Applying the Isabelle Insider Framework to Airplane Security

Florian Kammiiller

Middlesex University London and Technische Universitat Berlin

Manfred Kerber
University of Birmingham, UK

Abstract

Avionics is one of the fields in which verification methods have been pioneered and brought
about a new level of reliability to systems used in safety-critical environments. Tragedies, like
the 2015 insider attack on a German airplane, in which all 150 people on board died, show
that safety and security crucially depend not only on the well-functioning of systems but also
on the way humans interact with the systems. Policies are a way to describe how humans
should behave in their interactions with technical systems. Formal reasoning about such
policies requires integrating the human factor into the verification process. In this paper,
we report on our work on using logical modelling and analysis of infrastructure models and
policies with actors to scrutinize security policies in the presence of insiders. An insider is a
user of a system who behaves like an attacker abusing privileges thereby bypassing security
controls. We model insider attacks on airplanes in the Isabelle Insider framework. This
application motivates the use of an extension of the framework with Kripke structures and
the temporal logic CTL to enable reasoning on dynamic system states. Furthermore, we
illustrate that Isabelle modelling and invariant reasoning reveal subtle security assumptions.
This results in a methodology for the development of policies that satisfy stated properties.
To contrast our approach to model checking, we provide an additional comparative analysis.

Keywords: Airplane safety and security, Insider threats, Interactive theorem proving,
Security policies, Verification

1. Introduction

Airplanes offer a very safe way of travelling. Accidents and terror attacks are extremely
rare. We believe that one reason for this is that scrutiny and rigorous verification including
formal methods are routinely applied in most technical developments as well as for organi-
zational measures of airplanes. After the 2001-09-11 attacks stringent measures were taken
and have been to the day of writing successful. The most recent major incident was an

Email addresses: f.kammueller@mdx.ac.uk (Florian Kammiiller), M.Kerber@cs.bham.uk (Manfred
Kerber)

Preprint submitted to Elsevier February 15, 2021

insider attack in which the copilot of Germanwings Flight 9525 on 2015-03-24 hijacked the
aircraft by locking out the captain, who had left the cockpit, and subsequently brought
the aircraft to a crash in which all 150 persons on board died. As a consequence, airlines
introduced a two-person rule that a pilot must never be on their own in the cockpit. The
two-person rule has been rescinded in 2017 only two years after it was introduced. The
2015-03-24 incident shows that insider attacks are an important issue. Despite their com-
mon use in other parts of avionics, formal methods are not commonly applied to airplane
policies including human actors which is necessary to analyze insider threats. Therefore, we
investigate whether recent advancements in formal modeling and analysis of insider threats
may produce advancements. The Isabelle Insider framework [1] is an instantiation of the
interactive theorem prover Isabelle using its expressive Higher Order Logic (HOL) to provide
a theory for formalizing infrastructures with actors and policies including insiders to prove
security properties fully formally with computer support. Experimenting with this Insider
framework on real case studies, motivated earlier work [2] of applying the existing Isabelle
Insider framework to verify airplane policies in the presence of insider attacks. This earlier
work has revealed some major challenges for the Isabelle Insider framework that we want to
address in the current work:

e Since the policies are dealing with actors and their possibilities of moving within the
infrastructure, for example an airplane, a fixed association of actors with locations,
roles, and credentials in the model must be extended to enable representing dynamic
change.

e We need to integrate dedicated logics into the framework enabling the expression of
security and safety guarantees over the dynamically changing infrastructure state. We
need to express global validity of logical properties of policies over all reachable states;
for example, we want to express “for all states reachable from an acceptable initial
state, a suicidal copilot cannot crash the plane.”

In the current paper, we provide solutions to these challenges and demonstrate them on
the airplane case study by the following two contributions.

e State transitions as well as rules for expressing changes to the state of infrastructures
including locations, actors, their roles, credentials and behaviours are provided by
Kripke structures. This allows modelling state change and state transition.

e Temporal logic CTL is provided within the framework to formalize and prove logical
properties. This enables (a) detecting attack paths through the graph of infrastructure
state evolution and (b) from there identifying additional security assumptions that
when met guarantee that the attack is not possible any more on any path.

In the process of realizing these extensions to the Isabelle Insider framework and testing
them on the airplane application other contributions emerged:

e We identify an improved methodology for policy invalidation and model refinement.
It consists of attempting to prove global security properties in the Isabelle Insider

2

framework showing potential attacks and moreover revealing missing assumptions that
may then be added as additional locale assumptions in the model refinement step.

e Moreover, in order to show the relation to other approaches to verification, most
notably model checking, we present a comparative model and verification [3] in the
NuSMV model checker [4]. We formalize various different implementations of policies.

e To show the surplus gained by using the Isabelle Insider framework rather than NuSMV
we then proceed by generalizing our main result to arbitrary policies which can be done
only in a powerful system such as Isabelle.

After discussing related work in Section 2, we present in Section 3 a retrospective of the
development of safety and security regulations for airplanes. We then present the existing
Isabelle Insider framework in Section 4. Next, we use this framework to model an airplane
scenario including an insider attacker. We first present our methodology for applying the
Isabelle Insider framework as an opening to Section 5, which also provides an overview of
the following technical sections. We integrate Kripke structures into the model and express
and interactively prove central security properties using the branching time temporal logic
CTL (Section 5). Section 6 presents the analysis of those properties on the airplane scenario
showing how the framework can be used to scrutinize the security policies and thereby reveal
existing loopholes within their formal specifications. Section 7 introduces an alternative
verification of the airplane scenario using model checking with NuSMV. It also shows how
the main result can be generalized in Isabelle to arbitrary policies to illustrate what can be
done here that cannot be done using model checking. Section 8 concludes.

The full Isabelle sources [5] as well as the NuSMV code [3] are available online. In
order to give an impression of the kind of formalization the most important definitions and
theorems can be found in Appendix A.

2. Related Work

In this section, we present some related work from the field of insider threats and work in
which reasoning approaches similar to the one applied in our work are applied. Furthermore
we discuss work related to the verification in avionics.

Malicious insiders are defined by Glasser and Lindauer as follows: “[...] insiders are
current or former employees or trusted partners of an organization who abuse their autho-
rized access to an organization’s networks, systems, and/or data.” [6]. Insider threats refers
to “the malicious acts carried out by these trusted insiders” [6]. Matt Bishop et al. [7] add
“[t]he insider problem is one of the most difficult problems in computer security, and indeed
in all aspects of real-world security. The ancient Romans even had an aphorism about it:
‘Who will guard the guards themselves?’”

More recently, there has been a distinction between malicious and unintentional insiders
[8]. For the scope of our work, we focus on malicious insiders and define insider following
the spirit of Glasser and Lindauer [6]:

Definition 2.1 (Insider). An insider is a trusted user of a system who behaves like an
attacker abusing privileges thereby bypassing security controls.

The insider threat patterns provided by CERT [9] use the System Dynamics model, which
can express dependencies between variables. The System Dynamics approach is also suc-
cessfully being applied in other approaches to insider threats, for example, in the modelling
of unintentional insider threats [10]. Axelrad et al. [11] have used Bayesian networks for
modelling insider threats in particular the human disposition. In comparison, the model we
rely on for modelling the human disposition in the Isabelle Insider framework is a simplified
classification following the taxonomy provided in [12]. In contrast to all these approaches,
our work provides an additional model of infrastructures and policies allowing reasoning at
the individual and organizational level.

A major field of application of formal methods is avionics. Companies (such as Airbus
and Boeing) and organizations (such as NASA) use formal methods to prove formal prop-
erties of aircrafts and spacecrafts. There is a large body of work, including work based on
model checking and theorem proving, which we cannot give justice in this paper. We will
mention only a few. Moy et al. [13] explore mainly the relationship between software test-
ing and formal verification. They argue that in many application areas formal verification
outperforms testing, firstly in that the proofs show the correctness on all inputs and not
just the ones tested, but secondly also in the person power required. O’Halloran [14] shows
how a Z-based toolset is used to prove the correctness of embedded real time safety critical
software for Eurofighter Typhoon. Khan et al. [15] argue that complexity of avionics has
increased to a level that verification and validation of the systems need computer based
approaches. They use model abstraction to simulate hardware and software interactions.

In the domain of rigorous analysis of airplane systems, work often follows for practical and
economic reasons a philosophy of using a mix of formal and systematic informal methods.
An example from airplane maintenance procedures by Oheimb et al. [16] uses a security
evaluation methodology following the Common Criteria and a formal model and verification
with the model checker AVISPA. In comparison, we use a more expressive logical model in
the Isabelle Insider framework than the AVISPA specification. To our knowledge, the focus
of work on formal methods in avionics is directed towards the correct functioning of the
hardware and the software. However, it is very important to consider the human factor.!

LQuote by Chesley B. Sullenberger [http://www.sullysullenberger.com/my-testimony-today-before-the-
house-subcommittee-on-aviation/]:
Pilots must be able to handle an unexpected emergency and still keep their passengers and crew safe, but
we should first design aircraft for them to fly that do not have inadvertent traps set for them.

We must also consider the human factors of these accidents.

From my 52 years of flying experience, and my many decades of safety work — I know that nothing happens
in a vacuum, and we must find out how design issues, training, policies, procedures, safety culture, pilot
experience and other factors affected the pilots’ ability to handle these sudden emergencies, especially in
this global aviation industry.

Dr. Nancy Leveson, of the Massachusetts Institute of Technology, has a quote that succinctly encapsulates
much of what I have learned over many years: ‘Human error is a symptom of a system that needs to be
redesigned.’

4

http://www.sullysullenberger.com/my-testimony-today-before-the-house-subcommittee-on-aviation/
http://www.sullysullenberger.com/my-testimony-today-before-the-house-subcommittee-on-aviation/

Human error in avionics has been addressed in works using formal methods including model
checking and theorem proving. For example, mode confusion as an important origin for
airplane accidents has been addressed by Luettgen and Carreno [17]. In this work, the
model checkers murg, SPIN, and SMV are used to model Flight Guidance Systems (FGS)?
and analyze their mode logic. While such a machine component reflects some part of human
behaviour (the interface input) it is very different from our insider model that integrates
human actors, their psychological disposition and behaviour into the state.

Another example of application of formal methods in avionics by Munoz et al. [18, 19] an-
alyzes the operational concept of NASA’s Small Aircraft Transportation System, Higher Vol-
ume Operation (SATS HVO), a system allowing up to four small aircrafts to enter and leave
airports simultaneously. The authors model the airport’s surrounding area (self-controlled
area, SCA) and an airport management module (AMM). The SATS HVO “is [modelled as]
a set of rules and procedures using finite state machines” by Munoz et al. [19]. The authors
provide an abstract specification of the system written in the theorem prover PVS with
“fixes” (latitude/longitude points in space) representing the positions of planes in the SCA
and “landing sequences” (lists of integers) to model the queuing management of the AMM.
The rules of the AMM are encoded as rules of a state transition system. The verification
is by state exploration in PVS. The PVS model of the real system is explored by an “algo-
rithm written and proved correct in PVS” by Munoz et al. [18] that shows that only a finite
number (2811) of a potentially infinite number of states is reachable [18]. For each of these
states the safety properties are then manually verified in PVS. There is some resemblance
between this approach and ours in that they also use an interactive theorem prover (PVS) to
emulate state exploration. In contrast to their approach, we model the foundations of CTL
model checking based on lattice and fixpoint theory in a conservative extension of Isabelle
thus fundamentally guaranteeing correctness of our approach of state exploration. They first
prove a result about reduction of exploration to reachability and then check all remaining
states individually thus implicitly mimicking proper model checking. Besides, they do not
model the human actor nor do they address security nor insider attacks. We assume that our
work is the first to consider insider threats within airplane safety and security in a formal
way.

Logical modelling and analysis of insider threats has started off by investigating insider
threats with invalidation of security policies in connection with model checking by one of us
in [20, 21]. This early approach also uses infrastructure models of organizations, actors and
policies but was more restricted than the Isabelle Insider framework discussed in Section 4.
The use of sociological explanation has been pioneered in [22] by one of us and others already
with first formal experiments in Isabelle. Finally, one of us has established the Isabelle
Insider framework in [1]. It has been validated on two of the main three insider patterns
the Entitled Independent and Ambitious Leader. Relevant in the context of this application
are other applications of the Isabelle Insider framework. In particular, the Isabelle Insider
framework has been applied to IoT Insiders [23, 24]. In this work, the framework was

2An FGS is a component of the flight control system that monitors the difference between the actual
state of the aircraft and its desired state as inputted by the crew.

5

extended by attack trees. Attack trees provide the possibility to refine attacks once they
have been identified. This refinement is formalized together with the notion of attack trees
as first introduced for insider models in general in [25]. In other work, we applied the insider
framework to auction protocols [26]. In the CHIST-ERA project SUCCESS [27] we use the
framework in combination with attack trees and the Behaviour Interaction Priority (BIP)
component architecture model to develop security and privacy enhanced IoT solutions.

In [28] Kamali et al. present reasoning that integrates deduction based reasoning and
model checking for the formal verification of vehicle platooning. The idea is that vehicles
move in platoons and can join and leave them under certain safety conditions. In order to
model the hybrid aspects of the real-time system a hybrid system is used that makes use
of discrete decision making (such as, initiating joining a platoon) and continuous control
(of actually driving the vehicle). The formal discrete reasoning is translated to a timed
automaton which can then be used to produce actual running code (in a simulator). The
right level of abstraction is important in order to deal with complexity issues.

3. Development of Airplane Safety and Security

On 2001-09-11, four terrorist attacks took place in the USA, two on the two towers of
the World Trade Center, one on the Pentagon, and in a fourth attack the airplane crashed
when passengers tried to overcome the hijackers.®> Before these attacks, aircraft hijacking
typically meant that the hijackers had some negotiable demands. Because of the risk to life
for the people on board the aircraft, the standard approach was to enter negotiations and
to avoid a resolution by force while the aircraft was in the air.

In particular, also there was no secured door between the passenger compartment and
the cockpit in airplanes; actually the door was occasionally open, even allowing passengers
to get a glimpse of the cockpit during the flight. In Western countries there were no airplane
hijackings with major loss of life between the 1970s and the 2001-09-11 attacks. This may
have created in the USA and other countries a false sense of security. In the wake of
the attacks a serious rethink of the security provision has happened. In particular, the
cockpit doors were reinforced and made bullet-proof, making it nearly impossible to open
by intruders [32].

These (and other) changes seem to have had the wanted effect, since in between the time
of the introduction of secured cockpit doors and the time of writing this article there were
only 18 airplane hijackings or attempted airplane hijackings® (as listed on [31]), all but two
of them could be prevented from causing fatalities. In one the hijacker was shot and killed
and the other one was an insider attack. One nearly successful airplane hijacking has been
caused by the copilot who forced Ethiopian Airlines Flight 702 to land at Zurich airport in

3For a description of the events, see [29], including more than 300 further pointers. A detailed account
of the events of 9/11 and recommendations can be found in a 585 page report by the 9/11 commission [30].
A list of aircraft hijackings can be found as [31].

4Note however that there were other attacks on flights which did not originate from passengers, such as
the Malaysia Airline Flight MH17 which was brought down by a missile over Ukraine on 2014-07-17.

6

t < s+ 300

Figure 1: A finite timed automaton to describe the lock mechanism of the door. In the three states, V;, Us,
and Ly (for normal, unlocked, locked at times t or s, respectively), the pilots can lock the door, or unlock
the door at any time with immediate effect, or do nothing with respect to the door — indicated by . Cabin
crew can enter the pin of the door; entering an incorrect PIN corresponds to the empty action . Entering
the correct PIN has an effect only in the state IV; after 30 seconds in a time window of five seconds unless
the pilots take the lock action. After no action for 300 seconds the L, state is transformed to the NV; state.

an attempt to blackmail asylum for himself in Switzerland. Also this airplane hijacking can
be characterized as an insider attack since the attacker was part of the crew.

The one major exception to the rule was Germanwings Flight 9525 on 2015-03-24, which
was on the way from Barcelona to Diisseldorf. The aircraft was hijacked by the copilot who
locked out the captain who had left the cabin. The pilot tried to regain access to the cockpit
but did not succeed. Subsequently, the copilot brought the aircraft to a crash in which all
150 people on board died.

Let us now look more closely into the door and its release mechanism.® The door is
operated by a switch from inside the cockpit (with three positions: “unlock”, “norm”,
“lock”) and a keypad outside the cockpit. In order to gain access to the cockpit normally a
crew member would use the inter-phone to contact a pilot in the cockpit to request access,
then presses the hash key on the keypad, which triggers a buzzer in the cockpit, and the pilot
releases the door using the switch to open the door (by keeping it in the “unlock” position).
In case the pilot(s) is/are incapacitated a crew member outside the cockpit can enter an
emergency code to open the door. After 30 seconds (during which the buzzer sounds in the
cockpit) of no reaction by the pilots the crew member can open the door for five seconds.

Since this access method could be used by a hijacker to force a crew member to open
the door from outside the cockpit, the pilots can, within the 30 seconds between entering
the emergency code and the release of the door, lock the cockpit door by putting the toggle
button into the “lock” mode. In that case the keypad is disabled for five minutes and the
door can be opened during this time only from inside the cockpit by putting the button in
the position “unlock”.

°The information is extracted from a 5:32 film by Airbus [33].

7

The mechanism can be described on different levels and each level requires certain as-
sumptions (for instance, that the door itself will withstand any physical force that may be
exerted by an attacker). According to Occam’s razor, we try to give a representation that
is as easy as possible and still describes the situation in sufficient detail that the important
aspects are modelled. A first approximation can be given by the timed finite state machine
in Figure 1 with three states “N”, “U”, and “L” for “normal”, “unlocked”, and “locked”,
respectively. While time plays a role and it makes a difference for humans whether the door
is locked for 300ms, 300s, or 300 minutes, we will abstract from this in the following for-
malization. During the fatal flight, the copilot used this locking mechanism to lock out the
captain from the cockpit. While the mechanism has been successful so far from preventing
any fatal attempt by an outsider to hijack an aircraft, the same mechanism prevented the
captain from re-entering the cockpit and take action to rescue the aircraft in this case.

Note that there are more details that we could model. However, we try to be in the
description above (according to Occam’s razor) minimal. That is, in this representation, if
the door is in the locked state an agent at the door cannot go from the cabin to the cockpit;
however, if the door is in the unlocked state they can indeed (whether they do is up to the
agent). In this model it can then be reasoned whether an (outside) agent is in principle able
to take control of the airplane or not. Details such as ‘the door needs to be opened before
agents can walk through’, ‘they need a hand free to operate the handle’, or ‘they need to be
able to walk’ are not modelled, since they are not essential for the reasoning about policies.
In other contexts such details may be crucial.

4. Isabelle Insider Framework

Before we formalize the airplane scenario in section 5, we give first a brief introduction to
Isabelle in this section; describe the Isabelle Insider framework with infrastructures, policies,
actors, and insiders; and describe how Kripke Structures and CTL are modelled.

4.1. Isabelle and Modular Reasoning

Isabelle/HOL is an interactive proof assistant based on Higher Order Logic (HOL). Ap-
plication specific logics are formalized into new theories extending HOL. They are called
object-logics. Although HOL is undecidable and therefore proving needs human interac-
tion, the reasoning capabilities are very sophisticated supporting “simple”, i.e., repetitive,
tedious proof tasks to a level of complete automation. The use of HOL has the advantage
that it enables expressing even the most complex application scenarios, conditions, and log-
ical requirements and HOL simultaneously enables the analysis of the meta-theory. That is,
repeating patterns specific to an application can be abstracted and proved once and for all.
As an example, we will see how general preservation theorems of the state transition relation
over the system graph and over policies can be proved as part of the insider framework and
applied in concrete applications like the airplane scenario (see Section 4.5).

An object-logic contains new types, constants, and definitions. These items reside in a
theory file. For instance, the file Insider.thy contains the object-logic for insider threats
described in the following paragraphs. This Isabelle Insider framework is a conservative

8

extension of HOL. This means that our object logic does not introduce new axioms and hence
guarantees consistency. Conceptually, new types are defined as subsets of existing types and
properties are proved using a one-to-one relationship to the new type from properties of
the existing type. This process of conservative extension has been greatly facilitated by the
datatype package that offers a restricted sort of simple recursive type definitions. Inductive
definitions are a similar tool to define new predicates by a set of rules. Both extension
features offer the specification of model elements with a theory of induction and exhaustion
properties necessary for the proof of theorems over the model.

Besides datatypes and inductive definitions, we make also use of local assumptions within
locales. This is the reasoning process we propose as part of our methodology: the insider
condition in Section 5.4 is not an axiom but is locally assumed to analyze the infrastructure’s
policies.

This process has been conceived as Modular Reasoning in Isabelle [34] and implemented
in the locales mechanism. Locales have been motivated by case studies from abstract al-
gebra where proofs about algebraic structures — like groups, rings, or fields — frequently
use assumptions — like Vx.x o 1 = x — that are valid within these algebraic structures but
not outside. Rather than repeating those local assumptions continuously in large numbers
of property statements and proofs, locales realize contexts in which those assumption can
be used. Insider threat modelling and analysis using logics shows the same needs, since
assumptions about actors are specific to a certain application’s infrastructure. Moreover,
the definition and the assumption of a locale are accessible later on, whenever the locale is
invoked. But since they are local assumptions and definitions they do not endanger HOL’s
principle of conservative extension.

We are going to use Isabelle syntax and concepts in this paper and will explain them
when they are used.

4.2. Structure of the Framework

Figure 2 gives an overview of the Isabelle Insider framework with its layers of object-logics
— each level below embeds the one above. The blue levels on the top represent the parts that
are the novel contributions specific to this paper. The lower levels of the framework, that is,
Kripke structures, CTL and Attack Trees are completely generic meaning that they need no
changes for different applications. They use sophisticated concepts of Isabelle, like axiomatic
type classes, polymorphism and locales to guarantee this genericity. The Insider theory is
a bit of a mix: in its main parts it is generic (formalization of actors, local policies, actors’
behaviour, and insiderness which will be discussed in detail in the next section). However,
the generic state transition relation that is provided by the fully generic Kripke structure
must be defined in an inductive definition that defines the overall system behaviour for the
various actions and policies. Also, despite the genericity of the notions of actors, policies,
and insiderness, even the main actions and the graph structure used to assemble the state
may differ slightly from one application to the next. Because of these slight variations, it
is not possible to have one generic Insider theory as the topmost part of the framework.
However, we still consider the Insider theory as part of a general framework since it is quite
evident from one application to the next how to reuse it.

9

Airplane

Insider

Attack Trees

Kripke Structures and CTL

Figure 2: Generic Isabelle Insider framework applied to Airplane case study.

Various different publications have documented the development of the Isabelle Insider
framework as already described in Section 2 but we pick it up again to clarify the relation
to the framework. The publication [1] by the first author and Probst introduces the major
notions of insiderness, policies, and behaviour showing how these notions suffice to serve
the known insider threat patterns identified by CERT [9]. Only when applying this early
version of the Isabelle Insider framework to the current Airplane case study [2] by the
authors, the necessity to add a mutable state has been identified. Model checking, that
is, Kripke structures and CTL have been emulated by the first author in [35] and used
to provide a semantics for attack trees [24] that is not used in the current application.
Attack trees together with a formal notion of refinement constitute also another branch of
the development of the Isabelle Insider framework, the Isabelle Infrastructure framework,
aiming to support a dedicated security refinement process [36].

4.3. Representing human factors and insiders

Before we delve into the formal definition of our Isabelle model of infrastructures, policies,
actors, and insiders, we need to clarify the intuitions of these modeling elements to avoid
confusion, misunderstanding and raising wrong expectations.

In line with Definition 2.1, and thus the common notion in the research community, we

10

use the intuition that an insider is a trusted user that behaves like an attacker. To represent
the attacker, we use an actor Eve, outside the system who has malicious (“evil”) intentions.
Insiderness can be variably explored by explicitly identifying to what extent the “evil” actor
Eve can bypass security controls by impersonating privileged users. Typically a malicious
insider is such a user that acts like an actor who has a split personality, that is, the actor
acts with the privileges of a trusted user but with the intentions of an outside attacker.

Technically, we model this explicit yet flexible impersonation of privileged users inside the
system by a function Actor that maps identities to roles. In places where an impersonation
is deemed feasible the function may map the identity of the “evil” actor Eve to the same
role as that of a privileged user inside the system. For all other identities that are not
compromised the function actor maps these identities exclusively to roles in the system,
that is, for these identities Actor is injective: idy # id; = Actor idy # Actor id; . Note,
that in this model it is not necessary that Eve is a member of the system, for example,
the crew of the airplane. For the analysis, we can choose for which user role(s) we want
to investigate the system policy to guarantee safety against insiderness by specifying the
actor(s) that is (are) being impersonated. Safety against insider threats is then expressed
by defining a global policy that specifies that Eve cannot achieve the security goal whose
security we want to investigate.

In our Isabelle model, we represent actors and their dispositions using a taxonomy from
the insider threat literature based on psychological studies (see, e.g. Nurse et al. [12]). We
do not model the human disposition (or mood) within the Isabelle framework. Nevertheless,
we represent the values of their description, for example “disgruntled”, which may be used
to make policies dependent on this. For example, a legislation could appear that excludes
pilots with certain medical conditions from controlling airplanes. However, to avoid raising
wrong expectations in the readers: we do not model the actual estimation of these values for
human actors but rather treat them as some kind of parameters to our model. It should be
noted that Isabelle’s expressiveness does not exclude such modeling for future work. We just
focus on the representation of these human aspects assuming that their values be provided
externally.

4.4. Infrastructures, Policies, Actors, and Insiders

In the Isabelle/HOL theory for insiders, one expresses policies over actions get, move,
eval, and put. An actor may be enabled to

e get data or physical items, like keys,

e move to a location,

e eval a program,

e put data at locations or physical items — like airplanes — “to the ground”.

The precise semantics of these actions is refined in the state transition rules for the concrete
infrastructure. The framework abstracts from concrete data — actions have no parameters:

11

datatype action = get | move | eval | put

The human component is the Actor which is represented by an abstract type actor and a
function Actor that creates elements of that type from identities (of type string):

typedecl actor
type_synonym identity = string
consts Actor :: string = actor

Note that it would seem more natural and simpler to just define actor as a datatype
over identities with a constructor Actor instead of a simple constant together with a type
declaration like, for example, in the Isabelle inductive package by Paulson [37]. This would,
however, make the constructor Actor an injective function by the underlying foundation of
datatypes therefore excluding the fine grained modelling that is at the core of the insider
definition: in fact, the core insider property UasI (see below) defines the function Actor to
be injective for all except insiders and explicitly enables insiders to have different roles by
identifying Actor images.

Atomic policies of type apolicy describe prerequisites for actions to be granted to actors
given by pairs of predicates (conditions) and sets of (enabled) actions:

type_synonym apolicy = ((actor = bool) X action set)

For example, the apolicy pair® (A\x. has (x, ’’PIN’’), {move}) specifies that all actors
who know the PIN are enabled to perform action move. To represent the macro level view
seeing the actor within an infrastructure, we define a graph datatype igraph (see below) for
infrastructures. This datatype has generic input parameters that are going to be supplied
as concrete parts of an application infrastructure on instantiation of an igraph. These
parameters are specified by the list of types behind the constructor Lgraph as: a set of
location pairs — the actual “map” of an application infrastructure and a list of actor identities
associated with each node (location) in that graph. Locations can be used to represent
physical or logical positions in an application, for example, cockpit and door in an airplane
or parts of a software, respectively. Moreover, an igraph contains a function associating
actors with a pair of string lists: the first list describes the credentials an actor has while
the second list defines the roles that an actor can take. Finally, an igraph has a component
assigning locations to a string list describing the state of the component. Slightly adapting
the original insider framework, we needed to integrate the credentials, roles, and location
state into the infrastructure graph to enable the dynamic view of state transition and Kripke
structures (see Section 4.5). For each of the components there exist corresponding projection
functions and predicates has and role to express that actors have credentials or that they
can perform in specified roles, respectively, and isin to express that locations are in a
specified state (see Appendix A).

SNote that) is the usual lambda-operator of higher order logic that describes functions. For instance,
the square function can be defined — without giving it a name — as A\z.x * x.

12

datatype igraph = Lgraph (location X location)set
location = identity list
actor = (string list X string list)
location = string list

Infrastructures combine an infrastructure graph of type igraph with a policy function that
assigns local policies over a graph to each location of the graph, that is, it is a function map-
ping an igraph to a function from location to apolicy set. The Isabelle type [igraph,
location] = apolicy set abbreviates igraph = (location = apolicy set) hence
the stepwise application to igraph to return a function is possible.

datatype infrastructure = Infrastructure igraph
[igraph, location] = apolicy set

Elements of the datatype infrastructure can thus be constructed using the constructor
Infrastructure, which is a higher order function, because it takes as (second) input a
policy valued function. This higher order parameter represents local policies, that is, maps
from graph locations to policies for that location. In the following section, we will see how
this higher order function enables proof of general preservation properties.

Policies specify the expected behaviour of actors of an infrastructure. We define the
behaviour of actors using a predicate enables: within infrastructure I, at location 1, an
actor h is enabled to perform an action a if there is a pair (p,e) in the local policy of 1 —
delta I 1 projects to the local policy — such that action a is in the action set e and the
policy predicate p holds for actor h.

enables I 1 ha =3 (p,e) € deltaIl. a€eAph

For example, the statement enables I 1 (Actor’’Bob’’) move is true if the atomic policy
(Ax. True, {move}) isin the set of atomic policies delta I 1 at location 1 in infrastruc-
ture I. Double quotes as in ’’Bob’’ create a string in Isabelle/HOL.

The human actor’s level is modelled in the Isabelle Insider framework by assigning the
individual actor’s psychological disposition” actor_state to each actor’s identity.

datatype actor_state = State psy_state motivations

The values used for the definition of the types motivations and psy_state (see Appendix
A) are based on a taxonomy from psychological insider research by Nurse et al. [12]. The
transition to become an insider is represented by a Catalyst that tips the insider over the
edge so he acts as an insider formalized as a “tipping point” predicate. To embed the fact
that the attacker is an insider, the actor can then impersonate other actors. In the Isabelle
Insider framework, the predicate Insider must be used as a locale assumption to enable

"Note that the determination of the psychological state of an actor is of course not done using the formal
system. It is up to a psychologist to determine this. However, if for instance, an actor is classified as
disgruntled then this may have an influence on what they are allowed to do according to a company policy
and this can be formally described and reasoned about in Isabelle.

13

impersonation for the insider: this assumption entails that an insider Actor ’’Eve’’ can
act like their alter ego, say Actor ’’Charlie’’ within the context of the locale. This is
realized by the predicate UasI:

UasI a b = (Actor a = Actor b) A
Vxy. x#aAy#aAActor x =Actory — x =y

Note that this predicate also stipulates that the function Actor is injective for any other
than the identities a and b. This completion of the Actor function to an “almost everywhere
injective function” is needed in some proofs (for an example see Section 6.4). We generalize
here from other approaches on formal security analysis used in particular in security protocol
verification known as the Dolev-Yao attacker model [38, 39]. The Dolev-Yao model allows
an attacker to eavesdrop, forge, replay, delay and rush, reorder, and delete any message and
also the attacker may impersonate any given role of a protocol participant. Our approach is
more flexible because it addresses not just one specific attacker with a set range of abilities
(for example eavesdrop or forge in the Dolev-Yao model). We define a general insider not
only for security protocols but any system. An insider can impersonate other actors and can
attain any ability or access rights that exist in the system. This flexibility also allows talking
about arbitrary properties of actors, policies and systems, for example, the fact that always
two actors need to be in a location, as seen in this paper — something that goes beyond the
specifics of the usual assumptions of Dolev-Yao for security protocols.

4.5. Kripke Structures and CTL

The expressiveness of Higher Order Logic allows formalizing the notion of Kripke struc-
tures as sets of states and a transition relation over those in Isabelle. Moreover, temporal
logic can be directly encoded using Isabelle’s fixpoint definitions for each of the CTL op-
erators by the first author [35]. Combining the two, we can then apply them as generic
tools to analyze dynamically changing infrastructures with insiders: we consider snapshots
of infrastructures as states, use the actors and their action based behaviour definition to
define a state transition, to then use temporal logic to express safety and security properties
over dynamically changing infrastructures. This application will be demonstrated on our
case study in Section 5.2. We briefly introduce here the necessary facts of Kripke structures
and CTL showing how they are instantiated for insiders.

The transition relation on system states is defined as an inductive predicate called
state_transition_in. It introduces the syntactic infix notation I —, I’ to denote that
system state I and I’ are in this relation.

inductive state_transition_in :: [state, state] = bool ("_ —, _")

The specification of the behaviour of actors in the Insider framework allows defining the
rules for the state transition relation of the Kripke structure for infrastructures for each of
the actions. Here is the rule for put. The expression h Qs 1 says that h is at location 1
in the graph G. The next state construction I’ uses the projections gra, agra, cgra, lgra
to select the graph itself, the actors-location association, the credentials and roles, and the

14

location state map, respectively. The rule expresses that an actor — who is at location 1
and is “put’-enabled in the infrastructure I by its policy at location 1 — can “put” the
location into a state z® in the successor state I’ of the state transition for infrastructures.
The double brackets enclose the preconditions of the meta-implication = in Isabelle. A
proposition [A; B]==-C simply abbreviates A=—(B=C).

put: [G = graphI I; a Qg 1;
enables I 1 (Actor a) put;
I’ = Infrastructure
(Lgraph (gra G) (agra G) (cgra G) ((lgra G) (1 := [z]1)))
(delta I)
] =1-—,1

We illustrate this particular rule here because we use it in the case study to express that an
actor can put the airplane to the ground (see Section 5.3).

We can already develop some very useful theorems for the state transition relation and
Kripke structures. For example, the following lemma motivates why we define infrastructures
as higher order functions where the local policies map the graph to a function over its
locations: precisely because of that generality of the infrastructure constructor we can prove
that state transitions do not change the policy delta — as one would expect.

lemma init_state_policy: I —, % I’ —> delta I = delta I’

The relation —,,"* is the reflexive transitive closure — an operator supplied by the Isabelle
theory library — applied to the relation —,,.

The proof of this invariant illustrates why for policy verification as we show here a
deductive framework like Isabelle is well suited. To deduce the above theorem, we first
prove that single step state transitions preserve the policy.

VII’.I —, I’ — delta I = delta I’

Then we use this lemma within an application of the induction for reflexive transitive clo-
sure of relations that is provided in the Isabelle theory library to infer the above lemma
init_state_policy. Note that it is the specification in HOL of the state transition relation
that provides the case analysis rule and the induction scheme as sound rules automatically
generated from the definition.

Branching time temporal logic CTL over Kripke structures has been integrated as part
of the Isabelle Insider framework by the first author [35]. A generic type state including a
transition —; is defined there using the concept of type classes in Isabelle. This type class
state is then instantiated to the type of infrastructures thereby instantiating the state
transition relation to —,, defined in the insider theory presented above (see Appendix A).

8The variable z has no constraints in the rule and can thus be instantiated to any value when applying
the Isabelle Infrastructure framework and thus instantiating this inductive definition of the state transition.

15

Thereby, the theory constructed and proved for this state transition —; over a generic type
state are transferred automatically to infrastructures and their transition relation —,.

Summarizing, the CTL-operators EX and AX express that property f holds in some or all
next states, respectively.

EX f
AX f

{s.3f0¢ f.s = f0}
{s. {f0. s —»; f0}Y C f %

The CTL formula AG f means that on all paths branching from a state s the formula f is
always true (G stands for ‘globally’). It can be defined using the Tarski fixpoint theory by
applying the greatest fixpoint operator.

AG f = gfp(\ Z. f N AX Z)

In a similar way, the other CTL operators are defined. The formal Isabelle definition of
what it means that formula f holds in a Kripke structure M for insiders can be stated as:
the initial states of the Kripke structure init M need to be contained in the set of all states
states M that imply f (see Clarke et al. [40]).

MF f= init M C { s € states M. s € f }

In an application, the set of states of the Kripke structure will be defined as the set of states
reachable by the infrastructure state transition from some initial state, say example _scenario.

example states = { I. example_scenario —;"* I }

The Kripke constructor combines the constituents state set, set of initial states, and state
transition relation —; by application of the dataype constructor Kripke.”

example Kripke = Kripke example_states {example_scenario} —;

Given some example_policy — a predicate over an infrastructure using actors, actions, and
their behaviours — we can then for example try to prove that this property holds generally
by attempting the following proof in Isabelle.

example Kripke — AG example_policy

If the proof fails, the failed attempt will reveal conditions describing a state in the Kripke
structure as well as actions leading to this state that identify an attack possibility. In the
example in Section 5.3, this will be illustrated. Additionally, the failed attempts to prove
the global validity also lead to identifying invariants of the system helping to establish
decisive side conditions as well as identifying loopholes. The loopholes lead to a deeper
insight into problems with the policy. By defining new locale assumptions and re-proving
global properties, the newly found assumptions can be refined until the proof succeeds. This
procedure will be illustrated on the airplane case study as well in Section 6.4.

9To this end, the state example_scenario is inserted into a singleton set using the Isabelle set constructor
{-r
16

Note that all the definitions in the locale airplane that we use in Section 5 have been
implemented as locale definitions using the locale keywords fixes and defines [41]. Thus
they are accessible whenever the locale airplane is invoked. But since definitions are
essentially abbreviations, they adhere to the principle of conservative extension of HOL not
endangering consistency.

5. Formalizing the Airplane Scenario

In this section, we present a methodology for the modeling and analysis of insider threats
illustrating it in detail on the airplane case study. Before we embark on the case study we
first present the methodology which serves as a section overview simultaneously.

5.1. Our Methodology for Insider Threat Analysis

We propose an informal methodology by summarizing the steps for the development of
secure policies in the presence of insiders using the Isabelle Insider framework. In each step
we provide forward references to the relevant sections where the case study illustrates it.

1. Build a model of the infrastructure, its actors, and local policies with roles and cre-
dentials and define the security property of interest as global policy (Sections 5.2 and
5.3).

2. Identify initial state(s) and define Kripke structure (Section 6.1).

3. Use the tipping point and insider assumptions to specify the potential insider(s) (Sec-
tion 5.4).

4. Invalidate the global policy, that is, negate the property to specify an infrastructure
state in which the insider can violate it (Section 5.4, Property ex_inv3).

5. Explore the state transition function to find a path from the initial state(s) to this
state in which the global policy is violated. For the invalidation and exploration,
CTL can be used: first attempt to prove AG {x. global policy x ’’Eve’’}; failure
produces potentially a candidate for an attack; next prove EF —{x. global policy
x ’’Eve’’} to establish the attack path (Section 6.1, Property aid_attack).

6. Repeat the previous two steps to improve the policy (Section 6.2), until the proof of
AG {x. global_policy x ’’Eve’’} succeeds (Section 6.4).

7. If after repeated cycles in the previous 3 steps the proof of the AG property is still not
successful, try to identify a missing global assumption (Section 6.3). Going back to
step 4, add the assumption as a locale assumption and re-iterate.

Final step: When a model is found that successfully passes the above loop, generalize over
its local policies to isolate their essential defining properties. This step will be illustrated by
showing an advantage of the HOL approach over model checking in Section 7.2.

5.2. Formalization of Airplane Infrastructure and Properties

We restrict the Airplane scenario to four identities: Bob, Charlie, Alice, and Eve. Bob
acts as the pilot, Charlie as the copilot, and Alice as the flight attendant. Eve is an identity

17

representing the malicious agent that can act as the copilot although not officially acting as
an airplane actor. The identities that act legally inside the airplane infrastructure are listed
in the set of airplane actors.

fixes airplane_actors :: identity set
defines airplane_actors_def: airplane_actors = {’’Bob’’, ’’Charlie’’, ’’Alice’’}

In the above locale definition we use the fixes keyword to introduce a locale constant with
its type which is then specified by defines. In the following, we drop all these elements but
the actual definition to make the exposition shorter and clearer.

To represent the layout of the airplane, a simple architecture is best suited for the purpose
of security policy verification. The locations we consider for the graph are cabin, door, and
cockpit. They are defined as locale definitions and assembled in a set airplane locations.

cabin = Location 0O

door = Location 1

cockpit = Location 2

airplane_locations = { cabin, door, cockpit }

The actual layout and the initial distribution of the actors in the airplane infrastructure
is defined by the following graph ex_graph (“ex” stands for “example”) in which the actors
Bob and Charlie are in the cockpit and Alice is in the cabin.

ex_graph = Lgraph
{(cockpit, door), (door,cabin)}
(A x. if x = cockpit then [’’Bob’’, ’’Charlie’’]
else (if x = door then []
else (if x = cabin then [’’Alice’’] else []1)))
ex_creds ex_locs

The two additional inputs ex_creds and ex_locs for the constructor Lgraph are the creden-
tial and role assignment to actors and the state function for locations (introduced in Section
4.4), respectively. For the airplane scenario, we use the function ex_creds to assign the roles
and credentials to actors. For example, for Actor ’’Bob’’ the following function returns
the pair of lists ([?’PIN’’], [’’pilot’’]) assigning the credential PIN to this actor and
designating the role pilot to him.

ex_creds = () x.
(if x = Actor ’’Bob’’ then ([’’PIN’’], [’’pilot’’])
else (if x = Actor ’’Charlie’’ then ([’’PIN’’],[’’copilot’’])
else (if x = Actor ’’Alice’’ then ([’’PIN’’],[’’flightattendant’’])
else ([O,[1D))N"

The final parameter ex_locs describes different states of the airplane. Concretely, we have
modelled them as locations, distinguishing three locations: cabin, door, and cockpit. The
door can be in three different states (’’norm’’, > ’locked’’, and ’’unlocked); the cockpit
in two (’’air’’ and ’’ground’’), where the cockpit stands here for the whole airplane

18

(that is, all locations are either in the air or on the ground). Different ways to model this
are possible, important is only that there are these 3 x 2 different states. Similar to the
previous function ex_creds, the function ex_locs assigns these states to the locations of the
infrastructure graph. For instance,

ex_locs = A\ x. if x = door then [’’norm’’]
else (if x = cockpit then [’’air’’] else [])

means that the door is in the normal state and the airplane is in the air.

5.3. Initial Global and Local Policies

In the Isabelle Insider framework, we define a global policy reflecting the global safety
and security goal and then break that down into local policies on the infrastructure. The
verification will then analyze whether the infrastructure’s local policies yield the global
policy.

Globally, we want to exclude attackers to ground the plane. In the formal model, landing
the airplane results from an actor performing a put action (see Section 4.5) in the cockpit
and thereby changing the state from air to ground.

Therefore, we specify the global policy as “no one except airplane actors can perform
put actions at location cockpit” by the following predicate over infrastructures I and actor
identities a.

global_policy I a = a ¢ airplane actors — —(enables I cockpit (Actor a) put)

We next attempt to define the local policies for each location as a function mapping locations
to sets of pairs: the first element of each pair for a location 1 is a predicate over actors
specifying the conditions necessary for an actor to be able to perform the actions specified
in the set of actions which is the second element of that pair. The local policy functions
are additionally parameterized over an infrastructure graph G since this may dynamically
change through the state transition.

local_policies G =
(A y. if y = cockpit then
{A x. (3 n. (n Qg cockpit) A Actor n = x), {put}),
(A x. (An. (n Qg cabin) A Actor n = x
A has (x, ’’PIN’’)A isin G door ’’norm’’), {move}) }
else (if y = door then {(A x. True, {movel)}
else (if y = cabin then {(A x. True, {movel})} else {})))

This policy expresses that any actor can move to door and cabin but places the following
restrictions on cockpit.

put: to perform a put action, that is, put the plane into a new position or put the lock,
an actor must be at position cockpit, i.e., in the cockpit, which is expressed using the
special location operator n Qg1 stating that identity n is at location 1 in graph G;

19

move: to perform a move action at location cockpit, that is, move into it, an actor must
be at the position cabin, must be in possession of PIN (formalized with the operator
has), and door must be in state norm expressed using isin.

Although this policy abstracts from the buzzer, the 30 sec delay, and a few other technical
details, it captures the essential features of the cockpit door.

The graph, credentials, and features are plugged together with the policy into the infra-
structure Airplane _scenario, which represents the initial state of the airplane.

Airplane_scenario = Infrastructure ex_graph local_policies

5.4. Insider Attack, Safety, and Security

We now first stage the insider attack and introduce basic definitions of safety and security
for the airplane scenario. To invoke the insider within an application of the Isabelle Insider
framework, we assume in the locale airplane as a locale assumption with assumes that the
tipping point has been reached for Eve which manifests itself in her actor_state assigned by
the locale function astate: if the identity x input to astate is ’ ’Eve’’ then x is depressed
and is in danger of tipping over to insider; in all other cases (captured by the wild card "_")
actor x is happy and has no “insider motivations” expressed by the empty motivations

set {}.

astate x = (case x of
’?Eve’’ = Actor_state depressed {revenge, peer_recognition}
| _ = Actor_state happy {})

In addition, we state that she is an insider being able to impersonate Charlie by locally
assuming the Insider predicate. This predicate allows an insider to impersonate a set of
other actor identities; in this case the set is singleton.

assumes Eve_precipitating_event: tipping_point(astate ’’Eve’’)
assumes Insider_Eve : Insider ’’Eve’’ {’’Charlie’’}

Next, the process of analysis uses this assumption as well as the definitions of the previous
section to prove security properties interactively as theorems in Isabelle. We use the strong
insider assumption here up front to provide a first sanity check on the model by validating
the infrastructure for the “normal” case. We prove that the global policy holds for the pilot
Bob. To illustrate a proof in Isabelle, we show the statement of the theorem including the
[sabelle proof script. The system replies of the interaction with Isabelle are omitted but can
be simply recreated by running that script.

lemma ex_inv: global_policy Airplane_scenario ’’Bob’’
by (simp add: Airplane_scenario_def global policy._def airplane_actors_def)

The proof is finished with one complex step: unfold the definitions of the scenario given
by Airplane scenario def and two other definitions and then apply the simplifier, an
automated technique that applies equational (including conditional) rewriting to solve a
goal.

We can prove the same theorem for Charlie who is the copilot in the scenario (omitting
the proof and accompanying Isabelle commands).

20

global_policy Airplane_scenario ’’Charlie’’

But Eve is an insider and is able to impersonate Charlie. She will ignore the global policy.
This insider threat can now be formalized as an invalidation of the global company policy
for ??Eve’’ in the following “attack” theorem named ex_inv3:

theorem ex_inv3: — global_policy Airplane_scenario ’’Eve’’

This theorem can be proved by first invoking the above insider assumption about Eve un-
folding the corresponding underlying definitions provided in the Isabelle Insider framework
but finally then again using the powerful simplification tactic simp. The attack theorem is
proved in Isabelle: it says that Eve can get access to the cockpit and put the position to
ground. In other words, Eve can crash the plane. The proof is very similar to proofs of
comparable theorems in other applications of the Isabelle Insider framework, for instance,
for the ToT [24] or for auctions [23], and can basically be copied from there just replacing
local definition names. Summarizing, the insider assumption allows modelling that actors
may be the same as other actors. Policies that are expressed according to roles thus apply
to those insiders that — given that they are attackers — are harmful.

Safety and security are sometimes introduced in textbooks as complementary properties,
see, e.g., [42]. Safety expresses that humans and goods should be protected from negative
effects caused by machines while security is the inverse direction: machines (computers)
should be protected from malicious humans. Similarly, the following descriptions of safety
and security in the airplane scenario also illustrate this complementarity: one says that the
door must stay closed to the outside; the other that there must be a possibility to open it
from the outside.

Safety: If the actors in the cockpit are out of action, there must be a possibility to get into
the cockpit from the cabin, and

Security: If the actors in the cockpit fear an attack from the cabin, they can lock the door.

In the formal translation of these properties into HOL, this complementarity manifests itself
even more clearly: the conclusions of the two formalizations of the properties are negations
of each other. Safety is quite concisely described by stating that airplane actors can move
into the cockpit.

Safety I a = a € airplane_actors — (enables I cockpit (Actor a) move)

Security can also be defined in a simple manner as the property that no actor can move into
the cockpit if the door is on lock.

Security I a = isin (graphIl I) door ’’locked’’
— —1(enables I cockpit (Actor a) move)

These two properties are defined for any infrastructure I so we can apply them to the initial
airplane scenario we have defined in the previous section. For this Airplane_scenario, we
can show safety, for example, for Alice because she is in the cabin.

21

lemma Safety: Safety Airplane_scenario ’’Alice’’

In general, we could prove safety for any airplane actor who is in the cabin for this state of
the infrastructure.

In a slightly more complex proof, we can prove security for any other identity which can
be simply instantiated to ’’Bob’’.

lemma Security: Security Airplane_scenario ’’Bob’’

The simple formalizations of safety and security enable proofs only over a particular state
of the airplane infrastructure at a time but this is not enough since the general airplane
structure is subject to state changes. For a general verification, we need to prove that the
properties of interest are preserved under potential changes. Since the airplane infrastructure
permits, for example, that actors move about inside the airplane, we need to verify safety
and security properties in a dynamic setting. After all, the insider attack on Germanwings
Flight 9525 appeared when the pilot had moved out of the cockpit. Furthermore, we want
to redefine the policy into the two-person policy and examine whether safety and security
are improved. For these reasons, we next apply the general Kripke structure mechanism
introduced in Section 4.5 to the airplane scenario.

6. Analysis of Safety and Security Properties

In this section we first introduce a Kripke structure to model state transitions in the
airplane scenario. Then we formalize the two-person rule and look how this rule is related
to the property that the airplane is not in danger with respect to an insider attack. We
show that an additional assumption is necessary to prove this property.

6.1. Kripke Structure for Airplane Scenario

The state transition relation —; introduced in Section 4.5 is generally defined for a type
class state. Therefore, we can instantiate the state transition for the type infrastructure
as state_transition_in written as infix operator —,. Consequently, we can define the set
of all states that are in the reflexive transitive closure of the infrastructure transition relation
when starting in the infrastructure Airplane_scenario as a locale definition Air_states.

Air_states = { I. Airplane_scenario —, * I }

From there, we can define a corresponding Kripke structure by applying the constructor
Kripke to the above state set and the singleton set of Airplane scenario as the (only)
initial state.

Air Kripke = Kripke Air_states {Airplane_scenario}

We now illustrate how we can use this Kripke structure to explore and potentially inval-
idate the policy. The state of the infrastructure that represents the fatal state is when the
pilot has moved out and the door is locked. We introduce a locale definition aid_graph to
represent the graph for this infrastructure using the acronym aid for “airplane in danger”
to signify the relation to the state in its graph component.

22

aid_graph = Lgraph
{(cockpit, door), (door,cabin)}
(A x. if x = cockpit then [’’Charlie’’]
else (if x = door then []
else (if x = cabin then [’’Bob’’, ’’Alice’’] else [1)))
ex_creds ex_locs’

The function ex_locs’ encodes the state of the airplane where the door is now locked.

ex_locs’ = A x. if x = door then [’’locked’’]
else (if x = cockpit then [’’air’’] else [])

We finally define a new infrastructure state that takes this graph and the same local policies
as Airplane_scenario.

Airplane_in_danger = Infrastructure aid_graph local_policies

The airplane is potentially in danger in such a situation, since the copilot is on his own
and may crash the airplane as a result if he executes an insider attack. For the analysis
of security, we need to ask whether this new infrastructure state Airplane_in danger is
reachable via the state transition relation from the initial state. It is. We can prove the
following as a theorem in the locale airplane.

theorem step_allr: Airplane_scenario —, * Airplane_in_danger

As the name of this theorem suggests it is the result of lining up a sequence of steps that
lead from the initial Airplane _scenario to that Airplane _in danger state. In fact there
are three steps via two intermediary infrastructure states Airplane getting in dangerO
and Airplane getting in danger (see Appendix A). The former encodes the state where
Bob has moved to the cabin and the latter encodes the successor state in which additionally
the door state has changed to locked. The definitions of these states are very similar to
the above definition of Airplane in danger (see Appendix A). The proof of the theorem
step_allr correspondingly lines up lemmas for each of the state transitions between the
involved states. Once provided with these lemmas, the main proof is just one simplification
with the underlying definition of the reflexive transitive closure of a relation. This is the
advantage of using a richly equipped proof assistant: the theory library is well equipped
with standard mathematics and the tactics work well on this basis. The only real work
has to be done to prove the individual steps. However, although the proof scripts are a bit
lengthy, this is just simple step by step unfolding of definitions and simplification. The only
reason why it is not done in one step fully automatically is that some instantiations under
existential quantifiers have to be inserted in the application of the state transition rules, like
for example the rule put we have seen in Section 4.5.

Using the formalization of CTL over Kripke structures introduced in Section 4.5, we can
now transform the attack sequence represented implicitly by the above theorem step_allr
into a temporal logic statement. This attack theorem states that there is a path from the
initial state of the Kripke structure Air Kripke on which eventually the global policy is
violated by the attacker.

23

theorem aid_attack: Air_Kripke F EF ({x. — global_policy x ’’Eve’’})

The proof uses the underlying formalization of CTL and the lemmas that are provided
to evaluate the EF statement on the Kripke structure. However, the attack sequence is
already provided by the previous theorem. So the proof just consists in supplying the step
lemmas for each step and finally proving that for the state at the end of the attack path,
i.e., for Airplane _in danger, the global policy is violated. This proof corresponds precisely
to the proof of the attack theorem ex inv3. It is not surprising that the security attack
is possible in the reachable state Airplane_in_danger when it was already possible in the
initial state. However, this statement is not satisfactory since the model does not take into
account whether the copilot is on his own when he launches the attack. This is the purpose
of the two-person rule which we want to investigate in more detail in this paper. Therefore,
we next address how to add the two-person rule to the model.

6.2. Introduce Two-Person Rule

To express the rule that two authorized personnel must be present at all times in the
cockpit, we define a second set of local policies called 1ocal policies_four_eyes (two peo-
ple have four eyes). The following function realizes this two-person constraint by providing
prerequisites for when actions can be performed, by whom, and where. It requests that the
number of actors at the location cockpit in the graph G given as input must be at least two
to enable actors at the location to perform the action put. Formally, we can express this
here as 2 <length(agra G cockpit) since we have all of arithmetic available (remember
agra G y is the list of actors at location y in G introduced in Section 4.5).

local_policies_four_eyes G =
(A y. if y = cockpit then
{A x. (3 n. n Qg cockpit A Actor n = x) A 2 < length(agra G y) A
V h € set(agra G y). h € airplane_actors), {putl}),
(A x. (A n. n Qg cabin A Actor n = x) A has (x, ’’PIN’’)A
isin G door ’’morm’’), {movel})}
else (if y = door then
{(A x. ((n. n Qs cockpit A Actor n = x)
A 3 < length(agra G cockpit)), {move})}
else (if y = cabin then
{(\ x. 3 n. n Qg door A Actor n = x), {move}l)}
else {})))

Note that the two-person rule requires three people to be at the cockpit before one of them
can leave. This is formalized as a condition on the move action of location door. A move
of an actor x in the cockpit to door is allowed only if three people are in the cockpit.
Practically, it enforces a person, say Alice, to first enter the cockpit before the pilot, Bob,
can leave. However, this condition is necessary to guarantee that the two-person requirement
for cockpit is sustained by the dynamic changes to the infrastructure state caused by actors’
moves. A move to location cabin is allowed only from door so no additional condition is
necessary here.

24

What is stated informally above seems intuitive and quite easy to believe. However,
comparing to the earlier formalization of this two-person rule [2], it appears that the earlier
version did not have the additional condition on the action move to door. One may argue
that in the earlier version the authors did not consider this because they had neither state
transitions, Kripke structures, nor CTL to consider dynamic changes. However, in the
current paper this additional side condition occurred to us only when we tried to prove the
following invariant two_person_invl which is needed in a subsequent security proof.

lemma two_person_invi:
Airplane_not_in_danger_init —,"* I = 2 < length (agra (graphIl I) cockpit)

This proof requires an induction over the state transition relation starting in the infra-
structure state Airplane not_in danger_init with Charlie and Bob in the cockpit and the
two-person policy local policies_four_eyes in place.

Airplane_not_in_danger_init = Infrastructure ex_graph local_policies_four_eyes

The corresponding Kripke structure of all states originating in this infrastructure state is de-
fined as Air_tp Kripke. Within the induction for the proof of the above two_person_invi,
a preservation lemma is required that proves that if the condition 2 < length (agra
(graphI I) cockpit) holds for T and I —, I’ then it also holds for I’. The preservation
lemma is actually trickier to prove. It uses a case analysis over all the transition rules for
each action. The rules for put and get are easy to prove for the user as they are solved by
the simplification tactic automatically. The case for action move is the difficult case. Here
we actually need to use the precondition of the policy for location door in order to prove
that the two-person invariant is preserved by an actor moving out of the cockpit. In this
case, we need for example, invariants like the lemma actors_ unique_loc_aid step below
that shows that in any infrastructure state originating from Airplane not_in danger_init
actors ever appear in one location only and they do not appear more than once in a location
— which is expressed in a predicate nodup (see Appendix A). The following lemma is an
instantiation of a similar general lemma proved for all Kripke structures — similar to the
lemma init_state_policy mentioned in Section 4.5.

lemma actors_unique_loc_aid_step:
Airplane_not_in_danger_init —, % I
= Va (V11. aQganri) 1 ANaQgapprr 17 — 1 =1
A (V 1. nodup a (agra (graphI I) 1))

6.3. Revealing Necessary Assumption by Proof Failure

So far we used CTL only to discover attacks using EF formulas. What we need for
general security and what we will consider next is to prove a global property with the
temporal operator AG that proves that from a given initial state the global policy holds in
all (A) states globally (G).

As we have seen in the previous section when looking at the proof of two_person_invi,
it is not evident and trivial to prove that all state changes preserve security properties.
However, even this invariant does not suffice. Even if the two-person rule is successfully
enforced in a state, it is on its own still not sufficient. When we try to prove

25

Air_tp_Kripke - AG {x. global_policy x ’’Eve’’}

for the Kripke structure Air_tp Kripke ("tp” stands for “two-persons”) consisting of all
states originating in state Airplane not_in danger_init, we cannot succeed. In fact, in
that Kripke structure there are infrastructure states where the insider attack is possible.
Despite the fact that we have stipulated the two-person rule as part of the new policy and
despite the fact that we can prove that this policy is preserved by all state changes, the rule
has no consequence on the insider. Since Eve can impersonate the copilot Charlie, whether
two people are in the cockpit or not, the attack can happen.

What we realize through this failed attempt to prove a global property is that the policy
formulation does not entail that the presence of two people in itself actually disables an
attacker.

This insight reveals a hidden assumption. Formal reasoning systems have the advantage
that hidden assumptions must be made explicit. In human reasoning they occur when people
assume a common understanding, which may or may not be actually the case. In the case
of the rule above, its purpose may lead to an assumption that humans accept but which is
not warranted.

We use again a locale definition to encode this intentional understanding of the two-
person rule. The formula foe_control encodes that for any location 1 and action c in the
Kripke structure K holds that if in all states I in K there is an Actor x present that is not
an insider, that is, is not impersonated by Eve, that then the insider is disabled for that
action c. In other words, it is assumed that a potential insider is controlled by the presence
of a non-insider. In particular, the insider will not be able to knock out the non-insider.

foe_control 1 ¢c K = (V I € states K. (3 x. x @Q; 1 A Actor x # Actor ’’Eve’’)
— —(enables I 1 (Actor ’’Eve’’) c))

6.4. Proving Securilty in Refined Model

Having identified the missing formulation of the intentional effects of the two-person rule,
we can now finally prove the general security property using the above locale definition. We
assume in the locale airplane an instance of foe_control for the cockpit and the action
put in the Kripke structure Air_tp Kripke.

assumes cockpit_foe_control: foe_control cockpit put

With this assumption, we are now able to prove that for all infrastructure states of the
system airplane originating in state Airplane not_in danger_init Eve cannot put the
airplane to the ground (intuition: “Four eyes guarantee there is no danger”).

theorem Four_eyes_no_danger: Air_tp_Kripke + AG {x. global_policy x ’’Eve’’}

The proof uses as a key lemma tp_imp_control (for “two persons implies control”) stating
that within Kripke structure Air_tp_Kripke there is always someone in the cockpit who is
not the insider.

26

lemma tp_imp_control: Airplane_not_in_danger_init —, % I
= 3 x. x Q; cockpit A Actor x # Actor ’’Eve’’

This lemma can be proved by using the invariant that always two people are in the cockpit.
However, the invariant two_person_inv1l cannot be used directly since it is a lemma over
lists rather than sets. Instead of re-formulating the model with sets, we use the simple fact
about finite sets and lists that a list without duplications has a length that is equal to the
cardinality of the corresponding set.

(V¥ a. nodup a 1) — card (set 1) = length 1

This general lemma enables together with the invariant actors_unique_step_loc_aid_step
the proof of the more suitable invariant two_person_set_inv.

lemma two_person_set_inv: Airplane_not_in_danger_init —,, % I
— 2 < card (set (agra (graphl z) cockpit))

Using the assumption foe_control, we can now — mainly by applying modus ponens — derive
that Eve is not enabled in cockpit to perform put for any infrastructure state originating
from Airplane not_in danger_init.

Airplane_not_in_danger_init —, * I — — enables I cockpit (Actor ’’Eve’’) put

Now, the proof of theorem Four_eyes no_danger (see Appendix A) uses simplification on
basic lemmas for Kripke structures and CTL to reduce to the above fact which finishes the
proof.

7. Model checking and Generalizing over Policies

In this section, we consider an alternative approach to formalizing and verifying the
airplane case study using a model checker. We then show how the formalization in the
Isabelle Insider framework demonstrated in this paper can be generalized over policies. This
additional work serves to illustrate the surplus gained by using the heavier Isabelle approach.

7.1. Model Checking the Airplane Case Study

We will in the following present a NuSMV (see Cimatti et al. [4]) representation of the
airplane scenario and introduce three different policies. The full NuSMV sources of our case
studies are available online [3]. The different policies each guarantee the two-person rule
that means that at least two crew members must be in the cockpit at any moment in time.
In the first policy, which is the policy explored in our Isabelle formalization, see section 6.2,
this is achieved by the fact that a cabin crew member has to enter the cockpit before a pilot
can leave; in the second policy the two pilots must not leave the cockpit; and in the third
policy only one of three pilots may leave.

Common in the representations is to represent the location of the agents (numbered by
1, 2, 3, and 4 for Alice (cabin crew), Bob, Charlie, and Doris (pilots), as an array with the
three values cockpit, dr, and cockpit.

27

Any member of staff knows the pin to open the door in case the pilots are all incapac-
itated. In order to express the two-person rule we define the number of non-incapacitated
crew members (or pilots for the third policy) in the cockpit by the definition:

cocknum :=
-- Three non-incapacitated crew members are in the cockpit.
case (((airplane[1] = cockpit) & (airplane[2] = cockpit) & (airplane[3] = cockpit) &
!incapacitated[1] & !incapacitated[2] & !incapacitated[3])) :3;
-- Two non-incapacitated crew members are in the cockpit.

(((airplane[1] = cockpit) & (airplane[2] = cockpit) & !incapacitated[1] & !incapacitated[2]) |
((airplane[2] = cockpit) & (airplane[3] = cockpit) & !incapacitated[2] & !incapacitated[3]) |
((airplane[1] = cockpit) & (airplane[3] = cockpit) & !incapacitated[1] & !incapacitated[3])) 123

-- One non-incapacitated crew member is in the cockpit.
(((airplane[1] = cockpit) & !incapacitated[1]) | ((airplane[2] = cockpit) & !incapacitated[2]) |
((airplane[3] = cockpit) & !incapacitated[3])) 01
-- No non-incapacitated crew member is in the cockpit.

TRUE :0;

esac;

We make the assumption that the crew members know initially the pin for the door and
never forget it, non-crew members do not know the pin initially but may get hold of it (e.g.
by forcing cabin crew to disclose it). Initially the crew members are all not incapacitated

and nobody wants to leave the cockpit.
We then express when a crew member may leave the cockpit. For the first policy, as
introduced at the start of this subsection, it is represented for one pilot as:

next(s.airplane[2]) :=
case
s.airplane[2] = cockpit & s.threep & s.leave = 2: {dr}; -
.airplane[2] = cockpit & !s.threep & s.leave = 2: {cockpit}; --
.airplane[2] = cockpit & !(s.leave = 2): {cockpit}; --
.airplane[2] = dr & s.door = UL : {dr, cockpit, cabin}; -
.airplane[2] = dr & !(s.door = UL) : {dr, cabin}; --
s.airplane[2] = cabin : {cabin, dr}; -
esac;

leaves the cockpit.

may not leave the cockpit.

does not want to leave the cockpit.
may enter the cockpit.

may not enter the cockpit.

may move to the door.

n n n n
NN NNNDN

The main safety requirement is expressed by

AG(!'s.incapacitated[1] & 's.incapacitated[2] & !s.incapacitated[3] -> s.airplaneSafe)

It means as long as the crew members are not incapacitated the airplane is safe (under the

first policy from above).
The same is the case under the second policy where no pilot may leave the cockpit:

next(s.airplane[2]) :=

case
s.airplane[2] = cockpit: {cockpit}; -- 2 cannot leave the cockpit.
s.airplane[2] = dr & s.door = UL : {dr, cockpit, cabin}; -- 2 may enter the cockpit.
s.airplane[2] = dr & !(s.door = UL) : {dr, cabin}; -- 2 may not enter the cockpit.
s.airplane[2] = cabin : {cabin, dr}; -- 2 may move to the door.

esac;

Under the third policy we have a third pilot in the cockpit and the main safety requirement
is expressed by

AG ((!'s.incapacitated[2] & !s.incapacitated[3] & !s.incapacitated[4]) -> s.airplaneSafe)

28

Finally, we present a formula in CTL that is not expressible in LTL. It states that along
ALL paths there EXISTS a path such that if both pilots are incapacitated and the cabin
crew member is not that then the cabin crew member is in the cockpit. That is, this property
verifies that under the policy it is always possible for the flight attendant to open the door
if the two pilots are incapacitated.

AG EF(!s.incapacitated[1] & s.incapacitated[2] & s.incapacitated[3] ->
(s.airplane[1] = cockpit))

All four formulae are proved by NuSMV instantaneously. Note that the representation
above makes use of translations of the policies into concrete code and does not allow for a
generalization of the kind: “All policies that mean that always at least two crew members
are in the cockpit and no non-crew member can enter the cockpit ensure that the airplane
is safe.”

7.2. Generalizing over policies

The main theorem Four_eyes_no_danger in Section 6.4 establishes safety from the in-
sider Eve for the Kripke structure Air_tp Kripke. In this Kripke structure, the local policy
local policies_four_eyes holds in the initial state and is preserved in all reachable states.
It is a specific implementation that corresponds to one of the policies that have been illus-
trated in the previous section: the global security invariant guaranteeing that always two
people are in the cockpit is achieved by enforcing that three actors need to be there before
one can leave.

Compared to the model checking approach described and illustrated on the current case
study, we seem to gain nothing by using the Isabelle Insider framework. Clearly, a benefit
of using Isabelle is that we could reuse the model abstraction to help us build the NuSMV
model but that hardly justifies the effort. Additionally, one may argue that in Isabelle, we
may use general datatypes like natural numbers and quantify over them which is not possible
in NuSMV due to finite state spaces. However, for the considered case study we may safely
assume a finite number of states and use of quantification of functions in formulas could
then simply be replaced by enumerating all cases (for example, in cocknum or airplane in
Section 7.1).

Nevertheless, Isabelle’s Higher Order Logic (HOL) has none of the restrictions that model
checking has. Therefore, we can make a final important step in our developments that is
not possible in model checking. We can generalize over any parameter since we are using
HOL. Practically, this means that we can extract a parameter from any formula, quantify
it and consider theorems on it. To illustrate this on a meaningful example, we now add a
final step to the developments described in this paper so far and show how we can generalize
over the policy in the Kripke structure and still gain the main result. That is, we can prove
a generalized version of the theorem Four_eyes_no_danger.

29

theorem Gen_policy:
foe_control cockpit put (Kripke { I. I0 —;"* I } {I0}) —
(VW I. (10, I) € {(x::infrastructure, y::infrastructure). x —, y} *
— 2 < card (set (agra (graphIl I) cockpit))) =
(V z. (I0 ,z) € {(x::infrastructure, y::infrastructure). x —, y} " * —
(V h::identity € set (agra (graphl z) cockpit). h € airplane_actors)) —
Kripke { I. I0 —,"* I } {IO} - AG {x. global_policy x ’’Eve’’}

Compared to the theorem Four_eyes no_danger, the theorem Gen_policy generalizes the
Kripke structure Airplane_tp Kripke to an arbitrary structure Kripke { I. I0 —, % I
} {10}, that is, any Kripke structure that starts from an arbitrary infrastructure I0 and
is closed under —, "* and may contain any security policy. Additional provisos guaran-
tee that (1) foe_control holds for cockpit and put in this arbitrary Kripke structure,
(2) the 2-person invariant holds in any reachable state, and (3) only airplane actors are
in the cockpit in all reachable states. The proviso (1) corresponds to the hidden assump-
tion cockpit_foe_control that we have assumed as a locale assumption for the specific
case Airplane_tp_Kripke before. The proviso (2) is the abstract expression of the two
person policy. Previously in the specific case Airplane tp Kripke, this property had been
proved as the lemma two_person_invil. Finally, the proviso (3) corresponds to the lemma
air_plane_actors_inv (see Appendix A).

The proof of the theorem Gen_policy now follows quite closely that of the special case
Four_eyes_no_danger simply replacing either the additional provisos (1-3) or the generalized
lemmas for their specific counterparts.

As a validation of the generality of the newly derived theorem Gen_policy, we finally
“reprove” the special theorem Four_eyes_no_danger.

theorem Four_eyes_no_danger’: Air_tp_Kripke - AG (x. global_policy x ’’Eve’’)
unfolding Air_tp_Kripke_def Air_tp_states_def
by (rule Gen_policy, fold Air_tp_Kripke_def Air_tp_states_def,

rule cockpit_foe_control, simp add: two_person_set_inv,

simp add: airplane_actors_inv)

The theorem Four_eyes_no_danger’ restates exactly the same proof goal as Four_eyes_no_danger.
After unfolding the definitions of the specific Kripke structure Air_tp Kripke, the Isar proof

is contained in the brackets behind the by: applying the new generic theorem Gen_policy
reduces to subgoals that can then be completely solved by plugging in the previously proved
lemmas that fit to the provisos (1-3) of the theorem (after folding again the definition of
Air_tp Kripke to fit it back to the special form).

8. Discussion and Conclusions

In this section, we briefly discuss limitations and approaches to developing airplane
policies, summarize the contributions of the paper, and present some concluding remarks.

30

8.1. Comparison of Isabelle and NuSMV

To provide a comparison between Isabelle and model checking, we give here some pros
and cons of Isabelle and model checking.

Isabelle pros

The Isabelle Insider framework offers an explicit level of concepts, like policy, graph,
actors and their roles and credentials, allowing reasoning at a meta-level due to Isabelle’s
expressive Higher Order Logic. This makes the formalization a framework. Generally,
Isabelle is highly expressive, contains recursive datatypes and functions allowing represen-
tation of complex parts of applications. Generalization over higher order parameters is
possible leading, as illustrated, on to the generalization of our main theorem. This leads to
a “meta-theory” that can then be applied to more concrete cases as illustrated by applying
the generalized theorem to re-prove the special case of one specific implementation of the
policy.

Isabelle cons

Isabelle is not fully automated, thus expert level knowledge is necessary at least to do
meta-level proofs. The application of the framework allows reuse and proofs that are simple
(and thus highly automated). Isabelle’s expressiveness leads to complex specifications that
necessitate a deeper understanding for human users. An Isabelle application scenario is
that a team of security experts and policy makers work with some security/formal methods
engineer, experiment with policies and their implications, for example, for airplane security.

Model checking pros

The big advantage of model checking is that due to the restrictions on datatypes, the
specifications are usually simpler. Also model checking offers fully automated verification
(checking). Using a high level of abstraction, the same application scenarios as in Isabelle can
be modelled. As far as only specific implementations in finite instantiations are concerned
the same properties can also be verified as in Isabelle.

Model checking cons

Compared to Isabelle only restricted datatypes, only propositional logic in states, no
general function types, and no general predicates are available. This makes a generalization
over a higher order concept like a policy impossible as we illustrated. It also leads to a low
level of abstraction when modelling applications. Consequently, the human needs to make
sure that the abstraction does still adequately represent the real world. This is similar for
Isabelle but there the much higher level of expressiveness makes that judgement easier and
more natural. In model checking, almost the only obvious liaison are the chosen names for
elements, “airplaneSafe” for example.

8.2. Aspects of Airplane Policies
In order to prove consequences of policies certain assumptions have to be made and it
is important to analyze the assumptions, since any consequences hold only with respect to

31

the assumptions. An important assumption is that the airplane is initially not in danger,
Airplane not_in danger init. That is, if the assumption is violated initially (before the
airplane leaves the ground) then we cannot conclude that the airplane will not be in danger
later. Current policies do not assume that the cockpit door must be locked before passengers
board the airplane. Actually, often it is still open and closed only later. This means that
an attack by an outsider during this phase cannot be ruled out, or by an insider if only one
pilot were in the cockpit and locked the door.

For airlines it is an important question whether they should follow a two-person rule and
as a consequence of the events on 2015-03-24 with the Germanwings flight 9525 a number
of countries recommended the rule and a number of airlines'® introduced them — without
public consideration of possible negative consequences. In a more recent development, some
German airlines have rescinded the two-person rule,!! since the introduction has also the
disadvantage that it takes considerably longer for one person to leave and another to enter
the cockpit than just for one person to leave. This means that with the two-person policy,
each time a pilot/co-pilot leaves the cockpit the door is open for much longer than without
the policy, hence increasing the risk of a hostile attack. Up to now no good improvement
on the protocol for the door has been found, since any change seems to be paired with
substantial disadvantage as well.

We have not formally modelled the situation and the reasoning behind this. We do
this informally here. If we assume pg, the probability that one pilot is an insider; p;, the
probability that a terrorist can use the time the door is open to enter the cockpit following
the one-person rule and take over the plane; and ps, the corresponding probability that a
terrorist can enter the cockpit following the two-person rule.

Fortunately all these probabilities are very small. This means, however, that there is no
reliable way to determine their values. It seems obvious that p, > p;, it can be assumed
that p, is considerably bigger than p;.'?

With these probabilities we get that an aircraft is in danger according to the one-person
rule by P(insider OR terrorist) = py + p1 — P(insider AND terrorist) = py + p1. With the
two-person rule we get P(insider OR terrorist) =0+ py — 0 - py = pa.

The second equation of the first case assumes that the events that a pilot is an insider
and that a terrorist can use the one-person rule to enter the cockpit are independent. The
approximate equality follows since both py and p; are very small, that is, the size of pg - p; is
negligible compared to either py or p;. In the second case it is assumed that the probability
that an insider can harm the plane if not on their own is 0.

In order to follow a rational policy, an airline should look at the relationship of the
probabilities in the two cases, that is, between p, and py + p;. It should go for the smaller
probability. If the probability of a terrorist getting in following the two-person rule is greater

0This is reported, for instance, in an article of 2015-03-26 by Reuters, http://www.reuters.com/
article/france-crash-cockpits-idUSLENOWS6GR20150326.

1Gee https://phys.org/news/2017-04-german-airlines-scrap-two-person-cockpit.html and
https://www.swiss.com/corporate/EN/media/newsroom/press-releases/media-release-20170428.

12G8ee, https://www.easa.europa.eu/newsroom-and-events/news/minimum-cockpit-occupancy-easa-
issues-revised-safety-information-bulletin

32

http://www.reuters.com/article/france-crash-cockpits-idUSL6N0WS6GR20150326
http://www.reuters.com/article/france-crash-cockpits-idUSL6N0WS6GR20150326
https://phys.org/news/2017-04-german-airlines-scrap-two-person-cockpit.html
https://www.swiss.com/corporate/EN/media/newsroom/press-releases/media-release-20170428
https://www.easa.europa.eu/newsroom-and-events/news/minimum-cockpit-occupancy-easa-issues-revised-safety-information-bulletin
https://www.easa.europa.eu/newsroom-and-events/news/minimum-cockpit-occupancy-easa-issues-revised-safety-information-bulletin

than that of getting in following the one-person rule plus the probability of an insider doing
harm then follow the one-person rule, else the two-person rule.

However, as we have mentioned above it is very difficult to determine these probabilities.
Hence, when it comes to defining policies, it looks much more fruitful to consider possibilistic
specifications of systems, actors, and their possible behaviours in order to understand better
the shortcomings and possible glitches when imposing policies as security rules than to apply
probabilistic reasoning.

8.8. Summary of Contributions

We have presented an extended version of the Isabelle Insider framework demonstrating
it on a case study of airplane policies in the presence of Insider threats. Isabelle is a tool
that allows to build well-founded definitions that come with proof rules for model features.
Datatypes and induction on predicates are derived from first principles like fixpoint induction
and datatype isomorphism in HOL and thus are mathematically sound. This is known as
the principle of conservative extension. It is this principle that adds a special quality of
mathematical soundness to Isabelle formalizations. The Isabelle Insider framework is such a
conservative extension, hence consistent in itself. It is also a framework since its theories may
be applied to arbitrary applications of infrastructures including human actors with actions
and policies. The applicability is achieved by fully exploiting Isabelle’s genericity enabling a
generic state type with transition relations, Kripke structures and temporal logic CTL. The
airplane case study presented in this paper has served as a source for requirements and test
case for the Isabelle Insider framework and has yielded the following extensions:

e A generic notion of state allows to embrace infrastructures with actors, actions, and
policies in one type of state. The state transition relation over this state is now defined
as an axiomatic type class allowing to instantiate the framework to the complex state
type of an application like airplane.

e Kripke structures and CTL allow stating and reasoning over temporal properties of
these dynamic states in a fully consistent way in Isabelle.

A further contribution given by the airplane application is the extension of the framework
by a methodology. This framework enables experimenting with policies over infrastructures
with humans and actions as has been demonstrated on the airplane case study. The experi-
mentation may lead to revealing missing assumptions which allowed us to define an informal
methodology. Further contributions are not of a technological but more of a scientific nature
in comparing the expressivity and performance of the Isabelle Infrastructure framework with
respect to a dedicated implementation of CTL in the model checker NuSMV.

e We present the airplane model using a suitable abstraction of details in NuSMV proving
the policy in various implementations.

e By contrast, to illustrate the expressive power of Isabelle, we generalize over concrete
policies reproving the global security theorem.

33

Concerning the human aspect, the Isabelle Insider framework offers now a representation
including motivation and insiderness which allows policies to make dynamic state based
reasoning dependent on human aspects. However — and this could be future work — the
formalization does not accommodate the cognitive dynamics of the human mood although
this could have been a possible extension.

8.4. Conclusions and Acknowledgments

The current work has picked up on the earlier application [2] on investigating airplane
safety and security in the presence of insiders. We have successfully proved the major obser-
vation of that earlier paper: a thorough logical analysis of the airplane scenario requires the
exploration of the state space for all possible changes to the state. Integrating the extensions
to Kripke structures and CTL in our model we were now able to explore the airplane sce-
nario thoroughly and completely. The analysis in the interactive theorem prover Isabelle has
shown that earlier results were partly misleading because security results were only relating
statically to one specific state at a time. This work has shown that it is possible to support
formal modeling and analysis for insider threats by a rich structural state supporting rep-
resentation of human aspects and general policies in the Isabelle Insider framework while
simultaneously enabling dynamic state change and temporal specification. The point is also
made that the effect of an Isabelle formalization provides us the possibility of systematically
revealing hidden (implicit) assumptions. Since this can be done systematically, it leads to
a methodology. Moreover, we have provided an alternative analysis with the model checker
NuSMV and generalized the Isabelle theorems over arbitrary policies to show advantages
and drawbacks of our approach. In section 8.2, we have also discussed how the policy mak-
ers’ decisions should rationally follow from the relationships between the probabilities of
attacks, which depend on the policies adopted.

We are very much indebted to the anonymous referees that have very constructively
commented on various stages of this article. We are very grateful for their time and effort
spent because it has greatly supported us in improving the technical contribution as well as
the exposition.

References

[1] F. Kammiiller, C. W. Probst, Modeling and verification of insider threats using logical analysis, IEEE
Systems Journal, Special issue on Insider Threats to Information Security, Digital Espionage, and
Counter Intelligence 11 (2) (2017) 534-545. doi:10.1109/JSYST.2015.2453215.

URL http://dx.doi.org/10.1109/JSYST.2015.2453215

[2] F. Kammiiller, M. Kerber, Investigating airplane safety and security against insider threats using
logical modeling, in: IEEE Security and Privacy Workshops, Workshop on Research in Insider Threats,
WRIT’16, IEEE, 2016.

[3] M. Kerber, F. Kammiiller, NuSMV formalisation of airplane scenarios with two-person-in-cockpit poli-
cies (2020).

URL https://github.com/flokam/NuSMV_Airplane

[4] A. Cimatti, M. Roveri, R. Cavada, R. Sebastiani, S. Tonetta, A. Mariotti, A. Micheli, S. Mover,
M. Dorigatti, NuSMV: a new symbolic model checker (2020).

URL http://nusmv.fbk.eu

34

http://dx.doi.org/10.1109/JSYST.2015.2453215
http://dx.doi.org/10.1109/JSYST.2015.2453215
http://dx.doi.org/10.1109/JSYST.2015.2453215
https://github.com/flokam/NuSMV_Airplane
https://github.com/flokam/NuSMV_Airplane
https://github.com/flokam/NuSMV_Airplane
http://nusmv.fbk.eu
http://nusmv.fbk.eu

(5]

F. Kammiiller, Isabellelnsider — insider framework based on Kripke structures and CTL with example
of airplane attack, available from https://github.com/flokam/IsabelleInsider. (2020).

J. Glasser, B. Lindauer, Bridging the gap: A pragmatic approach to generating insider threat data, in:
WRIT’13, IEEE, 2013.

M. Bishop, H. M. Conboy, H. Phan, B. I. Simidchieva, G. S. Avrunin, L. A. Clarke, L. J. Osterweil,
S. Peisert, Insider threat identification by process analysis, in: Proceedings of the third IEEE Workshop
on Research in Insider Threats, WRIT 14, IEEE, 2014.

M. Bishop, K. Nance, J. Clark, Inside the insider threat (introduction), in: Proceedings of the 50th
Hawaii International Conference on System Sciences, 2017, p. 2637.

URL http://hdl.handle.net/10125/41474

D. M. Cappelli, A. P. Moore, R. F. Trzeciak, The CERT Guide to Insider Threats: How to Prevent,
Detect, and Respond to Information Technology Crimes (Theft, Sabotage, Fraud), 1st Edition, SEI
Series in Software Engineering, Addison-Wesley Professional, 2012.

URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/
0321812573

F. L. Greitzer, J. R. Strozer, S. Cohen, A. P. Moore, D. Mundie, J. Cowley, Analysis of unintentional
insider threats deriving from social engineering exploits, in: Proceedings of the third IEEE Workshop
on Research in Insider Threats, WRIT 14, IEEE, 2014.

E. T. Axelrad, P. J. Sticha, O. Brdiczka, J. Shen, A bayesian network model for predicting insider
threats, in: 2013 IEEE Security and Privacy Workshops, IEEE Computer Society, Los Alamitos, CA,
USA, 2013, pp. 82-89. doi:http://doi.ieeecomputersociety.org/10.1109/SPW.2013.35.

J. R. C. Nurse, O. Buckley, P. A. Legg, M. Goldsmith, S. Creese, G. R. T. Wright, M. Whitty,
Understanding Insider Threat: A Framework for Characterising Attacks, in: IEEE Security and Privacy
Workshops (SPW), IEEE, 2014.

Y. Moy, E. Ledinot, H. Delseny, V. Wiels, B. Monate, Testing or formal verification: Do-178¢ alterna-
tives and industrial experience, IEEE Software 30 (3) (2013) 50-57. doi:10.1109/MS.2013.43.

C. O’Halloran, Automated verification of code automatically generated from simulink, Automated
Software Engineering 20 (2) (2013) 237-264. doi:10.1007/s10515-012-0116-5.

M. O. Khan, M. Sievers, S. Standley, Model-based verification and validation of spacecraft avionics,
NASA Jet Propulsion Laboratory.

URL http://hdl.handle.net/2014/44932

D. v. Oheimb, M. Maidl, R. Robinson, Security architecture and formal analysis of an airplane software
distribution system, in: ATAA (Ed.), 26th Congress of the International Council of the Aeronautical
Sciences (ICAS), Proceedings on CD-ROM available from secr.exec@icas.org, 2008, pp. 1-12, http:
//ddvo.net/papers/ICASO8.html.

G. Luettgen, V. Carreno, Analyzing mode confusion via model checking, in: International SPIN Work-
shop on Model Checking of Software, Vol. 1680 of LNCS, Springer, 1999, pp. 120-135.

URL https://eur02.safelinks.protection.outlook.com/?url=httpsapps.dtic.mildtictr

C. Munoz, G. Dowek, V. Carreno, Modeling and verification of an air traffic concept of operations, in:
ISSTA’04, ACM, 2004.

C. Munoz, V. Carreno, G. Dowek, Formal analysis of the operational concept for the small aircraft
transportation system, in: Rigorous Engineering of Fault-Tolerant Systems, Vol. 4157 of LNCS, 2006,
p. 306325.

F. Kammiiller, C. W. Probst, Invalidating policies using structural information, in: IEEE Security and
Privacy Workshops, Workshop on Research in Insider Threats, WRIT’13, 2013.

F. Kammiiller, C. W. Probst, Combining generated data models with formal invalidation for insider
threat analysis, in: IEEE Security and Privacy Workshops, Workshop on Research in Insider Threats,
WRIT’14, 2014.

J. Boender, M. G. Ivanova, F. Kammiiller, G. Primiero, Modeling human behaviour with higher order
logic: Insider threats, in: STAST’14, IEEE, 2014, co-located with CSF’14 in the Vienna Summer of
Logic.

35

https://github.com/flokam/IsabelleInsider
http://hdl.handle.net/10125/41474
http://hdl.handle.net/10125/41474
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SPW.2013.35
http://dx.doi.org/10.1109/MS.2013.43
http://dx.doi.org/10.1007/s10515-012-0116-5
http://hdl.handle.net/2014/44932
http://hdl.handle.net/2014/44932
secr.exec@icas.org
http://ddvo.net/papers/ICAS08.html
http://ddvo.net/papers/ICAS08.html
https://eur02.safelinks.protection.outlook.com/? url=httpsapps.dtic.mildtictr
https://eur02.safelinks.protection.outlook.com/? url=httpsapps.dtic.mildtictr

23]

[24]

[42]

F. Kammiiller, J. R. C. Nurse, C. W. Probst, Attack tree analysis for insider threats on the IoT
using Isabelle, in: Human Aspects of Information Security, Privacy, and Trust - Fourth International
Conference, HAS 2015, Held as Part of HCI International 2016, Toronto, Lecture Notes in Computer
Science, Springer, 2016, invited paper.

F. Kammiiller, Human centric security and privacy for the iot using formal techniques, in: 3d Interna-
tional Conference on Human Factors in Cybersecurity, Vol. 593 of Advances in Intelligent Systems and
Computing, Springer, 2017, pp. 106-116, affiliated with AHFE’2017.

M. G. Ivanova, C. W. Probst, R. R. Hansen, F. Kammiiller, Transforming graphical system models
into graphical attack models, in: Graphical Models for Security, GraMSec’15, LNCS, Springer, 2015,
co-located with CSF’15.

F. Kammiiller, M. Kerber, C. Probst, Towards formal analysis of insider threats for auctions, in: 8th
ACM CCS International Workshop on Managing Insider Security Threats, MIST’16, ACM, 2016.
CHIST-ERA, Success: Secure accessibility for the internet of things,
http://www.chistera.eu/projects/success (2016).

M. Kamali, L. A. Dennis, O. McAree, M. Fisher, S. M. Veres, Formal verification of autonomous vehicle
platooning, Science of Computer Programming 148 (2017) 88-106. doi:10.1016/j.scico.2017.05.
006.

Wikipedia, September 11 attacks, accessed June 2019 (2019).

URL https://en.wikipedia.org/wiki/September_11_attacks

T. H. Kean et al., Complete 9/11 commission report, http://govinfo.library.unt.edu/911/
report/911Report.pdf (2004).

Wikipedia, List of aircraft hijackings, accessed June 2019 (2019).

URL https://en.wikipedia.org/wiki/List_of_aircraft_hijackings

The Star, Jet cockpit doors nearly impossible to open by intruders, accessed June 2019 (2018).

URL http://www.thestar.com/news/world/2015/03/26/jet-cockpit-doors—nearly-
impossible-to-open-by-intruders.html

Reinforced cockpit door — description & procedures, an Airbus film directed by Bertrand Sirven. Ac-
cessed June 2019 (September 2002).

URL https://www.youtube.com/watch?v=ixEHV7c3VXs

F. Kammiiller, Modular reasoning in isabelle, in: D. MacAllester (Ed.), 17th International Conference
on Automated Deduction, CADE-17, Vol. 1831 of LNAI, Springer, 2000.

F. Kammiiller, Isabelle modelchecking for insider threats, in: Data Privacy Management, DPM’16,
11th Int. Workshop, Vol. 9963 of LNCS, Springer, 2016, co-located with ESORICS’16.

F. Kammiiller, A formal development cycle for security engineering in isabelle (2020). arXiv:2001.
08983.

L. C. Paulson, Proving properties of security protocols by induction, in: CSFW, IEEE Computer
Society, 1997, pp. 70-83.

D. Dolev, A. C. Yao, On the security of public key protocols, in: 22nd Annual Symposium on Founda-
tions of Computer Science, SFCS ’81, IEEE, 1981.

D. Dolev, A. Yao, On the security of public key protocols, IEEE Transactions on Information Theory
29 (2) (1983) 198-208. doi:10.1109/TIT.1983.1056650.

E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT Press, 1999.

F. Kammiiller, M. Wenzel, L. C. Paulson, Locales — a sectioning concept for Isabelle, in: Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, L. Thery (Eds.), Theorem Proving in Higher Order Logics, 12th
International Conference, TPHOLs’99, Vol. 1690 of LNCS, Springer, 1999.

D. Gollmann, Computer Security, Wiley, 2008.

Appendix A. Isabelle Code Extracts

This section contains a subset of the Isabelle formalization of the Insider framework

and the airplane case study showing all relevant definitions, most interesting lemmas and

36

http://dx.doi.org/10.1016/j.scico.2017.05.006
http://dx.doi.org/10.1016/j.scico.2017.05.006
https://en.wikipedia.org/wiki/September_11_attacks
https://en.wikipedia.org/wiki/September_11_attacks
http://govinfo.library.unt.edu/911/report/911Report.pdf
http://govinfo.library.unt.edu/911/report/911Report.pdf
https://en.wikipedia.org/wiki/List_of_aircraft_hijackings
https://en.wikipedia.org/wiki/List_of_aircraft_hijackings
http://www.thestar.com/news/world/2015/03/26/jet-cockpit-doors-nearly-impossible-to-open-by-intruders.html
http://www.thestar.com/news/world/2015/03/26/jet-cockpit-doors-nearly-impossible-to-open-by-intruders.html
http://www.thestar.com/news/world/2015/03/26/jet-cockpit-doors-nearly-impossible-to-open-by-intruders.html
https://www.youtube.com/watch?v=ixEHV7c3VXs
https://www.youtube.com/watch?v=ixEHV7c3VXs
http://arxiv.org/abs/2001.08983
http://arxiv.org/abs/2001.08983
http://dx.doi.org/10.1109/TIT.1983.1056650

theorems without proofs (proofs are replaced by the tag (proof)), and some proof examples.
The following code has been abridged from the latex generated from the Isabelle sources
available online [5]. In this repository there is also a directory latex that contains the
latex-generated pdf outputs of the formalization in full (document .pdf, 61 pages) as well as
the outline (outline.pdf, 25 pages).

Appendixz A.1. Kripke Structures and CTL

theory MC
imports Main
begin

definition monotone :: ('a set = 'a set) = bool
where monotone =V pqg.pCqg—T7pCT4q)

lemma monotonel: monotone T = p C qg=7p C T ¢
(proof)

lemma Ifpl: monotone T — (lIfp T =\ {Z. 7 Z C Z})
(proof)

lemma gfp1: monotone T — (gfp T=\J {Z. Z C 1 Z})
(proof)

primrec power : ['a = 'a, nat] = ('a = 'a) ((- "~ -) 40)
where

power-zero: (f ~0) = (A z. z) |

power-suc: (f ~ (Sucn)) = (fo (f " n))

lemma predtrans-empty:
assumes monotone T
shows ¥ i. (1 1) ({}) € (+ (i + D)({})
proof (rule alll, induct-tac i)
show (7 " 0:nat) {} C (7 ~ (0:nat) + (1:nat)) {} by simp
next show A(i::nat) n:unat. (1 " n) {} C (1t " n + (1:nat)) {}
= (1t " Sucn) {} C(r " Sucn + (I:nat)) {}
proof —
fix in
assume a : (7 "n) {} C (7 “n+ (L:nat)) {}
have (7 ((t “n) {})) € (7 ((r ~ (n + (1 :: nat))) {})) using assms
apply (rule monotoneE)

by (rule a)
thus (7 * Suc n) {} C (7 " Suc n + (1:nat)) {} by simp
qed
qged

37

lemma infchain-outruns-all:
assumes finite (UNIV :: 'a set)
and Vi :: nat. (1 " 1) ({3 ‘aset) C (7 " +
shows Vj :: nat. 3¢ :: nat. j < card ((7 " i) {})
(proof)

lemma no-infinite-subset-chain:
assumes finite (UNIV :: 'a set)
and monotone (7 :: (‘a set = 'a set))

and Vi :onat. (1 'aset = 'aset) “i){} C(r i+ (1=

shows Fulse
(proof)

lemma finite-fixp:
assumes finite(UNIV :: 'a set)
and monotone (1 :: ('a set = 'a set))

shows 3 4. (7 "4) ({}) = (= "(v + 1))({})
(proof)

lemma predtrans-UNIV :

assumes monotone T

shows V i. (7 i) (UNIV) D (7 “(i + 1))(UNIV)
(proof)

lemma down-chain-reaches-empty:

(1 = nat)) {}

nat)) ({} =

assumes finite (UNIV :: 'a set) and monotone (7 :: 'a set = 'a set)
and (Vi :: nat. ((7 :: 'a set = 'a set) " i + (1 :: nat)) UNIV C (r “4) UNIV)

shows 3 (j :: nat). (1 "~ j) UNIV = {}
(proof)

lemma Ifp-loop:

assumes finite (UNIV :: 'b set) and monotone (7 :: (b set = 'b set))

shows 3 n.lfp T = (r "n){}
(proof)

lemma gfp-loop:
assumes finite (UNIV :: b set)
and monotone (7 :: (b set = 'b set))
shows 3 n.gfp 7 = (7 “n)(UNIV :: b set)

(proof)

class state =
fixes state-transition :: ['a :: type, 'a] = bool ((- —i -) 50)

definition AX where AX f = {s. {f0. s —; f0} C [}

38

'a set)

definition FX' where EX' f={s .3 fo € f. s —; f0 }

definition AF where AF f = Ifp (A Z. f U AX Z)

definition EF where EF f = ifp (A Z. f U EX' Z)
definition AG where AG f =gfp (N Z. f N AX Z)
definition EG where EG f = gfp (A Z. f N EX' Z)
definition AU where AU f1 f2 = lfp(A\ Z. f2 U (f1 N AX 7))
definition EU where EU f1 f2 = Ifp(\ Z. f2 U (f1 N EX' Z))
definition AR where AR f1 f2 = gfp(A Z. f2 N (f1 U AX 7))
definition ER where ER f1 f2 = gfp(\ Z. f2 N (fl U EX' 7))

datatype 'a kripke = Kripke 'a set 'a set

primrec states where states (Kripke S I) = S
primrec init where init (Kripke S 1T) =1

definition check (- F - 50)
where M + f = (init M) C {s € (states M). s € f }

definition state-transition-refl ((- —;x -) 50)
where s —;x s’ = ((s,s') € {(z,y). state-transition x y}*)

lemma FEX-step: assumes z —; y and y € f shows z € EX' f
(proof)

lemma FEF-step: assumes © —; y and y € f shows © € EF f
(proof)

lemma FEF-step-step: assumes ¢ —; y and y € EF f shows z € EF f
(proof)

lemma EF-step-star: [x —xy;y € f] = xz € EF f
{(proof)

lemma EF-induct: (a::'a::state) € EF (f :: 'a :: state set) —>
mono (A Z. (f:'az:state set) U EX' Z) =
(A\z::'a::state.
€ (N Z. (f:'azstate set) U EX' Z)(EF f N {x: a:state. (P::'az:state = bool) ©})) =
Pzr) =
Pa
(proof

lemma EF-step-star-rev|rule-format]: v € EF s = (3 y € s. & —x y)
(proof)

39

lemma EF-step-inv: (I C {sa::'s :: state. (i:'s€l. i —;x sa) A\ sa € EF s})
—Vaxel dJyes.z—x*xy
(proof)

lemma AG-in-lem: z € AGs = z € s
(proof)

lemma AG-step: y —; 2 = y € AG s = 2z € AG s
(proof)

lemma AG-all-s: ¢ =y = 1€ AGs = y € AG s
(proof)

lemma AG-imp-notnotEF':

I # {} = ((Kripke {s :: ('s :: state). 3 i € 1. (i —;x s)} (I = ('s it state)set) F AG s)) =
(=(Kripke {s :: ('s == state). 3 i € I. (i = s)} (I = (s :: state)set) + EF (— s)))

(proof)

end

Appendiz A.2. Insider Framework

theory Airinsider

imports MC

begin

datatype action = get | move | eval |put

typedecl actor
type-synonym identity = string
consts Actor :: identity = actor

type-synonym policy = ((actor = bool) * action set)
datatype location = Location nat

datatype igraph = Lgraph (location * location)set location = identity list
actor = (string list * string list) location = string list
datatype infrastructure =
Infrastructure igraph
[igraph, location] = policy set

primrec loc :: location = nat

where loc(Location n) = n

primrec gra :: igraph = (location * location)set
where gra(Lgraph gacl) =g

primrec agra :: igraph = (location = identity list)

40

where agra(Lgraph g a cl) = a

primrec cgra :: igraph = (actor = string list x string list)
where cgra(Lgraph g a cl) = ¢

primrec lgra :: igraph = (location = string list)

where lgra(Lgraph g a cl) =1

definition nodes :: igraph = location set
where nodes g == { z. (7 y. ((z,): gra g) | (4.2): gra 9))}

definition actors-graph :: igraph = identity set
where actors-graph g == {z. ? y. y : nodes g N\ z € set(agra g y)}

primrec graphl :: infrastructure = igraph

where graphl (Infrastructure g d) = g

primrec delta :: [infrastructure, igraph, location] = policy set

where delta (Infrastructure g d) = d

primrec tspace :: [infrastructure, actor | = string list * string list
where tspace (Infrastructure g d) = cgra g

primrec Ispace :: [infrastructure, location | = string list

where Ispace (Infrastructure g d) = lgra g

definition credentials :: string list x string list = string set
where credentials lxl = set (fst lxl)
definition has :: [igraph, actor * string] = bool
where has G ac = snd ac € credentials(cgra G (fst ac))
definition roles :: string list x string list = string set
where roles lzl = set (snd lxl)
definition role :: [igraph, actor x string] = bool
where role G ac = snd ac € roles(cgra G (fst ac))
definition isin :: [igraph,location, string] = bool
where isin Gl s = s € set(lgra G 1)

datatype psy-states = happy | depressed | disgruntled | angry | stressed
datatype motivations = financial | political | revenge | curious | competitive-advantage | power
| peer-recognition

datatype actor-state = Actor-state psy-states motivations set
primrec motivation :: actor-state = motivations set

where motivation (Actor-state p m) = m

primrec psy-state :: actor-state = psy-states

where psy-state (Actor-state p m) = p

definition tipping-point :: actor-state = bool where
tipping-point a = ((motivation a # {}) A (happy # psy-state a))

41

definition Uas! :: [identity, identity] = bool
where Uasl a b = (Actor a = Actor b) A (VY zy. z # a Ny # a A Actor x = Actor y — = =

Y)

definition Insider :: [identity, identity set, identity = actor-state] = bool
where Insider a C as = (tipping-point (as a) — (V beC. Uasl a b))

definition atl :: [identity, igraph, location] = bool (- @(_) - 50)
where a Q; | = a € set(agra G 1)

definition enables :: [infrastructure, location, actor, action| = bool
where
enables I'l a o' = (3 (p,e) € delta I (graphII) 1. o' € e A p a)

primrec nodup :: ['a, 'a list] = bool
where
nodup-nil: nodup a [| = True |
nodup-step: nodup a (z # Is) = (if © = a then (a ¢ (set ls)) else nodup a ls)

definition move-graph-a :: [identity, location, location, igraph] = igraph
where move-graph-a n 11" g = Lgraph (gra g)
(if n € set ((agra g) 1) & n ¢ set ((agra g) 1) then
((agra g)(1 := del n (agra g 1)))(I":= (n # (agra g 1))
else (agra g))(cgra g)(lgra g)

inductive state-transition-in :: [infrastructure, infrastructure] = bool ((- —y -) 50)
where
move: | G = graphl I; a Qg I; | € nodes G; I’ € nodes G;
(a) € actors-graph(graphl I); enables I 1’ (Actor a) move;
I' = Infrastructure (move-graph-a a 11’ (graphl I))(delta I) | = I —, I’
| get : [G = graphl I; a Qg I; o’ Qg I; has G (Actor a, 2);
enables 11 (Actor a) get;
I" = Infrastructure
(Lgraph (gra G)(agra G)
((cgra G)(Actor a’ :=
(z # (fst(cgra G (Actor a'))), snd(cgra G (Actor a')))))
(lgra G))
(delta I)
|l=1-,1I
| put : [G = graphl I; a Q¢ I; enables Il (Actor a) put;
I’ = Infrastructure
(Lgraph (gra G)(agra G)(cgra G)
(gra G)(1 := [2])))
(delta I)]
= I =, I'

42

| put-remote : [G = graphl I; enables Il (Actor a) put;
I’ = Infrastructure
(Lgraph (gra G)(agra G)(cgra G)
(lgra G)(1 = [2]))
(delta I)
=] =, I’

instantiation infrastructure :: state
begin
definition
state-transition-infra-def: (i —; i) = (i =, (i :: infrastructure))
instance
by (rule MC'.class.MC'.state.of-class.intro)

definition state-transition-in-refl ((- —p* -) 50)
where s —,x s' = ((s,s") € {(z,y). state-transition-in x y}*)

lemma mowve-graph-eq: move-graph-a a ll g = g
by (simp add: move-graph-a-def, case-tac g, force)

lemma delta-invariant: ¥V z z'. z —, 2’ — delta(z) = delta(z’)
by (clarify, erule state-transition-in.cases, simp+)

lemma init-state-policy: [(z,y) € {(z::infrastructure, y::infrastructure). x —, y}* | =
delta(z) = delta(y)
proof —
have ind: (z,y) € {(z::infrastructure, y::infrastructure). x —,, y}*
— delta(z) = delta(y)
proof (insert assms, erule rtrancl.induct)
show (A a:infrastructure.
(V (z::infrastructure) (2 "infrastructure). (z —y, 2') — (delta z = delta 2')) =
(((a, a) € {(z infrastructure, y :: infrastructure). x —y, y}*) —
(delta a = delta a)))
by (rule impl, rule refl)
next fix a b ¢
assume a0: V (z::infrastructure) z":infrastructure. z —p, 2’ — delta z = delta 2’
and al: (a, b) € {(z:infrastructure, y::infrastructure). x —, y}*
and a2: (a, b) € {(z::infrastructure, y::infrastructure). x —, y}* —
delta a = delta b
and a3: (b, ¢) € {(z:infrastructure, y::infrastructure). © —, y}
show (a, ¢) € {(z:infrastructure, y::infrastructure). © —, y}* —
delta a = delta c
proof —

43

have a/: delta b = delta ¢ using a0 al a2 a3 by simp
show ?thesis using a0 al a2 a8 by simp
qed
qed
show “thesis
by (insert ind, insert assms(2), simp)
qged

lemma same-nodes: (I, y) € {(z::infrastructure, y::infrastructure). x —, y}*
= nodes(graphl y) = nodes(graphl I)

(proof)

lemma same-actors: (I, y) € {(z::infrastructure, y::infrastructure). x —, y}*
= actors-graph(graphl 1) = actors-graph(graphl y)
(proof)

end
end

Appendiz A.3. Awrplane

theory Airplane

imports Airlnsider

begin

datatype doorstate = locked | norm | unlocked
datatype position = air | airport | ground

locale airplane =

fixes airplane-actors :: identity set

defines airplane-actors-def: airplane-actors = {""Bob", "Charly", " Alice'"}
fixes airplane-locations :: location set

defines airplane-locations-def:

airplane-locations = {Location 0, Location 1, Location 2}
fixes cockpit :: location

defines cockpit-def: cockpit = Location 2

fixes door :: location

defines door-def: door = Location 1

fixes cabin :: location

defines cabin-def: cabin = Location 0

fixes global-policy :: [infrastructure, identity] = bool
defines global-policy-def: global-policy I a = a ¢ airplane-actors
— —(enables I cockpit (Actor a) put)

fixes ex-creds :: actor = (string list * string list)
defines ez-creds-def: ex-creds =

44

(X z.(if £ = Actor "Bob"”
then (["PIN", ["pilot"))
else (if x = Actor ""Charly"
then (["PIN"],["copilot”])
else (if © = Actor ""Alice”
then ([""PIN"|,["flightattendant’))
else ([1,[1)))))

fixes ez-locs :: location = string list
defines ex-locs-def: ex-locs = (A z. if © = door then ["norm’| else
(if x = cockpit then ["air"] else []))

fixes ex-locs’ :: location = string list
defines ex-locs’-def: ex-locs’ = (X z. if x = door then ["locked”] else
(if x = cockpit then ["air"] else []))

fixes ex-graph :: igraph
defines ex-graph-def: ex-graph = Lgraph

{(cockpit, door),(door,cabin)}

(X z. if x = cockpit then ["Bob", ""Charly"

else (if x = door then ||
else (if © = cabin then ["Alice”] else [])))

ex-creds ex-locs

fixes aid-graph :: igraph
defines aid-graph-def: aid-graph = Lgraph
{(cockpit, door),(door,cabin)}
(X z. if x = cockpit then [Charly"
else (if © = door then ||
else (if x = cabin then ["Bob", "Alice"] else [])))
ex-creds ex-locs’

fixes aid-graph0 :: igraph
defines aid-graph0-def: aid-graph0 = Lgraph
{(cockpit, door),(door,cabin)}
(A z. if x = cockpit then ["Charly”
else (if © = door then [""Bob"
else (if x = cabin then ["Alice”] else [])))
ez-creds ex-locs

fixes agid-graph :: igraph
defines agid-graph-def: agid-graph = Lgraph
{(cockpit, door),(door,cabin)}
(X z. if x = cockpit then ["Charly”
else (if x = door then ||

45

else (if x = cabin then [""Bob", "Alice'] else [])))
ex-creds ex-locs

fixes local-policies :: [igraph, location] = policy set
defines local-policies-def: local-policies G =
(X y. if y = cockpit then
{(Xz. (?n. (n Qg cockpit) N Actor n = z), {put}),
(A z. (?n. (n Qg cabin) A Actor n = z A has G (z, "PIN")
A isin G door "norm"),{move})
t

else (if y = door then {(\ z. True, {move}),
(A z. (?n. (n Qg cockpit) N Actor n = z), {put})}
else (if y = cabin then {(\ z. True, {move})}
else {})))

fixes local-policies-four-eyes :: [igraph, location] = policy set
defines local-policies-four-eyes-def: local-policies-four-eyes G =
(X y. if y = cockpit then
{Xz. (?n.(n Qg cockpit) N\ Actor n = x) A
2 < length(agra G y) N (V h € set(agra G y). h € airplane-actors), {put}),
(A z. (?n. (n Qg cabin) A Actor n = « A has G (z, "PIN") A
isin G door "morm’"),{move})
}

else (if y = door then
{Az. ((?n. (n Qg cockpit) N Actor n = z) A 8 < length(agra G cockpit)), {move})}
else (if y = cabin then
{Xz. ((?n. (n Qg door) A Actor n = z)), {move})}

else {})))

fixes Airplane-scenario :: infrastructure (structure)
defines Airplane-scenario-def:
Airplane-scenario = Infrastructure ex-graph local-policies

fixes Airplane-in-danger :: infrastructure
defines Airplane-in-danger-def:
Airplane-in-danger = Infrastructure aid-graph local-policies

fixes Airplane-getting-in-danger0 :: infrastructure
defines Airplane-getting-in-danger0-def:
Airplane-getting-in-danger0) = Infrastructure aid-graph0 local-policies

fixes Airplane-getting-in-danger :: infrastructure

defines Airplane-getting-in-danger-def:
Airplane-getting-in-danger = Infrastructure agid-graph local-policies

46

fixes Air-states
defines Air-states-def: Air-states = { I. Airplane-scenario —px I }

fixes Air-Kripke
defines Air-Kripke = Kripke Air-states {Airplane-scenario}

fixes Airplane-not-in-danger :: infrastructure
defines Airplane-not-in-danger-def:
Airplane-not-in-danger = Infrastructure aid-graph local-policies-four-eyes

fixes Airplane-not-in-danger-init :: infrastructure
defines Airplane-not-in-danger-init-def:
Airplane-not-in-danger-init = Infrastructure ex-graph local-policies-four-eyes

fixes Air-tp-states
defines Air-tp-states-def: Air-tp-states = { I. Airplane-not-in-danger-init —,x I }

fixes Air-tp-Kripke
defines Air-tp-Kripke = Kripke Air-tp-states { Airplane-not-in-danger-init}

fixes Safety :: [infrastructure, identity] = bool
defines Safety-def: Safety I a = a € airplane-actors
— (enables I cockpit (Actor a) move)

fixes Security :: [infrastructure, identity] = bool
defines Security-def: Security I a = (isin (graphl I) door "locked”)
— —(enables I cockpit (Actor a) move)

fixes foe-control :: [location, action, infrastructure kripke] = bool
defines foe-control-def: foe-control |l ¢ K =
(V I:: infrastructure € states K. (3 x :: identity.
(@ Qurapnr 1) N Actor z # Actor "Eve”)
— —(enables 11 (Actor "Eve') ¢))

fixes astate:: identity = actor-state

defines astate-def: astate x = (case x of
"Eve' = Actor-state depressed {revenge, peer-recognition}
| - = Actor-state happy {})

assumes Fuve-precipitating-event: tipping-point (astate ""Eve')
assumes Insider-Eve: Insider ""Eve” {"Charly'} astate

assumes cockpit-foe-control: foe-control cockpit put Air-tp-Kripke

begin

47

lemma Safety: Safety Airplane-scenario ("'Alice’)
(proof)

lemma Security: Security Airplane-scenario s
(proof)

lemma stepOr: Airplane-scenario —p* Airplane-getting-in-danger0
(proof)

lemma stepir: Airplane-getting-in-danger0) —,x Airplane-getting-in-danger
{(proof)

lemma step2r: Airplane-getting-in-danger —,x Airplane-in-danger
(proof)

theorem step-allr: Airplane-scenario —,* Airplane-in-danger
(proof)

theorem aid-attack: Air-Kripke = EF ({x. = global-policy = ""Fve''})
proof (simp add: check-def Air-Kripke-def, rule conjI)
show Airplane-scenario € Air-states
by (simp add: Air-states-def state-transition-in-refl-def)
next show Airplane-scenario € EF {z::infrastructure. — global-policy z ""Eve'’}
by (rule EF-lem2b, subst EF-lem000, rule EX-lemOr, subst EF-lem000, rule EX-step,
unfold state-transition-infra-def, rule step0, rule EX-lemOr,
rule-tac y = Airplane-getting-in-danger in EX-step,
unfold state-transition-infra-def , rule step1, subst EF-lem000, rule EX-lem0l,
rule-tac y = Airplane-in-danger in EX-step, unfold state-transition-infra-def,
rule step2, rule Collectl, rule ex-inv4)
ged

lemma actors-unique-loc-base:
assumes [—,, I’
and (\V/ 1l a @gmphlf INa @gmphfl I/ — 1= l,)/\
(V 1. nodup a (agra (graphl I) 1))
shows (V 11" a Qg 17 LA 0 Qi 7 ' —1=10)A
(V 1. nodup a (agra (graphl I') 1))
(proof)

lemma actors-unique-loc-step:
assumes (I, I') € {(z::infrastructure, y::infrastructure). © —, y}*
and V a. (V A @gmphII [N a @gmphff /' — 1= l’)A
(V 1. nodup a (agra (graphl I) 1))
shows V a. (V11 a Qg 17 LA 0 Qi 7 ' —1=10)A
(V 1. nodup a (agra (graphl I') 1))

48

(proof

lemma two-person-inv:
z =y 2!
= (2::nat) < length (agra (graphl z) cockpit)
= nodes(graphl z) = nodes(graphl Airplane-not-in-danger-init)
= delta(Airplane-not-in-danger-init) = delta z
= (Airplane-not-in-danger-init,z) € {(z::infrastructure, y:infrastructure). x —, y}*
= (2::nat) < length (agra (graphl z') cockpit)
(proof

lemma airplane-actors-inv:
assumes (Airplane-not-in-danger-init,z) € {(z::infrastructure, y::infrastructure). x —, y}*
shows VY h::char list€set (agra (graphl z) cockpit). h € airplane-actors
(proof)

lemma FEve-not-in-cockpit: (Airplane-not-in-danger-init, I)
€ {(z:infrastructure, y::infrastructure). © —, y}* =
z € set (agra (graphl I) cockpit) = x # ""Eve”
(proof)

lemma tp-imp-control:
assumes (Airplane-not-in-danger-init,I) € {(z::infrastructure, y:infrastructure). x —, y}
shows (? z :: identity. = Qg 55 [cockpit N Actor z # Actor "Eve)

(proof)

*

lemma Fend-2: (Airplane-not-in-danger-init,I) € {(x::infrastructure, y::infrastructure). —,
yyt =
= enables I cockpit (Actor "Eve') put
by (insert cockpit-foe-control, simp add: foe-control-def, drule-tac = I in spec,
erule mp, erule tp-imp-control)

theorem Four-eyes-no-danger: Air-tp-Kripke b AG ({z. global-policy x ""Eve'’})
proof (simp add: Air-tp-Kripke-def check-def, rule conjl)
show Airplane-not-in-danger-init € Air-tp-states
by (simp add: Airplane-not-in-danger-init-def Air-tp-states-def
state-transition-in-refl-def)
next show Airplane-not-in-danger-init € AG {x::infrastructure. global-policy x ""Eve’’}
proof (unfold AG-def, simp add: gfp-def,
rule-tac x = {(z :: infrastructure) € states Air-tp-Kripke. ~("Eve” Qg 01 o, cockpit)} in exl,
rule congl)
show {z::infrastructure € states Air-tp-Kripke. = ""Eve” @ graphl = cockpit}
C {z:infrastructure. global-policy x ""Eve'’}
by (unfold global-policy-def, simp add: airplane-actors-def, rule subsetl,
drule CollectD, rule Collectl, erule conjF,

49

simp add: Air-tp-Kripke-def Air-tp-states-def state-transition-in-refi-def,
erule Fend-2)
next show {z::infrastructure € states Air-tp-Kripke. = ""Eve” Qgraphl 5 cockpit}
C AX {z:infrastructure € states Air-tp-Kripke. = "Eve” Q... .. cockpit} A
Airplane-not-in-danger-init
€ {z:infrastructure € states Air-tp-Kripke. = ""Eve” Qgraphl ¢ cockpit}
proof
show Airplane-not-in-danger-init
€ {z:infrastructure € states Air-tp-Kripke. — "Eve" Qgraphl « cockpit}
by (simp add: Airplane-not-in-danger-init-def Air-tp-Kripke-def Air-tp-states-def
state-transition-refl-def ex-graph-def atl-def Air-tp-Kripke-def
state-transition-in-refl-def)
next show {z::infrastructure € states Air-tp-Kripke. — "Eve" Qgraphl z cockpit}
C AX {z:infrastructure € states Air-tp-Kripke. -~ ""Eve” Qgraphl 7 cockpit}
proof (rule subsetl, simp add: AX-def, rule subsetl, rule Collectl, rule congl)
show A(z:infrastructure) za::infrastructure.
x € states Air-tp-Kripke \ — ""Eve’ Qyraphl ¢ cockpit =
za € Collect (state-transition ©) = za € states Air-tp-Kripke
by (simp add: Air-tp-Kripke-def Air-tp-states-def state-transition-in-refl-def
simp add: atl-def, erule conjF,
unfold state-transition-infra-def state-transition-in-refi-def,
erule rtrancl-into-rtrancl, rule Collectl, simp)
next fix z za
assume a0: © € states Air-tp-Kripke N — "Eve” Qgraphl o cockpit
and al: za € Collect (state-transition x)
show — "Eve” Qyraphl za Cockpit
proof —
have b: (Airplane-not-in-danger-init, xa)
€ {(z:infrastructure, y::infrastructure). © —, y}*
proof (insert a0 al, rule rtrancl-trans)
show z € states Air-tp-Kripke N = ""Eve” Qgraphl o cockpit =
za € Collect (state-transition) =
(z, za) € {(z:infrastructure, y::infrastructure). x —,, y}*
by (unfold state-transition-infra-def, force)
next show z € states Air-tp-Kripke \ — ""Eve’ Qyraphl ¢ cockpit =
za € Collect (state-transition) =
(Airplane-not-in-danger-init, z) € {(z::infrastructure, y::infrastructure). © —, y}*
by (erule conjE, simp add: Air-tp-Kripke-def Air-tp-states-def state-transition-in-refi-def)+
qed
show ?thesis
by (insert a0 al b, rule-tac P = ""Eve" Qgraphl za cockpit in notl,
simp add: atl-def, drule Eve-not-in-cockpit, assumption, simp)
qed
qed
qed

grap

50

qged
qed

lemma Gen-Eve-not-in-cockpit: (10, I) € {(x:infrastructure, y::infrastructure). © —, y}* =
(V z. (10 ,2) € {(z::infrastructure, y::infrastructure). © —, y}* —
(V h:identity € set (agra (graphl z) cockpit). h € airplane-actors)) =
z € set (agra (graphl I) cockpit) = = # "Eve”
(proof

lemma Gen-Fend: foe-control cockpit put (Kripke { I. 10 —,x I } {I0}) =
(10, z) € {(z:infrastructure, y::infrastructure). x —, y}* =
(V 1. (10, I) € {(z::infrastructure, y::infrastructure). x —,, y}*
— 2 < card (set (agra (graphl I) cockpit))) =
(V z. (10 ,z) € {(z:infrastructure, y::infrastructure). © —, y}* —
(V' h:identity € set (agra (graphl z) cockpit). h € airplane-actors)) =
— enables z cockpit (Actor "Eve') put
(proof

theorem Gen-policy:
foe-control cockpit put (Kripke { I. 10 —,x [} {I0}) =
(V 1. (10, I) € {(z::infrastructure, y:infrastructure). x —y, y}*
— 2 < card (set (agra (graphl I) cockpit))) =
(V z. (10 ,z) € {(z:infrastructure, y::infrastructure). © —, y}* —
(V h:identity € set (agra (graphl z) cockpit). h € airplane-actors)) =
Kripke { 1. 10 —px I } {I0} - AG {z. global-policy = ""Eve’’}
(proof)

theorem Four-eyes-no-danger’ Air-tp-Kripke = AG ({z. global-policy z "Eve'’})
(proof)

end

interpretation airplane airplane-actors airplane-locations cockpit door cabin global-policy
ex-creds ex-locs ex-locs’ ex-graph aid-graph aid-graph0 agid-graph
local-policies local-policies-four-eyes Airplane-scenario Airplane-in-danger
Airplane-getting-in-danger0 Airplane-getting-in-danger Air-states Air-Kripke
Airplane-not-in-danger Airplane-not-in-danger-init Air-tp-states
Air-tp-Kripke Safety Security foe-control astate

(proof)

end

o1

	Introduction
	Related Work
	Development of Airplane Safety and Security
	Isabelle Insider Framework
	Isabelle and Modular Reasoning
	Structure of the Framework
	Representing human factors and insiders
	Infrastructures, Policies, Actors, and Insiders
	Kripke Structures and CTL

	Formalizing the Airplane Scenario
	0ex0exblueblack0ex0exblackOur Methodology for Insider Threat Analysisblack
	Formalization of Airplane Infrastructure and Properties
	Initial Global and Local Policies
	Insider Attack, Safety, and Security

	Analysis of Safety and Security Properties
	Kripke Structure for Airplane Scenario
	Introduce Two-Person Rule
	Revealing Necessary Assumption by Proof Failure
	Proving Security in Refined Model

	Model checking and Generalizing over Policies
	Model Checking the Airplane Case Study
	Generalizing over policies

	Discussion and Conclusions
	Comparison of Isabelle and NuSMV
	Aspects of Airplane Policies
	Summary of Contributions
	Conclusions 0ex0exblueblack0ex0exblackand Acknowledgmentsblack

	Isabelle Code Extracts
	Kripke Structures and CTL
	Insider Framework
	Airplane

