
Intent Classification for a Management 

Conversational Assistant

Abdelrahman H. Hefny 

Faculty of Computers & Information 

Technology 

National Egyptian E-Learning 

University 

Giza, Egypt 

ahefny@eelu.edu.eg 

Georgios A. Dafoulas 

Computer Science Department 

Faculty of Science and Technology 

Middlesex University 

London,United Kingdom 

G.Dafoulas@mdx.ac.uk 

Manal A. Ismail 

Computer Engineering & Systems 

Department 

Faculty of Engineering 

Helwan University 

Cairo, Egypt 

mismaeel@eelu.edu.eg 

 
Abstract—Intent classification is an essential step in 

processing user input to a conversational assistant. This work 

investigates techniques of intent classification of chat messages 

used for communication among software development teams with 

the aim of building an intent classifier for a management 

conversational assistant integrated into modern communication 

platforms used by developers. Experiments conducted using rule-

based and common ML techniques have shown that careful 

choice of classification features has a significant impact on 

performance, and the best performing model was able to obtain a 

classification accuracy of 72%. A set of techniques for extracting 

useful features for text classification in the software engineering 

domain was also implemented and tested.  

Keywords—intent classification, chatbot, conversational 

assistant, natural language understanding, dialog act recognition 

I. INTRODUCTION 

Classifying the intent of user-generated text is essential for 
many information system applications such as search engines, 
e-commerce, question answering, and conversational agents 
[1]. Due to recent advances in artificial intelligence, 
conversational assistants are gaining attention as a way to 
increase productivity by automating complex processes that 
usually require human intervention [2]. Interaction with such 
assistants is mainly done using natural language via either 
speech commands or written text. Intent detection and 
classification, sometimes referred to as semantic utterance 
classification, is one of the basic steps of processing a user’s 
utterance in a task-oriented conversational agent. During this 
step, a user utterance is classified to determine its intent from a 
list of predefined intents and redirect the conversation 
according to a specific scenario based on the detected intent. 
This computational task is often implemented as part of the 
natural language understanding (NLU) module in the 
conversational agent. A similar task, dialog/speech act 
recognition, is performed in non-task-oriented dialog systems, 
which classifies the dialog act (DA) of the user's utterance as a 
first step of processing [3, 4, 5, 6].  

This work investigates techniques of intent classification of 
text chat messages used for communication among software 
development teams. The purpose of this work is to build an 
intent classifier for a management conversational assistant 
(chatbot) integrated into modern communication platforms 

used by software developers. The proposed chatbot will 
interact with developers via private channels and will also 
monitor and react to messages on multi-party chat rooms. Such 
chatbot would assist team management in various ways such as 
answering frequently asked questions or monitoring a task 
progress. This research investigates two main approaches for 
intent classification, a rule-based approach based on hand-
crafted rules, and a statistical approach using well-known 
machine-learning (ML) algorithms.  

Previous work in this area studied techniques for intent 
classification and dialog act recognition in several domains. 
Some recent studies investigated the use of conversational 
assistants in the field of software engineering. Applications 
include recommending experts [7], automating low-level 
workflows [8], resolving conflicts [9], and answering questions 
based on code repositories [10].  

The major contributions of this work are: 

1) A proposed list of intent categories for classifying 

software developers chat messages from a 

management perspective.  

2) A set of techniques for extracting useful features for 

text classification in the software engineering 

domain.  

3) Investigation of several text classification techniques 

for classifying intents of software developers’ chat. 

All implemented code is also provided for reference 

via the project’s website.1 

The remainder of this paper is structured as follows. 
Section II provides a review on related work. Section III 
explains the research method and design. Section IV discusses 
experiments and results. Finally, section V presents the main 
conclusions. 

II. RELATED WORK 

The following sections describe related work in three main 
categories: A) intent classification techniques, B) applications 
of text classification in the software engineering domain, and 
C) conversational assistants in the software engineering 
domain. 

                                                           
1 
 https://github.com/abdelrahman0101/MCA 



A. Intent Classification Techniques 

Almost all common text classification techniques were used 
in dialog act recognition or intent classification in 
conversational agents. These techniques vary from simple 
pattern matching with hand-crafted rules to advanced 
techniques that use deep neural networks.  

Rule-based pattern matching techniques were traditionally 
used for utterance classification in chat-bot and question 
answering systems. Examples of chatbots with rule-based 
utterance classification include AutoTutor [11], a domain-
portable intelligent tutoring system, and DBpedia chatbot [12], 
a chatbot designed to enhance interactions in the DBpedia 
community.  

Another common approach for intent classification is the 
use of supervised ML techniques. This approach alleviates the 
need for writing and finetuning hand-crafted rules by training a 
statistical ML algorithm on a manually labeled set of data. 
Examples of ML algorithms used for this task are Support 
Vector Machine (SVM), Maximum Entropy (ME), and Naive 
Bayes (NB) [13, 14]. Recent research on intent classification 
made use of new advances in deep learning techniques [15, 16, 
17, 18]. Deep neural networks can achieve higher performance 
than other statistical ML algorithms but usually require a much 
larger dataset.  

B. Text Classification in the Software Engineering Domain: 

Text classification has had several applications in the 
software engineering domain. Maalej, et al. [19] studied the use 
of simple string matching, Naive Bayes, Decision Trees, and 
Maximum Entropy for the classification of app reviews into 
bug reports, feature requests, user experiences, or ratings. 
Classification features included metadata such as star rating, 
length, verb tense, and sentiments in addition to text features.  

Arya, et al. [20] studied the classification of issue 
discussions of open source software based on information type. 
Using qualitative content analysis, they identified 16 
information types in issue discussions. Two supervised 
classifiers that use Logistic Regression and Random Forest 
were trained on a labeled dataset with textual and 
conversational features such as sentence location and length 
and participant role.  

Wood, et al. [21] conducted a “Wizard of Oz” experiment 
to detect dialog act types in developer question/answer 
conversations during debugging. It involved 30 professional 
developers fixing bugs for 2 hours while using a simulated 
virtual assistant for help. The conversations were, then, 
annotated using open coding to identify 26 dialog act types. 
After solving inter-annotator disagreements, a Logistic 
Regression classifier was trained on the labelled data 
represented using binary Bag-of-Words with three shallow 
features; normalized length, words count, and number of 
seconds since previous message.  

Classification of online discussions about software 
applications and services was studied by Ramirez, et al. [22]. 
They investigated the classification of text comments into 
enhancement requests vs other types of requests based on 
speech-act analytics. A dataset of sentences extracted from 

online discussions was first annotated with 20 speech act tags 
using a set of lexico-syntactic rules. The speech act tags are 
then used as a classification feature for classifying sentences 
into either enhancement requests or not, using three ML 
algorithms; J48, Sequential Minimal Optimization (SMO), and 
Random Forest. 

C. Conversational Assistants in Software Engineering: 

Several studies presented chatbots intended for supporting 
software engineers in their work. Cerezo et al. [7] designed a 
chatbot for recommending experts in the Pharo programming 
language community. The chatbot classifies a user message 
into one of 7 categories based on calculated term frequency, 
then it identifies names of source code artifacts (key concepts) 
and uses an expert recommender system to recommend an 
expert in the specified artifact.  

Instead of manually building intent classifiers, some other 
studies made use of cloud-based chatbot services such as 
Google's DialogFlow, Amazon's Alexa, IBM's Watson 
Assistant, or Microsoft's LUIS [23]. These services allow 
designers to build a chatbot solution by providing example 
utterances and setting rules for triggering responses without 
having to manually code it in a programming language; thus, 
they provide an excellent choice for rapid prototyping and for 
non-programmers. Nonetheless, manually built solutions can, 
sometimes, outperform these black-box services in intent 
classification tasks [24].  

Bradley et al. [8] used Amazon Alexa services to build a 
prototype for Devy, a conversational developer assistant that 
listens to developer's voice commands, infers her high-level 
intent, prompts her for any additional information, and 
automatically invokes a low-level actions workflow with the 
help of an automatically generated context model. Another 
work that uses a cloud-based service is Sayme by Paikari et al. 
[9]. Its goal is to detect and resolve conflicts between 
developers while working on the same project on collaboration 
platforms such as GitHub. They used DialogFlow and trained it 
on 28 to 45 phrases per intent. The chatbot also uses a Python 
backend with a MySQL DB to store needed data. DialogFlow 
was also used by Abdellatif et al. [10] to implement MSRBot, a 
chatbot to answer questions of software developers based on 
information extracted from software repositories. Questions 
shown are mostly related to code commits, bug tickets, and 
developer’s responsibility. While Devy, Sayme and MSRBot 
focus on helping developers perform their tasks by automating 
their low-level workflows, resolving conflicts, or answering 
questions based on code repositories, this work is focused on 
building a chatbot for tasks related to project management. In 
addition, the proposed chatbot will not only interact with 
developers via private channels but will also monitor and react 
to messages on multi-party chat rooms.  

III. PROPOSED CLASSIFICATION MODELS 

This research investigates two main approaches for intent 
classification; a rule-based approach based on hand-crafted 
rules, and a statistical ML approach. The proposed intent 
categories are based on analysis of an archived dataset of chat 



messages. The following sections describe the dataset analysis 
and the classification techniques. 

A. Dataset Analysis and Annotation 

A dataset of archived chat messages was analyzed to 
determine the possible intent classes, and to specify the set of 
rules used in rule-based classification. This dataset was 
collected from a text chat platform used by multi-national 
university students during their work on course projects mostly 
related to software engineering.  

Based on the preliminary analyses, the dataset was 
annotated using an open-coding methodology to indicate 
various topics and dialog acts. The result is the following list of 
14 chat topics: 

1. Greetings 

2. Informal/off-topic talk. 

3. Meeting schedule. 

4. Individual expertise. 

5. Platform problems. 

6. Project/Task Requirements. 

7. Project/Task schedule. 

8. Task assignment. 

9. Task implementation tools. 

10. Task implementation details. 

11. Task status or progress. 

12. Feedback on submitted work. 

13. General planning. 

14. Coordination and organization of work.  

Within each of these topics, chat messages may have 
different dialog acts. A simplified list of relevant dialog acts is 
used: 

1. Information. 

2. Suggestion. 

3. Request. 

4. Question. 

5. Positive reply (agreement). 

6. Negative reply (disagreement). 

7. Partially positive/negative reply. 

This work focuses on detecting the intent of a chat message 
to enable a conversational agent to participate in a group chat 
as an assistant to team management. For this purpose, a 
message intent is categorized into one of 13 categories by 
combining main topics and dialog acts. TABLE I describes 
each category.  

In order to test the accuracy of the classification techniques 
and to train a supervised machine learning classifier, a labeled 
dataset is needed. Chat messages in the dataset were labeled to 
indicate the intent of each message based on the results of 
preliminary analysis and open coding. However, since careful 
labeling of the dataset requires much time and effort, it was 
applied on a smaller subset with only 8030 chat messages. In 
addition, the length of chat messages vary as some messages 
may contain several sentences with different indications and 
some sentences may span several chat messages. Those 
messages were manually split or joined so that most datapoints 

are meaningful and have single intent labels. During the 
labelling process, chat messages were also reviewed to correct 
basic spelling and grammatical errors resulting from low 
English language proficiency of some participants. A list of 
words that represent named entities such as persons or software 
tools were also collected and stored in database. 

The number of messages in each category vary significantly 
with the largest class being “Others”. This is because many 
chat messages are simple short phrases that carry no specific 
intent related to the software engineering domain such as 
simple “yes”, “no”, or “ok” answers. Such messages are 
labeled with just a dialog act tag and the intent “Others”. 
Finally, since the performance of most ML classification 
algorithms is affected by the balance of the dataset, the dataset 
was augmented by a small set of 210 samples manually written 
by researchers to support low-frequency classes. The final 
frequency of each intent category is shown in Fig. 1. 

Fig. 1. Number of Messages in Each Intent Category 

TABLE I. INTENT CATEGORIES 

# Intent Description 

1 Greet 
Greeting and introduction. Primarily used 

when opening a conversation. 

2 Plan task 
Task assignment and scheduling, and general 

work planning. 

3 Query plan 
Questions and requests for information on 

task plan. 

4 
Schedule 

meeting 
Discussions of next meetings schedule. 

5 
Report 

progress 

Report the status and progress of a specific 

task. 

6 
Query 

progress 

Questions and requests for information on 

task status and progress. 

7 
Request 

feedback 

Requests for feedback on completed work or 

proposed ideas. 

8 Give feedback 
Giving feedback on completed work or 

proposed ideas. 

9 Discuss task Discussions of technical details. 

10 State rules 
Information on work rules, such as the use of 

tools, file formats, and task submission. 

11 Query rules 
Questions and requests for information on 

work rules. 

12 Report issues Reporting problems and work blockers. 

13 Others Other or unclear intents. 

 



B. Classification Techniques: 

This research investigates the performance of several 
models for intent classification of chat messages. A simple 
rule-based pattern-matching model, and supervised ML models 
using common classification algorithms. Prior to intent 
classification, input text passes through several steps for 
preprocessing, named-entity recognition, and feature 
extraction. Preprocessing involves segmenting the text into 
sentences and tokenizing each sentence into a list of tokens 
(words, numerals, symbols ... etc.) and normalizing alphabetic 
words by lemmatization. NLTK, a well-known Python library 
for natural language processing, is used for tokenization, 
normalization, and part-of-speech (POS) tagging. Named entity 
recognition processes the text to detect tokens that represent 
person names, dates and times, names of development tools, 
and software engineering artifacts. It uses a simple set of 
pattern-matching rules to detect those entities since the 
application is closed-domain and the number of possible values 
is limited. Feature extraction extracts a list of values used for 
representing each chat message as an input to a classification 
algorithm. Two types of features are used, textual features and 
numeric features. Textual features are representations of actual 
words and tokens in the text using term frequency-inverse 
document frequency (TF-IDF), while numeric features are 
calculated based on specific properties of the text. The choice 
of these numerical features is based on related literature and the 
analysis of data. Seven numeric features are used in this 
research representing the message length, number of verbs in 
past, present, and future tenses, and number of pronouns in 
first, second, and third person forms. In addition, five features 
represent numeric scores that indicate the existence of one of 
five basic dialog acts in the message: question, request, 
suggestion, agreement, and disagreement. These features are 
calculated based on simple syntactic pattern-matching rules. 
The complete NLU pipeline is shown in Fig. 2. 

1) Rule-based classifier: 
Rule-based classification uses a simple approach based on 

keyword matching and simple linguistic features such as words 
part of speech. In addition to using the detected named entities, 
it depends on a lexicon of words that have special semantics 
e.g. a common development activity.  

2) Machine Learning Classifiers: 
Four common ML techniques were used in this research. 

Namely: Naïve Bayes (NB), Support Vector Machine (SVM), 
Logistic Regression, and a Majority Voting ensemble based on 
the first three classifiers. Implementation of ML classifiers was 
done in Python using Scikit-learn, a widely used ML 
framework [25]. The four techniques were trained on the 

labeled dataset of chat messages. Each chat message is 
represented using textual and numerical features. After 
preprocessing and normalization, messages text is vectorized 
into a TF-IDF vector representing the weight of each. Other 
numerical features are normalized, and the complete set of 
features is used for representing each chat message during 
training.  

IV. EXPERIMENTS AND RESULTS 

To measure the effectiveness of using the extracted features 
to discriminate various intent categories, dialog act detection 
functions for the five basic dialog acts were tested against the 
labeled dataset. TABLE II shows accuracy and macro average 
F1-score for the five dialog act detectors.  

It is worth noting that dialog act detection accuracy was 
highly affected by simple DA clues such as question marks and 
the word “please”. Also, each message in the dataset had only 
one DA tag indicating the overall DA chosen by annotators, 
while it may contain several parts, each with its own DA, and 
the same utterance may also have more than one DA. For 
example, a request could be phrased in the form of a question, 
and hence, it should be classified as both request and question. 
This means that the actual performance of the five DA 
detectors is even better than what’s shown in TABLE II, which 
was confirmed by error analysis.  

ML classification models were tested with various 
combinations of feature groups using textual features as a 
common ground. Textual features are represented using TF-
IDF vectors with or without normalization and stop-words 
removal. Each ML model was also initially tested with 
different values of hyperparameters, and the best values were 
chosen for later comparisons. Detailed implementation of 
classification models and the chosen values of hyperparameters 
are provided via the project’s website. 

Only 80% of the dataset was used for training the ML 
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Fig. 2.  NLU Pipeline 
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model, and the remaining 20% was kept for testing. TABLE III 
shows a summary of results obtained from testing the proposed 
classification techniques using accuracy, weighted average F1-
score, and macro average F1-score. The best performing model 
was the majority-voting ensemble trained on TF-IDF and 
numeric features without normalization nor stop-words 
removal. 

Overall results indicate that both normalization and 
removal of stop words had a negative impact on the 
performance. This is justifiable, since normalization and stop-
words removal may remove some useful information that 
would help improve intent detection. The use of numeric meta 
features, on the other hand, had a positive effect that becomes 
very clear when normalization or stop-words removal is 
applied.  

TABLE IV shows detailed test results for every intent 
category using the majority voting ensemble. The best 

performance was in the greet intent category, while the worst 
performance was in report issue. The low value for the macro 
average F1-score in most models was due to the very low 
frequency of some categories resulting in a very small number 
of samples in the training set compared to other categories. 

V. CONCLUSIONS  

The results show that intent classification of software 
developers chat messages from a management perspective is 
possible using common ML algorithms. Experiments 
conducted on different classification models have shown that 
careful choice of classification features has a significant impact 
on performance. A set of techniques for extracting useful 
features for text classification in the software engineering 
domain was implemented and tested.  

Future work will include further investigation of deep 
learning techniques for intent classification on a larger dataset, 
testing the proposed classification models on datasets of 
industrial software engineering projects, and the integration of 
intent classification into a complete conversational assistant for 
software engineering team management. 
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