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ABSTRACT
Screening via low-dose Computer Tomography (CT) has been shown to reduce lung cancer mortality
rates by at least 20%. However, the assessment of large numbers of CT scans by radiologists is cost
intensive, and potentially produces varying and inconsistent results for differing radiologists (and also
for temporally-separated assessments by the same radiologist). To overcome these challenges, com-
puter aided diagnosis systems based on deep learning methods have proved an effective in automatic
detection and classification of lung cancer.

Latterly, interest has focused on the full utilization of the 3D information in CT scans using 3D-
CNNs and related approaches. However, such approaches do not intrinsically correlate size and shape
information between slices. In this work, an innovative approach to Multi-view Convolutional Recur-
rent Neural Networks (MV-CRecNet) is proposed that exploits shape, size and cross-slice variations
while learning to identify lung cancer nodules from CT scans. The multiple-views that are passed to
the model ensure better generalization and the learning of robust features.

We evaluate the proposedMV-CRecNet model on the reference Lung Image Database Consortium
and Image Database Resource Initiative and Early Lung Cancer Action Program datasets; six evalu-
ation metrics are applied to eleven comparison models for testing. Results demonstrate that proposed
methodology outperforms all of the models against all of the evaluation metrics.

1. Introduction
Lung cancer is the predominant source of cancerous deaths

worldwide, affecting 12.9% ofworld’s population [1]. Among
overall lung cancer cases, about 58% occurred in less devel-
oped countries [1, 2]. With a survival rate of 17.8% (5-year),
lung cancer is regarded as the most lethal form of cancerous
disease, primarily due to the fact that symptoms typically ap-
pear only when the disease is at an advanced stage. The Na-
tional Lung Screening Trail (NLST) recently established that
the mortality rate of lung cancer can be reduced by at least
20% using an early screening procedure with low-dose Com-
puter Tomography (CT) [3, 4]. The analysis of CT scans (as
3D volumes) is a clinically intensive process that often leads
to erroneous decision making. Moreover, there is consid-
erable inter-observer and intra-observer variability amongst
radiologists in identifying nodules. Computer Aided Diag-
nostics (CAD) systems capable of accurate, quick, and cost-
effective Lung Cancer Screening (LCS) thus have a clear
clinical role. Recognizing this, LCS competitions have re-
cently been organized to engage scientific community in de-
veloping effective CT analysis methodologies.

Automated LCS system essentially involve twomain phases:
nodule detection and nodule classification. In the nodule
detection phase, pulmonary nodules are detected from CT
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volumes. After detection, the nodules are analyzed to deter-
mine their malignancy and to decide on a follow-up strategy
for patients. To determine the malignancy state, nodules are
required to be classified in terms ofmetastatic malignant, be-
nign and primary malignant categories. The follow-up strat-
egy is based on the characteristics of nodule growth, type and
size as defined in the PanCan model and the guidelines of
Lung CT Reporting and Data Systems (Lung-RADS). How-
ever, identification of lung cancer nodules is a challenging
task for two main reasons: 1) pulmonary nodules have dif-
ferent sizes, locations and shapes as illustrated in Fig. 1; 2)
high false positive rates due to candidate locations having
morphologically similar appearances to actual lung cancer
nodules as demonstrated in Fig. 2.

In the most recent challenges, including Lung Nodule
Analysis 2016 (LUNA16) and National Data Science Bowl
2017, deep learning approaches have predominated over other
conventionalmachine learning based approaches. A key char-
acteristic of deep learning is that rather than designing ad-
hoc/hand-crafted descriptors for image analysis, deep learn-
ing is capable of learning these descriptors automatically
[5]. Because ad-hoc descriptors consider specific (gener-
ally non-hierarchical) aspects of images while disregarding
the other aspects, learned task-specific descriptors have been
found to outperform them in typical image analysis andmed-
ical imaging tasks. In medical imaging specifically, such
learned descriptors have, for example, been shown to out-
perform medical experts in specific tasks within the fields of
dermatology [6] and ophthalmology [7].

To date, deep-learning based lung cancer nodule iden-
tification has primarily been carried out via Convolutional
Neural Networks (CNNs). Although CNNs are recognized
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Figure 1: Di�erently-shaped and sized (small, medium and
large) nodules.

Figure 2: Non-Nodules with a similar morphological appear-
ance to nodules.

for their ability to detect shapes of objects (e.g. cancer nod-
ules), they are by design invariant to the size and position-
ing of objects. Lately, it has been proposed to capture and
exploit the shapes/sizes of nodules using Multi-view CNNs
(MV-CNNs). Unlike conventional CNN which consists of
single input, MV-CNN integrates multiple inputs. The term
multi-views means that different views of the same input
are fed to the model. For instance, for lung cancer nodule
identification problem, traditional CNN will get a single im-
age as input; on contrary, MV-CNN will get multiple im-
ages as input. One case for MV-CNN, which is used in this
study, can be to pass different sized cropped images/patches
(views) of the nodule toMV-CNN. Advantages of this would
be that views with small receptive fields will give more de-
tailed information of the nodules, whereas, views with large
receptive fields will also include the surrounding tumor tis-
sues giving broader contextual information about nodules.
A key shortcoming of these approaches, however, is that
they process 3D volumetric CT scans as individual slices,
potentially disregarding useful 3D information. To address
this issue, 3D-CNNs have been employed as a means of pro-
cessing volumetric patterns of cancerous nodules. However,
3D-CNNs involve a potentially very significant number of
parameters (typically a multiple of the depth of the scan),
requiring a large annotated dataset to learn generalized rep-
resentations. The lack of availability of large annotated lung
cancer CT scan datasets thus restricts the efficacy of 3D-
CNNs [8, 9, 10]. To resolve this issue, researchers might in-
stead adopt a Recurrent Neural Network (RNN) basedmodel
which, being of a sequential nature, would have the potential
to capture and exploit cross-slice variations in order to incor-
porate volumetric patterns of nodules. Though such a RNN-
based model would use significantly fewer parameters rela-
tive to 3D-CNNs without modification, it would cater only

for cross-slice variations of the nodules and not the shape
and size of the nodules. To this end, the objective of this
work is to build on this approach and propose a model ar-
chitecture that can exploit shape, size and cross-slice varia-
tions while learning to identify lung cancer nodules from CT
scans. Specifically, MV-CNNs are used to exploit the shape
and size of nodules and RNNs (in particular Long Short-
Term Memory (LSTMs)) are used to encompass cross-slice
variation. The proposed Multi-view Convolutional Recur-
rent Neural Network (MV-CRecNet) model is trained and
tested on the Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI) and Early Lung
Cancer Action Program (ELCAP) datasets. Six evaluation
metrics are taken into account to measure the performance
of proposed technique.

Our principle novelties and contributions can be summa-
rized as:

• Wepropose a novelmodel architecture (MV-CRecNet)
for learning to identify pulmonary nodules from CT
scan images.

• Wecarry out extensive experimentation on benchmark
LIDC-IDRI and ELCAP datasets with this and vari-
ous other model architectures. The comparative per-
formance of these models is reported.

The rest of the paper is organized as follows: Section 2
sets out Related Work. The MV-CNN, RNN (LSTM) mod-
els and the Proposed Methodology (MV-CRectNet) are il-
lustrated in Section 3. Materials andModel-specification are
discussed in Section 4. Simulation Results and Discussion
are demonstrated in Section 5. Finally, Conclusion and Fu-
ture Work are presented in Section 6.

2. Related Work
Early detection and classification of cancer nodules has

been demonstrated to be beneficial in reducingmortality rates
and planning follow up strategies for patients. Various stud-
ies can be found in the literature that have the aim of detect-
ing and classifying lung cancer nodules using both conven-
tional machine learning and deep learning approaches.

In early work, Armato et al. [11] used Linear Discrim-
inant Analysis (LDA) for classification of nodules with 187
nodules (juxtapleural and solitary nodules) for validation;
the Fisher Linear Discriminant (FLD) classifier was adopted
by Messay et al. [12] to detect pulmonary nodules; Ter-
amoto and Fujita [13] proposed a technique for nodule clas-
sification incorporating cylindrical filters, with classification
via a Support Vector Machine (SVM). Han et al. [14] in-
tegrated SVMs with a Hierarchical Vector Quantization ap-
proach in their work. Erdal and Aybars [15] proposed a tech-
nique for detection of nodules incorporating bespoke fea-
tures of which five were shape based and the other two were
shape and texture based. Surface properties, intensity val-
ues and morphological characteristics were incorporated by
Way et al. [16] for the classification of malignant & be-
nign nodules (for classification they used a Linear Discrim-
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inant Classifier). A supervised learning algorithm based on
LDA and Genetic Algorithms (GAs) was developed by Lee
et al. [17] for analyzing solitary nodules (benign and malig-
nant). Wavelet transforms were used to characterize images
by Orozco et al. [18], with a SVM used for identification of
pulmonary nodules. Macedo Firmino et al. [19] proposed
using Histogram of Oriented Gradient (HOG) features for
nodule characterization and the watershed method for seg-
mentation of lung nodules; SVMs and rule-based classifiers
were used for classification.

However, a drawback of conventional machine learning
algorithms is that they rely on handcrafted features which
have limited scope and capacity to achieve human-level per-
formance. By contrast, deep learning algorithms learn fea-
ture extractors automatically from data and realize human-
level performance in various domains including medical im-
age analysis. Various deep learning based methods have
consequently been proposed for lung cancer nodule identifi-
cation in recent years.

Stojan Trajanovski et al. [20] proposed a deep learn-
ing framework for assessing lung cancer risk using low-dose
chest CT scans. To train the learning model they consid-
ered a multi-instance weakly labeled approach in which only
patient-level annotation is required. Their framework con-
sists in two stages: nodule detection and malignancy risk
assessment of the CT scan as a whole (whether the nodules
are malignant or benign). A hierarchical SVM was used for
nodule detection which gives the information of nodule lo-
cation, size and shape. This information is provided as the
input in the second step of the proposed technique where
a wide and deep ResNet-like neural network was employed
for cancer risk assessment. NLST data, Kaggle competi-
tion data and data from Lahey Hospital and Medical Cen-
ter (LHMC) are utilized for experimentation with the result
that the proposed method achieves 7% better Area Under the
Curve (AUC) than the PanCan Risk model on NLST and
LHMC data; the model, moreover, performs comparably to
a radiologist at patient-level cancer risk assessment.

Kui Liu and Guixia Kang implement a deep learning ap-
proach to classifying lung cancer nodules in [21], proposing
MV-CNN for lung nodule classification in contrast to tradi-
tional CNNs. The authors address binary and ternary clas-
sification problems, i.e those having two classes (malignant
and benign) and three classes (metastatic malignant, primary
malignant and benign), respectively. Experimental data is
derived from LIDC-IDRI with results demonstrating that a
multi-view approach performs better than single-view strat-
egy, achieving 5.41% error rate for binary classification and
13.91% error rate for ternary classification problem.

In [22], a CNN-based method is proposed by Xinglong
Liu et al. for the classification of nodule types using CT
scans. Contrary to traditional approaches which deal with
pleural-tail, juxta-pleural, vascularized andwell-circumscribed
nodules types, non-nodules andGroundGlassOptical (GGO)
are also taken into account in their study. Amulti-viewmulti-
scale CNN is proposed for classification of lung nodules with
a spherical surface approximated at the center of nodules

from which an estimated radius is achieved for each nod-
ule. After obtaining the radius and (sorted) circular planes,
a view independent CNN is pre-trained. Subsequently, the
MV-CNN model is trained using maximum pooling. Two
datasets: Early Lung Cancer Action Program (ELCAP) and
LIDC-IDRI are used for experimentation, with LIDC-IDRI
is used for training the CNN model. The proposed model is
tested on both ELCAP and LIDC-IDRC datasets which show
promising results even for non-nodule and GGO types.

In [23], Francesco Ciompi et al. address the automatic
nodule classification problem using six nodule types: part-
solid, solid, non-solid, calcified, spiculated and perifissural,
according to assessment categories of Lung-RADS and Pan-
Can malignancy model. For classification, multi-stream and
multi-scale Convolution Networks (Conv-Nets) are consid-
ered. 2D multiple triplets of nodules at multiple scales (10,
20 and 40 mm) are processed simultaneously and a liklihood
is computed for each class. Estimation of the nodule size
or nodule segmentation is not required. The deep learning
model is trained with Multi-centric Italian Lung Detection
(MILD) trial data whereas the trained model is validated on
Danish Lung Cancer Screening Trial (DLCST) data. For
a performance comparison of their proposed deep learning
approach, linear SVM classifiers are trained using features
from nodules’ raw intensity along with learned features from
an unsupervised approach (K-means) using raw data. An ob-
server study with four observers including radiologists was
conducted in order to compare proposedmethodology against
human performance. Experimental results demonstrated that
the proposed architecture performed better than classicalmeth-
ods (which require hand-crafted features), being comparable
to the observers’ variability.

Wei Shen et al. [24] propose a multi-crop deep learn-
ing method to inspect lung nodule malignancy. Specifically,
they use a Multi-crop CNN (MC-CNN) which does not de-
pend on nodule segmentation. Multi-crop pooling crops dif-
ferent sections of feature maps from the convolution layer
and then applies max-pooling to substitute for the conven-
tional max pooling layer. Instead of using multiple networks
for multi-scale features, the suggested technique uses a sin-
gle network while reducing computational complexity. Ex-
periments on the prediction of nodule semantics and estima-
tion of nodule diameter were conducted with the LIDC-IDRI
dataset. Comparisons carried out against both segmenta-
tion independent methods (HOG and Local Binary Patterns
(LBP)) and segmentation dependent methods (Auto-encoder
and Massive-feet) with results demonstrating the robustness
of the proposed technique for classification of lung nodule
malignancy suspicion.

2D-CNNs have widely been used for the pulmonary nod-
ule detection task; however, solutions based on 2D-CNNs
cannot take full benefit of volumetric information given that
lung cancer nodule detection from CT scans is inherently a
3D object detection problem. Recently, researchers have be-
gun to explore the use of 3D-CNNs reflecting the nature of
the data in order to take advantage of volumetric informa-
tion.
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Guixia Kang et al. in [25] implemented a 3D MV-CNN
for the classification of lung cancer nodules. MV-CNN chain
architecture andMV-CNNwithDirectedAcyclic Graph (DAG)
comprising 3D Inception ResNet and 3D Inception are used.
Binary and ternary classification using lung CT scan im-
ages are conducted. Binary classification contains the two
classes malignant and benign, whereas ternary classification
contains three classes: metastatic malignant, primary malig-
nant and benign. Data used for classification is taken from
LIDC-IDRI dataset with 10-fold cross validation. Results
demonstrate that 3D MV-CNN achieves better performance
than 2DMV-CNN in regard to the MV-CNN chain architec-
ture. On the other hand, 3D Inception attained 4.59% binary
classification error rate and ternary classification error rate
of 7.70%. Comparison of one-view-one-network and multi-
view-one-network strategies in this work reveal that the latter
achieves lower error rate.

Multi-level Contextual 3D-CNNs are applied by Qi Dou
et al. in [26] for nodule identification in CT scans with the
objective of reducing false positive rates, accurately discrim-
inating true lung nodules from candidates. The 3D-CNN is
compared with 2D-CNN, establishing that that former learns
more representative features while encoding a greater degree
of spatial information. Multi-level contextual information
is additionally used to make the model more robust. The
LUNA16 challenge dataset is used for experimentation, the
model achieving best performance for false positive rate re-
duction in the LUNA16 challenge. Results show that the
3D-CNN integrated with multi-level contextual information
achieves very promising performance, and which can fur-
thermore be used for other detection problems in medical
imaging.

Nonetheless, a disadvantage of 3D-CNNmethods is that
their parameter-freedom is significantly increased in com-
parison to 2D-CNNs, potentially leading the model to over-
fit the training data; it also takes significantly more time
and consumes more memory as the size of model increases.
Moreover, the availability of annotated 3D data is also an is-
sue; the model of [8] is trained on much less data but cannot
learn generalized features for detecting pulmonary nodules.

Besides the 3D-CNN, another commonly used approach
for incorporating volumetric/cross-slice information is the
RNN. To this end, Petros-Pavlos Ypsilantis and Giovanni
Montana in [27] proposed a technique called ReCTnet for
the detection of lung cancer nodules in CT scan images. To
highlight areas of interest, ReCTnet generates probability
maps of three dimensions at pixel level in order to discrim-
inate between normal (non-nodule) and nodule structures.
Recurrent layers aremergedwith convolutional layers to learn
spatial dependencies from the slices. First, the architecture
is pre-trained without the RNN by using a softmax layer at
the end. After training this model, LSTM layers are com-
bined before the fully-connected layers. LIDC-IDRI data
is for experimentation with results indicating that on aver-
age, 4.5 false positives per scan with a detection sensitivity
of 90.5% can be achieved. Comparison with multi-channel
CNN and previous studies is carried-out showing that ReCT-

net achieves reliable results.
While the above approach uses a single-view CNN for

learning feature extractors, we here adopt a MV-CNN for
more robust characterization of heterogeneity of nodules. ReCT-
net uses unidirectional LSTM, while we use a bidirectional
LSTM to capture cross-slice variations in both directions.
The previous study integrated two LSTM layers after the
CNN layer (pre-trained CNN), whereas we will use one bi-
directional LSTM layer after the CNN layers, allowing sim-
plification of the architecture such that the model learns gen-
eralized and robust features. In our work, we will thus pro-
pose a methodology which incorporates multi-view contex-
tual information while integrating shape, size and cross-slice
information of nodules. The benefit of multi-view contex-
tual information is that — with respect to the identification
of pulmonary nodules — the model can learn generalized
features for small, medium and large nodules as appropriate.

3. Methods
In the following sectionwe discussMV-CNN,RNN (LSTM)

and our proposed technique (MV-CRecNet).
3.1. MV-CNN

In recent years, the research community has begun to use
MV-CNNs by virtue of their promising performance with
respect to their counterpart Single-view CNNs (SV-CNNs).
The main difference between a SV-CNN and a MV-CNN is
their input; in MV-CNN, different views of the same input
are passed to the model to learn generalized features from
the data. Typically, the CNN module is comprised of con-
volution and pooling layers. To extract features from images,
convolutional layers are used [28] with the convolution op-
eration specified as:

fk(x, y) = ReLU
(

bk+
∑

k

∑

u,v
Ik(x−u, y−v) ∗ Wk(u, v)

)

(1)
Here, the image is denoted by I and the filter for the k’th
filter map is denoted byW . The ‘∗’ sign denotes to the inner
product of I and W . After the inner product, a bias term
is added denoted by b. ‘ReLU ’ is a non-linear activation
function [29], which is used in this study. These activation
functions are used to extract non- linear features.

Convolution is followed by maxpooling which selects
the maximum value within a receptive field [30, 31]. Max-
pooling is conducted via:

Mkij = max
(s,t)∈IRi,j

(xkst) (2)

whereMkij is the output of the maxpooling operation for the
kth feature map. (s, t) denotes the location of element xkstwhich is in the pooling region Ri,j that covers the receptivefield around the position (i, j) [29].

Features obtained after applying the convolutional and
maxpooling layers are combined via fully connected layers,
which carry-out high level reasoning through interpretation
of the features in context [32, 33, 34]. Denser connections
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are enabled in fully connected layers, where each neuron is
connected with all the neurons in the subsequent layer, as
follows:

ℎt = ReLU (bt + ℎt−1W t) (3)
where ℎt is the output and ℎt−1 is the input feature vector.
W t denotes theweightmatrix and bt is the bias term. ‘ReLU ’
is the non-linear activation function, which is used in our
study [35].

Fig. 3 shows different views of nodules with (20 x 20),
(30 x 30) and (40 x 40) receptive fields. There can be dif-
ferent architectures for MV-CNNs; e.g. a separate network
for each view or it can be a single network for multi-views,
as illustrated in Fig. 4(a) and 4(b) . In this work, we adopt
a separate network for each view for both the 2D MV-CNN
and 3D MV-CNN.

Figure 3: Nodules views with di�erent receptive �elds.

Network 1 Network 2 Network 3

View 1 View 2 View 3

Output

(a) Separate network for each view

Network

View 1 View 2 View 3

Output

(b) Single network for multiple views

Figure 4: Variations of MV-CNN architecture.

3.2. RNN / LSTM
The LSTM is a RNN-variant for processing sequential

or temporal data. It has shown outstanding results for var-
ious problems such as image captioning, language transla-
tion/modeling and speech recognition. The specific archi-
tecture of a LSTM is demonstrated in Fig. 5. An essential
component of LSTM is the memory cell that holds informa-
tion pertaining to associations between elements of sequen-
tial data. The cell is regulated via sigmoid gates including
an input gate (It), a ‘forget’ gate (Ft) and an output gate (Ot)as defined below:

It = �(bi + [X̂t, Ĥt−1] ⋅Wi) (4)
Ft = �(bf + [X̂t, Ĥt−1] ⋅Wf ) (5)
Ot = �(bo + [X̂t, Ĥt−1] ⋅Wo) (6)

N

Xt

Ht

LSTM

N

H0

X0

N

H1

X1

N

Ht

Xt

=

x +

x

� � tanh �

tanh

x

Xt

Ht-1 Ht

Ht

Ct-1 Ct

Ft It

Ct

�

Ot

Cell State

Figure 5: Architecture of LSTM [36].

Here,Wi,Wf andWo are weight matrices, X̂t is the in-
put, Ĥt−1 is the output of the previous layer and b denotes
the bias term. The ‘[]’ brackets show the concatenation of
X̂t and Ĥt−1 as a single vector. The subscript ‘t’ indicates
that values of gates are not static, rather that they are capable
of change at every time interval t. The cell state is updated
as as follows:

Ct = (Ct−1 ∗ Ft) + (Ĉt ∗ It) (7)
whereWc is a weight matrix and Ĉt is computed as below:

Ĉt = tanℎ(bc + [X̂t, Ĥt−1] ⋅Wc) (8)
Finally, the representation of the sequential data is extracted
as follows:

Ht = tanℎ(Ct) ∗ Ot (9)

Page 5 of 16



Multi-View Convolutional Recurrent Neural Network for Lung Cancer Nodule Identi�cation

3.3. Proposed Methodology (MV-CRecNet)
This section sets out the architecture of the proposedmodel

(MV-CRecNet), which is structured such that shape, size and
volumetric (3D) patterns of nodules can be learned and used
for subsequent detection of lung cancer nodules. Suppose
that we have a CT dataset (Î , L) consisting of n samples
Î = Î1, Î2, ..., În with corresponding labels Li ∈ {0, 1}, s.t.
Li = 1 indicates a nodule and Li = 0 a non-nodule. Each
sample Îi is a volume of shape (Z,X, Y ). The objective is to
learn a model function ŷi = M(Îi) where ŷi ∈

[

0, 1
] is the

output of the function M that predicts the probability that
the volume contains a cancer nodule (i.e. Li = 1). The sam-
ple Îi consists of volumetric views Vk and each view V (i)

kcomprises m slices:
V (i)
k =

⟨

S(i)
k1
, S(i)

k2
, ..., S(i)

km

⟩ (10)
Each slice S(i)

k is processed via a CNN model consisting of
convolution, batch normalization, max pooling, and rectified
linear unit (ReLU) based activation function with dropout.
Despite the single-view processing of individual slices, we
allow the model to process slices at multiple views using
differently-parameterized CNNs. This enables the model to
characterize size-oriented heterogeneity of nodules as differ-
ent receptive fields can be used to deal with different sizes of
nodules. To this end, we use three CNNs to facilitate small,
medium and large size nodules. The receptive fields of these
CNN architectures in Z, X and Y dimensions are taken as (6
x 20 x 20), (6 x 30 x 30) and (6 x 40 x 40) which covers
58%, 85% and 99% of pulmonary nodules respectively [26].
Another reason to consider 6 as the depth of receptive fields
was because if a bigger number is considered as the depth,
the size exceeds the size of some CT scans, especially when
nodules are in the beginning or last slices of CT scans. The
extracted feature maps of all three CNNs are then flattened
and concatenated. Mathematically:
Fkj = CNN1

(

S(i)
kj

)

+ CNN2
(

S(i)
kj

)

+ CNN3
(

S(i)
kj

) (11)
These concatenated features are then passed to the LSTM.
The slice level features are processed through the LSTM se-
quentially to capture cross-slice anatomical dependencies of
nodules; mathematically as:

 (i)
kj

= LSTM
t=j

(

Fkj
) (12)

Where  denotes the output of LSTM. We use the output
of the final LSTM layer as an anatomical feature vector for
subsequent processing. We utilize the bidirectional LSTM in
our model which was discovered to give better results than
the unidirectional LSTM. Final classification is performed
by using fully-connected networks with sigmoid activation
function as follows:

ℎ(i) = �
(

 (i)
kj

) (13)
yi = �

(

ℎ(i)
) (14)

Where � denotes fully connected layer and � denotes
Sigmoid activation function. The complete architecture of
MV-CRecNet is illustrated in Fig. 6.

4. Materials and Models
In this section we give a description of the test datasets,

evaluation metrics and specification of models.
4.1. Dataset and Candidate Generation

Two datasets were considered in this study for the eval-
uation of proposed technique. Details about the datasets and
candidate generation are given below.
4.1.1. LIDC-IDRI

The LIDC-IDRI dataset is considered in this study for
the evaluation of proposed technique. The dataset contains
1018 cases deriving from both commercial medical imaging
companies and academic centers. It contains thoracic CT
scan images with an Extensible Markup Language (XML)
files of annotated data conducted by four radiologists with
two phases of annotation. During the annotation process, ra-
diologists marked the candidate nodules as nodules ≥ 3mm,
nodules < 3mm and non-nodules [37]. Candidate positions
were extracted using 3 existing detection algorithms [38],
[39] and [40]. 1185 nodules with size greater than or equal
to 3mm were selected from across the dataset for final panel
acceptance by at least 3 out of 4 radiologists. Nodules <
3mm, non-nodules and nodules which were annotated by
fewer than 3 radiologists are not considered. In sum, we con-
sider 2370 candidate positions out of which 1185 are nodules
and 1185 are non-nodules. In total, 14220 images, 7110 (2D
images) and 7110 (3D images), were extracted for presenta-
tion to the different models implemented in this study. 80%
of the data was used for training and 20% for testing.
4.1.2. ELCAP

ELCAP and Vision and Image Analysis Group (VIA)
collaborated to make this dataset available with the purpose
of providing a common dataset that can be used to evalu-
ate the performance of different CAD systems [41]. Dataset
contains 50 low-dose CT scans with 1.25mm slice thick-
ness and single breath hold for lung cancer detection. An-
notations by radiologists of only nodule locations (no non-
nodule locations) are also provided. In this study, we con-
sidered 902 positions from which 451 are nodules and 451
are non-nodules. As said earlier that ELCAP dataset only
contains annotations of nodule locations, therefore, we took
non-nodule locations from LIDC-IDRI dataset. The reasons
behind considering non-nodules are: firstly, this study con-
sists of binary classification problem and, secondly, to make
the models learn the boundaries between nodule and non-
nodule data to generalize better. In total, 5412 images are
considered out of which 2706 are 2D images and 2706 are
3D images to feed to differentmodels considered in this study.
Moreover, 60% data was used for training and 40% for test-
ing.
4.2. Evaluation Metrics

For evaluating the performance of proposed approach,
six evaluation metrics are utilized: Accuracy, Sensitivity,
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Figure 6: Diagram of the proposed model (MV-CRecNet) in which each layer is shown with di�erent color for better comprehen-
sion.

Specificity, Precision, F1-Score andReceiver OperatingChar-
acteristic (ROC) curve (via the AUC value).

• True Positive (TP): Number of correct positive (can-
cerous) examples detected.

• TrueNegative (TN): Number of correct negative (non-
cancerous) examples detected.

• False Positive (FP): Number of incorrect positive (can-
cerous) examples detected.

• False Negative (FN): Number of incorrect negative
(non-cancerous) examples detected.

4.2.1. Accuracy
Accuracy can be described as ratio of number of cor-

rectly predicted samples and total number of samples. It is
a great measure but only when FP and FN values are almost
same. Accuracy is computed as:

Accuracy = TP + TN
TP + TN + FP + FN

(15)
4.2.2. Sensitivity

Sensitivity is also called Recall or True Positive Rate.
When FN has high cost then recall is a good measure to use
for evaluating the model. Sensitivity is computed as follows:

Sensitivity = TP
TP + FN

(16)

4.2.3. Specificity
Specificity is also known as True Negative Rate. Speci-

ficity is computed as:

Specif icity = TN
TN + FP

(17)

4.2.4. Precision
When cost of FP is high, precision is a good measure for

evaluation. Precision is computed as follows:

Precision = TP
TP + FP

(18)

4.2.5. F1-Score
When class distribution is uneven then it is better to use

F1-Score rather than accuracy. It is computed as:

F1 − Score = 2 ∗ Recall ∗ Precision
Recall + Precision

(19)

4.2.6. ROC Curve and AUC Value
ROC curve demonstrates that how good the model is

performing to differentiate between two things, for instance,
whether a patient has disease or not. To draw ROC curve,
sensitivity and specificity, more precisely (1 − specificity),
are used. AUC is a good metric for evaluating model’s per-
formance; the higher the AUC score is the better the model
is performing.
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Table 1

Architectures of 2D-CNNs and 2D MV-CNN

2D-CNNs

A1 A2 A3

Lay. Ker. Cha. Lay. Ker. Cha. Lay. Ker. Cha.

Input 20x20 1 Input 30x30 1 Input 40x40 1
C1 3x3 64 C1 3x3 64 C1 3x3 64
M1 2x2 64 M1 2x2 64 M1 2x2 64
C2 3x3 64 C2 3x3 64 C2 3x3 64
M2 2x2 64 M2 2x2 64 M2 2x2 64
FC1 - 20 FC1 - 20 FC1 - 20
FC2 - 1 FC2 - 1 FC2 - 1

Sigmoid - 1 Sigmoid - 1 Sigmoid - 1

2D MV-CNN

Macro − averaging
= (P 1+P2+P3)

3

Output

A: Architecture, Lay: Layer, Ker: Kernel, Cha: Channel, C:
Convolution, M: Max Pooling, FC: Fully Connected, P:

Probability

4.3. Specification of Models
Apart from the proposed methodology, eleven models

were implemented for comparison. Description of thosemod-
els is given in the following subsections.
4.3.1. 2D-CNNs and 2D MV-CNN

The evaluated 2D-CNNs and 2DMV-CNNmodels have
been discussed in Section 3; the specific architectural details
of the 2D-CNNs and 2D MV-CNNs are given in Table 1.
4.3.2. 3D-CNNs and 3D MV-CNN

Volumetric 3D-CNNs and 3D MV-CNN were also im-
plemented in this study for comparison to the proposedmethod-
ology. The 3D-CNNmodels consist of 3D convolutional and
maxpooling layers; the 3D convolutional layer, in compari-
son with a 2D convolutional layer, has one more dimension,
requiring an additional parameter z and also an additional
parameterw for the image I and the kernelW , respectively.
The 3D convolution operation is defined as:
fk(z, x, y) =

ReLU
(

bk +
∑

k

∑

w,u,v
Ik(z −w, x − u, y − v) ∗ Wk(w, u, v)

)

(20)
Likewise, the 3Dmaxpooling layer has an additional dimen-
sion in comparison with a 2D maxpooling layer. The size of
maxpooling window is thus not only specified for the X/Y
dimensions but also for the Z dimension. The equation of
the 3D maxpooling operation is hence the same as 2D max-
pooling but with an explicit 3rd dimension:

Mkℎij = max
(r,s,t)∈IRh,i,j

(xkrst) (21)

Table 2 presents the architectures of these 3D models.

Table 2

Architectures of 3D-CNNs and 3D MV-CNN

3D-CNNs

A1 A2 A3

Lay. Ker. Cha. Lay. Ker. Cha. Lay. Ker. Cha.

Input 6x20x20 1 Input 6x30x30 1 Input 6x40x40 1
C1 3x3x3 64 C1 3x3x3 64 C1 3x3x3 64
M1 2x2x2 64 M1 2x2x2 64 M1 2x2x2 64
C2 1x3x3 64 C2 1x3x3 64 C2 1x3x3 64
M2 2x2x2 64 M2 2x2x2 64 M2 2x2x2 64
FC1 - 20 FC1 - 20 FC1 - 20
FC2 - 1 FC2 - 1 FC2 - 1

Sigmoid - 1 Sigmoid - 1 Sigmoid - 1

3D MV-CNN

Macro − averaging
= (P1+P2+P3)

3

Output

A: Architecture, Lay: Layer, Ker: Kernel, Cha: Channel, C:
Convolution, M: Max Pooling, FC: Fully Connected, P:

Probability

4.3.3. Single-view CRecNet (SV-CRecNet)
To capture the anatomical dependencies of nodules across

slices, we seek to utilize the sequential properties of RNNs.
To this end, wemerge the CNNmodel with the LSTMmodel,
which in this work we collectively call SV-CRecNet. In SV-
CRecNet, a CNN is used to learn slice level features and an
LSTM is then employed to learn cross-slice dependencies
of nodules from CT scan images. At each time step, a 2D
slice of the CT scan is passed to the model; after obtaining
features from the CNN, these are flattened and passed to the
LSTM in order to incorporate the anatomical dependencies
of nodules across slices. The number of steps depend on
the number of slices considered from a CT scan image. Af-
terwards, an integrated fully-connected layer interprets the
features and performs high level reasoning. The features are
then oncemore flattened and the final prediction is produced.
The ReLU activation function is used throughout the mod-
els except for the last layer which uses a sigmoid activation
function. Three different architectures of SV-CRecNet are
here evaluated, with model specifications as given in Table
3.

5. Experimental Results and Discussion
In this study, a size and shape awaremodel, MV-CRecNet,

is proposed for lung cancer nodule identification. Its efficacy
is determined with respect to six evaluation metrics in or-
der to demonstrate the robustness of the model. Aside from
the proposed methodology, eleven further models are im-
plemented for comparison, consisting of 2D-CNN, 2D MV-
CNN, 3D-CNN, 3D MV-CNN and SV-CRecNet variants.
Table 4 shows the results of all the techniques for all eval-
uation metrics on LIDC-IDRI and ELCAP datasets. ROC
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Figure 7: ROC curves and AUC scores of all models on di�erent datasets.

Table 3

Architectures of SV-CRecNet Variants

SV-CRecNets

A1 A2 A3

Lay. Ker. Cha. Lay. Ker. Cha. Lay. Ker. Cha.

Input 6x20x20 1 Input 6x30x30 1 Input 6x40x40 1
C1 3x3 64 C1 3x3 64 C1 3x3 64
M1 2x2 64 M1 2x2 64 M1 2x2 64
C2 3x3 64 C2 3x3 64 C2 3x3 64
M2 2x2 64 M2 2x2 64 M2 2x2 64
C3 3x3 64 C3 3x3 64 C3 3x3 64
M3 1x1 64 M3 2x2 64 M3 2x2 64

Flatten - - Flatten - - Flatten - -
LSTM 512 - LSTM 512 - LSTM 512 -
FC - 100 FC - 100 FC - 100

Flatten - - Flatten - - Flatten - -
Sigmoid - 1 Sigmoid - 1 Sigmoid - 1

A: Architecture, Lay: Layer, Ker: Kernel, Cha: Channel, C:
Convolution, M: MaxPooling, FC: Fully Connected

curves and AUC scores are illustrated in Fig. 7(a) and 7(b)
for LIDC-IDRI and ELCAP datasets, respectively. Results
show that MV-CRecNet learns more generalized and robust
features in comparison to other models. Experimental setup,
results and discussion are given below.
5.1. Experimental Setup

Experiments were carried out on Intel(R) Core i5-2540M,
2.60GHz CPU, 4 GBRAM,withWindows 10 operating sys-
tem with additional GPU-based experimentation carried out
onGoogle’s Colab cloud service. Models were implemented
using the Python programming language and open source
Keras library. Results for individual models are given below
with discussion in-group.

5.2. LIDC-IDRI
Results and discussion of all implemented models on

LIDC-IDRI dataset are given below.
5.2.1. Results of 2D CNN Models

The objective of the experiments is to obtain a model
structure useful for detecting and recognizing lung nodules.
To this end, we empirically analyze existing model struc-
tures and their variations as a baseline. We start with the
simplest setting, involving slice-wise processing of CT scans
using 2D-CNNs. In this setting, an important question is to
determine the size of receptive field suitable for input layer.
Three receptive fields, (20 x 20), (30 x 30) and (40 x 40)
are hence analyzed in relation to the respective 2D-CNN ar-
chitectures A1, A2 and A3. Results on LIDC-IDRI dataset
demonstrate that the 2D-CNN(A1) architecture achieves bet-
ter accuracy, specificity and precision than other twomodels.
The reason for this could be that receptive field used for 2D-
CNN(A1) is able to successfully identify non-nodules be-
cause it provides appropriate contextual information (at least
for non-nodules selected in this study). However, the sensi-
tivity of the 2D-CNN(A1) is lower when compared with the
other twomodels because the receptive field only covers 58%
pulmonary nodules in the dataset and is thus good for small
sized nodules but not the others. The 2D-CNN(A2) has bet-
ter sensitivity and f1-score than other two models. This is
perhaps due to the receptive field used for the 2D-CNN(A2)
containing rich contextual information for small sized nod-
ules and apposite contextual information for medium sized
nodules, causing the model to classify true positives cor-
rectly with high confidence. The reason for the degraded
performance of 2D-CNN(A3) in accuracy and f1-score com-
pared with the other two models could be that the recep-
tive field used includes noise in the context of small sized
nodules. However, the 2D-CNN(A3) model achieved bet-
ter sensitivity than the 2D-CNN(A1) model, and also bet-
ter specificity and precision than the 2D-CNN(A2) model,
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Table 4

Results of all models implemented in this study on LIDC-IDRI and ELCAP datasets and
their comparison with proposed technique

Models LIDC-IDRI Dataset ELCAP Dataset

Accuracy Sensitivity Speci�city Precision F1-Score Accuracy Sensitivity Speci�city Precision F1-Score

2D-CNN(A1) 0.869 0.861 0.878 0.876 0.868 0.925 0.861 0.989 0.987 0.920
2D-CNN(A2) 0.865 0.924 0.806 0.826 0.873 0.942 0.911 0.972 0.970 0.940
2D-CNN(A3) 0.857 0.899 0.814 0.829 0.862 0.964 1.000 0.928 0.934 0.965
2D MV-CNN 0.882 0.911 0.852 0.861 0.885 0.986 0.978 0.995 0.994 0.986
3D-CNN(A1) 0.914 0.873 0.954 0.950 0.910 0.972 0.972 0.972 0.972 0.972
3D-CNN(A2) 0.892 0.941 0.844 0.858 0.897 0.981 1.000 0.961 0.963 0.981
3D-CNN(A3) 0.897 0.911 0.882 0.885 0.898 0.947 1.000 0.895 0.905 0.950
3D MV-CNN 0.918 0.916 0.920 0.920 0.918 0.983 0.967 1.000 1.000 0.983

SV-CRecNet(A1) 0.935 0.911 0.958 0.956 0.933 0.975 0.956 0.995 0.994 0.975
SV-CRecNet(A2) 0.941 0.932 0.949 0.948 0.940 0.967 1.000 0.9333 0.938 0.968
SV-CRecNet(A3) 0.930 0.933 0.928 0.929 0.931 0.961 1.000 0.9222 0.928 0.963
MV-CRecNet 0.971 0.975 0.966 0.967 0.971 0.994 1.000 0.989 0.989 0.995

which indicates that it is a good choice for classifying for
medium and large sized nodules. To maximize the bene-
fits of the different receptive fields, we analyzed the efficacy
of multiple receptive fields using a 2D MV-CNN architec-
ture. A single network for each view was integrated for the
2D MV-CNN; macro-averages of the probabilities deriving
from each architecture were then calculated. The 2D MV-
CNN model showed improvement in accuracy and f1-score
in this context, revealing that passing multi-level contextual
information makes the model generalize better; this applies
across all evaluation metrics.
5.2.2. Results of 3D CNN Models

2D models cannot take full advantage of volumetric in-
formation in CT scans; 3D-CNNswere thus employed to uti-
lize this information. Three 3D-CNNs were implemented:
3D-CNN(A1), 3D-CNN(A2) and 3D-CNN(A3); each CNN
takes a different sized volumetric image of magnitude (6 x
20 x 20), (6 x 30 x 30) and (6 x 40 x 40), respectively. Results
show that 3D-CNN(A1) obtains better accuracy, specificity,
precision and f1-score than the other two 3D-CNNs. This
is perhaps because the selected non-nodules in this work
are mostly of a small size and a (6 x 20 x 20) receptive
field thus provides rich contextual information for these non-
nodules. 3D-CNN(A2) achieves better sensitivity than other
two models perhaps because the receptive field used for this
model allows for rich and apposite contextual information
for small and medium sized nodules, respectively, enabling
themodel to correctly classify true nodules. The 3D-CNN(A3)
model achieves moderate results in comparison to other two
models, likely due to the receptive field necessarily includ-
ing noise in the case of small sized nodules, but an appropri-
ate amount of contextual information in relation to medium
and large sized nodules. In order to analyze the integration
of multiple views with different receptive fields, 3D MV-
CNN was applied. Results for this model demonstrate that
3D MV-CNN outperforms all three 3D-CNNs for all evalu-
ation metrics (except sensitivity). The improved results are
indicative that the integration of multi-views lets the model

learn generalized features. In general, 3D-CNN models per-
formed better than 2D-CNN models, demonstrating that ap-
plying 3D models on volumetric information improves re-
sults in line with expectation. However, the parameter com-
plexity of the 3D-CNN significantly increases the likelihood
of the model overfitting the training data; the unavailability
of 3D annotated data is also an issue with this model class.
5.2.3. Results of SV-CRectNets including the Proposed

Methodology (MV-CRecNet)
We incorporated LSTMs with 2D-CNNs (which we call

SV-CRecNets) in order to force the model to learn shape,
size and anatomical dependencies of nodules across slices.
For this purpose, we employed three SV-CRecNet architec-
tures: SV-CRecNet(A1), SV-CRecNet(A2) and SV-CRecNet(A3).
All three models outclass all of the previously implemented
models in this study, even 3D-CNNs. This is perhaps be-
cause the 3D-CNN considers nodules purely as volumetric
information for which emerging patterns of nodules across
progressive slices may not readily be learned. Integration of
2D-CNNswith LSTMs appears to enable learning of anatom-
ical dependencies of nodules across slices such that themodel
is able to learn how a nodule first appeared, grew to a max-
imal cross-section and then diminished across slices; that
is, it captures a (slice-dependent) encoding of surface gra-
dient changes. Results indicate that, not only with respect
to nodule locations, but also with respect to non-nodule lo-
cations, SV-CRecNets achieve best-quality results. The re-
ceptive field used for SV-CRecNet(A3) also includes noise
in case of small sized nodules; however, it achieves the high-
est sensitivity among the other SV-CRecNets. Reasons for
this could be that the learning of cross-slice dependencies
enables the model to identify true nodules correctly even in
presence of noise. SV-CRecNet(A1) achieves better results
than other two models for specificity and precision evalua-
tion metrics, demonstrating that SV-CRecNet(A1)’s recep-
tive field includes rich contextual information for the non-
nodule locations considered in this study. SV-CRecNet(A2)
obtained the highest accuracy and f1-score, and achieved
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Figure 8: Predictions of proposed model (MV-CRecNet) on
various examples.

moderate values for the other evaluation metrics as com-
pared to other two models. This is presumably due to the re-
ceptive field of SV-CRecNet(A2) aiding the model in classi-
fying small and medium sized nodules by providing relevant
contextual information. In general, SV-CRecNets achieve
promising results; however, only single-views are integrated.
The question then arises as to what happen if we were to
provide multiple views to the model (CRecNet)? The multi-
viewmodels implemented previously achievedmore promis-
ing results than their counterpart single view approaches.
Fig. 7(a) shows the ROC curves and corresponding AUC
values for all of the models on LIDC-IDRI dataset. It can
be seen that each multi-view variant achieves the highest
AUC value with respect to their comparative single-view ap-
proaches. From this we derive our proposed methodology
(MV-CRecNet) in which different views are incorporated.
Results show thatMV-CRectNet outperforms all of themod-
els in all of the evaluation metrics, demonstrating its robust-
ness. This is because the multiple views passed to the model
allow it to learn generalized and robust features for small,
medium and large sized nodules; not only nodules but also
non-nodules were correctly identified byMV-CRectNet with
high confidence. Predictions ofMV-CRecNet on various ex-
amples are illustrated in Fig. 8.

5.3. ELCAP
Results and discussion of all implemented models on

ELCAP dataset are given below.
5.3.1. Results of 2D CNN Models

As mentioned previously that while training models on
ELCAPdataset, noduleswere considered fromELCAPdataset
whereas non-nodules were taken from LIDC-IDRI dataset.
On ELCAP dataset, even 2D-CNNs achieved very high val-
ues for all evaluation metrics. It can be due to the fact that
ELCAP dataset consists of low-dose CT scans, however, LIDC-
IDRI dataset contains normal/high-dose CT scans. There-
fore, while training the models on different dose CT scans,
models may have learned the biases of both datasets and cor-
rectly classify majority of examples. So, the model could be
learning that if a normal/high dose CT scan comes then it is
a negative example and classifies it as non-nodule, whereas,
if a low-dose CT scan comes then it is a positive example
and classifies it as nodule. Among simple 2D-CNN mod-
els, 2D-CNN(A3) has achieved better accuracy, sensitivity
and f1-score. Reason could be that the receptive field of this
model has covered good amount of contextual information of
nodules and correctly classifies them. 2D-CNN(A1) has per-
formed superior to identify non-nodules locations and gained
better specificity and precision scores. Nonetheless, it has
low sensitivity as compared to other 2D-CNN models. It
is because its receptive field was not able to cover appro-
priate amount of contextual information for nodules; some
nodules were bigger in size that is why they did not fit into
the size of model’s receptive field, as shown in Fig. 9. 2D-
CNN(A2) has achieved moderate results in comparison with
2D-CNN(A1) and 2D-CNN(A3). Reason could be its re-
ceptive field which not only covered non-nodules correctly
but also nodule locations. To combine the benefits of dif-
ferent sized receptive fields, we implemented 2D MV-CNN.
Results reveal that 2D MV-CNN obtained highest values,
among 2D-CNN models, of accuracy, specificity, precision
and f1-score. However, sensitivity score of 2D MV-CNN
is less than of 2D-CNN(A3). This is perhaps due to sev-
eral very large sized nodules in the dataset compared to the
receptive field considered. 2D MV-CNN results show that
passing multi-views to the model allows it to generalize bet-
ter.
5.3.2. Results of 3D CNN Models

On ELCAP dataset, after 2D models, 3D models were
tested. Reason to apply 3D models was that CT scans are
volumetric data (3D data). Therefore, to consider volumetric
information of CT scans, 3D-CNNs were implemented. On
ELCAP dataset, 3D-CNNs performed superior to 2D-CNN
models. 3D-CNN(A2) has achieved better accuracy and f1-
score than other simple 3D-CNN models. It could be be-
cause receptive field of this model has considered appropri-
ate amount of contextual information of nodules. However,
it did not perform better than 3D-CNN(A1) for specificity
and precision evaluation metrics. It may be due to the non-
nodule locations, for which 3D-CNN(A1)’s receptive field
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Figure 9: Large sized nodules from ELCAP dataset shown in
(20 x 20), (30 x 30) and (40 x 40) receptive �elds.

taken into account appropriate contextual information. 3D-
CNN(A1) model has shown moderate results as compared
to other 3D-CNN models. 3D-CNN(A3) achieved lowest
accuracy, specificity, precision and f1-score than other 3D-
CNNs. It is perhaps due to the inclusion of noise in case
of bigger receptive field integrated for this model. It should
be noted that 3D-CNN(A1) and 3D-CNN(A2) has achieved
100% sensitivity, it is because both models were able to get
rich contextual information of nodules. To examine the ad-
vantages ofmulti-level contextual information, 3DMV-CNN
was implemented. Three viewswith different receptive fields
were provided as input to the 3D MV-CNN model. Results
show that 3DMV-CNN outperformed all 3D-CNNs for met-
rics of accuracy, specificity, precision and f1-score. This is
due to the fact that integration of multiple views in a model
enables it to differentiate and classify nodules and non-nodules
with high confidence. From results it can be analyzed that
thismodel performed better for identifying non-nodules, per-
haps because receptive field of this model covered apposite
contextual information for non-nodule locations of dataset
considered. However, its sensitivity score is less than of 3D-
CNN(A2) and 3D-CNN(A3). The volumetric nature of CT
scans give 3D-CNNs an upper hand to identify patterns in
3D data. Furthermore, passing multiple views to models let
them to generalize better. However, parameters of 3D-CNNs
drastically increase which increases the possibility of over-
fitting; moreover, there is also an issue of unavailability of
3D annotated data.

5.3.3. Results of SV-CRectNets including the Proposed
Methodology (MV-CRecNet)

In order to make models to learn shape, size and anatom-
ical dependencies of nodules across slices, 2D-CNNs with
LSTMswere combinedwhichwe call CRecNets. Three such
models which incorporate single views were implemented
namely SV-CRecNet(A1), SV-CRecNet(A2) and SV-CRecNet(A3).
SV-CRecNet(A1) has achieved highest accuracy, specificity,
precision and f1-score as compared to other two models;
probably because its receptive field incorporated pertinent
contextual information for non-nodules. However, for sen-
sitivity metric this model performed inferior to other SV-
CRecNet models, and 3D-CNN(A2) and 3D-CNN(A3), due
to the large sized nodules in the dataset whose contextual in-
formationwas not fully grasped by the receptive field consid-
ered, as illustrated in Fig. 9. SV-CRecNet(A2) demonstrated
moderate and SV-CRecNet(A3) lowest scores for accuracy,
specificity, precision and f1-score evaluation metrics among
three SV-CRecNets. Reason for SV-CRecNet(A3) perform-
ing lowest could be that receptive field of this model also in-
cluded noise for candidate positions considered which even-
tually affected the performance. Nevertheless, it should be
noted that SV-CRecNet(A2) and SV-CRecNet(A3) achieved
100% sensitivity. This illustrates that even in presence of
noise for SV-CRecNet(A3) model, the consideration of ad-
jacent slices allowed it to identify nodules correctly. SV-
CRecNets have achieved good results, nonetheless, only sin-
gle views are incorporated. From the previous experimenta-
tion, it can be observed that multi-view models have per-
formed considerably superior to their counter part single-
view models. Thus, what if we provide multiple views to
the CRecNet architecture? Fig. 7(b) shows the ROC curves
and corresponding AUC values for all the models on EL-
CAP dataset. Multi-view models have attained highest AUC
values as compared to their comparative single-view mod-
els. Therefore, we incorporated multiple views in our pro-
posed technique (MV-CRecNet). Results exhibit the robust-
ness of MV-CRecNet which has outperformed all the mod-
els by classifying both nodule and non-nodule locations with
high confidence. This reveals that passing multi-views to
a model which incorporates shape, size and anatomical de-
pendencies, such as MV-CRecNet, allow it to be capable of
learning robust and generalized features.

Table 5 shows a comparison of our proposed technique
(MV-CRecNet) with other comparable work in the literature.
It should be noted that due to the differing data samples,
experimental setups and evaluation metrics in the related
work, it is difficult to perform a strict comparison. However,
most authors have utilized the same dataset (the LUNA16
dataset is a filtered version of LIDC-IDRI dataset, which is
why comparison with the papers which have used LUNA16
dataset is also included). Table 5 indicates that our proposed
model has achieved very promising results relative to the
state of the art.
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Table 5

Comparison of proposed technique with existing work

Related work Dataset Acc. Sen. Spe. AUC

W. Shen et al. [24] LIDC-IDRI 0.87 0.77 0.93 0.93
K. Liu et al. [21] LIDC-IDRI - - - 0.98
X. Liu et al. [22] LIDC-IDRI 0.92 - - -
G. Kang et al. [25] LIDC-IDRI - - - 0.99
F. Ciompi et al. [23] DLCST 0.80 - - -
Y. Gu et al. [42] LUNA16 - 0.93 - -

R. Gruetzemacher et al. [43] LUNA16 - 0.89 - 0.93
H. Xie et al. [44] LUNA16 - 0.86 - 0.95

N. Nasrullah et al. [45][46] LIDC-IDRI 0.89 0.94 0.90 0.99
Z. Xiao et al. [47] LUNA16 - 0.92 - -

MV-CRecNet (Ours) LIDC-IDRI 0.97 0.98 0.97 0.99

Acc: Accuracy, Sen: Sensitivity, Spe: Speci�city

6. Conclusion and Future Work
Lung cancer is a severe medical threat with symptoms

only appearing when the disease is in its advance stage. In
this work, we propose a novel deep learning approach for
pulmonary nodules identification from CT scan images. The
proposed method (MV-CRecNet) exploits shape, size and
cross-slice variations in order to learn to identify lung cancer
nodules from CT scan images. Multiple views are passed to
the model enabling it to generalize better by learning robust
features. Besides the proposed methodology, eleven sepa-
rate models were implemented for comparative evaluation
using the LIDC-IDRI and ELCAP datasets. Six evaluation
metrics were used to measure the performance of proposed
technique with results demonstrating that MV-CRecNet ex-
hibits state-of-the-art performance for all evaluationmetrics.

This work has the potential to be extended to various
other object identification tasks with multi-view or volumet-
ric data. In future, the proposed technique will hence be
tested across a range of medical domains; and with the help
of radiologists it can be incorporated in clinical practice.
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