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Abstract. An exploratory study of learning a neural network for cat-
egorisation shows that commonly used leaky integrate and fire neurons
and Hebbian learning can be effective. The system learns with a standard
spike timing dependent plasticity Hebbian learning rule. A two layer feed
forward topology is used with a presentation mechanism of inputs fol-
lowed by outputs a simulated ms. later to learn Iris flower and Breast
Cancer Tumour Malignancy categorisers. An exploration of parameters
indicates how this may be applied to other tasks.
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1 Introduction

AI is a critical technology with immense interest from governments, companies
and society at large. Recent developments in machine learning and deep net-
works in particular have achieved success in a wide range of areas, such as face
recognition [15] and games [13].

Deep Nets [8] are a diverse group of systems typically with large numbers of
units between layers, and many layers that are well connected. These connec-
tionist systems are typically inspired by the brain, and called neural networks.

Simulated biological neural networks, on the other hand, attempt to repro-
duce the behaviour of brains, or parts of brains [12]. These are based on models
of biological neurons, models of biological learning, and biological topologies.
The neural models are typically spiking neurons.

This paper describes a system that categorises data based on a neural net-
work. The network has aspects of biological plausibility combined with a bio-
logically unrealistic topology. The plausible aspects include learning via spike
timing dependent plasticity, a Hebbian learning rule, and a widely used, though
simple, biological neuron model. It is not clear that the presentation or testing
mechanism is psychologically realistic.

2 Literature Review

There are many neural models including relatively simple point models that
represent neurons by simple equations and elaborate compartmental models [9]
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that break neurons into compartments and evaluate the conductance of these
compartments. Leaky integrate and fire (LIF) neurons integrate activation from
other neurons. The activation leaks away, but if enough accumulates, the neuron
fires emitting a spike. The activation resets after it fires. In this paper, the LIF
neural model is from Brette and Gerstner [4]. The model includes exponential
current transmission, so that the current is transferred across the synapse (after
the pre synaptic neuron fires) at an exponentially decaying rate.

In the brain, most if not all learning is Hebbian [7]. If the presynaptic neuron
tends to cause the postsynaptic neuron to fire, the weight will tend to increase.
There are many rules, but a great deal of biological evidence supports Spike
Timing Dependent Plasticity (STDP) [3]. Bi and Poo [3] have perhaps the first
published example that shows the performance of biological neurons. Song et al.
[14] have developed an idealised curve that fits the biological data, though it is a
curve fitting exercise. If the pre-synaptic neuron fires before the post, the weight
is increased; if the post-synaptic neuron fires first, the weight is decreased. Note
that the closer to precisely co-firing, the more the weight change. The simulations
in the remainder of the paper use an STDP learning rule.

LIF neurons were used as the neural model. The system was developed using
PyNN middleware [5], a python package to specify the topology and manage
inputs. The backend was the NEST neuron simulation platform [6].1

3 Methods

Data was taken from the widely used University of California at Irvine (UCI)
benchmark [1]. A commonly used task, categorisation of Iris flowers, is used
initially. The data was split into two equal sized groups. The Iris data has 150
instances, 50 of each of three categories, so the data was split into two 75 item
data sets with 25 of each category in each.

First the data is preprocessed by scaling the range of features to 0 to 100 with
two digits of precision. Now all features are represented by an integer between 0
and 100 inclusive. The input to the system is represented by a neuron for each
number. So, for the Iris data, there are four features, and thus 404 input neurons.

There is a neuron for each output category. For the Iris data, there are three
categories, and thus three neurons. The input neurons are well connected to the
output neurons using plastic synapses. The plasticity rule is a variant Hebbian
STDP (consistent with Song et al. [14]).

During training, the input neurons are sent a spike, and the output neurons
are sent a spike one ms. later. This uses the PyNN spike source, an impossible
biological mechanism for learning. The input neurons consist of those with the
input feature, and in a window of three. So, when the first training feature is 19,
the neurons numbered 15 to 21 are stimulated as numbering is zero based. The
neurons are stimulated so that they fire once.

One of the parameters that was explored in development was the number of
training epochs. An epoch is the presentation of all the training examples; in

1 The code can be found on http://www.cwa.mdx.ac.uk/NEAL/NEAL.html.
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the case of irises, all 75 training items. There may be several epochs of training
with all of the training items presented in sequence in each epoch.

The time between each example was another parameter that was explored.
This time can affect the system for two main reasons. First, if the time is too
small, an input example can continue to spike into the next example. Second, the
STDP synaptic reduction window is effected by the prior example; if the prior
example fires nearer to the time of the current example, the synaptic weight
from the prior input neurons to the current category neurons may be reduced.
During testing, the input neurons are stimulated, and the spikes of the output
neurons are counted. The input is categorised based on the spiking behaviour
with the neuron that spiked most winning.

It is possible to set the neural parameters for the model, but the default
parameters were used, and varying them was not explored. Some important
parameters are: the firing threshold, the higher the threshold, the more activation
is required for a spike; the refractory period, after a neuron spikes, all input
activation is ignored during the refractory period; and the leak rate, the higher
the leak rate the faster activation leaks away making the neuron more difficult
to fire over short periods of time. Another simulation parameter is the time step
that sets how often are the neural and synaptic variables are updated. These
simulations used a 1ms time step.

The STDP learning rule is described by seven parameters. The first is the
initial synaptic weight i, the second is the maximum weight m. The third is
the minimum weight that has always been 0 in the simulations described in this
paper; input features may have no influence on output categories, so the neurons
that represent these values should have a 0 connection. There are many STDP
rules, and a spike pair rule is used in the simulations in this paper. The weight
is modified based on spike pairs alone. There are four parameters associated
with this, two for increasing the weight and two for decreasing the weight. The
increasing parameters are A+, for scaling how much the weight increases, and τ+
for stretching the window of that the weight increases. The parallel decreasing
parameters are A− and τ−. τ+ and tau− are in ms.

Parameters are explored to develop a system that categorises reasonably well.
The data has been broken into a training and a test set. Parameters are explored
using the training set, and the test set is used, largely, for reporting.

In the first example there are 5 training epochs; the time between examples
is 30; the initial synaptic weight was 0; the maximum synaptic weight was 0.05;
the synaptic increase parameters were τ+ = 20.0ms. and A+ = 0.004, and the
decrease parameters were τ− = 20.0ms. and A− = 0.003. This is represented
by the first line in table 1.

4 Results

Exploration of parameters can include a change of topology, but some simple
things to explore are the learning parameters, and presentation mechanism. In
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particular, the five learning parameters, the number of training epochs, and the
length of a presentation are explored.

Exploration is done by training the system on the training set, and testing
on the testing set. It is not a two fold cross validation. The system uses no
randomness. Repeating a run will have the same results.

One large piece of information is how many test examples actually have neu-
rons firing. The default categorisation works with no neurons firing but it shows
that the system is not categorising. The parameters affect how many categorisa-
tion neurons fire in the test. Unsurprisingly, typically, the more training epochs,
the more test firing; synaptic weights are initially zero and each presentation
provides the opportunity to increase, and increased synaptic weight leads to fur-
ther firing in future epochs, further increasing weights. This may not be the case
if the initial weight is larger than zero.

Too much firing also has a problem in that the output becomes random. The
neurons integrate input from a set of pre-synaptic neurons, all firing once at the
same time. The neuron can get enough activation so that it fires multiple times.
However, if two or three of the categorisation neurons get a great deal of input,
they saturate and fire the same number of times. So, there is an ideal window
of incoming synaptic strength to differentiate between the categories.

Perhaps the most powerful mechanism for increasing firing is to increase the
maximum synaptic weight m. So, if the system with a particular parameter set
had many tests with output neurons firing, m was increased. Similarly, the total
output spikes can also be tabulated, and if this is very high, m can be reduced.

The synaptic weight increase and decrease constants A+ and A− also influ-
ence output neuron firing. Increasing A+ or decreasing A− leads to increased
firing; decreasing A+ or increasing A− leads to decreased firing.

The goal is to have a system that categorises well. So, the categorisation
results also matter. By following the gradient so that all tests have categorisation
neurons firing, but many with only one spike, parameters can be set to find a
good result on the training set (e.g. the second row of table 1).

Two other systems are shown for comparison. The first [10], in the third row is
a spiking net using a compensatory Hebbian rule; the neurons have adaptation.
As it uses randomness, the average results of a two fold test are shown. The
second [16] uses a specialised feed forward neural topology and a variant of
STDP that incorporates a learning signal; training and testing are separated in
their evaluation, and in table 1.

Wisconsin Breast Cancer Categorisation
A second task, the Wisconsin Breast Cancer Categorisation task, again from the
UCI benchmark [1] is reported. An item refers to a patient and is represented
by 9 relevant features, and the output is a binary value referring to whether
the tumour was benign or malignant. There were 699 items, with 241 malignant
category items. The data set was split into two with the training set having an
extra item and an extra malignant item.

Each feature had a range from 1 to 10, one feature had missing values, and
one feature had one value that was not represented. So, each input feature was
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Table 1. Categorisation Results: WBC refers to the Wisconsin Breast Cancer task.

Task Epochs Example Maximum A+ τ+ A− τ− Train Test
Time Weight m Result Result

Iris 5 30 0.005 0.004 20.0 0.003 20.0 86.67% 90.6%
Iris 6 50 0.003 0.005 20.0 0.002 20 92% 90.6%
Iris [10] 93.53%
Iris [16] 95.5% 95.3%

WBC 6 50 0.002 0.006 20.0 0.009 20 95.14% 95.7%
WBC [16] 96.2% 96.7%

represented by 10 neurons and the two output categories by one neuron each.
When an item was presented, only one neuron was stimulated for each feature,
and the missing feature was simply ignored; one of the benefits of this approach
is that missing features are readily ignored.

A simple exploration of the parameter space began with the parameters from
the Iris data set (line 2 of table 1). This exhibited a great deal of firing during
testing, so the Maximum Weight w was reduced. This left little firing, so A+ was
increased. Somewhat surprisingly, increasing A− also improved results leading
to several training parameter sets that got 95.14%. One was chosen, and the
results are displayed in the first WBC line of table 1. Below that the results
reported from another spiking system [16] are shown.

5 Discussion

This paper has shown an exploration of simple feed forward topology and a
standard learning rule based on a standard biological LIF neuron, and a standard
STDP rule. The presentation mechanism of turning on the input neurons one
step before the output neurons is clearly biologically impossible. Similarly, the
uniformity of the initial feed forward topology is also biologically implausible.
While the results are below the state of the art, and the tasks are simple, the
results are quite near the state of the art. This merely shows how powerful the
strictly Hebbian STDP learning mechanism is.

STDP, with the topology and presentation mechanism used above, has a
result that is a type of covariance rule. The synaptic weight from a neuron
representing an input feature will increase if it is used as a member of the
category. If it is also used for another category, it will decrease, so the weight
roughly reflects the likelihood the feature discriminates between the categories.
If it is involved in two categories, the weight will be lower, and if in three lower
still. The feature breadth mechanism used in the Iris task supports learning from
fewer examples, and generalisation to unpresented data.

STDP is strictly Hebbian, so is an entirely unsupervised mechanism. Rein-
forcement can be included by adding extra topology to encourage neurons to fire
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at appropriate times; this is a solution that has been included in spiking net-
works [2, 16]. Adjusting synaptic weights to reflect desired outputs, as is done in
supervised rules such as back propagation [11] does not seem to have a biologi-
cal basis. This supervised learning is a powerful mechanism, particularly for feed
forward networks. However, the brain is not feed forward but highly recurrent.

This paper has used a simple two layer feed forward approach. Learning here
is based on particular inputs. Another approach would be to extend across layers
with different times so that input could cascade through layers. Other precise
timing mechanisms can be developed, but in the brain, most neurons fire more
or less continuously at a low rate. Closely timed mechanisms will not work as
models of actual biological processing.
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