up with opinions concentrated in a smaller number of groups and

would be more likely to reach consensus. It turns out that this is not necessarily true. More

18The choices regarding the confidence bounds are made in order to have a unique expression for the
probabilities we calculate. Our analysis allows us to calculate the respective probabilities for larger values
as well, but that would induce a larger computational cost without adding much to the intuition. The
assumption regarding successful communication does not affect the result; it just eliminates all interactions
that lead to no update which affect only the speed of convergence.
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specifically, for the bonding process, when n = 3 one can show that for any vectors of initial

opinions increasing the confidence bound weakly decreases the number of “islands” towards

which opinions converge. However, for larger societies (for any n ≥ 4) there exist vectors of

initial opinions for which a larger confidence bound can lead to a larger number of “islands”

(see Example 1). Interestingly, for the bridging process this non-monotonicity result appears

even in societies consisting of as few as three citizens (see Example 2).

Example 1. Consider a bonding process with µ = 1/2 in a society of four citizens A, B,

C and D with initial opinions (x0a, y
0
a) = (0, 0.1), (x0b , y

0
b ) = (0, 0.2), (x0c , y

0
c ) = (0, 0.32) and

(x0d, y
0
d) = (0, 0.42) respectively. Note that all citizens have the same opinion in issue x, so

we can focus on communication on issue y.

If the confidence bound is d = 0.1, then only pairs (A,B) and (C,D) may communicate

successfully. In fact, neighborhoods are already stabilized and opinions will converge towards

two islands located at (0, 0.15) and (0, 0.37), with two citizens’ opinions converging towards

each of them.

If the confidence bound is increased to d = 0.15, observe that citizens B and C may also

communicate successfully. If this occurs during the first period, then opinions at period t = 1

will be (x0a, y
0
a) = (0, 0.1), (x0b , y

0
b ) = (0, 0.26), (x0c , y

0
c ) = (0, 0.26) and (x0d, y

0
d) = (0, 0.42) after

which no further updating is possible. In fact, no sequence of interactions can lead to fewer

than two islands. Therefore, d = 0.15 leads always to at least as many islands as d = 0.1

and sometimes to strictly more.

Example 2. Consider a bridging process with µ = 1/2 in a society of three citizens A, B

and C with initial opinions (x0a, y
0
a) = (0, 0.4), (x0b , y

0
b ) = (0.1, 0) and (x0c , y

0
c ) = (0.3, 0.14)

respectively.

If the confidence bound is k = 0.1, then only citizens A and B may communicate suc-

cessfully. If they first discuss issue y, then (x1a, y
1
a) = (0, 0.2), (x1b , y

1
b ) = (0.1, 0.2) and

(x1c , y
1
c ) = (0.3, 0.14), thus all three opinions in y are at a distance less than k, which means

that they have reached neighborhood stabilization and will eventually converge to society-

wide consensus. If they first discuss issue x then (x1a, y
1
a) = (0.05, 0.4), (x1b , y

1
b ) = (0.05, 0)

and (x1c , y
1
c ) = (0.3, 0.14), after which still only A and B can communicate successfully. The

only non-trivial interaction that can lead to opinion updating is for A and B to discuss issue

y, which then leads all agents to eventually reach society-wide consensus.

If the confidence bound is increased to k = 0.15, now observe that citizens B and C may

also communicate successfully initially. Given this consider that the first two interactions

are both between B and C, with issue x being discussed in one of them and issue y in the

other. Opinions at period t = 2 will then be (x2a, y
2
a) = (0, 0.4), (x2b , y

2
b ) = (0.2, 0.07) and

(x2c , y
2
c ) = (0.2, 0.07), after which no further updating is possible. Therefore, the probability

of society-wide consensus is strictly lower than one, the expected number of islands strictly
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higher than one and in fact the larger confidence bound yields a weakly larger number of

islands in all sequences of interactions.

At this point it is important to clarify that in Examples 1 and 2 we look at specific

realizations of the processes in which the opinion profiles are already drawn. However, this

is not the way in which we proceed to prove our subsequent results. Instead, we focus on

an ex-ante version of the process –i.e. before the realization of opinion profiles. Namely, we

intend to characterize the probability of society-wide consensus and the expected value of the

number of islands over the distribution of all initial opinion profiles, rather than comparing

the outcomes of specific realized processes.

More formally, we approach the problem as follows: First, we identify collections of

opinion profiles that lead to similar long-run configurations. More specifically, we group

together opinion profiles for which the same sequences of meetings lead to the same number

of islands in the long run. Then, we calculate the ex-ante probability with which one, two

or three islands will be formed in the long run, by integrating over the distribution of initial

opinion profiles and the sequences of meetings. With these probabilities in hand, we can

directly calculate the expected number of islands. Importantly, for the second step it is

very useful that the collections of opinion profiles we form in the first step have convenient

geometric properties, as they can be represented as intersections of finitely many half-planes

on a two-dimensional space (see Figures 9, 10 and 11 in the Appendix).

Proposition 4. In the Restricted Setup, any increase of the confidence bound d ∈ (0, 1/2]

of a bonding process (i) increases the ex-ante probability of society-wide consensus and (ii)

decreases the expected number of islands.

Proposition 5. In the Restricted Setup, any increase of the confidence bound k ∈ (0, 1/4]

of a bridging process (i) increases the lower bound of the ex-ante probability of society-wide

consensus and (ii) decreases the upper bound of the expected number of islands.

Despite not having a complete monotonicity result for the bridging process, Propositions

4 and 5 allow us to obtain an important comparison between the two processes.

Proposition 6. In the Restricted Setup, consider an arbitrary bonding process with confi-

dence bound d ∈ (0, 1/4]. There always exists a confidence bound k̂ ∈ (0, d) such that each

bridging process with k ∈ (k̂, 1/4] has (i) a higher ex-ante probability of reaching society-wide

consensus and (ii) a lower expected number of islands compared to the bonding process with

confidence bound d.

The result follows immediately from Intermediate Value Theorem if one makes the follow-

ing observations: First, the established lower bound of the probability of reaching society-

wide consensus is an increasing and continuous function. Second, for k = 0 there are trivially

22



always three islands meaning that, not only the lower bound, but also the actual probability

of consensus is equal to zero. Third, for k = d the lower bound for a bridging process is

always higher than the actual probability of society-wide consensus for a bonding process

with confidence bound d and the same holds for k > d. Therefore, there exists some k̄ for

which the lower bound for the bridging process with confidence bound k̄ becomes equal to

the actual probability for the bonding process with bound d, and it is higher for all k > k̄.

Hence, the same must also hold for the actual probability of society-wide consensus for any

k > k̄. The argument is identical for the expected number of islands, for a (possibly differ-

ent) cutoff value k̃. Thus, the argument can be completed by simply considering a common

cutoff k̃ = max{k̄, k̃}. A graphical illustration of the result is presented on Figure 6.

The result of Proposition 6 is quite intuitive if one observes that for k = d the neighboring

area of each point in the bonding process is included in its respective neighboring area in

the bridging process. Therefore, one could argue that the comparison is not fair. For this

reason, we also compare what would happen if one would consider a neighboring area of the

bridging process that would be as large as the one of the bonding process (in terms of the

area that it covers). Interestingly, we find that the same result as in Proposition 6 still holds.

In fact, we can extend this result to larger values of d, much closer to 1/2. Namely,

Proposition 7. In the Restricted Setup, consider an arbitrary bonding process with confi-

dence bound d ∈ (0,
√

3/4] and the bridging process with k = 1
2
−
√

1
4
− d2. Then, the bridging

process with k has: (i) a higher ex-ante probability of reaching society-wide consensus and

(ii) a lower expected number of islands compared to the bonding process with d.

Propositions 6 and 7 are probably the strongest results in terms of the implications they

entail. Note that the normalization induces values of k that are much smaller than those of d

and in practice close to the order of d2.19 This suggests that even minimally outward-looking

bridging processes lead to more cohesive societies than modestly outward-looking bonding

processes.

Simulations

The results obtained on the Restricted Setup yield the natural question on whether they

would be robust under more general assumptions. We test the robustness of these results

via numerical simulations in more general setups, with a higher number of citizens and we

find the results to be robust and even be reinforced.

Our simulation exercise is performed as follows: we generate n two-dimensional opinion

profiles (citizens) which are randomly drawn from the uniform distribution on [0, 1]2. Each

period two citizens are randomly chosen to communicate and new interactions are drawn

19A simple Taylor expansion gives 1
2 −

√
1
4 − d2 = d2 + d4 + 2d6 + 5d8 +O[d10].
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Figure 6: The figure provides a graphical representation of part (i) of Proposition 6. The axes of
the diagram are the value of k (horizontal) and the probability of society-wide consensus (vertical).
The thick horizontal line depicts the probability of society-wide consensus for a bonding process
with confidence bound d. The thin solid curve depicts the lower bound of the probability of society-
wide consensus for a bridging process with confidence bound k as a function of k, whereas the thick
dashed curve depicts the actual probability of society-wide consensus as a function of k for the same
processes. The arrows highlight the fact that the latter is always above the former. According to
Proposition 6, for k = 0 the lower bound is equal to zero –thus below the horizontal line– and for
k = d it is above the horizontal line. The point k̄ denotes the unique value of k at which the two
intersect and above which the lower bound for the bridging processes is always above the horizontal
line. Hence, the same must also hold for the actual probability, i.e. the thick dashed line is above
the the thick horizontal line whenever k > k̄.

until the process stabilizes. After each process stabilizes, we count the number of islands.20

We repeat this process 1000 times for each type of process (bonding and bridging) and for

different sizes of confidence bounds d and k that are chosen according to the normalization

of Proposition 7
(
k = 1

2
−
√

1
4
− d2

)
. The assumptions on the rest of the parameters used

in the simulations are the same as those of the Restricted Setup.

In Table 2 we present descriptive statistics regarding the number of opinion islands that

20We use as conditions for stabilization those of Propositions 2 and 3, which are sufficient for us to count
the number of islands, as explained in Remark 3.
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Bonding Bridging
d Mean Median Sd Consensus k Mean Median Sd Consensus

n = 3
0.1 2.90 3 0.303 0.001 0.01 2.90 3 0.30 0.002
0.2 2.63 3 0.528 0.022 0.04 2.53 3 0.57 0.039
0.3 2.30 2 0.646 0.104 0.1 2.04 2 0.66 0.199
0.4 1.98 2 0.64 0.215 0.2 1.56 2 0.58 0.487

n = 10
0.1 8.59 9 1.012 0 0.01 8.30 8 1.19 0
0.2 5.97 6 1.209 0 0.04 4.84 5 1.36 0.006
0.3 3.84 4 1.009 0.002 0.1 2.57 3 0.94 0.119
0.4 2.43 2 0.899 0.161 0.2 1.54 1 0.58 0.507

n = 50
0.1 24.12 24 2.407 0 0.01 15.36 15 3.102 0
0.2 8.05 8 1.384 0 0.04 5.79 6 1.36 0
0.3 3.87 4 0.854 0.005 0.1 3.05 3 0.85 0.024
0.4 1.99 2 0.859 0.318 0.2 1.80 2 0.64 0.326

n = 100
0.1 28.58 29 2.604 0 0.01 17.14 17 2.82 0
0.2 7.55 8 1.329 0 0.04 6.37 6 1.36 0
0.3 3.74 4 0.990 0.016 0.1 3.42 3 0.83 0.009
0.4 2.29 2 0.917 0.190 0.2 2.05 2 0.67 0.2

Table 2: Mean, median and standard deviation of the number of islands and frequency of society-
wide consensus for the two processes and for different population sizes.

arise in the long-run and the likelihood of society-wide consensus for each of the two processes.

Table 3 refers to the same set of simulations and presents results on fractionalization. For

each size of the society (n = 3, 10, 50, 100) we calculate the average number of islands and

the frequency of society-wide consensus across all iterations for different values of d in the

bonding processes, and the corresponding normalized k in the bridging processes.

The part that refers to n = 3 is a benchmark that refers to the case that corresponds to

our theoretical results. Interestingly, the results become stronger as we increase the number

of citizens: bridging processes give rise to a lower number of islands and are more likely to

lead to society-wide consensus.

Table 3 shows the descriptive statistics for the levels of fractionalization in equilibrium

in each case, using the Ethnolinguistic Fractionalization Index (ELF ) and the Greenberg

Index (GI).21 Confirming the results of the previous table, the bridging process produces

lower fractionalization compared to the bonding one.

Overall, the main theoretical predictions and intuitions are indeed verified by the numer-

ical simulations. In fact, it is quite reassuring that the results, if something, are strengthened

21As a reminder, ELF = 1−
∑
s2i and GI =

∑∑
sisjdij , where si and sj are shares of distinct opinion

islands, and dij is the Euclidean distance between opinion islands i and j.
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Bonding Bridging

d µELF ẼLF σELF µGI G̃I σGI k µELF ẼLF σELF µGI G̃I σGI

n = 3
0.1 0.644 0.667 0.069 0.000 0.000 0.000 0.01 0.645 0.667 0.07 0.000 0.000 0.000
0.2 0.579 0.667 0.135 0.000 0.000 0.000 0.04 0.554 0.667 0.155 0.000 0.000 0.000
0.3 0.487 0.444 0.196 0.000 0.000 0.000 0.1 0.409 0.444 0.223 0.000 0.000 0.000
0.4 0.392 0.444 0.222 0.000 0.000 0.000 0.2 0.238 0.444 0.236 0.000 0.000 0.000

n = 10
0.1 0.868 0.88 0.027 0.005 0.005 0.000 0.01 0.858 0.86 0.04 0.004 0.004 0.001
0.2 0.773 0.78 0.068 0.004 0.004 0.000 0.04 0.68 0.72 0.145 0.003 0.003 0.001
0.3 0.62 0.64 0.13 0.004 0.004 0.001 0.1 0.38 0.42 0.201 0.002 0.002 0.001
0.4 0.377 0.42 0.222 0.002 0.003 0.002 0.2 0.132 0 0.156 0.001 0 0.001

n = 50
0.1 0.94 0.941 0.009 0.126 0.126 0.006 0.01 0.817 0.832 0.077 0.067 0.067 0.014
0.2 0.799 0.805 0.042 0.112 0.113 0.009 0.04 0.45 0.458 0.139 0.038 0.038 0.013
0.3 0.533 0.586 0.178 0.074 0.08 0.027 0.1 0.18 0.151 0.111 0.019 0.017 0.012
0.4 0.077 0.039 0.105 0.011 0.006 0.0151 0.2 0.044 0.039 0.044 0.006 0.005 0.006

n = 100
0.1 0.945 0.945 0.007 0.506 0.506 0.017 0.010 0.680 0.701 0.107 0.185 0.184 0.034
0.2 0.781 0.786 0.041 0.430 0.432 0.030 0.040 0.323 0.305 0.127 0.102 0.099 0.038
0.3 0.435 0.506 0.022 0.225 0.254 0.124 0.100 0.124 0.114 0.070 0.051 0.047 0.029
0.4 0.041 0.039 0.040 0.022 0.019 0.022 0.200 0.033 0.020 0.027 0.017 0.013 0.014

Table 3: Fractionalization Indices – µx, x̃ and σx correspond to the mean, median and standard
deviation of the two fractionalization indices respectively, for the two processes for different popu-
lation sizes. The values denoted by 0.000 refer to quantities that are positive but lower than 10−3,
whereas the values denoted by 0 refer to quantities with value exactly equal to zero.

when we look at more general setups, with larger populations.

In the Appendix, we include another robustness check, repeating the simulations with

the same parameters except for the probability of successful communication, which is now

considered to be quadratically decreasing in the distance of opinions in the issue discussed.

For the bonding process, if citizens i, j, with opinion profiles (xti, y
t
i) and (xtj, y

t
j) respectively,

discuss issue x, their communication is successful with probability 1−(xti−xtj)2 if |xti−xtj| ≤ d

and |yti − ytj| ≤ d and 0 otherwise. For the bridging process, if citizens i, j, with opinion

profiles (xti, y
t
i) and (xtj, y

t
j) respectively, discuss issue x, their communication is successful

with probability 1−(xti−xtj)2 if |xti−xtj| ≤ k or |yti−ytj| ≤ k and 0 otherwise. It is easy to see

that the results are virtually identical, confirming that whether the probability of successful

communication is set to be equal to one or it is considered to be decreasing on the distance

has no bearing in the results.

6 Conclusion

Social capital has been considered as a major factor that affects the establishment of pre-

dominant opinions within societies. The aim of this paper has been to identify the effect of

different forms of social capital on the distribution of opinions within a society, as a result
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of the differences in the channels of communication they encourage.

It turns out that both of the considered processes converge towards distributions where

groups of citizens are concentrated around common opinions, which are located sufficiently

far from each other, with intermediate opinions gradually dying out. Other than this, there is

very little we can say about the kind of opinions around which large groups are concentrated,

except of the fact that both the distribution of initial opinions and the exact sequence of

interactions matter. It could be the purpose of a different study to understand how different

processes lead to more moderate or extreme opinions, as well as the importance of influential

citizens to the prevalence of certain opinions.

Regarding the social dynamics, the common feature of the two processes is that more

outward-looking societies tend be more cohesive, as opinions tend to be less fractionalized

and there is a higher likelihood of reaching society-wide consensus. Nevertheless, this result

is sensitive to the distribution of initial opinions. The separating feature of the two processes

seems to be that the bridging process seems to lead most of the times in a lower expected

number of opinions and a higher probability of society-wide consensus.

Finally, the fact that societies where citizens meet through bridging associations seem

more prone to reach consensus indicates that societies in which communication takes place

predominantly through bridging associations allow the interaction between citizens with very

distant opinions, providing them the opportunity to come closer. This feature indirectly

induces smaller distances between unconnected citizens (see Iijima and Kamada, 2017); an

observation that can have further implications. If one represents meetings that yield positive

probability of agreement as network links, then the result suggests that networks with smaller

average distance between unconnected nodes are more likely to reach consensus.

A Proofs of General Results

Proof of Theorem 1. For either of the two processes, given two vectors of initial opin-

ions x(0) and y(0) and a sequence of interactions {zt}∞t=1, the evolution of opinions can be

described by the vectors of initial opinions and a sequence of transition matrices for each

issue, {Ax(t)}∞t=1 and {Ay(t)}∞t=1 respectively, where Ax(t) = Ax(x(t − 1),y(t − 1), zt) and

Ay(t) = Ay(x(t− 1),y(t− 1), zt), for which x(t) = Ax(t)x(t− 1) and y(t) = Ay(t)y(t− 1).

At each t, by zt = ((it, jt), st, ct) we know the pair (it, jt) that communicates, the issue

st discussed and whether communication was successful, ct ∈ {0, 1}. If ct = 0, then Ax(t) =

Ay(t) = I, where I is the identity matrix, as no opinion is updated in this period. If

ct = 1 and st = x, then Ay(t) = I and for Ax(t) we have that for all k 6= i, j it holds

that atx,kk = aty,kk = 1 and atx,kl = aty,kl = 1 for all l 6= k. For citizens i, j though we

get that atx,ik = aty,ik = atx,jk = aty,jk = 0 for all k 6= i, j, whereas aty,ij = aty,ji = µ and

aty,ii = aty,jj = 1− µ. The same argument holds if ct = 1 and st = y, with x and y reversed.
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Therefore, for each sequence {zt}∞t=1, we can consider the evolution of opinions in each of

the issues separately and for convergence to hold it is sufficient to show that the sufficient

conditions provided by Lorenz (2005) hold for both issue–specific sequences of transition

matrices. We show that indeed this is the case:

(i) Self–confidence: At each period t, each citizen i ∈ N puts positive weight to her own

opinion, i.e. it holds that at·,ii > 0, which is clearly true in our case.

(ii) Mutual confidence: Zero entries in the transition matrix are symmetric. For every

pair i, j ∈ N it holds that at·,ij > 0 ⇔ at·,ji > 0. This is again clearly true in both our

processes, given that after successful communication both citizens revise their opinions.

(iii) Positive weights do not converge to zero: There is a δ > 0 such that the lowest

positive entry of the transition matrix is greater than δ. This is also true in our case,

considering δ = min{µ, 1− µ} which is strictly positive.

These three conditions ensure for each issue the emergence of pairwise disjoint groups of

citizens Jx,1 ∪ · · · ∪ Jx,r and Jy,1 ∪ · · · ∪ Jy,s who reach consensus in this issue. To complete

the argument, let Ikl = Jx,k ∩Jy,l. There is a total of p = r× s such groups and within each

of them citizens reach consensus in both issues.22

Note that the structure of the transition matrices does not depend on whether we consider

a bonding or a bridging process, as these affect only the frequency of updating in each

sequence zt.

Proof of Proposition 1. For a bonding process, (xm, ym) ∈ Int
(
N(xl,yl)

)
⇒ |xm − xl| =

χ < d and |ym − yl| = ψ < d and without loss of generality let χ > ψ. Consider some

ε̃ > 0 that satisfies ε̃ < δ−χ
2

and ε̃ < µχ
2(1+µ)

. If the probability that opinions converge to form

groups I1 ∪ · · · ∪ Ip such that citizens belonging to group Ig reach consensus at (xg, yg) for

all g ∈ {1, . . . , p} is strictly positive, then for ε̃ (and in fact for all ε > 0) there must exist

some t̂ε̃ such that the probability that for all t > t̂ε̃ holds that |xti−xg| < ε̃ and |yti − yg| < ε̃,

for all i ∈ Ig and for all g ∈ {1, . . . , p} is strictly positive.

Now focus on issue x and notice that ε̃ < δ−χ
2

guarantees that as long as citizens of groups

Il and Im remain at a distance less than ε̃ from xl and xm respectively (and the same on issue

y), they face a strictly positive probability of communicating successfully. This is because

the maximum distance between a citizen of Im and another citizen of Il is at most χ+2ε̃ < δ.

Such a pair of citizens always exists because groups Ig are non–empty. On top of that, the

condition ε̃ < µχ
2(1+µ)

guarantees that a successful communication on issue x between some

citizen in Il and some citizen in Im is sufficient to bring both of them at a distance larger

than ε̃ from the respective consensus opinion. This is because any successful communication

will incur an update of opinion between µ(χ−2ε̃) and µ(χ+ 2ε̃), which is always larger than

the 2ε̃. Therefore, as long as all citizens of groups Il and Ig remain close to their consensus

22Lorenz (2005) states the result focusing on the limit of the backward product of transition matrices,
which is equivalent to the consensus argument we present here.
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opinions, there is at least one pair of citizens whose successful communication can lead the

citizens more than ε̃ far from that opinion.

Hence, let Ht denote the event that all opinions in both issues are within ε̃ distance

from the respective consensus opinion of the group at period t. Then, the event that for all

t > t̂ε̃ holds that |xti − xg| < ε̃ and |yti − yg| < ε̃, for all i ∈ Ig and for all g ∈ {1, . . . , p}

is the infinite intersection of events Ht, i.e.
∞⋂

t=t̂+1

Ht. And conditional on Ht̂ being true,

P

[
∞⋂

t=t̂+1

Ht|Ht̂

]
= lim

τ→∞

τ∏
t=t̂+1

P [Ht|Ht−1]. Yet, for each t, P [Ht|Ht−1] ≤ 1 − b, where b is

the strictly positive and independent of t (hence, bounded away from zero) lower bound of

the probability of a pair that can communicate successfully to be actually drawn and in-

deed communicate successfully in one issue. We have already shown that such a pair exists.

Therefore, P

[
∞⋂

t=t̂+1

Ht|Ht̂

]
= lim

τ→∞

τ∏
t=t̂+1

P [Ht|Ht−1] ≤ lim
τ→∞

(1− b)τ−t̂ = 0.

The proof for the bridging process is identical, except of the difference in the definition

of the neighboring area (which is inconsequential) and the value of confidence bound being

k instead of d.

Explanatory Note: If (xm, ym) is at the boundary of N(xl,yl) then we can no longer

find ε̃ < δ−χ
2

to guarantee that all citizens of each group may communicate. If in particular

it holds that |xm − xl| = d and |ym − yl| = d the result may not necessarily hold. Consider

the following example with three citizens: Group I1 consists of a single citizen located at

(0, 0) and group I2 consists of two citizens located at (d + ε
2
, d − ε

2
) and (d − ε

2
, d + ε

2
)

for some small ε > 0, with consensus opinions (d, d). For any µ < 1/2, the two citizens

of group I2 can keep communicating successfully, converging towards (d, d), but they can

never communicate successfully with the citizen of group I1. For the remaining parts of the

boundaries in bonding process and for all boundaries in a bridging process the result can be

shown to still hold.

Proof of Proposition 2. The following two conditions are jointly equivalent to neighbor-

hood stabilization: For each citizen i ∈ N (i) i does not lose any of her current neighbors at

a subsequent period (ii) no additional citizen enters i’s neighborhood at a subsequent period.

Remark 1 ensures that the existence of disjoint groups of citizens with common neigh-

borhoods are necessary for conditions (i) and (ii) to be satisfied. Absent of such groups,

there would be a positive probability that some citizen’s neighborhood will change. Given

the existence of these disjoint groups of citizens, Remark 2 guarantees that a member of

such a group will not face a change in her neighborhood, as long as the members of that

group may communicate successfully only among themselves.

The second condition guarantees that the members of each of the disjoint groups may
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communicate successfully only among themselves. This is because at period t each citizen

may only communicate successfully with another member of her own group. But success-

ful communication between citizens i, j ∈ Ig weakly shrinks both the minimum bounding

rectangle of the group and as a result also the neighboring area of the minimum bounding

rectangle, i.e. MBRt+1
Ig ⊆MBRt

Ig , which then implies that NMBRt+1
Ig
⊆ NMBRt

Ig
. Therefore,

if MBRt
Ig′ ∩NMBRt

Ig
= ∅, for all g′ 6= g, it must also hold that MBRt+1

Ig′
∩NMBRt+1

Ig
= ∅, for

all g′ 6= g. This completes the argument, as it guarantees that in all subsequent periods no

additional citizen enters the neighborhood of any i ∈ Ig.

Proof of Proposition 3. As explained in the proof of Proposition 2, the following two

conditions are jointly equivalent with neighborhood stabilization: For each citizen i ∈ N (i)

i does not lose any of his current neighbors at a subsequent period (ii) no additional citizen

enters i’s neighborhood at a subsequent period. Moreover, the first condition of Proposition 3

is necessary for neighborhood stabilization because of Remark 1 and the third condition of

Proposition 3 guarantees that the members of each group may communicate successfully

only among themselves, as in Proposition 2.

Combining the first with the second condition guarantees that no citizen will face a change

in her neighborhood, as long as the members of each group may communicate successfully

only among themselves. This is because the second condition is sufficient to guarantee that

MBRt
I ⊆ N(xti,y

t
i)

for all i ∈ I, which we show below.

Without loss of generality, we prove the result considering Rg to be of size k×1. MBRt
I}

is a rectangle with sizes |max
i∈I

xti − min
i∈I

xti| × |max
i∈I

yti − min
i∈I

yti |. Given that all i ∈ I are

such that (xti, y
t
i) ∈ Rg, it must hold that |max

i∈I
xti −min

i∈I
xti| = k − ε for some ε ∈ [0, k] and

also the left bound of Rg, denote it x, must satisfy x ∈ [min
i∈I

xti − ε,min
i∈I

xti]. These last two

conditions guarantee that the right bound ofRg, x, will have to satisfy x ∈ [max
i∈I

xti,min
i∈I

xti+ε].

Therefore, recalling that Rg extends in the whole length of the vertical axis, it follows that

MBRt
I ⊆ Rg. Furthermore, the neighboring area of the citizen j = argmin

i∈I
xti extends for all

y at least until min
i∈I

xti−k ≤ x. Analogously, the neighboring area of the citizen l = argmin
i∈I

xti

extends for all y at least until max
i∈I

xti−k ≤ x. Hence, it follows immediately that R ⊆ N(xti,y
t
i)

for all i ∈ I. Thus, also MBRt
I ⊆ N(xti,y

t
i)

for all i ∈ I.

B Proofs of Results on the Restricted Setup

Explanatory Note: For the results on the Restricted Setup we follow a constructive and

rather primitive approach, which comes at a considerable computational cost. In particular,

we derive analytically the exact probabilities (for the bonding process), or rather strict

bounds of the probabilities (for the bridging process) with which each process converges

30



to form one, two or three islands respectively. We provide the results for d ∈ (0, 1/2] and

k ∈ (0, 1/4], nevertheless with similar calculations they could be extended to higher bounds,

in which cases there could only exist either one or two islands. The reason we restrict k to

be below 1/4 is that for higher values the closed form expressions of the probabilities we

have calculated change. This would require to essentially repeat the same analysis, without

adding much to our understanding of the problem. Finally, in order not to make the proofs

excessively long, we present a concise version of the calculations. The complete and longer

version of the calculations of all sequences of interactions is available upon request.

Lemma 1. In the Restricted Setup, consider a bonding process with d ∈ (0, 1/2]. Opinions

converge to form

• Three islands, with probability 1− 12d2 + 12d3 + 36d4 − 68d5 + 88
3
d6

• Two islands, with probability 1
48
d2(576− 576d− 2700d2 + 4884d3 − 2083d4)

• One island, with probability 9
16
d4(6− 5d)2

Proof of Lemma 1. It is useful to observe that the random draws of the initial opinions

can be decomposed into three independent draws. Namely, first we draw independently

three points, each from a uniform distribution in [0, 1], which represent the opinions on x,

call them x1 ≤ x2 ≤ x3. Without loss of generality, let us identify citizens according to

their opinions on x, i.e. x̂a = x1, x̂b = x2 and x̂c = x3. Then, we draw independently three

points, each from a uniform distribution in [0, 1], which represent the opinions on y, call them

y1 ≤ y2 ≤ y3. Finally, the three opinions on y are matched randomly with opinions on x, i.e.

we draw one of the six permutations of (a, b, c) each with probability 1/6. If permutation

(i, j, k) is selected, then ŷi = y1, ŷj = y2 and ŷk = y3. Importantly, the three sets of draws

are independent, therefore we can perform the analysis separately for each issue.

There are five essentially different types of draws in each issue, depending on the relative

position of the three points with respect to the confidence bound. They are presented

graphically in Figure 7 and their probabilities of appearing are the following:

• All far: 6
∫ 1−2d
0

(1−x1−2d)2
2

dx1 = (1− 2d)3

• All close: 6
(∫ 1−d

0
d2

2
dx1 +

∫ 1

1−d
(1−x1)2

2
dx1

)
= 3d2 − 2d3

• 12, 23 close, 13 far: 6
(∫ 1−2d

0
d2

2
dx1 +

∫ 1−d
1−2d

d2

2
− (x1+2d−1)2

2
dx1

)
= 3d2 − 4d3

• 12 close, 23 far: 6
(∫ 1−2d

0
d2

2
+ d(1− x1 − 2d)dx1 +

∫ 1−d
1−2d

(1−d−x1)2
2

dx1

)
= 3d−9d2+7d3

• 12 far, 23 close: 6
(∫ 1−2d

0
d2

2
+ d(1− x1 − 2d)dx1 +

∫ 1−d
1−2d

(1−d−x1)2
2

dx1

)
= 3d−9d2+7d3
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> >x1 x2 x3

(a) All far

<

<

<x1 x2 x3

(b) All close

<

>

<x1 x2 x3

(c) 12, 23 close, 13 far

< >x1 x2 x3

(d) 12 close, 23 far

> <x1 x2 x3

(e) 12 far, 23 close

Figure 7: Cases of essentially different draws of three opinions on issue x. The signs (> or <)
above the segment that connects x1 with x2 (x2 with x3) refers to the distance between the opinions
x1 and x2 (x2 and x3), whereas the sign below x2 refers to the distance between x1 and x3. The
sign > (<) denotes that the respective distance is larger (smaller) than the confidence bound (d in
bonding, k in bridging).

Let us focus first on the cases that lead to three islands. For this to happen, the initial

opinions must be sufficiently far that no interaction can lead to an opinion updating.23 We

can calculate this probability by calculating and adding the probabilities of some mutually

exclusive cases. To do so, we will use the fact that we have split the initial draws into three

independent parts (draws for x, y and order), which allows to calculate the probabilities for

each issue separately and then just multiply them. The (mutually exclusive) cases that lead

to three islands in the bonding process are as follows:

• (1− 2d)3: All far in x.

• (3d2 − 2d3)(1− 2d)3: All close in x, all far in y.

• (3d− 9d2 + 7d3)(1− d)2: 12 close, 23 far in x, a and b far in y,

• (3d− 9d2 + 7d3)(1− d)2: 12 far, 23 close in x, b and c far in y,

• (3d2 − 4d3)
[
(1− 2d)3 + 2

3
(3d− 9d2 + 7d3)

]
– 12, 23 close, 13 far in x, all far in y,

– 12, 23 close, 13 far in x, 12 close, 23 far in y, permutations (a,c,b) and (c,a,b),

– 12, 23 close, 13 far in x, 12 far, 23 close in y, permutations (b,a,c) and (b,c,a).

23Otherwise, if at least two of the citizens are sufficiently close to interact successfully, this will be true in
all subsequent periods and hence by Proposition 1 there will be at most two islands in the long run.
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<

<

<x1 x2 x3

(a) Initially 12 and 23 close, but 13 far.

<x1
x2

x3

(b) After 1 and 2 agree all close

Figure 8: Example of opinions after successful communication between citizens with x1 and x2.

For “12 close, 23 far in x” (resp., “12 far, 23 close in x”) we simply need to consider that

a and b (resp., b and c) are far in y, which occurs with probability (1− d)2.

Overall, by adding those probabilities we get:

P(3 islands) =(1− 2d)3 + (3d2 − 2d3)(1− 2d)3 + . . .

· · ·+ 2(3d− 9d2 + 7d3)(1− d)2 + (3d2 − 4d3)

[
(1− 2d)3 +

2

3
(3d− 9d2 + 7d3)

]
=

=1− 12d2 + 12d3 + 36d4 − 68d5 +
88

3
d6

Let us now turn our attention to the case of one island, i.e. the case in which the three

citizens reach consensus in both issues. For this to happen, at some period all citizens

must have opinions with distances at most d in both issues. This can happen under three

circumstances: First, if they start with opinions that are at distance at most d in both issues.

Second, if in one issue opinions are all close and in the other issue there is a distribution

as in Figure 7(c) –x1 close to x2, x2 close to x3 but x1 far from x3, or analogously for y–.

Third, if initial opinions are as in Figure 7(c) in both issues.

In the latter two cases, society-wide consensus is not certain, but it is possible. For

instance, consider three citizens who start with all opinions close to each other in issue y

and in issue x have opinions as in Figure 8. In this case, x1 and x3 are initially far (i.e.,

x3 − x1 > d), but get close to each other after x1 and x2 have been updated to x1+x2
2

(i.e.,

x3− x1+x2
2
≤ d). However, this does not occur necessarily, as the initial opinions could be such

that not only x1 remains far from x3, but also brings x2 far from x3, in which case society-

wide consensus becomes impossible. In general, these indirect interactions may happen in a

number of complex ways, yet in the specific problem with three agents and µ = 1/2 these

are only possible for initial conditions that at least in one issue are of the form presented in

Figure 8(a). Hence, two additional conditions are relevant here: (i) x3 − x1+x2
2

≶ d and (ii)
x3+x2

2
− x1 ≶ d, as well as the two respective conditions for issue y.

The two additional conditions divide the set of triplets (x1, x2, x3) of Figure 7(c) to four

subsets, which are depicted in Figure 9. We calculate the probability that a randomly drawn

triplet will belong to each of these sets.

1. x2 − x1 ≤ d, x3 − x2 ≤ d, x3 − x1 > d and x3 − x1+x2
2
≤ d, x3+x2

2
− x1 ≤ d:

• 6
(∫ 1−4d/3

0
d2

6
dx1 +

∫ 1−d
1−4d/3

d2

6
− 3(x1+

4d
3
−1)2

2
dx1

)
= 1

9
(9d2 − 10d3)
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x2

x3
x3 = x2

x3+x2
2
− x1 = d

x3 − x2 = d x3 − x1+x2
2

= d

x3 − x1 = d

x2 − x1 = d

(x1, x1)

x 1
+

2d
x 1

+
d

x 1
+
2d
3

x 1
+
d
2

x 1
+

2d

x 1
+
d

x 1
+
3d
2

x 1
+
4d
3

1

23

4

x3 = 1
l

Figure 9: Two–dimensional projection of the area in which x2 − x1 ≤ d, x3 − x2 ≤ d and
x3 − x1 > d, for some x1 ∈ [0, 1− d]. Areas 1–4 correspond to the four different areas with respect
to the conditions x3 − x1+x2

2 ≶ d and x3+x2
2 − x1 ≶ d. The origin of the axes is (x1, x1) and the

location of the line where x3 = 1 depends on x1.

2. x2 − x1 ≤ d, x3 − x2 ≤ d, x3 − x1 > d and x3 − x1+x2
2
≤ d, x3+x2

2
− x1 > d:

• 6
(∫ 1−3d/2

0
d2

12
dx1 +

∫ 1−4d/3
1−3d/2

d2

12
− (x1 + 3d

2
− 1)2dx1 +

∫ 1−d
1−4d/3

(1−d−x1)2
2

dx1

)
= 1

36
(18d2 − 23d3)

3. x2 − x1 ≤ d, x3 − x2 ≤ d, x3 − x1 > d and x3 − x1+x2
2

> d, x3+x2
2
− x1 ≤ d:

• 6
(∫ 1−3d/2

0
d2

12
dx1 +

∫ 1−4d/3
1−3d/2

d2

12
− (x1 + 3d

2
− 1)2dx1 +

∫ 1−d
1−4d/3

(1−d−x1)2
2

dx1

)
= 1

36
(18d2 − 23d3)

4. x2 − x1 ≤ d, x3 − x2 ≤ d, x3 − x1 > d and x3 − x1+x2
2

> d, x3+x2
2
− x1 > d:

• 6
(∫ 1−2d

0
d2

6
dx1 +

∫ 1−3d/2
1−2d

d2

6
− (x1+2d−1)2

2
dx1 +

∫ 1−4d/3
1−3d/2

3(1− 4d
3
−x1)2

2
dx1

)
= 1

18
(18d2 − 29d3)
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For these cases, the emergence or not of society-wide consensus does not depend only on

the initial opinions, but also on the sequence of interactions. In fact, for the same profile of

initial opinions, one sequence might lead to consensus, while another might not. Below, we

present the probabilities with which each class of initial opinions leads to consensus. When

we mention “case i” we refer to area i = 1, . . . , 4 in Figure 9 for one issue and when we

mention “case (i, j)” we refer to area i for issue x and to area j for issue y.

• (3d2 − 2d3)2: All close in both x and y.

• (3d2 − 2d3)
[
1
9
(9d2 − 10d3) + 1

36
(18d2 − 23d3)

]
: All close in x, 12, 23 close, 13 far in y.

– Case 1, with probability 1.

– Case 2, with probability 1/2.

– Case 3, with probability 1/2.

– same argument and probabilities hold for:

∗ 12, 23 close, 13 far in x, all close in y.

•
[
1
9
(9d2 − 10d3) + 1

36
(18d2 − 23d3)

]2
: 12, 23 close, 13 far in both x and y.

– Case (1, 1), with probability 1.

– Cases (1, 2), (2, 1), (1, 3), (3, 1) with probability 1/2.

– Cases (2, 2), (2, 3), (3, 2), (3, 3) with probability 1/4.

Given that these cases are mutually exclusive, we can simply add the probabilities and get:

P(1 island) =

[
(3d2 − 2d3) +

1

9
(9d2 − 10d3) +

1

36
(18d2 − 23d3)

]2
=

9

16
d4(6− 5d)2

Finally, two islands arise with the remaining probability.

Lemma 2. In the Restricted Setup, consider a bridging process with k ∈ (0, 1/4]. Opinions

converge to form

• Three islands, with probability (1− 2k)6

• Two islands, with probability at most (12− 93k + 337k2 − 725k3 + 946k4 − 535k5) k

• One island, with probability at least (33− 177k + 485k2 − 754k3 + 471k4) k2
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Proof of Lemma 2. In a bridging process the only way to end up with three islands is if

all citizens’ initial opinions are located further than the confidence bound in both issues.

The probability that the three opinions are all far from each other is (1− 2k)3 in each issue,

draws are independent across issues and the permutations that match opinions on x with

opinions on y do not affect the result. Thus P(3 islands) = (1− 2k)6.

In all the other cases the society ends with either one or two islands and, contrary to the

bonding process, it is possible to reach society-wide consensus in each of them. In particular,

if all citizens are close (see Figure 7b) in at least one of the two issues, then society-wide

consensus is reached with probability one, as this guarantees that any two of them can

communicate successfully at any period. The probability of all citizens being close in at

least one of the two issues is equal to 2(3k2 − 2k3)− (3− 2k)2k4.

For the remaining cases one island occurs with probability lower than one. For some of

them, we provide their exact values, whereas for others we provide a lower bound.

We first present the results for the cases that care as in Figure 7(d), that is x2 − x1 ≤ k

and x3 − x2 > k. Areas 5–8 on Figure 10 split these triplets into four areas within which

the probabilities of reaching society-wide consensus are altered. Areas 7 and 8 are split into

two parts each (7i, 7ii and 8i, 8ii respectively), where the additional splits are relevant only

in some cases. Below we calculate explicitly the probability that three initial opinions in an

issue belong to each of these areas. Areas 1–4 on Figure 10 correspond to draws as in Figure

7(c) and coincide with the areas presented in Figure 9, if one substitutes d with k, for which

we have already calculated the probabilities of occurrence. Finally areas 9–13 on Figure 11

correspond to the case Figure 7(a) in which all opinions are far from each other and each of

these areas is relevant in some cases. We also calculate explicitly their probabilities.

5. x2 − x1 ≤ k, x3 − x2 > k, x3 − x1 > k and x3+x2
2
− x1 ≤ k:

• 6
(∫ 1−2k

0
k2

4
dx1 +

∫ 1− 3k
2

1−2k
k2

4
− [x1−(1−2k)]2

2
dx1 +

∫ 1−k
1− 3k

2

[(1−k)−x1]2
2

dx1

)
= 3

4
(2− 3k)k2

6. x2 − x1 ≤ k, x3 − x2 > k, x3 − x1 > k, x3+x2
2
− x1 > k and 1

2

(
x3 − x1+x2

2

)
≤ k:

• 6
(∫ 1− 5k

2

0
k2

2
dx1 +

∫ 1−2k
1− 5k

2

k2

2
−
[
x1 −

(
1− 5k

2

)]2
dx1 +

∫ 1− 3k
2

1−2k

[(
1− 3k

2

)
− x1

]2
dx1

)
= 3(1− 2k)k2

7. x2 − x1 ≤ k, x3 − x2 > k, x3 − x1 > k, 1
2

(
x3 − x1+x2

2

)
> k and x1+x3

2
− x2 ≤ k:

• (7) 6
(∫ 1−4k

0
3k2

4
dx1 +

∫ 1− 5k
2

1−4k
3k2

4
− [x1−(1−4k)]2

4
dx1 +

∫ 1−2k
1− 5k

2

3
4

[(1− 2k)− x1]2 dx1
)

= 3
4
(6− 17k)k2

• (7ii) 6
(∫ 1−4k

0
k2

6
dx1 +

∫ 1− 10k
3

1−4k
k2

6
− [x1−(1−4k)]2

4
dx1 +

∫ 1−3k
1− 10k

3

1
2

[(1− 3k)− x1]2 dx1
)

= 1
9
(9− 31k)k2

• (7i) 3
4
(6− 17k)k2 − 1

9
(9− 31k)k2 = 1

36
(126− 335k)k2

8. x2 − x1 ≤ k, x3 − x2 > k, x3 − x1 > k and x1+x3
2
− x2 > k:

• (8) 6
(∫ 1−4k

0
k2 + k [(1− 4k)− x1] dx1 +

∫ 1−2k
1−4k

[(1−2k)−x1]2
4

dx1

)
= (3− 18k + 28k2)k
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2
− x1 = k
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+
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2
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1
2

(
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2

)
= k

x1+x3
2
− x2 = k

1
2

(
x2+x3

2
− x1

)
= k

x2 = x1 + k

(x1, x1)
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+
k

x 1
+
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2
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+
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k
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2

x 1
+

3k

x 1
+
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l

Figure 10: Two-dimensional projections of the following areas: (Left) x2 − x1 ≤ k, x3 − x2 ≤ k
and x3 − x1 > k, for some x1 ∈ [0, 1 − k]. Areas 1–4 correspond to the four different areas with
respect to the conditions x3− x1+x2

2 ≶ k and x3+x2
2 −x1 ≶ k. (Right) x2−x1 ≤ k and x3−x2 > k,

for some x1 ∈ [0, 1 − k]. Areas 5–8 correspond to the four different areas with respect to the
conditions x3+x2

2 − x1 ≶ k, 1
2

(
x3 − x1+x2

2

)
≶ k and

∣∣x1+x3
2 − x2

∣∣ ≶ k. For the last condition only
x1+x3

2 − x2 ≶ k is relevant. The origins of the axes are (x1, x1) in both subfigures and the location
of the line where x3 = 1 depends on x1.
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x2

x3
x3 = x2 + k

1
2

(
x3 − x1+x2

2

)
= k

1
2

(
x2+x3

2
− x1

)
= k

x3 = x1 + 4k
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x 1
+
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x 1
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+
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+
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Figure 11: Two-dimensional projections of areas that satisfy x2 − x1 > k and x3 − x2 > k.
Areas 9–13 are obtained by taking into account the additional conditions 1

2

(
x3 − x1+x2

2

)
≶ k,

1
2

(
x2+x3

2 − x1
)
≶ k and x3 ≶ x1 + 4k.
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• (8ii) 6

(∫ 1−4k
0

k2

3
+ k [(1− 4k)− x1] dx1 +

∫ 1− 10k
3

1−4k
3[(1− 10k

3 )−x1]
2

4
dx1

)
= (3− 22k + 364

9
k2)k

• (8i) (3− 18k + 28k2)k − (3− 22k + 364
9
k2)k = 4

9
(9− 28k)k2

9. x2 − x1 > k, x3 − x2 > k, 1
2

(
x3+x2

2
− x1

)
≤ k and 1

2

(
x3 − x1+x2

2

)
≤ k:

• 6

(∫ 1− 8k
3

0
k2

6
dx1 +

∫ 1− 5k
2

1− 8k
3

k2

6
− 3(x1−(1− 8k

3
)]

2

2
dx1 +

∫ 1−2k
1− 5k

2

[(1−2k)−x1]2
2

dx1

)
= 1

18
(18− 43k)k2

10. x2 − x1 > k, x3 − x2 > k, 1
2

(
x3+x2

2
− x1

)
≤ k and 1

2

(
x3 − x1+x2

2

)
> k:

• 6
(∫ 1−3k

0
k2

12
dx1 +

∫ 1− 8k
3

1−3k
k2

12
− [(1−3k)−x1]2

2
dx1 +

∫ 1− 5k
2

1− 8k
3

[(
1− 5k

2

)
− x1

]2
dx1

)
= 1

36
(18− 49k)k2

11. x2 − x1 > k, x3 − x2 > k, 1
2

(
x3+x2

2
− x1

)
> k and 1

2

(
x3 − x1+x2

2

)
< k:

• 6
(∫ 1−3k

0
k2

12
dx1 +

∫ 1− 8k
3

1−3k
k2

12
− [(1−3k)−x1]2

2
dx1 +

∫ 1− 5k
2

1− 8k
3

[(
1− 5k

2

)
− x1

]2
dx1

)
= 1

36
(18− 49k)k2

12. x2 − x1 > k, x3 − x2 > k, 1
2

(
x3+x2

2
− x1

)
> k, 1

2

(
x3 − x1+x2

2

)
> k and x3 ≤ x1 + 4k:

• 6

(∫ 1−4k
0

5k2

3
dx1 +

∫ 1−3k
1−4k

k2

6
+ (1−k−x1)(1−3k−x1)

2
dx1 +

∫ 1− 8k
3

1−3k
3(1− 8k

3
−x1)

2

2

)
= 2

9
(45− 157k)k2

13. x2 − x1 > k, x3 − x2 > k and x3 > x1 − 4k:

• 6
∫ 1−4k
0

(1−x1)(1−x1−4k)
2

dx1 = 1− 6k + 32k3

We can now calculate the probabilities of society-wide consensus for each of the cases.

•
(
6− 54k + 178k2 − 252k3 + 392

3
k4
)
k2: 12 close, 23 far in x and all far in y

– if
∣∣y1+y3

2
− y2

∣∣ ≤ k, with probability 1/3 –permutations (a,c,b) or (b,c,a)–.

– same argument and probabilities hold for:

∗ 12 far, 23 close in x and all far in y,

∗ all far in x and 12 close, 23 far in y and

∗ all far in x and 12 far, 23 close in y.

• (10− 51k + 259
3
k2 − 49k3)k3: 12 close, 23 far in x and 12 close, 23 far in y

– Case (5, 5), with probability 2/3.

– Cases (5, 6), (6, 5) with probability 5/9.

– Cases (5, 7), (7, 5), (6, 6) with probability 4/9.

– Cases (5, 8), (8, 5), (6, 7), (7, 6) with probability 1/3.

– Cases (6, 8), (8, 6), (7, 7) with probability 2/9.
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– Cases (7, 8), (8, 7) with probability 1/9.

– same argument and probabilities hold for:

∗ 12 close, 23 far in x and 12 far, 23 close in y

∗ 12 far, 23 close in x and 12 close, 23 far in y

∗ 12 far, 23 close in x and 12 far, 23 close in y

• >
(
58067
8424
− 3769369

151362
k + 22810741

909792
k2 + 6168103

1259712
k3
)
k3: 12 close, 23 far in x and 12, 23 close,

13 far in y

– For permutation (a, b, c) - Cases: (·, 1) w.p. 1, (5, 2) w.p. 1, (6, 2) w.p. 5/6, (7i, 2)

w.p. 5/6, (8i, 2) w.p. 5/6, (7ii, 2) w.p. 39/54, (8ii, 2) w.p. > 55/81, (5, 3) w.p.

2/3, (6, 3) w.p. 2/3, (7i, 3) w.p. 2/3, (8i, 3) w.p. 2/3, (7ii, 3) w.p. 43/72, (8ii, 3)

w.p. > 359/648, (5, 4) w.p. 2/3, (6, 4) w.p. 1/2, (7i, 4) w.p. 7/18, (8i, 4) w.p. 7/18,

(7ii, 4) w.p. 23/72, (8ii, 4) w.p. > 161/468.

– For permutation (b, a, c) - Cases: (·, 1) w.p. 1, (5, 2) w.p. 1, (6, 2) w.p. 11/12, (7i, 2)

w.p. 29/36, (8i, 2) w.p. 13/18, (7ii, 2) w.p. 29/36, (8ii, 2) w.p. > 55/81, (5, 3) w.p.

2/3, (6, 3) w.p. 2/3, (7i, 3) w.p. 2/3, (8i, 3) w.p. 2/3, (7ii, 3) w.p. 2/3, (8ii, 3) w.p.

> 359/648, (5, 4) w.p. 2/3, (6, 4) w.p. 7/12, (7i, 4) w.p. 17/36, (8i, 4) w.p. 7/18,

(7ii, 4) w.p. 17/36, (8ii, 4) w.p. > 161/468.

– For permutation (a, c, b) - Cases: (·, 1) w.p. 1, (5, 2) w.p. 1, (6, 2) w.p. 8/9, (7i, 2)

w.p. 91/108, (8i, 2) w.p. 91/108, (7ii, 2) w.p. 91/108, (8ii, 2) w.p. > 733/972, (5, 3)

w.p. 1, (6, 3) w.p. 1, (7i, 3) w.p. 35/36, (8i, 3) w.p. 31/36, (7ii, 3) w.p. 25/27,

(8ii, 3) w.p. > 755/972, (5, 4) w.p. 1, (6, 4) w.p. 8/9, (7i, 4) w.p. 85/108, (8i, 4)

w.p. 73/108, (7ii, 4) w.p. 80/108, (8ii, 4) w.p. > 14/27.

– By symmetry, these give us also the total probabilities for the other three permuta-

tions. (c, b, a) is analogous to (a, b, c), (b, c, a) is analogous to (b, a, c) and (c, a, b) to

(a, c, b).

– same argument and probabilities hold for:

∗ 12 far, 23 close in x and 12, 23 close, 13 far in y

∗ 12, 23 close, 13 far in x and 12 close, 23 far in y

∗ 12, 23 close, 13 far in x and 12 far, 23 close in y

• >
(
545
324
− 70663

5832
k + 75203

1944
k2 − 811

9
k3 + 22145

288
k4
)
k2: 12 close, 23 far in x and all far in y

– For permutation (a, b, c) - Cases: (·, 1) w.p. 1, (9, 2) w.p. 2/3, (10, 2) w.p. 43/72,

(11, 2) w.p. 2/3, (12, 2) w.p. 43/72, (13, 2) w.p. > 181/324, (9, 3) w.p. 2/3, (10, 3)

w.p. 2/3, (11, 3) w.p. 43/72, (12, 3) w.p. 43/72, (13, 3) w.p. > 181/324, (9, 4) w.p.

1/3, (10, 4) w.p. 19/72, (11, 4) w.p. 19/72, (12, 4) w.p. 7/36, (13, 4) w.p. > 10/81.
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– For permutation (b, a, c) - Cases: (·, 1) w.p. 1, (9, 2) w.p. 1, (10, 2) w.p. 67/72,

(11, 2) w.p. 1, (12, 2) w.p. 67/72, (13, 2) w.p. > 181/324, (9, 3) w.p. 2/3, (10, 3)

w.p. 2/3, (11, 3) w.p. 2/3, (12, 3) w.p. 2/3, (13, 3) w.p. > 181/324, (9, 4) w.p. 2/3,

(10, 4) w.p. 43/72, (11, 4) w.p. 2/3, (12, 4) w.p. 43/72, (13, 4) w.p. > 10/81.

– By symmetry, these give us also the total probabilities for the remaining permu-

tations. (c, b, a) is analogous to (a, b, c), and all others are analogous (b, a, c) and

(c, a, b).

– same argument and probabilities hold for:

∗ all far in x and 12, 23 close, 13 far in y

• 1
48

(412− 1092k + 723k2) k4: 12, 23 close, 13 far in both x and y

– Cases (1, ·), (·, 1) with probability 1.

– Cases (2, 2), (2, 3), (3, 2), (3, 3) with probability 103/108.

– Cases (2, 4), (4, 2), (3, 4), (4, 3) with probability 98/108.

– Case (4, 4) with probability 88/108.

Given that these cases are mutually exclusive, we can simply add the probabilities (recalling

that some of the cases appear multiple times and we get the lower bound:

P(1 island) >

(
5405

162
− 6696853

37908
k +

18405017

37908
k2 − 171347717

227448
k3 +

148623383

314928
k4
)
k2 >

> (33− 177k + 485k2 − 754k3 + 471k4)k2

Proof of Proposition 4. The result is implied immediately by Lemma 1. P(1 island) in-

creases in d, whereas P(3 islands) decreases in d, both for all d ∈ (0, 1/2]. Thus, part (i) is

obtained immediately and part (ii) is obtained by observing that E(islands) = P(1 island) +

2P(2 islands) + 3P(3 islands) = 2− P(1 island) + P(3 islands).

Proof of Proposition 5. The result is implied immediately by Lemma 2. The lower bound

of P(1 island) increases in k, whereas P(3 islands) decreases in k, both for all k ∈ (0, 1/4].

Thus, part (i) is obtained immediately and part (ii) is obtained by recalling that E(islands) =

2−P(1 island)+P(3 islands), thus substituting the lower bound of P(1 island) and the actual

value of P(3 islands) gives an upper bound of E(islands), which then decreases in k.

Proof of Proposition 6. The proofs of both parts are almost identical and both make use

of the Intermediate Value Theorem.
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We start by proving the result on the probability of society-wide consensus. For k = 0

the number of islands is equal to three with probability one.24 Therefore, the probability

of society-wide consensus in such a bridging process is zero, which is strictly lower than the

respective probability for the bonding process with confidence bound d, for any d ∈ (0, 1/4],

which is always strictly positive. For k = d, we know from Lemmas 1 and 2 that the

probability of ending up with one island in a bonding process with bound d is lower than the

lower bound of the probability of ending up with one island in a bridging process with bound

k = d, hence it is obviously also lower than the actual probability. Moreover, given that

the lower bound is continuous in k (as a polynomial) and it is also strictly increasing for all

k ∈ (0, 1/4], we know from Intermediate Value Theorem that there will be some k ∈ (0, 1/4)

such that the lower bound of the probability in the bridging process becomes equal to the

probability in the bonding process with confidence bound d and for all k > k the lower

bound, thus also the actual probability, in the bridging process will be strictly larger than

the respective probability in the bonding process.

The arguments for the expected number of islands is analogous. For k = 0, the expected

number of islands in the bridging process is equal to three, which is strictly higher than

for that of the bonding process with confidence bound d, for any d ∈ (0, 1/2]. For k = d

we already mentioned that the probability of having 1 island in the bonding process with

d is lower even than the lower bound of the probability of having 1 island in the bridging

process with k = d. We also know (again from Lemmas 1 and 2) that the probability of

having 3 islands is larger in the bonding than in the bridging process. Thus, recalling that

E(islands) = 2 − P(1 island) + P(3 islands), the expected number of islands in the bonding

process is larger than in the bridging process. Therefore, given that the upper bound of the

expected number of islands in the bridging process is continuous, again from Intermediate

Value Theorem, there will be some k̃ ∈ (0, 1/4) such that the upper bound of the expected

number of islands in the bridging process will be exactly equal to the expected number of

islands in the bonding process with confidence bound d. Moreover, given that it is also

strictly decreasing in k, for all k > k̃ the upper bound for the bridging process, thus also

the actual expected number of islands, will be strictly smaller than the expected number of

islands in the bonding process with confidence bound d. Both k and k̃ are in the interior of

(0, 1/4], hence both results hold simultaneously for any k > k̂ = max{k, k̃} ∈ (0, 1/4).

Proof of Proposition 7. The result can be obtained immediately by simple calculations,

using the values obtained in Lemmas 1 and 2.

24In order to have two or fewer islands, at least two citizens must have exactly the same initial opinions,
which has probability zero of occurring given the assumed distribution initial opinions are drawn from.
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Bonding Bridging
d Mean Median Sd Consensus k Mean Median Sd Consensus

n = 3
0.1 2.981 3 0.318 0.002 0.01 2.886 3 0.33 0.004
0.2 2.608 3 0.543 0.028 0.04 2.564 3 0.576 0.043
0.3 2.276 2 0.625 0.095 0.1 2.035 2 0.672 0.209
0.4 1.954 2 0.656 0.239 0.2 1.572 2 0.599 0.485

n = 10
0.1 8.515 9 1.05 0 0.01 8.363 8 1.166 0
0.2 5.862 6 1.153 0 0.04 4.827 5 1.365 0.002
0.3 3.877 4 0.97 0.006 0.1 2.547 2 0.882 0.100
0.4 2.595 3 0.929 0.131 0.2 1.532 1 0.583 0.513

n = 50
0.1 24.249 24 2.448 0 0.01 15.342 15 3.236 0
0.2 8.002 8 1.345 0 0.04 5.65 6 1.302 0
0.3 3.908 4 0.87 0.009 0.1 3.123 3 0.852 0.017
0.4 2.089 2 0.86 0.267 0.2 1.817 2 0.616 0.297

n = 100
0.1 28.691 29 2.616 0 0.01 16.937 17 2.852 0
0.2 7.609 8 1.278 0 0.04 6.262 6 1.35 0
0.3 3.782 4 0.96 0.015 0.1 3.357 3 0.848 0.012
0.4 2.248 2 0.886 0.212 0.2 1.998 2 0.658 0.217

Table 4: Quadratic probability of successful communication. Mean, median and standard devia-
tion of number of islands and frequency of society-wide consensus for the two processes for different
population sizes.

Bonding Bridging

d µELF ẼLF σELF µGI G̃I σGI k µELF ẼLF σELF µGI G̃I σGI

n = 3
0.1 0.642 0.667 0.074 0.000 0.000 0.000 0.01 0.64 0.667 0.08 0.000 0.000 0.000
0.2 0.573 0.667 0.143 0.000 0.000 0.000 0.04 0.56 0.667 0.158 0.000 0.000 0.000
0.3 0.485 0.444 0.188 0.000 0.000 0.000 0.1 0.406 0.444 0.228 0.000 0.000 0.000
0.4 0.381 0.444 0.23 0.000 0.000 0.000 0.2 0.241 0.444 0.24 0.000 0.000 0.000

n = 10
0.1 0.866 0.88 0.032 0.005 0.005 0.001 0.01 0.86 0.86 0.037 0.004 0.004 0.001
0.2 0.771 0.78 0.068 0.004 0.004 0.001 0.04 0.68 0.72 0.139 0.003 0.003 0.001
0.3 0.621 0.66 0.131 0.004 0.004 0.001 0.1 0.383 0.42 0.201 0.002 0.002 0.001
0.4 0.414 0.46 0.222 0.003 0.003 0.002 0.2 0.136 0 0.161 0.001 0 0.001

n = 50
0.1 0.94 0.942 0.01 0.126 0.126 0.006 0.01 0.823 0.837 0.072 0.069 0.069 0.015
0.2 0.797 0.805 0.043 0.112 0.113 0.009 0.04 0.455 0.459 0.141 0.04 0.039 0.014
0.3 0.539 0.59 0.175 0.075 0.0806 0.027 0.1 0.189 0.183 0.111 0.02 0.018 0.012
0.4 0.092 0.039 0.117 0.013 0.006 0.017 0.2 0.045 0.039 0.043 0.006 0.005 0.006

n = 100
0.1 0.945 0.946 0.007 0.507 0.507 0.018 0.01 0.685 0.69 0.104 0.191 0.191 0.038
0.2 0.784 0.787 0.041 0.432 0.433 0.029 0.04 0.338 0.328 0.134 0.109 0.105 0.041
0.3 0.462 0.523 0.213 0.241 0.266 0.12 0.1 0.125 0.114 0.072 0.051 0.048 0.029
0.4 0.04 0.039 0.041 0.021 0.018 0.022 0.2 0.032 0.02 0.027 0.017 0.012 0.014

Table 5: Quadratic probability of successful communication. Fractionalization Indices – µx, x̃
and σx correspond to the mean, median and standard deviation of the two fractionalization indices
respectively, for the two processes and for different populations sizes. The values denoted by 0.000
refer to quantities that are positive but lower than 10−3, whereas the values denoted by 0 refer to
quantities with value exactly equal to zero.
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