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ABSTRACT

∗Endoscopy Computer Vision Challenge (EndoCV2020)
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The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in devel-
oping reliable computer aided detection and diagnosis endoscopy systems and suggest a pathway for clinical translation
of technologies. Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs, there are several core
challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and
2) difficulty in identifying subtle precancerous precursors and cancer abnormalities. Artefacts often affect the robustness of
deep learning methods applied to the gastrointestinal tract organs as they can be confused with tissue of interest. EndoCV2020
challenges are designed to address research questions in these remits. In this paper, we present a summary of methods
developed by the top 17 teams and provide an objective comparison of state-of-the-art methods and methods designed by
the participants for two sub-challenges: i) artefact detection and segmentation (EAD2020), and ii) disease detection and
segmentation (EDD2020). Multi-center, multi-organ, multi-class, and multi-modal clinical endoscopy datasets were compiled
for both EAD2020 and EDD2020 sub-challenges. The out-of-sample generalization ability of detection algorithms was also
evaluated. Whilst most teams focused on accuracy improvements, only a few methods hold credibility for clinical usability. The
best performing teams provided solutions to tackle class imbalance, and variabilities in size, origin, modality and occurrences
by exploring data augmentation, data fusion, and optimal class thresholding techniques.

1 Introduction
Endoscopy is a widely used imaging technique for both diagnosis and treatment of patients with complications in hollow organs
such as esophagus, stomach, colon, bladder, kidney and nasopharynx. During the endoscopic procedure, an endoscope, a
long thin tube with a light source and a camera at its tip, is inserted into the organ cavity. The imaging procedure is usually
displayed on a monitor on-the-fly and is often recorded for post analysis. Each organ imposes very specific constraints to the
use of endoscopes, but the most common obstructions in all endoscopic surveillance consists of artefacts caused by motion,
specularities, low contrast, bubbles, debris, bodily fluid and blood. These artefacts hinder the visual interpretation of clinical
endoscopists1. Missed detection rates of precancerous and cancerous lesions are another limitation. Gastrointestinal (GI)
cancer (especially colorectal cancer) has high mortality rates and 5-year relative survival rates for stage IIB is around 65%2. In
general, the missed detection rates in endoscopic surveillance is considerably high, at over 15%3. Therefore, the requirement
for technology that can be effectively used in clinical settings during endoscopy imaging is necessary.

While a dedicated endoscopic procedure is followed for each specific organ, often these procedures are very similar, in
particular for the GI tract organs like the esophagus, stomach, small intestine, colon and rectum. Notably, some precancerous
abnormalities such as inflammation or dysplasia and even cancer lesions in these GI organs naturally look very similar. Often
automated methods are only trained for a specific abnormality, organ and imaging modality4, whereas multiple different types
of abnormalities can be present in different organs and several imaging protocols are used during endoscopy. Also, methods
that are built for colonoscopy cannot be used during a gastroscopy (in the esophagus, stomach and small intestine), despite the
nature and occurrence of many abnormalities being similar in these organs. Artefacts are prevalent in all endoscopy surveillance
and are usually confused with lesions, which can lead to unreliable outcomes.

A pathway to develop and reliably deploy methods in clinical settings is by benchmarking methods on a curated multi-
center, multi-modal, multi-organ and multi-disease dataset and through a thorough evaluation of built methods using standard
imaging metrics and metrics that can test their clinical applicability, for example ranking based on accuracy, robustness and
computational efficiency1. Most publicly available datasets are specific to a particular organ, modality or a single abnormality
class, e.g., polyp detection and segmentation challenges5, 6. While dedicated organ specific challenges help to identify one
particular disease type, they do not resemble the clinical workflow where the endoscopists are interested in biopsy and treatment
of such abnormalities when of potential threat. For polyp class, it is required to identify different stages of polyp such as benign,
dysplastic or cancer. Recently, it was shown that polyps and artefacts can be confused mostly due to specularity7. Artefacts are
the fundamental and inevitable issue in endoscopy that often add confusion in detecting tissue abnormalities in these organs.
It is therefore vital to accelerate research in identifying these classes and restore frames where possible8 or reduce the false
detections by adding uncertainties for such confusions7. Other ways to address artefact problems in the endoscopy data is
by using synthetically generated frames9–11.9 used self-regularized transformer network that allowed to transform the real
images into synthetic-like images with preserved clinically-relevant features. This allowed the authors to estimate depth in
colonoscopy data robustly without being affected by adverse artefact problems.11 demonstrated the use of a virtual active
capsule environment that can simulate wide range of normal and abnormal tissue conditions such as inflated, dry and wet;
organ types and endoscopy camera designs in capsule endoscopy. This allowed to optimize the analysis software for varied real
conditions.

The Endoscopy Computer Vision Challenge (EndoCV2020)1 is another crowd-sourcing initiative to address fundamental
problems in clinical endoscopy and consists of: 1) Endoscopy artefact detection and segmentation (EAD2020), and 2)

1https://endocv.grand-challenge.org
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Figure 1. EndoCV2020 train data samples. (a) Endoscopy artefact detection and segmentation sub-challenge (EAD2020)
samples. Both single frame samples (top) and sequence frames (bottom) were released. While detection annotations involve 8
classes, segmentation classes were limited to 5 distinct class instances, mostly large indefinable shapes that include specularity,
saturation, imaging artefact, bubbles and instrument. It can be observed that for sequence data most artefact instances follow
upto few sequential frames so it is desirable to achieve such training datasets. 4th sample in the single frame data for
segmentation shows that even though bounding boxes for detection are provided for all specular regions, some segmentation
labels were missing. This shows the presence of annotator variability in the data. (b) Endoscopy disease detection and
segmentation training samples for sub-challenge EDD2020. First four samples belong to esophageal endoscopy while the last
two frames were acquired during colonoscopy. It can be observed that disease classes in esophagus confuse often, mostly the
patient choice here is Barrett’s where clearly suspected and high-grade dysplasia appear jointly. Similarly, for colonoscopy data
protruded polyps can easily be confused with the surrounding ridge-like openings and specular areas.

Endoscopy disease detection and segmentation (EDD2020). EndoCV2020 releases diverse datasets that include multi-center,
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multi-modal, multi-organ, multi-disease/abnormality, and multi-class artefacts. Among the two sub-challenges, EAD2020 is an
extended sub-challenge of EAD201912, however, unlike EAD2019 it includes both frame and sequence data with an addition of
nearly 500 frames and a total of 41,832 annotations for detection task and 10,739 for segmentation task.

In this paper, we summarise and analyse the results of the top 17 (out of 43) teams participating in the EndoCV2020
challenge. Additionally, we benchmark these methods with the current state-of-the-art detection and segmentation methods.
Each method is also evaluated for its efficacy to detect and segment multi-class instances. In addition to the standard computer
vision metrics used to evaluate methods during the challenge, we perform a holistic analysis of individual methods to measure
their clinical applicability.

2 Related work
With the advancements in deep learning for computer vision, object detection and segmentation algorithms have shown rapid
development in recent years. This is due to the hidden feature representations provided by Convolutional Neutral Networks
(CNNs) that show significant improvement over hand-crafted features. CNN-based methods quickly gained the attention of
the Medical Imaging community and are now widely used for automating the diagnosis and treatment for a range of imaging
modalities, e.g. radiographs, CT, MRI, and endoscopy imaging. Below we present an overview of the recent deep learning-based
object detection and segmentation techniques and discuss the related work in the context to medical image analysis with a
particular focus on endoscopy imaging applications.

2.1 Detection and localization
Object detection and localization refers to determining the instances of an object (from a list of predefined object categories)
that exist in an image. Object detection approaches can be broadly divided into three categories: single-stage, multi-stage and
anchor-free detectors. A brief survey of these is presented below.

Single-stage detectors Single-stage networks perform a single pass on the data and incorporate anchor boxes to tackle
multiple object detection on the same image grid such as in YOLO-v213. Similarly, Liu et al.14 proposed the Single Shot
MultiBox Detector (SSD) with additional layers to allow detection of multiple scales and aspect ratios. RetinaNet was
introduced by Lin et al.15 where the authors introduced focal loss that puts the focus on the sparse hard examples enabling a
boost in performance and speed.

The domain of Gastroenterology has started to benefit from the success of single-stage object detectors. Wang et al.16

proposed a model that is based on SegNet17 architecture to detect polyps during colonoscopy. Urban et al.18 used YOLO to
detect polyps from colonoscopy images in real-time. Horie et al.19 used SSD to detect superficial and advanced esophagal
cancer. RetinaNet was the most popular detector in the first EAD challenge held in 2019. RetinaNet detector with focal loss
was used by some top performing teams20, 21

Multi-stage detectors Multi-stage detectors use a region proposal network to find regions of interest for objects and then a
classifier to refine the search to get the final predictions. A two-stage architecture R-CNN using the classical region proposal
method was proposed by Girshick et al.22 whose speed was improved later by integrating an end-to-end trainable region
proposal network (RPN), widely known as Faster R-CNN23. Due to the high precision of the Faster R-CNN, its architecture has
become the base for many successful models in the object detection and segmentation domains, such as Cascade R-CNN24 and
Mask R-CNN25. Although these two-stage networks have shown successful results on public datasets such as Pascal VOC26

and COCO27, they are slow compared to the single-stage object detectors due to their region proposal mechanism.
In the field of Gastroenterology, Yamada et al.28 used Faster R-CNN with VGG16 as the backbone to detect challenging

lesions which are generally missed by colonoscopy procedures. Their reported prediction speed was not suitable for real-time
examination. Shin et.al.29 detected Polyps using the Fast R-CNN architecture with a region proposal network and an inception
ResNet backbone. The two-stage detectors tend to yield better results than their single-stage contemporaries and have performed
better at medical image analysis challenges. In the EAD2019 challenge, the top performing team30 used a Cascade R-CNN
with a feature pyramid network (FPN) module and a ResNet backbone. Similarly, Pengyi Zhang et.al.31 who used Mask aided
R-CNN with an ensemble of different ResNet backbones finished second.

Anchor-free detectors A newly emerging detector type are the anchor-free detectors. Single and multi-stage detectors rely
on the presence of anchors. Anchor free architectures claim to detect objects while skipping the process of anchor definition.
They rely on different geometrical characteristics like the center or corner points of objects32, 33. Duan et al.33 utilized the upper
left and lower right corner to mark an object. The authors used classical backbones to generate a heatmap from the feature map
showing potential spots of the object corners. A corner pooling technique was then used to create the classic bounding box of
object detection. Zhou et al.34 used a similar approach but instead they used a single point as the center of the bounding box.
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Because of real-time dependencies in medical applications like the detection of polyps which have to be removed directly35,
anchor-free detectors are receiving more attention. Wang et al.35 designed an anchor-free automatic polyp detector which
achieved the state-of-the-art results while maintaining real-time applicability. Liu et al.36 showed an anchor-free detector with
state-of-the-art performance while maintaining real-time performance.

2.2 Semantic segmentation
Semantic segmentation involves pixel-level partitioning of an image into multiple segments where each segment represents
a pre-defined object or scene category. Based on the success of deep learning approaches on medical imaging data for
segmentation, we can divide these approaches broadly into the following groups:

Models based on fully convolutional networks Fully Convolutional Network (FCN) architectures include only convolu-
tional layers that enable them to take any arbitrary size input image to output a segmentation mask of the same size. These
models are mostly based on the architecture developed by Long et al.37 for semantic image segmentation.

Sun et al.38 proposed a multi-channel FCN (MC-FCN) to segment liver tumors from multi-phase contrast-enhanced
CT images. Kaul et al.39 proposed FocusNet for skin cancer and lung lesion segmentation. A benchmark study for polyp
segmentation using FCNs was conducted by40. Similarly, Patrick et al.41 used FCN architecture with VGG backbone for a
polyp segmentation task. The same group explored integration of depth information to improve segmentation accuracy in their
FCN-based model42.

Models based on encoder-decoder architecture U-Net43, an encoder-decoder architecture, has become widely popular in
medical image analysis community. U-Net based models have shown tremendous success, from cell segmentation44 to liver
tumor segmentation45 and beyond46, 47.

In endoscopy imaging, U-Net-based models were used for instrument segmentation on GI endoscopy data48. Khan and
Choo49 developed a model based on U-Net architecture for endoscopy artefact segmentation. Bano et al.50 directly used U-Net
architecture for segmenting placental vessels from Fetoscopy imaging. Motion induced segmentation exploiting U-Net in the
framework was used to segment kidney stones in the Uteroscopy data51.

Models based on pyramid-based architecture In both detection and segmentation tasks, a crucial part is being able to
identify objects and features of varying scales and sizes. One approach to this problem is to incorporate convolutional feature
maps of varying resolutions during classification, which yields information about different scales of the image, making it easier
to detect both small and big objects. Such architectures are referred to as pyramid networks. PSPNet52 is one of such design that
incorporates global context information for the task of scene parsing using a pyramid pooling module. A similar pyramid-based
approach can be found in the task of object detection with Feature Pyramid Network (FPN)53. FPN extracts feature maps on a
per-resolution-basis from the two bottom-up and top-down pathways of a pretrained architecture. The output maps can then be
upsampled and concatenated to output a segmentation map54.

Guo et al.55 used PSPNet as part of an ensemble model including a U-Net and SegNet architecture for the task of automated
polyp segmentation in colonoscopy images. Jia et al.56 trained a two-stage polyp detector named PLPNet which utilizes FPN
for multiscale feature representation using both CVC-ColonDB57 and CVC-ClinicDB58. Their experimental results show that
PLPNet outperforms other architectures in most regions on CVC-612 dataset58 and performs similarly on the ETIS dataset59.
Zhang and Xie60 utilized an FPN combined with a Cascade R-CNN for artefact detection in endoscopic images.

Models based on dilated convolution architecture One of the challenges in the construction of semantic segmentation
networks is to effectively control the size of the receptive field, providing adequate contextual information for pixel-level
decisions while, at the same time, maintaining high spatial resolution and computational efficiency. The dilated or atrous
convolution was proposed to address these challenges61. Chen at al.62 proposed a family of very effective semantic segmentation
architectures, collectively named DeepLab (also an encoder-decoder network), all using the dilated convolution. DeepLabv3+
uses atrous kernels within the spatial pyramid pooling (ASPP) module and depth-wise separable convolution to improve the
computational efficiency.

Guo et al.63 proposed a fully convolutional network based on atrous kernels to segment polyps in endoscopy images,
with their network winning the GIANA 2017 challenge6. Nguyen et al.64 augmented DeepLabv3+ architecture, showing its
favourable performance when compared with other state-of-the-art methods on the CVC-ClinicDB58 and ETIS-Larib59 datasets.
Ali et at.65 used DeepLabv3+ with ResNet50 backbone to segment Barrett’s area from esophageal endoscopy data. Yang
and Cheng66 developed a model based on DeepLabv3+ for multi-class artefact segmentation used with different backbone
architectures.

2.3 Endoscopy computer vision challenges
Biomedical challenges allow to set-up a benchmark for different computer vision methods. Several sub-challenge categories for
the development of automated methods for wide-range of problems in endoscopy including surgical instrument segmentation67,
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Table 1. Breakdown of data: Number of samples and annotations released for EndoCV2020 challenge.

EndoCV Tasks # of classes # of frames # of annotations
Train Test Train Test

EAD2020
Detection task 8

single: 2299
seq.: 232

single: 237
seq.: 80 31069 7750

Segmentation task 5 643 162 7511 3228
Generalization task 8 na 99 na 3013

EDD2020 Detection task 5 386 43 749 68
Segmentation task 5 386 43 749 68

robotic scene segmentation68, and computer aided detection and segmentation for polyps5, 69 and Barrett’s cancer detection2

have been initiated under MICCAI EndoVis challenge3. Endoscopy artefact detection (EAD2019) is another challenge which
was first initiated in 2019 and launched in conjunction with IEEE International Symposium on Biomedical Imaging (ISBI)
20191.

3 The EndoCV challenge: Dataset, evaluation and submission
In this section, we present the dataset compiled for the EndoCV2020 challenge, the protocol used to obtain the ground truth for
this data, evaluation metrics that were defined to assess participants methods and a brief summary on the challenge setup and
ranking procedure.

3.1 Dataset and challenge tasks
The EndoCV2020 challenge consists of two sub-challenges critical in clinical endoscopy. The EAD20204 sub-challenge
comprises of diverse endoscopy video frames collected from seven institutions worldwide, including three different modalities
and five different human organs (see Figure 2). Endoscopy video frames were annotated for detection and localization of eight
different artefact class occurrences identified by clinical experts in the challenge team. These include specularity, saturation,
misc. artefacts, blur, contrast, bubbles, instrument and blood. A total of 280 patient videos from multiple organs and institutions
have been used for curating this dataset. Over 45,478 annotations were performed for this challenge on both single frame and
sequence video data. Example annotations are shown in Figure 1. Training data for the detection task consisted of total 2,531
frames with 31,069 bounding boxes while 643 frames with 7,511 binary masks were released for the segmentation task (except
for blur, blood and contrast). The sequence data were sampled by manually observing the amount of changes in artefact
categories in the selected sequence. Sequences were required to change from large areas of artefacts to small or no artefact
frames and vice versa mimicking natural occurrence in endoscopic procedures. Sequence data for training included 5 sequences
(232 frames) for detection and 2 sequences (70 frames) for semantic segmentation tasks sampled from 3 videos of 3 different
patients. For the test set, two sequence (80 frames) for detection task were used from 2 independent patient videos. As observed
in Figure 2, due to the nature of occurrence of various artefact classes, the proportion of annotations for each class is different
(Figure 3). However, the proportion of training and test samples per-class were matched in the test data (also see Table 1).

Separately, EDD20205 is a new disease detection and segmentation sub-challenge that consists of five disease categories70.
The provided training set consisted of total 385 video frames comprising of 137 different patients used in this study with a total
of 817 individual annotations. The annotations included non-dysplastic Barrett’s esophagus (NDBE), suspicious, high-grade
dysplasia (HGD), cancer, and polyp categories (also see Figure 1). These disease classes were from three different endoscopic
modalities (white light, narrow-band imaging, and chromoendoscopy) acquired from four different clinical centers, investigating
four different GI organs. By including varied range of endoscopy data acquired from multiple organs like GI tract and liver in
EAD sub-challenge and both upper and lower GI tract data for EDD sub-challenge, EndoCV2020 challenge aimed at developing
more general methods that can potentially be applied in different endoscopy routine procedures independent to organ type. To
our knowledge, this is the first comprehensive dataset for the multi-class detection and segmentation tasks. More details on the
dataset are provided in Figure 2. The detailed breakdown of training set and test set for each specific task is provided in Table 1.

EndoCV2020 posed three specific challenge tasks (see Figure 4) that included: 1) detection and localization task, 2)
semantic segmentation task and 3) out-of-sample generalization task. For detection and generalization tasks, participants were
provided with both frame label annotations for single and sequence images for the EAD2020 challenge while only single frames

2https://endovissub-barrett.grand-challenge.org
3https://endovis.grand-challenge.org
4https://ead2020.grand-challenge.org
5https://edd2020.grand-challenge.org
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99
frames

287
frames

2530
frames

Ambroise Paré Hospital, Paris, France

University Hospital Vaudois, Switzerland

Centro Riferimento Oncol., IRCCS, Italy

ICL Cancer Institute, Nancy, France

Botkin Clinical City Hospital, Moscow, Russia

Istituto Oncologico Veneto, Padova, Italy

John Radcliffe Hospital, Oxford, UK

Train data Train and test data
EAD2020 EDD2020

Test data
Out-of-sample
test data

Institutes (Outer circle)

386 + 48
frames

White light (WL)

Narrow band imaging (NBI)

Chromo endoscopy

Modality (Middle circle)
Oesophagus

Stomach

Colon

Small intestine

Other

Organ (Inner circle)

Mean box width and heightTrain data Test data

specularity saturation artifact blur contrast bubbles instrument blood

Mean box width and height

Mean box width and height

BE suspicious HGD cancer polyp

Train data Test data

b. EAD2020 train and test sample with per class width and height for detection dataset

c. EDD2020 train and test sample with per class width and height for detection dataset

a. EndoCV2020 multi-center data cohort: Train and test data for each sub-challenge

Figure 2. Endoscopy computer vision EndoCV2020 challenge dataset details. (a) Multi-center, multi-modality and
multi-organ dataset for EAD and EDD sub-challenges. For EAD2020, 2532 frames with 8 class bounding boxes for the
detection task out-of which 573 included ground truth masks for segmentation task were provided. Participants were assessed
on 317 frames for detection and 162 frames for segmentation tasks. An additional 99 frames were used to test out-of-sample
generalization task for EAD sub-challenge. While EDD2020 consisted of 384 train samples and 43 test samples for 5 disease
classes. (b-c) The distribution of 8 artefact classes of EAD and 5 disease classes of EDD w.r.t. their size compared to their
height and width of image is provided. Each class size variability is also shown on right as blobs with mean at center and radius
as standard deviation.

were released for EDD2020. The generalization task was only evaluated for the EAD2020 and only consisted of test data from
an unseen institution that was not present in any training set. It is to be noted that test samples for all other tasks were taken
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Figure 3. EndoCV2020 train and test per-class sample proportion: Train and test annotations for sub-challenge on
artefact (A,B) and disease (C) detection and segmentation for each class label.

Centers System info. Ethical approval Patient consenting type
John Radcliffe Hospital, Oxford, UK Olympus GIF-H260Z, REC Ref: 16/YH/0247 Universal consent

EVIS Lucera CV260
Ambroise Paré Hospital, Paris, France Olympus Exera 195 No. IDRCB: 2019-A01602-55 Endospectral study
Istituto Oncologico Veneto, Padova, Italy Olympus endoscope H190 NA Generic patients consent
Centro Riferimento Oncologico, IRCCS, Italy Olympus VG-165, CV180, H185 NA Generic patients consent
ICL, Cancer Institute, Nancy, France Karl Storz 27005BA NA Generic patients consent
University Hospital Vaudois, Switzerland NA (flexible cystoscopy) NA Generic patients consent
Botkin Clinical City Hospital, Moscow, Russia BioSpec NA Generic patients consent

Table 2. Data collection information for each center: Data acquisition system and patient consenting information.

from different patients as well even though they were collected from the same centers as that in the training set. EAD2020
attracted nearly 700 participants with 29 teams on the leaderboard and EDD2020 recorded nearly 550 participants with 14
teams on the leaderboard. Participation was permitted in either one or both sub-challenges. Both challenge datasets are publicly
available for research and education. EAD2020 challenge data is available at Mendeley Data (10.17632/c7fjbxcgj9.3)
and EDD2020 dataset is available at IEEE dataPort (http://dx.doi.org/10.21227/f8xg-wb80).

3.1.1 Ethical and privacy aspects of the data
Data for EAD2020 were collected from 7 different centers while for EDD2020 were from 4 centers. Each center was responsible
for handling the ethical, legal and privacy of the relevant data sent to the challenge organizers. The data collection from each
center included either two or all essential steps described below:

1. Patient consenting procedure at the home institution (required)

2. Review of the data collection plan by a local medical ethics committee or an institutional review board

3. Anonymization of the video or image frames (including demographic information) prior to sending to the organizers
(required)

Table 2 illustrates the ethical and legal processes fulfilled by each center along with the endoscopy equipment and recorders
used for the data collected for this challenge.

3.1.2 Annotation protocol
A team of two clinical experts and one post-doctoral researcher determined the class labels for the artefact detection challenge
while for the disease detection challenge we consulted with four senior Gastroenterologists (over 20 years experience) regarding
the class labels in the GI tract endoscopy. For each sub-challenge senior Gastroenterologists sampled the video frames from
a small sub-set of video data collected from various institutions and multi-patient data cohort (see Figure 2). These frames
were then taken as reference to produce bounding box annotations for the remaining train-test dataset by four experienced
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Figure 4. EndoCV2020 challenge task descriptions for each sub-challenge. The three tasks of the EndoCV2020
challenge includes: (a) The “detection” task aimed at the coarse localization and classification. Given an input image (left) a
detection model (middle) outputs the artefact/disease class and coordinates of the containing bounding box. (b) The
“segmentation” task is aimed at precise delineation of artefact/disease object boundaries. The model predicts binary output
images denoting the presence (‘1’) or absence (‘0’) of each class. (c) The “out-of-sample generalization” task is aimed at
assessing the ability of a model trained on different dataset to generalize on an unseen dataset usually coming from a different
center.

postdoctoral fellows. Finally, further validation by three clinical endoscopists independently was carried out to assure the
reference standard. The ground-truth labels were randomly sampled (1 per 20 frames) during this process. However, after the
completion of this phase the entire annotation was discussed and reviewed together with the team of senior Gastroenterologists.
Priority was given to indecisive frame annotations to have a collective opinion from experts. Following general annotation
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strategies were used by clinical experts and researchers:

• For the same region, multiple boxes (for detection/generalization) or pixel-wise delineation (for semantic segmentation)
were performed if the region belonged to more than 1 class

• The minimal box sizes were used to describe the class region and similarly possible small annotation areas for semantic
segmentation were merged instead of having multiple small boxes/regions

• Each class type was determined to be distinctive and general across all datasets

For EAD dataset, defined class categories used included below descriptions8. Related samples are presented in Fig. 1 (a).

1. blur→ fast camera motion

2. bubbles→ a thin film of liquid with air that distorts tissue appearance

3. specularity→ mirror-like reflection

4. saturation→ overexposed bright pixel areas

5. contrast→ low contrast areas from underexposure

6. misc. artifact→ chromatic aberration, debris etc.

7. instrument→ biopsy or any other instrument

8. blood→ flow of red colored liquid due to biopsy or surgery

For EDD dataset, both upper-GI (gastroscopy) and lower-GI (colonoscopy) data were used with below defined class categories
(please refer to the samples in Fig. 1 (b)):

1. NDBE or BE→ non-dysplastic Barrett’s esophagus determined by a squamo-columnar junction above the gastric fold in
the esophagus71

2. HDG→ high-grade dysplasia or early adenocarcinoma determined by irregular mucosal appearance72

3. suspected→ aka low-grade dysplasia, an early sign of pathology71

4. cancer→ abnormal growth73

5. polyp→ abnormal protrusion of the mucosa74

For the annotations of disease classes, pathology reports were also used to validate the class category for non-dysplastic
Barrett’s esophagus (BE), high-grade dysplasia (HGD), suspected (dysplasia or low-grade dysplasia), and cancer categories.
That is, expert annotations (three senior gastroenterologists) were taken and supported with the pathology report for most
disease categories including some indecisive cases. However, for the polyp class, both the protruded and flat polyps were
marked by two experienced post-doctoral researchers and checked by a senior lower-GI specialist (no further categorization
based on pathology report was done except for cancer cases).

3.2 Evaluation metrics
The challenge problems fall into three distinct categories. For each there already exist well-defined evaluation metrics used by
the wider imaging community which we use for evaluation here. Codes related to all evaluation metrics used in this challenge
are also available online6.

6https://github.com/sharibox/EndoCV2020
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3.2.1 Spatial localization and classification task
Metrics used for multi-class disease detection:

• IoU - intersection over union: This metric measures the overlap between two bounding boxes A and B, where A is
segmented region and B is annotated GT. It is evaluated as the ratio between the overlapped area A∩B over the total area
A∪B occupied by the two boxes:

IoU =
A∩B
A∪B

(1)

where ∩, ∪ denote the intersection and union respectively. In terms of numbers of true positives (TP), false positives (FP)
and false negatives (FN), IoU (aka Jaccard JC) can be defined as:

IoU/JC =
T P

T P+FP+FN
(2)

• mAP - mean average precision: mAP of detected class instances is evaluated based on precision (p) defined as p = T P
T P+FP

and recall (r) as r = T P
T P+FN . This metric measures the ability of an object detector to accurately retrieve all instances

of the ground truth bounding boxes. Average precision (AP) is computed as the Area Under Curve (AUC) of the
precision-recall curve of detection sampled at all unique recall values (r1,r2, ...) whenever the maximum precision value
drops:

AP = ∑
n

{
(rn+1− rn) pinterp(rn+1)

}
, (3)

with pinterp(rn+1) = max
r̃≥rn+1

p(r̃). Here, p(rn) denotes the precision value at a given recall value. This definition ensures

monotonically decreasing precision. The mAP is the mean of AP over all N classes given as

mAP =
1
N

N

∑
i=0

APi (4)

This definition was popularised in the PASCAL VOC challenge26. The final mAP (mAPd) was computed as an average
mAPs for IoU from 0.25 to 0.75 with a step-size of 0.05 which means an average over 11 IoU levels is used for 5
categories in the competition (mAP @[.25 : .05 : .75] ).

Participants were finally ranked on a final mean score (scored), a weighted score of mAP and IoU represented as:

scored = 0.6×mAPd +0.4× IoUd (5)

Standard deviation between the computed mAPs (±σscored ) are taken into account when the participants have the same scored.
Scores on both single frame data and sequence data were first separately computed and then averaged to get the final scored of
the detection task.

3.2.2 Segmentation task
Metrics widely used for multi-class semantic segmentation of disease classes have been used for scoring semantic segmentation.
The final semantic score scores comprises of an average score of F1-score (Dice Coefficient, DSC), F2-score, precision (PPV),
recall (Rec) and accuracy (Acc).

Precision, recall, Fβ -scores: These measures evaluate the fraction of correctly predicted instances. Given a number of true
instances #GT (ground-truth bounding boxes or pixels in image segmentation) and number of predicted instances #Pred by a
method, precision is the fraction of predicted instances that were correctly found, PPV = #TP

#Pred. where #TP denotes number of
true positives and recall is the fraction of ground-truth instances that were correctly predicted, Rec = #TP

#GT . Ideally, the best
methods should have jointly high precision and recall. Fβ -scores gives a single score to capture this desirability through a
weighted (β ) harmonic means of precision and recall, Fβ = (1+β 2) · PPV ·Rec

(β 2·PPV )+Rec .
Participants are ranked based on the value of their semantic performance score given by:

scores = 0.25× (p+ r+F1 +F2) (6)

Standard deviation between each of the subscores are computed and averaged to obtain the final ±σscores which is used during
evaluation for participants with same final semantics score. We have also used provided accuracy of each semantic method in
this paper for scientific completeness. Accuracy (Acc) can be defined as Acc = T P+T N

T P+T N+FP+FN .
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3.2.3 Out-of-sample generalization task
Out-of-sample generalization of disease detection is defined as the ability of an algorithm to achieve similar performance when
applied to a completely different institution data. To assess this, participants were challenged to apply their trained models
on video frames that were neither included in the training nor in the test data of the other tasks. Assuming that participants
applied the same trained weights, the out-of-sample generalization ability was estimated as the mean deviation between the
mAP score of the detection and out-of-sample generalization test datasets of each class i for deviation greater than a tolerance
of {0.1 × mAPi

d}.

devg =
1
N ∑

i
devg

i (7)

devg
i =

{
0, for |mAPd

i−mAPg
i|/mAPd

i ≤ 0.1
|mAPd

i−mAPg
i|, for |mAPd

i−mAPg
i|/mAPd

i > 0.1
(8)

The best algorithm should have high mAPg and low devg(→ 0). Participants were finally ranked using a weighted ranking
score for out-of-sample generalization as Rgen = 1/3 ·Rank(devg)+2/3 ·Rank(mAPg) where Rank(mAPg) is the rank of a
participant when sorted by mAPg in ascending order.

3.3 Challenge setup, and ranking procedure
The challenge proposal was submitted to the IEEE ISBI challenge organisers and was peer-reviewed by two reviewers. Upon
the acceptance, the challenge website7 was launched on 1st November 2019. Training datasets for each sub-challenge (EAD
and EDD) were first provided (via AWS amazon S3 for EAD data and IEEE data portal for EDD data8). The test data was
released nearly 20 days before the leaderboard closing through a docker container set-up. A docker based online leaderboard
was established separately for EAD20209 and EDD202010 where each participating team was allowed to submit a maximum of
2 submissions per day on the final test data. A wiki-page11 was set-up for the submission guidelines and a code repository with
evaluation metrics used in the challenge was also provided12.

For the ranking of different task categories, we used the metrics described in Section 3.2. The participants were able to see
only the final score in the leaderboard and all other sub-scores were hidden for the final test data. This was done to avoid any
class specific refinement on the released test set. Notably, the detection task was bounded by two IoU thresholds (mAP @ IoU
thresholds [.25 : .05 : .75]) and the overall IoU scores itself. For the detection task, participants were ranked on a final weighted
score of mAP and IoU (see Eq. (5)), while for the segmentation task, participants were ranked based on a final weighted average
of DSC or F1-score, F2-score, precision and recall (see Eq. (6)). For the generalization task, both the mAP score gap devg and
mAP on generalization data mAPg were taken into account.

4 Method summary of the participants
In this Section, we present summary of top participating teams for both EAD2020 and EDD2020 sub-challenges. Each of these
teams has participated in either detection task or segmentation task or both.

4.1 EAD2020 Participating teams
• Team polatgorkem75 The team used an ensemble of three object detectors: Faster R-CNN (ResNet50 with FPN), Cascade

R-CNN (ResNet50 with FPN), RetinaNet (ResNet101 with FPN). Class-agnostic NMS operation, where the model
predictions were passed through the NMS procedure together for all classes, was applied to the output of each individual
model. During ensemble, only the bounding boxes for which majority of the models agree were kept. False-positive
elimination was applied as a post-processing step to eliminate same-type predicted boxes located close to each other. For
each class, an IoU threshold was determined.

• Team CVML76 CVML team’s model was inspired by DeepLabV3+. The team experimented with several changes
including the backbone, the global pooling, the dilated kernels and the convolution kernels with dilation rates. Moreover,
the squeeze-and-excitation module is added behind the balanced ASPP module to introduce attention gating at the output
of the original encoder to better utilize the information available in the computed feature maps. In addition, the original

7https://endocv.grand-challenge.org
8https://ieee-dataport.org/competitions/endoscopy-disease-detection-and-segmentation-edd2020
9https://ead2020.grand-challenge.org/evaluation/leaderboard/

10https://edd2020.grand-challenge.org/evaluation/leaderboard/
11https://github.com/sharibox/EndoCV2020/wiki
12https://github.com/sharibox/EndoCV2020
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Table 3. Endoscopy artefact detection and segmentation (EAD2020) method summary for top 13 teams (out-of 33 valid
submissions).

Team EAD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code

Detection GPU Test time

polatgorkem
(METU_DLCV)

Faster RCNN +
CascadeRCNN +
Retinanet

Resize
Normalise

Ensemble Accuracy++
ResNet50,
ResNet101

Yes (R, F)† COCO RTX 2080 0.76 GorkemP/EAD

qzheng5
(CVML)

Faster RCNN
Resize
Normalise

Context Accuracy+ ResNet101 Yes (R, T, LD)† COCO GTX1060 0.20 CVML/EAD2020

xiaohong1
YOLACT +
NMS-within-class

None Context
Accuracy+
, speed+

ResNet101 None ImageNet Tesla K80 0.14 yolact

mathew666
Faster RCNN +
NMS

None Context Accuracy+ ResNet101 Yes NA RTX 2080 NA NA

VinBDI EfficientDet D0
Resize
(512x512)

Multiscale
scalable

Speed++ EfficientNet B0
Yes (S, Sc, R,
N, MU)† COCO RTX 2080TI NA endocv2020-seg

higersky Cascade R-CNN None Cascading Accuracy++ ResNeXt101 Yes NA GTX1080 Ti NA NA

StarStarG Cascade R-CNN
Resize
Normalise

Cascading Accuracy++ ResNeXt101 Yes (F, S)† NA RTX 2080 NA NA

anand_subu RetinaNet
Resize
Normalise

Context
Accuracy+
, speed+

ResNet101
Yes (R, Sh, F, C,
B, St, H)† ImageNet GTX1050Ti 0.36 anand-subu/EAD2020

arnavchavan04
RetinaNet +
FasterRCNN
(FPN + DC5)

Resize
(512x512)

Ensemble Accuracy++
ResNet50;
ResNeXt101

Yes (F, C, R)† ImageNet Tesla T4 NA ubamba98/EAD2020

MXY
Cascase RCNN +
FPN

Resize
Normalise

Cascading Accuracy+ ResNet101 Yes (F)† ImageNet RTX 2080 Ti 0.80 Carboxy/EAD2020

mimykgcp
Faster RCNN +
+ RetinaNet

Resize
Normalise

Ensemble
Accuracy+
, speed+

ResNeXt101 Yes (RA)† COCO GTX 1080Ti 0.58 NA

DuyHUYNH
(LRDE)

YOLOv3 Normalise Multiscale
Accuracy+
, speed++

Darknet53 Yes (RA)† COCO GTX1080 Ti 0.07 dhuynh/endocv2020

Segmentation

qzheng5
(CVML)

DeepLabv3+
Resize
(513x513)
Normalise

Encoder-decoder,
mutiscale

Accuracy++ SE-ResNeXt50 (R, T, LD + TTA)† ImageNet GTX1080Ti
0.50;
5 (+TTA)

CVML/EAD2020

mouradai_ox Pyramid dilated module
Resize
(512x512)
Normalise

Multiscale
Accuracy+
, speed+

ResNet50 Yes (T, R, LD)† ImageNet Colab 0.37 NA

arnavchavan04
FPN +
EfficientNet

Resize
(512x512)

Ensemble Accuracy+ EfficientNet Yes (F, C, R)† ImageNet Tesla T4 NA ubamba98/EAD2020

VinBDI
U-Net +
BiFPN

Resize
(512x512)

Ensemble,
Endcoder-decoder

Accuracy++
, speed+

EfficientNet B4;
ResNet50

Yes (S, Sc, R, F)† COCO
ImageNet

RTX 2080TI NA endocv2020-seg

higersky DeepLabv3+ None
Encoder-decoder,
mutiscale

Accuracy+ ResNet101 Yes (F;S;Sc;Bl)† ImageNet GTX1080 Ti NA NA

anand_subu U-Net
Resize
(512x512)

Encoder-decoder Accuracy+ ResNet50
Yes (S, F, R, N,
Cr, Bl, H, St,
C, Sp)†

ImageNet GTX1050Ti 0.17 anand-subu/EAD2020

DuyHUYNH
(LRDE)

U-Net++ Normalise Encoder-decoder
Accuracy+,
speed+

EfficientNet B1
Yes (R, S, F,
Sc, LD, TTA)† ImageNet GTX1080 Ti 0.97 dhuynh/endocv2020

mimykgcp U-Net
Resize
Normalise

Encoder-decoder
Accuracy+,
speed+

ResNeXt50 Yes (RA)† ImageNet RTX 2070 0.25 NA

† B: brightness, C: contrast, F: Flip, H: hue, LD: Local deformation, N: noise, R: Rotation, RA: RandAugment, S: Shift, Sc: scaling Sh: shear,
St: saturation, Mu: mixup, T: Translation, TTA: test-time augmentation
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Table 4. Endoscopy disease detection and segmentation (EDD2020) method summary for top 7 teams (out-of 14 submission).

Team EDD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code

Detection GPU Test time

Adrian
YOLOv3+
Faster R-CNN

Resize Ensemble
Accuracy+
, speed+

Darnet53
ResNet101

Yes (F, D)†
COCO
public polyp
dataset

Tesla P100 0.41 Adrian398/EDD

shahadate Mask R-CNN
Resize
Normalise

Multiscale
Accuracy
, speed+

ResNet101
Yes (Sc, R, F,
Cr, S, N)† COCO RTX2060 NA EDD-Mask-rcnn

VinBDI EfficientDet D0
Resize
(512x512)

Ensemble Speed++ EfficientNet B0
Yes (S, Sc,
R, N, MU)† COCO RTX 2080TI NA endocv2020-seg

YH_Choi CenterNet NA Context Accuracy++ ResNet50
Yes(Du, R,
F, C, B)†

PASCAL
VOC2012

RTX 2080 2 NA

DuyHUYNH
(LRDE)

U-Net++ Normalise Encoder-decoder Speed EfficientNet B1
Yes (R, S, F,
Sc, LD, TTA)† ImageNet GTX1080 Ti 1.53 dhuynh/endocv2020

mimykgcp
(vishnusai)

Faster RCNN +
RetinaNet

Resize
(256x256) normalise

Ensemble
Accuracy+
, speed+

ResNeXt101 Yes (RA)† COCO GTX1080Ti 0.58 NA

Segmentation

Adrian
YOLOv3 +
Faster R-CNN +
Cascade RCNN

Resize Ensemble Accuracy++
Darnet53
ResNet101

Yes (F, D)†
COCO
public polyp
dataset

Tesla P100 Adrian398/EDD2020

shahadate MaskRCNN
Resize
Normalise

Multiscale
Accuracy
, speed+

ResNet101
Yes (Sc, R, F,
Cr, S, N)† COCO RTX2060 EDD-Mask-rcnn

VinBDI
U-Net +
BiFPN

Resized (512x512)
Ensemble
Endcoder-decoder

Accuracy++
, speed+

EfficientNet B4
ResNet50

Yes (S, Sc,
R, F)†

COCO
ImageNet

RTX 2080 Ti NA endocv2020-seg

YH_Choi U-Net NA Encoder-decoder Accuracy+ ResNet50
Yes(Du, R, F,
C, B)†

PASCAL
VOC2012

RTX 2080 7 NA

DuyHUYNH
(LRDE)

U-Net++ Normalise Encoder-decoder
Accuracy+
, speed+

EfficientNet B1
Yes (R, S, F,
Sc, LD, TTA)† ImageNet GTX1080 Ti 1.53 endocv2020

drvelmuruganb SUMNet NA Encoder-decoder
Accuracy+
, speed++

VGG11
Yes(R, A, Sc,
P, and Cr)† ImageNet GTX1080 Ti 0.16 drvelmuruganb/EDD2020

mimykgcp U-Net
Resize
Normalise

Encoder-decoder Accuracy+ ResNeXt50 Yes (RA)† ImageNet RTX2070 1.25 NA

† A: affine, B: brightness, C: contrast, Cr: cropping, D: distortion, Du: duplication, F: flip, H: hue, LD: local deformation, Mu: mixup, N: noise, P: perspective transformation, R: rotation, RA: RandAugment library,
S: shift, Sc: scaling, Sh: shear, St: saturation, T: translation, TTA: test-time augmentation

multi-class classifier is replaced with 5 binary classifiers to enable segmentation of the overlapping objects. At test
time, they used some post-processing techniques such as rotation, holes filling and removal of objects from the image
boundary.

• Team mouradai_ox77 The team proposed a novel neural network called OxEndoNet to tackle the segmentation challenge.
The network uses the pyramid dilated module (PDM) consisting of multiple dilated convolutions stacked in parallel. For
each input image, pre-trained ResNet50 (on ImageNet) was used as the backbone to extract the feature map followed by
multiple PDM layers to form an end-to-end trainable network. In the final architecture, they used four PDM layers; each
layer used four parallel dilated convolutions with a filter size of 3×3 and dilation rates of 1, 2, 3, and 4. They fed the
final PDM layer to a convolution layer followed by a bilinear interpolation to up-scale the feature map to the original
image size.

• Team mimykgcp78 The team re-trained the ResNeXt101 backbone with the cardinality parameter set to 64. To enable
detection of artefacts at different scales, an FPN was integrated into the object detectors. Data-Augmentation techniques
based on RandAugment79 were incorporated to improve the generalization capability. For the segmentation task, a U-Net
with an ImageNet pre-trained ResNext50 backbone was used.

• Team DuyHUYNH80 For segmentation, the team exploited a model based on U-Net++ using pre-trained EfficientNet
on ImageNet as the backbone. The model was trained to minimize F2-loss using the Adam optimizer. At the test-time
the team used five transformations: horizontal, vertical flipping, and three rotations. For detection, the team used the
bounding boxes deduced from the results of their segmentation model on the EDD dataset, while for EAD, they used
YOLOv3 pre-trained on COCO.

• Team mathew66681The team used Cascade RCNN architecture with the ResNeXt backbone in a FPN based feature
extraction paradigm. Data augmentation with probability of 0.5 for horizontal flip was applied. The team also utilised
multi-scale detection to tackle with variable sized object detection.

• Team arnavchavan0482 For the object detection task, the team used an ensemble of three models: Faster R-CNN
(ResNext101 + FPN), RetinaNet (ResNet101 + FPN) and Faster R-CNN (ResNext101 + DC5). For the segmentation
task, an ensemble of multiple depth EfficientNet models with FPN trained on multiple optimization plateaus (DSC,
BCE, IoU) was designed. Data augmentation techniques like horizontal and vertical flip, cutout (random holes), random
contrast, gamma, brightness, rotation along with CutMix83 strategy for the segmentation task were incorporated to
improve generalization capability.
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• Team anand_subu84 The team used RetinaNet with ResNet101 backbone. For the segmentation task, the team used
an ensemble network with U-Net with a ResNet50 backbone and DeepLabV3. However, the team reported U-Net
with ResNet101 as their best architecture of choice. All the backbones were pre-trained on the ImageNet. Real-time
augmentation techniques like rotation, shear, random-image-flip, image contrast, brightness, saturation, and hue variations
were incorporated while training to improve the generalization capability of the network.

• Team higersky85 The team implemented Hyper Task Cascade and Cascade R-CNN with ResNeXt101 backbone as a
feature extractor and FPN module for multi-scale feature representation for the object detection task. They applied
Soft-NMS86 to avoid mistakenly discarded bounding-boxes. For the semantic segmentation task, the team incorporated
DeepLabV3+ with ResNet101 backbone and trained with BCE and DICE losses. The backbones for both tasks were
pre-trained on ImageNet.

• Team MXY87 The team used a Cascade R-CNN with an ImageNet pre-trained ResNet101 backbone and a FPN module.
Post-detection, soft-NMS was added to remove false predictions. The dataset was augmented by random resizing
technique to improve the final output scores. The team used more weight for the losses of specularity, artefact, and
bubbles classes to overcome classification difficulties between those classes.

• Team StarStarG The team used Cascade-RCNN as network architecture and adopted COCO2017 pre-trained ResNeXt
as backbone with FPN and multi-stage RCNN framework. The authors also integrated Deformable Convolutional
Networks in backbone to improve the model performance.

• Tesam xiaohong188 The team built their detection and segmentation method upon Yolact-based instance segmentation
system. Yolact89 adds a segmentation component to the RetinaNet to ensure the tasks of detection, classification and
delineation which are performed simultaneously. The network uses ResNet101 as an imageNet pretrained backbone.

4.2 EDD2020 Participating teams
• Team Adrian90 The team compared two different models: YOLOv3 with darknet-53 backbone and Faster R-CNN with

ResNet-101 backbone. For post-processing, both algorithms in the final architecture were combined. For the second
task, the team leveraged the state-of-the-art Cascade Mask R-CNN with ResNeXt-151 as a backbone. The team trained
YOLOv3 using categorical cross-entropy for classification and default localization loss, while for Cascade Mask-RCNN,
they used binary cross entropy for classification and mask, and L1 smooth for boundary box regression.

• Team Shahadate91 The team implemented a modified benchmark Mask R-CNN infrastructure model on the EDD2020
dataset. They used COCO trained weights and biases with the ResNet101 backbone as an initial feature extractor. The
network head of the backbone model was replaced with new untrained layers that consisted of a fully-connected classifier
with five classes and an additional background class. Non-maximum suppression was used to reduce overlapped detection.
Finally, the team merged multiple bounding boxes for the same class label as one bounding box to match with the mask
annotation.

• Team VinBDI92 For the object detection task, the team designed an ensemble of six EfficientDet models (with BiFPN
modules) trained on six different EfficientNet backbones. A total of eleven augmentation techniques were incorporated to
increase the output prediction scores of the model. For the segmentation task, an ensemble of U-Net and EfficientNet-B4
and BiFPN with the ResNet50 backbone was devised. The same team also participated in the EAD2020 sub-challenge.

• Team YH_Choi93 The team implemented a CenterNet-based model with the PASCAL VOC pretrained ResNet50
backbone for the object detection task. A similar backbone with U-Net was devised for the segmentation task. The dataset
was randomly duplicated to tackle class-imbalance. To improve generalization performance, each image was augmented
86 times by randomly choosing augmentation techniques from the pool of rotation, flipping, contrast enhancement and
brightness adjustment.

• Team drvelmuruganb94 For the segmentation of disease classes the team used an encoder-decoder based SUMNet
architecture with the ImageNet pretrained VGG11 backbone. The authors also applied several augmentation strategies
including variable brightness and HSV values, multiple crops and geometric transformations such as rotation, affine,
scaling and projective were also applied to improve the accuracy.
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Table 5. EAD2020 results for the detection task on the single frame dataset. mAP at IoU thresholds 25%, 50% and 75%
are provided along with overall mAP and overall IoU computations. Overall scores are computed at 11 IoU thresholds and
averaged. Weighted detection score scored is computed between overall mAP and IoU scores only. Three best scores for each
metric criteria are in bold.

Team
names mAP25 mAP50 mAP75

overall
mAPd

overall
mIoUd

mAPδ scored ±δ

polatgorkem 26.886 17.883 5.608 17.486 36.579 7.124 25.123 ± 7.124
qzheng5 33.134 20.084 5.570 19.720 27.185 8.820 22.706 ± 8.820
xiahong1 30.627 19.384 4.935 18.512 26.388 8.428 21.663 ± 8.428
mathew666 20.360 19.440 7.783 18.091 32.692 5.617 23.931 ± 5.617
VinBDI 38.429 25.426 7.053 24.069 12.644 10.291 19.499 ± 10.291
higersky 36.920 25.770 9.452 24.771 17.298 8.707 21.781 ± 8.707
StarStarG 41.800 29.984 10.733 28.380 16.250 10.042 23.528 ± 10.042
anand_subu 29.755 19.893 5.271 18.886 24.029 7.619 20.943 ± 7.619
arnavchavan04 38.752 27.247 9.858 26.021 21.165 9.342 24.079 ± 9.342
MXY 25.373 18.967 7.171 17.82 28.056 5.754 21.914 ± 5.754
mimykgcp 39.897 26.296 6.839 25.082 10.209 10.765 19.133 ± 10.765
DuyHUYNH 20.512 12.234 2.978 11.894 27.063 5.671 17.962 ± 5.671
baselines
YOLOv3 22.798 13.736 2.804 13.249 24.883 6.525 17.903 ± 6.525
RetinaNet
(ResNet101)

15.270 8.927 2.061 8.754 23.202 4.275 14.533 ± 4.275

5 Results
For the EAD2020 sub-challenge, we present the results of 12 participating teams for multi-class artefact detection task and 8
teams for segmentation task. Similarly, for EDD2020 sub-challenge, we have included top 6 teams for detection and 7 teams
for segmentation of multi-class diseases. In this section we present the quantitative and qualitative results for each team based
on the evaluation metrics discussed in Section 3.2. For the EAD2020 sub-challenge, 3 different test dataset were released:
1) single-frame data for detection and segmentation, 2) sequence dataset for detection only and 3) out-of-sample data for
generalization task only. For the detection task, the average of the aggregated sum of the detection scores for the single frame
data and the sequence data were considered for final scoring. While, for the EDD2020 challenge only single frame detection
and segmentation data were released. Below we present the result for each sub-challenges separately.

5.1 Quantitative results
5.1.1 EAD2020 sub-challenge
In this section, the results of the participant teams in the EAD2020 challenge to detect and segment artifacts are presented.

Detection task for EAD2020 Table 5 and Table 6 present the mAP values computed at different IoU thresholds (i.e., 25%,
50%, and 75%), overall mAP, overall IoU, and the final score for the detection of the artefacts from single frame and sequence
data, respectively. Additionally, we also provide results of baseline methods that include YOLOv3 and RetinaNet with
darknet53 and ResNet101 backbones, respectively. In Table 5 (i.e., single frame detection), it can be observed that the team
polatgorkem that implemented ensemble technique with Cascaded RCNN, Faster-RCNN and RetinaNet surpassed the other
teams by achieving the highest final score on the leaderboard (scored , Eq. 5) of 25.123 ± 7.124 with the best overall mIoU of
36.579 providing a high overlap ratio between the generated bounding box with ground truth per frame. The method proposed
by the team arnavchavan04 comes in the second place with scored of 24.079 ± 9.342 with 9% more mAP than the winning
team but large sacrifice in the mean IoU. Similarly, for sequence data in Table 6, team polatgorkem maintained the first position
with a final score of 25.529 ± 10.326. While the second scorer team VinBDI suggested a method that obtained a better balanced
between mAP and mIoU scores.
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Table 6. EAD2020 results for the sequence dataset. mAP at IoU thresholds 25%, 50% and 75% are provided along with
overall mAP and overall IoU computations. Overall scores are averaged with 11 IoU thresholds. Weighted detection score
scored is computed between overall mAP and IoU scores only. Three best scores for each metric criteria are in bold.

Team
names mAP25 mAP50 mAP75

overall
mAPseq

overall
mIoUseq

mAPδ scored ±δ

polatgorkem 38.464 24.803 4.138 23.137 29.117 10.326 25.529 ± 10.326
qzheng5 48.210 25.717 3.997 25.665 20.949 14.222 23.779 ± 14.222
xiahong1 46.087 25.813 2.684 25.136 18.398 15.128 22.441 ± 15.128
mathew666 31.599 21.878 3.053 19.623 20.858 9.718 20.117 ± 9.718
VinBDI 45.295 26.723 4.396 25.285 23.426 13.972 24.542 ± 13.972
higersky 47.716 29.841 4.473 28.334 12.865 14.579 22.147 ± 14.579
StarStarG 46.965 30.202 5.432 28.107 8.371 13.367 20.213 ± 13.367
anand_subu 38.352 25.535 3.843 23.014 20.703 10.859 22.089 ± 10.859
arnavchavan04 34.511 21.524 4.886 20.700 11.827 9.839 17.151 ± 9.839
MXY 31.391 19.838 3.620 18.601 21.504 8.688 19.762 ± 8.688
mimykgcp 44.972 26.780 4.400 25.937 6.892 13.697 18.319 ± 13.697
DuyHUYNH 28.632 15.524 0.815 15.468 16.968 9.381 16.068 ± 9.381
baselines
YOLOv3 32.199 18.473 1.137 17.176 16.351 10.596 16.846 ± 10.596
RetinaNet
(ResNet101)

17.646 6.447 0.767 8.079 10.000 5.151 9.252 ± 5.151

Furthermore, Table 7 shows the overall ranking for the teams in terms of Score (Rscored ), mAP (RmAP), and generalizability
performance (Rg) in addition to, mAPd , mAPseq, scored , mAPg and devg. The baseline RetinaNet recorded the least deviation
but also the least mAPs. On considering the mAPg and devg together for the final ranking of the generalization task, teams
VinBDI and StarStarG secured the first place. On observing at the class-wise performance in Figure 5 (a) (i.e., single frame), it
can be seen that there was a high detection score (scored) and AP for larger artefact instances such as saturation and contrast.
Similarly, most of the teams had a high IoU with the ground truth when detecting the instrument class. On the other hand, the
detection and localization of smaller artefact instances such as bubble and saturation showed the degraded performances by all
the participating teams and by the baseline methods.

Segmentation task for EAD2020 Table 8 presents the JC, DSC, F2, PPV, recall, and accuracy obtained by each team and
baseline methods. As shown, the method proposed by team arnavchavan04 and team VinBDI had the best performance in
terms of JC (> 62%), DSC (> 67%), F2 (> 67%) and PPV (> 80%) proving the ability to segment less false positive regions.
However, the method suggested by team qzheng5 and team DuyHUYNH segmented more true positive regions compared to
other teams obtaining top recall values of 0.8352 and 0.828. The baseline methods showed a low performance in terms of final
score compared to the methods proposed by the participants. Furthermore, Figure 6 (a) shows class-wise scores for DSC, PPV
and Recall. Similar to detection, segmenting larger instances like the saturation and the instrument obtained the high scores.
Specularity, bubble and the artefact classes were among least performing classes for many teams and baseline methods.

5.1.2 EDD2020 sub-challenge
In this section, we report the performance of the participating teams in the EDD2020 challenge for the detection and
segmentation.

Detection task for EDD2020 In Table 9, the team adrian achieved the highest score among other participants and the baseline
methods with a final scored of 33.602 ± 8.523 with the highest overall mAP (37.594) and the second highest overall mIoU
(27.614). The best localization score was obtained by the team sahadate but with nearly 5% lower mAP than the top scorer team.
Furthermore, the baseline method RetinaNet with the ResNet101 backbone performed better than most of the participating
teams. From Table 10, it is evident that most teams and baselines failed to detect suspicious class instance while most teams
performed comparatively better on polyp and NDBE classes. Only the winning team adrian and RetinaNet (ResNet101)
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Table 7. EAD2020 team ranking based on different metric criteria for detection and generalization task. Overall
mAPs (mAPd and mAPseq) computed on single frame and sequence data are averaged. Final scored is then computed as the
weighted value between the final IoUd and the averaged mAP. Rankings for each metric are also provided based on ascending
order of the scores except for deviation score for out-of-sample data. Three best scores for each metric criteria are in bold.

Team
Names mAPd mAPseq

final
IoU

final
scored

mAPg devg Rscored RmAP Rgen

polatgorkem 17.486 23.137 32.848 25.326 21.008 9.359 1 9 6
qzheng5 19.720 24.174 23.751 22.668 23.749 8.522 2 6 5
xiahong1 18.512 25.136 22.393 22.051 24.579 8.169 3 7 3
mathew666 18.091 19.651 26.783 22.035 16.714 5.674 4 10 4
VinBDI 24.069 25.282 18.033 22.018 24.140 5.607 5 4 1
higersky 24.771 28.252 15.061 21.931 24.850 7.686 6 2 2
StarStarG 28.380 28.107 12.311 21.870 25.340 7.537 7 1 1
anand_subu 18.886 23.004 22.359 21.510 20.203 7.896 8 8 5
arnavchavan04 26.021 20.700 16.496 20.614 21.138 6.968 10 5 3
MXY 17.820 18.597 24.779 20.836 17.294 6.077 9 11 4
mimykgcp 25.082 25.843 8.536 18.691 23.929 7.999 11 3 4
DuyHUYNH 11.894 15.468 22.016 17.015 11.304 4.807 13 13 4
baselines
YOLOv3 13.249 17.176 20.617 17.374 15.456 4.397 12 12 3
RetinaNet
(ResNet101)

8.754 8.079 16.601 11.690 7.763 1.985 14 14 3

provided a descent score for cancer class with most teams recording mAP below 10. For HGD class category, top performing
teams were adrian andVinBDI with mAP over 25.

Segmentation task for EDD2020 From Table 11, it can be observed that the three teams (Adrian, sahadate and nhanthanhn-
guyen94) achieved a DSC over 0.80. Moreover, they maintained the high performance for other metrics as well that include JC
(>0.78), F2 (>0.81), and PPV (>0.85) securing first, second and third ranks, respectively. Teams VinBDI and DuyHUYNH
were able to segment more true positive regions reaching the top recall values. Fig. 6 (b) represents per-class metric values. It
can be observed that unlike detection task, most teams reported high performance for cancer class. Also, most teams showed
higher DSC, PPV and recall for BE class instance as well (> 0.8 for top three teams). However, similar to the detection task,
most team and baseline methods reported least values for the suspicious class.

5.2 Qualitative results
Detection task
Figure 7 shows the best (panel a) and the worse (panel b) performing frames from single frame dataset for EAD2020. It can be
observed that specularity and artefacts are detected and well localized by top teams (see Figure 7 a). Similarly, in the bottom
example, saturation is also detected by all the participants. Even though, blur is not present for this sample, most methods also
detected it. While for the worse performing frame (see Figure 7 b), instrument class is confused with contrast or artefact on
the top sample, while in the bottom sample instrument is detected by some teams but often either detected only partially or
overlapped by different classes such as saturation or artefact.

For out-of-sample generalization task, it can be seen in Figure 8 (a) that besides YOLOv3 baseline method, all the baselines
and teams detected saturation class. While some teams (mathew666, VinBDI, higersky) detected multiple bounding boxes for
the same class, they also detected blur class for this frame. While for worse performing frame (see Figure 8 (b)), instrument
class (at the center of the image) is well localized only by the team xiahong1 while most teams either partially detected the
instrument (e.g., team qzheng5) or could not detect the instrument class at all (e.g., team polatgorkem). In both cases, the
three teams VinBDI, higersky and StarStarG produced multiple overlapping and different size bounding boxes. Qualitative
results for the EDD2020 challenge is shown in Figure 9. The best performing samples in Figure 9 (a) shows polyp class (at the
top); non-dysplastic Barrett’s esophagus (NDBE) and suspicious classes on the bottom. It can be observed that polyp class is
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Figure 5. Detection and out-of-sample generalization tasks for EAD2020 sub-challenge. a) Error bars and swarm plots
for the intersection over union (IoU, top), average precision (AP, middle) and challenge detection score (mAPd , bottom) for
each team is presented on 237 single frame test data. b-c) Comparison of mAPd w.r.t. mAPseq (mAP on sequence test data with
80 frames) and mAPg (mAP on out-of-sample data 99 frames) are provided. a-c) On the right, results from baseline detection
methods: YOLOv3 and RetinaNet (with ResNet101 backbone) are also presented. Teams are arranged by decreasing overall
detection ranking Rscored (see Table 7).
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Figure 6. Semantic segmentation for EAD and EDD sub-challenges: Error bars with overlayed swarm plots for dice
similarity coefficient (DSC), positive predictive value (PPV) or precision and recall are presented for each team and baseline
methods for the EAD2020 (a) and EDD2020 (b) challenges. 6 different baseline methods are also provided for comparison.

detected and well localized by all the teams and baseline methods. However, for bottom row NDBE is detected by most of
the methods while confusion is observed across the suspicious class with high-grade dysplasia (HGD) class. Team mimykgcp
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Table 8. Evaluation of the artefact segmentation task. Top three best scores for each metric criteria are in bold.

Team
Names JC DSC F2 PPV Rec Acc Scores Rscores

qzheng5 0.477 0.532 0.561 0.556 0.835 0.973 0.621 8
VinBDI 0.628 0.673 0.670 0.837 0.738 0.978 0.730 2
higersky 0.529 0.579 0.587 0.675 0.758 0.975 0.650 5
anand_subu 0.304 0.354 0.361 0.430 0.747 0.975 0.473 14
arnavchavan04 0.622 0.673 0.683 0.800 0.767 0.977 0.731 1
DuyHUYNH 0.502 0.557 0.583 0.593 0.829 0.974 0.640 6
mimykgcp 0.531 0.576 0.579 0.723 0.726 0.977 0.651 4
mouradai_ox 0.581 0.632 0.647 0.711 0.800 0.974 0.697 3
baselines
FCN8 0.500 0.548 0.550 0.670 0.708 0.976 0.619 9
UNet-ResNet34 0.310 0.364 0.373 0.419 0.766 0.974 0.481 13
PSPNet 0.497 0.541 0.534 0.698 0.680 0.975 0.613 10
DeepLabv3
(ResNet50)

0.448 0.495 0.492 0.599 0.704 0.974 0.572 12

DeepLabv3+
(ResNet50)

0.485 0.533 0.535 0.646 0.726 0.976 0.610 11

DeepLabv3+
(ResNet101)

0.501 0.547 0.546 0.683 0.718 0.973 0.624 7

Table 9. EDD2020 results for the detection task on the single frame dataset. mAP at IoU thresholds 25%, 50% and 75%
are provided along with overall mAP and overall IoU computations. Overall scores are computed at 11 IoU thresholds and
averaged. Weighted detection score scored is computed between overall mAP and IoU scores only. Three best scores for each
metric criteria are in bold.

Team
names mAP25 mAP50 mAP75

overall
mAPd

overall
mIoUd

mAPδ scored ±δ

adrian 48.402 33.562 27.098 37.594 27.614 8.523 33.602 ± 8.523
sahadate 37.612 23.284 15.837 26.834 32.420 8.325 29.068 ± 8.325
VinBDI 43.202 26.981 17.001 30.219 17.773 9.478 25.241 ± 9.478
YHChoi 23.183 11.082 8.800 15.783 24.623 6.216 19.319 ± 6.216
DuyHUYNH 23.959 9.587 5.659 12.479 13.829 6.284 13.019 ± 6.284
mimykgcp 34.884 20.982 4.463 20.742 2.270 9.359 13.353 ± 9.359
drvelmuruganb 31.018 18.421 11.768 21.790 7.322 7.424 16.002 ± 7.424
baselines
YOLOv3 34.305 21.227 14.650 22.980 24.351 6.456 23.528 ± 6.456
RetinaNet (ResNet50) 26.833 14.441 9.907 17.552 25.580 6.464 20.763 ± 6.464
RetinaNet (ResNet101) 42.579 27.000 11.194 27.974 26.434 11.949 27.358 ± 11.949

produced numerous bounding boxes failing to optimally localize adherent disease classes. For the worse performing frames
(Figure 9 (b)), cancer class (top) in the ground truth is confused with the polyp class instance for most of the teams and the
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Table 10. Per class evaluation results for the detection task of the EDD2020 sub-challenge.

Teams
EDD2020 NDBE suspicious HGD cancer polyp δ

adrian 28.911 1.776 32.727 64.286 60.269 22.841
sahadate 46.193 1.099 22.727 10.000 54.152 20.414
VinBDI 48.489 3.497 25.852 10.000 63.260 22.660
YHChoi 26.900 0.000 22.727 0.000 29.289 13.057
DuyHUYNH 20.281 1.499 11.364 0.000 29.254 11.134
mimykgcp 50.089 4.592 23.064 5.852 20.112 16.429
drvelmuruganb 34.775 0.000 22.727 0.000 51.446 19.993
baselines
YOLOv3 (darknet53) 38.839 0.000 6.970 16.667 52.426 19.712
RetinaNet (ResNet50) 23.636 0.000 18.182 0.000 45.943 17.086
RetinaNet (ResNet101 ) 29.483 0.000 22.727 31.818 55.840 17.909

baseline methods. While, for the NDBE class in the bottom of Figure 9 (b), teams were either not able to detect the NDBE
class (except team adrian, team YHChoi and YOLOv3) at all or partially detected the NDBE areas (e.g., teams VinBDI and
drvvelmuruganb). Again, for the presented case, team mimykgep detected numerous bounding boxes.

Table 11. Evaluation of the disease segmentation methods proposed by the participating teams and the baseline
methods. Top three evaluation criteria are highlighted in bold.

Team
Names JC DSC F2 PPV Rec Acc Scores Rscores

adrian 0.820 0.836 0.842 0.921 0.894 0.955 0.873 1
sahadate 0.797 0.816 0.819 0.906 0.883 0.955 0.856 2
VinBDI 0.788 0.805 0.812 0.859 0.912 0.952 0.847 3
DuyHUYNH 0.6843 0.7058 0.718 0.762 0.905 0.931 0.773 9
drvelmuruganb 0.7166 0.7349 0.734 0.819 0.857 0.959 0.786 6
mimykgcp 0.7561 0.7721 0.770 0.893 0.845 0.957 0.820 4
YHChoi 0.314 0.340 0.356 0.385 0.896 0.892 0.494 13
baselines
FCN8 0.687 0.705 0.709 0.811 0.850 0.953 0.769 10
UNet-ResNet34 0.617 0.637 0.638 0.732 0.868 0.958 0.719 11
pspnet 0.698 0.721 0.723 0.797 0.876 0.959 0.779 8
DeepLabv3
(RetinaNet50)

0.704 0.724 0.724 0.810 0.878 0.962 0.784 7

DeepLabv3+
(RetinaNet50)

0.725 0.744 0.749 0.818 0.882 0.960 0.798 5

DeepLabv3+
(RetinaNet1010

0.608 0.627 0.629 0.698 0.880 0.962 0.709 12
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Figure 7. EAD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top
ranked team results. b) Worse performing samples for the same teams in (a). Results with baseline methods are also included
together with ground truth sample.
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Figure 8. EAD2020 best and worse performing samples for the generalization task. a) Best performing samples for 7
top ranked team results. b) Worse performing samples for the same teams in (a). Results with baseline methods are also
included together with ground truth sample.

Segmentation task

Endoscopic artefact segmentation samples representing best and worse performing teams is provided in Figure 10. For the
sample with only the instrument class (see Figure 10 a, top panel) it can be observed that almost all the baseline and teams were
able to predict precise delineation of the instrument class. Similarly, in the bottom panel of Figure 10 (a), specularity, saturation
and artefact classes were segmented well by most of the teams and baseline methods. Even though, a single instrument class is
present in the sample image in Figure 10 (b), none of the methods were able to segment the instrument. Also, for the bottom
panel in the Figure 10 (b), specularity areas were segmented well by the teams mouradaiox and mimykgcp. However, saturation
area was under segmented by most of the teams and baseline methods. Figure 11 (a) represents the polyp class (at the top);
NDBE and suspicious classes (at the bottom). It can be observed that polyp is segmented well by all the baselines and most
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Figure 9. EDD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top
ranked team results. b) Worse performing samples for the same teams in (a). Results with baseline methods are also included
together with ground truth sample.

teams (except team drvelmuruganb who misclassified the pixels to suspicious class). While, most teams and baselines were
able to precisely delineate NDBE class for the frame in the bottom panel but missed suspicious area. In the worse performing
sample (see Figure 11 (b)), most teams were able to segment NDBE area but large HGD area was missed by all the teams.
Also, some teams confused HGD area with suspicious class. For the bottom panel in Figure 11 (b), instead of suspicious class
present in the ground truth, almost all the teams detected this as polyp or cancer. However, the region delineation was close to
the ground truth for most teams.

6 Discussion
Deep learning methods are rapidly being translated for the use of computer aided detection (CADe) and diagnosis (CADx) of
diseases in complex clinical settings including endoscopy. However, the amount of data variability particularly in endoscopy is
significantly higher than in natural scenes which possess a significant challenge in the process. It is therefore vital to determine
an effective translational pathway in endoscopy. Majority of challenges in endoscopy are due to its complex surveillance that
lead to severe artefacts that may confuse with disease. Similarly, a system designed for a particular organ may not generalize to
be used in the other.

Most deep learning methods that were used in the EndoCV2020 challenge can be categorised into multiscale, symbiotic,
ensemble, encoder-decoder and cascading nature, or a combination of these (see Table 3 and Table 4). Figure 12 presents the
overview of the used methods for the detection (a) and segmentation (b) challenge tasks based on the architecture usage. It can
be observed that the majority of detection methods used two-stage Faster-RCNN with 4/7 teams combining it with one-stage
RetinaNet or YOLOv3 or a combination of all. Cascade R-CNN which is built upon Faster R-CNN cascaded architecture
was exploited by 4 teams. Similarly, U-Net-based architectures were utilised by most teams for semantic segmentation task
with 4 teams exploring pyramid module-based architectures and 2 teams used Deeplabv3+ architecture. Faster RCNN-based
model was also explored with additional thresholding (e.g., team adrian) or per pixel prediction heads (e.g., team sahadate).
Even though similar techniques were used in EAD2019 challenge1, a direct comparison is not possible. This is due to the
inclusion of more data for EAD2020 in both train and test sets. Also, EAD2020 includes sequence data which was not provided
in EAD2019 challenge.
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Figure 10. EAD2020 best and worse performing samples. a) Best performing samples for 5 top ranked team results. b)
Worse performing samples for the same teams in (a). Results with baseline methods are also included together with ground
truth sample (top). Single class samples are chosen at the top and multi-class samples are at the bottom in each category.

For the detection task, the top performing teams on the challenge metric in both EAD (team polatgorkem) and EDD (team
adrian) were those using ensemble networks, i.e., maneuvering outputs from multiple architectures. However, these networks
sacrifice the speed of detection which can be observed from the computational time which were significantly higher than teams
that used a single architecture (see Table 7 and Table 9). Other teams that used such an approach included team arnavchavan04
and mimykgcp who combined Faster R-CNN with RetinaNet but both teams were respectively on 10th and 11th ranking. Just
using Faster R-CNN alone with ResNet101 backbone, teams qzhang5 and mathew666 were able to detect both small and
large size bounding boxes with sub-optimal accuracy that put them at 2nd and 4th positions, respectively. Similarly, team
sahadate claimed 2nd position on EDD detection task using Mask R-CNN which is based on the Faster R-CNN architecture.
For EAD2019 challenge1, team yangsuhui also used an ensemble network with Cascade RCNN and FPN approach for the
detection task similar to the EAD2020 top scorer team polatgorkem.

An intelligent choice for improved speed and accuracy using a scalable network was presented by the teams xiahong1 (used
YOLACT) and VinBDI (used EfficientDet D0) which were placed 3rd and 5th, respectively, on the final detection score of the
EAD2020. On the sequence data, team VinBDI was the 2nd best method demonstrating the reliability of the used EfficientNet
and FPN architectures. However, for almost all team methods the standard deviation was higher than for single frame data. No
team exploited the sequence data provided for training. Team VinBDI was also ranked 3rd on the EDD detection task. Teams
higerssky, StarStarG and MXY that used cascaded R-CNN were ranked respectively on 6th, 7th and 9th positions. Additionally,
the team StarStarG was ranked 1st and team higersky was ranked 2nd on the overall mAP. However, it is to be noted that taking
only mAP scores into account for detection could lead to over detection of the bounding boxes that increases the chance of
finding a particular class but at the same time weakens the localization capability of the algorithm (see Figure 7). Similar
observations were found for the EDD dataset where the team mimykgcp obtained an overall mAP of 20.742 but only 2.270 for
the overall IoU (see Table 9). As a result, over detection of the bounding boxes can be seen in Figure 9. In order to deal with
the over detection of the bounding boxes, YOLACT architecture used by xiahong1 suppressed the duplicate detections using
already-removed detections in parallel (fast NMS). Similarly, teams such as polatgorkem from the EAD and adrian from the
EDD were able to eliminate the duplicate detections using ensemble network and a class agnostic NMS.

Hypothesis I: In the presence of multiple class objects, object detection methods may fail to precisely regress the bounding
boxes. Methods need better penalisation on the bounding box regression or a technique to perform effective non-maximal
suppression.
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Figure 11. EDD2020 best and worse performing samples. a) Best performing samples for 5 top team results. b) Worse
performing samples for the same teams in (a). Results with baseline methods are also included together with ground truth
sample (top).

The choice of networks from each team depended on their ambition of either obtaining very high accuracy without focusing
on speed or a trade-off between the speed and the accuracy or focusing on both and thinking out-of the box to use more
recent developed methods which beats faster networks (such as YOLOv3) that included EfficientDet D0 architecture used
by the team VinBDI (see Table 3). Due to the efficiency of the EfficientDet D0 network that used biFPN and efficientNet
backbone, team VinBDI achieved second least deviation in mAP (i.e., devg = 5.607) with competitive mAPg (= 24.140) and
won the generalization task together with the team StarStarG who had slightly higher mAPg (= 25.340) but larger mAP
deviation between detection and generalization datasets. Most methods for the detection task on both the EAD and EDD dataset
performed better than the baseline one-stage methods (YOLOv3 and RetinaNet). However, it was found that even though team
polatgorkem won the detection task, the method failed on generalization data where the team was ranked only last. The main
reason behind this could be because the generalization gap mAPg was estimated between two mAP’s (mAPd and mAPg) and
not IoU. Also, the final ranking was done taking into account the rank of devg and mAPg only. It can be observed in Figure 8
that the bounding box localization of team polatgorkem is precise in (a) while it misses instrument area at the center in (b).
However, the winning teams VinBDI and StarStarG both over detect the boxes. The generalization ability of the methods were
not explored for EDD dataset.

Hypothesis II: Metrics are critical but using a single metric does not always gives the right answer. Weighted metrics are
desired in object detection task to establish a good trade-off between detection and precise localization.

A major problem in the detection of EDD dataset was class confusion mostly for suspicious, HGD and cancer classes. This
could be because of smaller number of samples for each of these classes compared to NDBE and polyp (see Figure 3). While
most methods were able to detect and localize NDBE and polyp class in general (3/7 teams with an overall mAP > 45 and
4/7 teams with > 50), all teams failed in suspicious class (overall mAP < 5.0) and most teams for cancer class (overall mAP
< 15.0) (see Table 10). Figure 9 shows that polyp is detected and localized very well by most teams (a, top). Similarly, NDBE
is localized by most methods, however, in this case suspicious class is confused mostly with the HGD. Also, in Figure 9 (b,
top), it can be observed that the cancer class instance is confused with mostly polyp class.

Hypothesis III: Detection bounding boxes confuse with classes that have similar morphology and smaller number of samples
failing to learn the contextual features. To improve detection, such samples need to be identified and more data demonstrating
such attributes need to be injected (both positive and negative samples).

Similar to the detection task, teams that used ensemble techniques were among the best performing teams for the
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Figure 12. EndoCV2020 method categories in blob-representation. Model occurrences are presented for detection (a) and
segmentation (b) tasks for both EAD2020 and EDD2020 sub-challenges. The number of occurrences is provided inside each
blob.

segmentation task. Teams arnavchavan04 and VinBDI secured first (scores = 0.731) and second (scores = 0.730) positions,
respectively, on the EAD2020 segmentation task (see Table 8) and the team adrian won the EDD2020 segmentation task
challenge with scores of 0.873 (see Table 11). The team arnavchavan04 used multiple augmentation techniques including
cutmix and a feature pyramid network with a combination of EfficientNet backbones from B3 to B5. Similarly, team VinBDI
ensembled a U-Net architecture with EfficientNet B4 and BiFPN network with ResNet50 backbone. Compared to EAD2019
where the winning team yangsuhui used DeepLabV3+ model with two different backbones, both of the top scorer teams of
2020 revealed the strength of recent EfficientNet and FPN-based segmentation approaches.

In the EDD2020 segmentation task, the team adrian combined predictions from three object detection architectures where
the YOLOv3 and Faster R-CNN class predictions were used to correct the instance segmentation masks from Cascade R-CNN.
A direct instance segmentation approach used by the team sahadate secured second position (scores = 0.856) on the same
while ensemble network of the team VinBDI secured the third position (scores = 0.847). Direct usage of a single existing
state-of-the-art methods utilising different augmentation techniques (e.g., DuyHUYNH) or different backbones (e.g., mimykgcp,
qzheng5) resulted in improved results compared to the original baseline methods, however, much lower than the top performing
methods (see Table 8 and Table 11).

Hypothesis IV: The choice of combinatorial networks that well synthesizes width, depth and resolution to capture optimal
receptive field, and a domain agnostic knowledge transfer mechanism are critical to tackle heterogeneous (multi-center and
variable size) multi-class object segmentation task.

From Figure 6 it can be observed that the top three performing teams of the EAD2020 segmentation task (arnavchavan04,
VinBDI, mouradai_ox) has high DSC value (0.538, 0.548 and 0.492 respectively) compared to most methods for the specularity
class instance. It is to be noted that the specularities are often confused with either artifact or bubbles which makes them hard
to differentiate. For the instrument, saturation and bubbles class instances (see Figure 10 a.), most methods obtained high
performance compared to other classes (e.g., the top three teams obtained 0.853, 0.844, 0.848 for the instrument; 0.722, 0.758,
0.703 for the saturation; and 0.738, 0.693, 0.693 for the bubbles class instance, respectively), artefact (DSC < 0.520) was
among the worst class for most teams and for the baseline methods. This is mostly due to the variable size of artefacts; and the
bubbles class instance is predominantly confused with either artefact or the specularity class (see Figure 10 b.). Additionally,
due to small sized and sparsely scattered specularity or bubble regions in some cases (for e.g., 4th image from left in Fig. 3 (a)),
the annotator variability for these samples can have affected method performances for these classes. While checking for such
biases is beyond the conducted study, we refer to the work by95. The authors suggested that in general deep learning models
are capable of generalizing from training data where the correct labels are outnumbered by the incorrect ones. However, the
authors also acknowledged that a decrease in performance is inevitable and necessary steps such as using larger batch size and
downscaling learning rate can help mitigate these issues.

Unlike the EAD2020, the EDD2020 segmentation task comprised of larger shaped regions and only a few classes confused
(see 1 b.). Most methods scored comparably high DSC values with over 75% for most of the disease classes except for
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suspicious class by most of the team. However, Figure 11 (b) (top) shows that while majority of teams were able to segment
NDBE class area, the teams either missed the HGD area or miss classified HGD as suspicious class instance. It is to be noted
that there is a very subtle difference between the HGD and the suspicious region even for the expert endoscopists. Similar
observation can be found for the segmentation of protruded structures (Figure 11 (b), bottom) where most methods confused
the class with the polyp class and the top two teams (adrian, sahadate) classified it as cancer class. Looking up into our expert
consensus notes we found that these samples had hard to reach agreement cases (i.e., suspicious and HGD classes; and cancer
and polyp region).

Hypothesis V: Instead of hard scoring of predicted mask classes that penalizes the method performance heavily in presence
of marginal visual difference between classes and variability due to existing expert consensus in the dataset, probability maps
can be used to mitigate such problem. Additionally, teams should be encouraged to report results for different batch size and
learning rates for obtaining better insight regarding performance especially when datasets are prone to have some incorrect
labels.

7 Conclusion
We provided a comprehensive analysis of the deep learning methods built to tackle two distinct challenges in the gastrointestinal
endoscopy: a) artefact detection and segmentation and b) disease detection and segmentation. It has been possible by the
crowd-sourcing initiative of the EndoCV2020 challenges. We have provided the summary of the methods developed by the top
17 participating teams and compared their methods with the state-of-the-art detection and segmentation methods. Additionally,
we dissected different paradigms used by the teams and presented a detailed analysis and discussion of the outcomes. We also
suggested pathways to improve the methods for building reliable and clinically transferable methods. In future, we aim towards
more holistic comparison of the built techniques for clinical deployability by testing for hardware and software reliability in
clinical settings.
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