
Endless Science Open Journal of Software Engineering

Software Testing or The Bugs’ Nightmare

Héctor D. Menéndez∗

Middlesex University London and Endless Science
h.menendez@mdx.ac.uk

Abstract

Software development is not error-free. For decades, bugs –including physical ones–
have become a significant development problem requiring major maintenance efforts.
Even in some cases, solving bugs led to increment them. One of the main reasons for
bug’s prominence is their ability to hide. Finding them is difficult and costly in terms
of time and resources. However, software testing made significant progress identifying
them by using different strategies that combine knowledge from every single part of the
program. This paper humbly reviews some different approaches from software testing
that discover bugs automatically and presents some different state-of-the-art methods
and tools currently used in this area. It covers three testing strategies: search-based
methods, symbolic execution, and fuzzers. It also provides some income about the ap-
plication of diversity in these areas, and common and future challenges on automatic
test generation that still need to be addressed.

Keywords: Software Testing; Bugs; Test Generation; Symbolic Execution; Fuzzing;
Search-based Testing; Diversity

1 Introduction

Although there are different ways to understand programs, we can always start consid-
ering the two most basic levels of abstraction: syntax and semantics. Software’s syntax
corresponds with the language or languages that define the whole program while its se-
mantics corresponds with the logic behind its purpose. These are the two main places
where we normally look for bugs [50]. These bugs are normally either syntactic or
semantic errors that affect the behaviour of the program. Although other components,
such as the operating system or the hardware, produce bugs in programs, we tend to

∗Corresponding Author

1

Software Testing or The Bugs’ Nightmare

focus on isolating the specific part of the program’s code or logic to locate the error
behind the bug.

Several methods are aiming to identify these problems. For instance, verification
extracts the logic of the program and evaluates whether it is correct [80]. Another
option is debugging: execute the program step by step trying to discover in which part
of the program the error manifests [88]. If the error is related to over-consumption of the
system’s resources, a common strategy is to use profiling, which provides information
about the memory and time usage of every part of the program [10]. Nevertheless, if
we can understand a program as a function and focus on its input/output behaviour,
i.e. check that the output of a specific input is correct, we can apply software testing
[63].

Software testing is partially a science and also an art that aims to generalize the
identification of every single bug in a program. It first starts with different granular-
ity levels, depending on whether a developer or tester aims to test specific parts –or
methods– of the program or the program as a whole. These are respectively unit and
system testing [4]. Furthermore, it is important to consider whether the program keeps
its retro-compatibility or new parts integrate properly with the rest of the program.
These fields are respectively regression [55] and integration testing [45]. It is also rel-
evant to know whether the goal is to test, for instance, the security of a program (for
example, with penetration testing [8]), the way the program threads interact (concur-
rency testing [81]) or whether its logic follows a specific model (model testing [28]).
Although there are several ways and perspectives to understand software testing, this
humble document focuses concretely on the methodologies for automatic test generation
[65].

This introductory paper does not aim to be a complete survey about software testing
but an anecdotal walk through different tools and methods that I have found during
my research. That is the reason it is mainly focused on search-based strategies –
including fuzzers–, which was the main focus of my research group (CREST) during
my work at UCL, and all our amazing collaborators that used to attend the CREST
Open Workshops (COWs) or the InfoGang meetings; Another relevant part of the paper
focuses on symbolic and concolic execution, which was the main field of several people
I had the honour to meet during different research talks, mainly organized by Philippa
Gardner and the VETSS institute1, normally at Microsoft Research at Cambridge.

The rest of the paper continues with a simple introduction to automatic test gener-
ation (Section 2), then it introduces the three main techniques I aim to discuss: search-
based testing (Section 3), symbolic execution (Section 4), and fuzzing (Section 5).
After, it discusses the relevance of diversity methods in automatic test generation (Sec-
tion 6) and, before the conclusions, it provides a series of challenges that automatic test
generation is facing or will face (Section 7).

2 Automatic Test Generation

Testing starts with a program P that accepts inputs in the space of inputs I and
generate outputs in the domain O. If the program is deterministic, every input i ∈ I will
generate a unique output o ∈ O, and this output will satisfy o = P [i], i.e. every output
is the solution of applying the program to a specific input. Moreover, deterministic
programs also satisfy that O = P [I], i.e., the output domain is generated by the input

1https://vetss.org.uk/

2

Héctor D. Menéndez

a = input()
b = 0
i = 0

b = b ∗ sqrt(a ∗ i)
c = b ∗ i ∗ i

(i < a)?

a = a + 1
i = i + 1

print(b)

Yes No

Figure 1: Example of a program divided into four basic blocks. The first one collects the
inputs and initializes the variable. The second is the body of a loop whose condition is
verified at the end. The third one is the increment of the loop, and the last one is a simple
print at the end of the program.

domain. Testing every possible input and verifying the correctness of every possible
output would show whether the program is correct or not, however, the input space is
normally immeasurable and the execution costs can also be too high for testing every
possible input.

This led a different strategy: if we can not test every input, can we, at least, test
every behaviour? But, what is a behaviour? Testing semantics is always a difficult
challenge because it requires knowledge about the program and how much it satisfies
its requirements; therefore, the idea of behaviour needs to be a flexible concept that we
can concretize and generalize to every program [77]. Defining a behaviour as a walk
inside of the program’s control flow graph makes any behaviour into a program path
[40]. If we cover every path, we reach maximum program coverage concerning these
behaviours.

A program can be syntactically divided into basic blocks (Figure 1 shows an example
of a program represented as a set of basic blocks). Each block satisfies that all the
code inside the block will run together. The blocks are connected by conditional and
unconditional jumps, normally as consequences of loops and branches in the code syntax
(the connections correspond with the arrows of Figure 1). The connections among the
blocks create the control flow graph, representing the program’s paths from its inputs
to the outputs. Every path (i.e. set of edges) inside the graph starting from the input
block and leading to the output one is a program path. Different inputs can traverse
the same path in a deterministic program, reducing then the testing possibilities.

Although the idea of targeting paths as a testing goal is an improvement to testing
every single input, it is not a solution. Programs contain loops and if, for example, the
limit of a loop is controlled by an input, this would create as many possible paths for

3

Software Testing or The Bugs’ Nightmare

that program as the size of that input. Assuming that this can happen with several
loops inside the program, testing by behaviour is also a complex task. This specific
phenomenon where paths grow exponentially with respect to the inputs is called path
explosion [85]. Testers need to reduce the notion of coverage even more, so they go
back to the control flow graph.

The edges of the control flow graph are good candidates for coverage. This coverage
strategy is called branch coverage [40]. The main goal of this testing strategy is to
cover every single branch. Although this is an under-approximation of the whole set of
behaviours of a program, which is every path, following the previous notion, it is a good
compromise between effectiveness (i.e., activating as many behaviours as possible) and
efficiency (i.e. time consumed during the testing process), and it becomes one of the
most demanding notions of coverage, normally in tandem with line coverage or other
coverage criteria [71].

Having a notion of coverage provides the tester with a goal, and this goal allows to
measure the progress of the testing process. This ability to measure progress gives us a
framework to automate the process of testing and develop different automatic testing
methods that can help to find bugs inside of programs. And also, remember: “If you
can measure it, you can improve it”.

3 Search-Based Methods

Search-based methods for testing mainly leverage different bio-inspired strategies to im-
prove coverage. The most prominent search-based strategy is evolutionary algorithms,
one of the main branches of evolutionary computation [78].

The simplest way to define an evolutionary algorithm is the evolutionary process
of chromosomes. Starting with a population of chromosomes, there are three main
steps that these algorithms follow: 1) the chromosomes are selected for reproduction
according to one or more fitness criteria, 2) they cross to generate new individuals, and
3) the new individuals suffer random mutations. This simple process has proven to
be an amazing methodology for optimization problems [38]. There are several ways to
apply it, depending on the domain where they need to work, but the most known are:

• Genetic algorithm [78]: this one is characterised by optimising only one specific
objective, and using a single population of chromosomes to perform the optimiza-
tion.

• Evolutionary strategy [25]: there is only a single chromosome that is optimized,
therefore there is no crossover and the mutation is normally adaptive.

• Multi-objective genetic algorithms (MOGA) [26]: the optimization process has
several goals, normally defined as fitness objectives. Due to there is not a clear
solution as the optimization of one objective might affect negatively the optimiza-
tion of another one, these kinds of algorithms define a frontier of solutions, called
the Pareto front, which shows a trade-off among the different objectives.

• Co-evolution [57]: in this case, more than one population either compete or col-
laborate during the optimization process. This normally relates to game-theory.
For instance, the most common competition scenario is a zero-sum game where
two populations compete and the profit of one is the loss of the other.

Beyond evolutionary computation, other search strategies are used for software test-
ing, for example, inside bio-inspired methods, we find strategies based on ant colony

4

Héctor D. Menéndez

Technique Search-strategy Application

EvoSuite (WTS) [30] Genetic Algorithm General Unit Testing
EvoSuite (DynaMOSA) [68] Multi-Objective General Unit Testing
EvoSuite (MOSA) [67] Multi-Objective General Unit Testing
EvoSuite (MIO) [7] Multi-Objective General Unit Testing
Dorylus [18] Ant Colony Optimization General Unit Testing and Object Sequences.
Mathematical Execution [32] Monte-Carlo Methods Unit Testing mainly numerical.
AFL [87] Genetic Algorithm (Fuzzer) System Testing
AFLFast [14] Genetic Algorithm (Fuzzer) System Testing
FairFuzz [54] Genetic Algorithm (Fuzzer) System Testing
Libfuzzer [74] Genetic Algorithm (Fuzzer) Unit/System Testing

Table 1: Some of the search strategies mentioned during this work and their applications.

optimization [27] (ACO), while, related to other statistical approaches, we can find
methods based on Monte Carlo search trees [16].

Keeping this in mind, when we study the literature, we can define a good taxonomy
of different techniques based on the search strategy they use. Although this paper does
not aim to define this taxonomy, Table 1 shows a simple schema of some relevant tech-
niques, from the literature mentioned during the paper, where the different strategies
are related.

Some examples of different testing strategies based on genetic algorithms come from
EvoSuite [29], a popular automatic test generation tool for Java (Section 3.1). EvoSuite
employs algorithms mainly based on MOGAs. In the case of ACO, some tools like
Dorylus [18] leverage this paradigm to create inputs for programs, even in the context
of object-oriented programming where sequences of object’s methods need to run in
a specific order [19]. For Monte Carlo methods, tools like CoverMe or mathematical
execution have proven to detect bugs even in the context of floating-point numbers [32].

3.1 Popular Algorithms

The design of search-based methods normally starts with an encoding representing the
test suite and a fitness function representing the test goal, normally coverage (either
line, branch or path coverage) [29]. This simple kind of algorithm will attempt to create
the smallest test suite that reaches maximum fitness, as it is normally called the whole
test suite algorithm and it is the most basic algorithm for one of the most popular
unit test suite tools, called EvoSuite [29]. EvoSuite is a testing framework for Java
with more than 10 years of development. It is very popular in the community and
has been able to compete with several commercial and state of the art tools for years
[31]. Different authors leverage the main framework of EvoSuite to develop search-
based algorithms, where the most popular are Whole Test Suite generation (WTS)
[30], the Many-Objective Sorting Algorithm (MOSA) [67], the Multiple Independent
Objective (MIO) algorithm [7] and Many-Objective Sorting Algorithm with Dynamic
target selection (DynaMOSA) [68].

These four algorithms cover the best examples of the main paradigms for search-
based automatic software testing. WTS generates the test suite based on the idea that
not all the coverage goals are similarly difficult to reach. It generates the whole test
suite as individual solutions of an evolutionary search. To reach all the branches, it
uses two metrics to create a gradient during the search process: approach level and

5

Software Testing or The Bugs’ Nightmare

Input: x = 5

Branch: (x > 10)

Target Branch
Approach Level = 1

BD = 10− x

Program

Figure 2: Control flow graph example with approach level and branch distance met-
rics. Reprinted and modified from JulesH, by Wikipedia Commons, February 13
2021, retrieved from https://commons.wikimedia.org/wiki/File:Control_flow_graph_

of_function_with_two_if_else_statements.svg.

branch distance. These metrics measure how close the algorithm is to cover the whole
program. The approach level calculates how many branches apart the input is from the
target branch. Branch distance makes the approach level smoother. When an input is
close to a branch and needs to traverse it, it says how far the input is to traverse that
branch, in terms of the branch’s comparison operation. In the example of Figure 2, we
can see that the input x = 5 traverses the first condition (x > 10) through the false
branch. If we calculate the branch distance, it is 10−x because it is how much x needs
to increase to do the condition true. Concerning the approach level, if we consider any
of the figure’s red branches as the target one, the approach level is 1 in both cases,
because only one branch needs to be flipped to reach the target.

In MOSA each testing target is an objective to optimize. When a target is covered,
the test covering it is stored in an archive. For each uncovered testing target, the best
individual gets the best rank (in terms of fitness). Both MOSA and WTS suffer four
main problems [7]: both give more emphasis to exploration, which is more expensive
in constrained situations such as system-level system; they keep good individuals of
covered targets inside of the population, which affects the search quality; when an
infeasible target creates an individual with high fitness, they tend to lead the population;
and when the number of objectives is large, the population size needs to be able to
respond in contrast, which is a trade-off.

To solve the problems related to WTS and MOSA, Arcuri [7] presented the Many
Independent Objective algorithm. MIO separates each target into different search prob-
lems, keeping an archive of those tests that are covering each target. At the same time,
it keeps a population of tests per target. In every iteration of the search process, MIO

6

https://commons.wikimedia.org/wiki/File:Control_flow_graph_of_function_with_two_if_else_statements.svg
https://commons.wikimedia.org/wiki/File:Control_flow_graph_of_function_with_two_if_else_statements.svg

Héctor D. Menéndez

selects a test uniformly at random from the archive, runs it, and mutates it. If the test
is good for specific targets, it adds the test to the archive of those targets. The main
difference to the previous algorithms is that, in this case, there is not a general search
for all the targets but an independent one per target with an associated population,
therefore it is more dynamic and adapts better to the program.

DynaMOSA [68] is an extension of MOSA that aims to improve the selection of
targets during the search process. The system chooses the targets dynamically, dividing
them into sets. It focuses on sets of uncovered targets and creates a hierarchy among
them, called the control dependency hierarchy. The higher in the hierarchy the higher
the covering priority. This increases the diversity of the coverage process, especially at
the beginning of the search. Once a lead uncovered target is covered, it is removed and
the next one in the hierarchy takes its position. This makes the search more efficient
under time restrictions.

Although there are other interesting algorithms related to search-based strategies,
the following introduces some interesting out-of-the-box applications that extend from
these paradigms.

3.2 Out-Of-The-Box Applications

Search-based testing methods are a strong tool to validate some specific behaviours
of software, and, for that reason, they also became the base for more sophisticated
methods, such as automatic software repair [52], genetic improvement [69] and software
transplantation [11].

These three applications cover different aspects where the software either needs fix-
ing or improving. For example, automatic software repair performs transformations on
the implementation at the syntax level intending to fix known bugs automatically. The
program uses the test suite and their assertions as a fitness function and applies muta-
tions to the program’s abstract syntax tree to find one that passes the tests correctly.
Although this idea proved to solve significant errors in software [53], there are some
limitations. The three main limitations are related to those code changes that the tool
can learn [56], over-fitted patches that pass with the tests but do not fix the bug [51],
and the scalability of the technique when it deals with large programs [34].

When we focus on the non-functional aspect of the software, such as energy, memory
or time consumption, we can apply genetic improvements [69]. Genetic improvement
is also based on the idea of combining genetic programming and test suites, however,
instead of fixing the program, as automatic program repair, genetic improvement uses
the test suite as a sanity check during the non-functional optimization process. The
evolutionary process will manipulate the program syntax to improve a non-functional
requirement while the semantics (verified by the test suite) remains [69]. This process
has successfully optimised software in different ways, some examples are energy [17]
and time consumption [49]. It also has already opened new areas of research such as
adversarial genetic programming for cybersecurity [66]. However, the main limitation
of genetic improvement is code readability, which is one of the open problems of the
area [1].

The last extension of genetic improvement, which combines both functional and
non-function improvements, is automatic software transplantation [11]. The main idea
is to identify a program, for example, a video player, that requires a new feature, for
example, a video codec. Then, we need to identify a donor with that specific feature
and the implantation point into the host, and the automatic transplantation system will

7

Software Testing or The Bugs’ Nightmare

create the “fitting” to make that feature part of the host. This is performed via testing
and genetic improvement. Mainly, the transplantation system modifies the organ until
it fits in the implantation point based on the response to the test suite.

Although these are just a few out-of-the-box applications of search-based testing,
there are several more that are under development, and their main goal is to provide
better software in functional and non-functional ways.

4 Symbolic Execution

Symbolic execution is one of the main paradigms for the verification of programs. It
aims to create a semantic interpretation of the program’s implementation to validate
it [46]. The main idea behind symbolic execution is the identification of paths and
values for these paths. Imagine the example of the basic blocks in Figure 1. Let e be
the program’s entry and ni each block. Then, a path e → n1 → · · · → nk denotes
the blocks that a program execution traverse (or a trace). In symbolic execution, for
each path (for example, e → n1 → · · · → nk), we define a symbolic state {(v, φv)}
composed by both a symbolic expression (φv) and the variables of that expression (v
satisfying v ∈ V ar(P)). The bottom of Figure 3 shows the symbolic expressions for the
variables a and b. In this case, they are directly assigned to the inputs. Apart from the
symbolic state, we also define the program constraints (c1 ∧ · · · ∧ cq), which is a set of
constraints associated with that path. In the figure, the constraints correspond to the
guard statements.

To formalize it, the path e→ n1 → · · · → nk from a program P defines the symbolic
state as the triple:

(e→ n1 → · · · → nk, {(v, φv)}v∈V ar(P), c1 ∧ · · · ∧ cq)

To generate test inputs using this methodology for a specific program, the program
needs to be transformed into a set of constraints based on the input (as Figure 3 shows).
This is normally performed using Static Single Assignment (SSA) [37]. Initially, the
program’s expressions are translated into single static assignment and their loops are
unwound up to a specific level. Unwinding reduces the number of constraints related
to the loops, creating an under-approximation of the program’s semantics or an over-
approximation of the input set, i.e., some inputs might not reach the specific program
path. Symbolic execution normally leverages φ-functions to propagate values when
branches join and it also simplifies expression using constant propagation [48]. This
aims also to remove infeasible branches. The verification conditions become a formula
describing the program fP , formatted as a set of program constraints. Each constraint
is a control flow instruction that works as an expression based on the input values.

This can also be particularized to focus on testing, where we want to generate
inputs that reach a specific program point. In this case, given the program P , and
a program point pp ∈ P , focused testing leverages symbolic execution to generate an
invalid assert condition immediately before pp. Angeletti et al. [6], introduced this
process by using the C-Bounded Model Checker (CBMC) [48] to generate the program
constraints that guide the tests. Following the example of Figure 3, this method just
adds an assert(0) statement in line 6, after the printf expression, still inside the
if then-block. CBMC triggers a verification error at this point, providing verification
conditions for it and distinguishing every possible path traversing that point. It creates
these verification conditions using symbolic execution. These verification conditions are

8

Héctor D. Menéndez

Original Program

1 #inc lude<s t d i o . h>
2 i n t main (i n t argc , char ∗argv [])
3 {
4 i n t a , b , c , d ;
5 s can f (”%d %d”,&a,&b) ;
6 i f (a>b) c=a ;
7 e l s e c=b ;
8 d=(7−c) /6 ;
9 i f (c==6) p r i n t f (”0/1\n”) ; //pp

10 e l s e i f (c==1) p r i n t f (”1/1\n”) ;
11 re turn 0 ;
12 }

Symbolic State for pp

1 And(guard 1 == (b < a) ,
2 guard 2 == (I f (guard 1 , a , b) == 6) ,
3 guard 2 ,
4 a == input 0 ,
5 b == input 1)

Figure 3: Example of a program and the expression tree for the program point pp highlighted
in the original program.

normally in SMT-LIB version 2 format [12], so an SMT-Solver like Z3 [24] can be used
to generate witnesses for them, which will be test inputs traversing that point.

Figure 3 (bottom) shows an example of the expression needed to reach pp in Figure 3
(top). The constraints are defined as a tree rooted at an And expression. The tree is
divided into three parts: definition of guards (line 1 defines guard 1; line 2 defines
guard 2), input definitions (line 4 for a and line 5 for b), and path control expressions
(line 3 activates guard 2). It is relevant to remark that, in this example, only guard 2
needs to be activated to reach pp, but since its variable, c, depends on guard 1, this
guard must be also kept. The simplification process removes any other guard because
they are not related to pp.

One of the main limitations of symbolic execution is path explosion [85]. This
normally happens when the program has several paths, especially when there are many
nested loops involved, and the engine is not able to generate constraints for all of them.
To alleviate this problem, some researchers developed a technique, named concolic
testing [72], that combines concrete and symbolic execution. The main idea is to create
a concrete input and set constraints that help to traverse those paths that that input
was not able to traverse. Instead of creating a symbolic representation of the whole
program, only those inputs related to uncovered paths are considered.

4.1 Popular Tools

Symbolic execution engines normally have to deal with three problems [20]: path explo-
sion, constraint solving and memory modelling. These three problems normally define
different strategies when symbolic execution tools are designed. Some popular tools
leverage this paradigm to automatically create test suites, mainly for C or Java pro-
grams. Some of the main examples are KLEE [21] and EXE [22]. Also, there are tools

9

Software Testing or The Bugs’ Nightmare

based on concolic execution such as DART [35], CUTE [73] or JDart [58] or even more
modern techniques such as CATE [60] for Android.

One of the areas that sometimes competes with –and other times complements–
symbolic execution is model checking. In model checking a specification is provided
along with the software and the model checking engine makes sure that that specific
requirement is satisfied [48]. For that, it creates a model of the program using propo-
sitional logic (similarly to the program formula mentioned in Section 4) and the spec-
ification is applied to the solvers to verify it. Several tools of model checking either
use or are extended to symbolic execution engines. Some examples are the C-Bounded
Model Checker (CBMC) [48], which uses symbolic execution to create a test suite for
the program it aims to analyse, or Java PathFinder [41], which has a specific symbolic
execution extension [5].

5 Fuzzers

Recently, a popular testing methodology is raising, named fuzzing. The main goal of
fuzzing is to cover the whole program by generating different mutations of a provided
set of inputs (or seeds) [89]. Fuzzing has the advantage of scalability, which is the main
skill of the most popular fuzzing tool: the American Fuzzy Lop (AFL) [87].

During the last few years, fuzzers are becoming dominant tools in testing. They
exposed multiple new bugs in several all-day systems, no matter their scale. A good ex-
ample of the abilities of fuzzing is that AFL exposes the Heartbleed bug from OpenSSL
in about 10 minutes [15]. This is surpassing the current state of the art in testing [47].

The main strategies in fuzzing are black and grey-box, although, in the fuzzing ter-
minology, they are normally described as those based on generation and those based
on mutation, respectively [47]. In generation fuzzing, the fuzzer receive no feedback
from the program under test. It generates inputs either randomly or following a spe-
cific grammar to identify potential vulnerabilities within the program [43]. Some good
examples of fuzzers following this strategy are Zzuf [43] or Radamsa [42]. For mutation-
based fuzzers (or feedback-based), they instrument the program and receive feedback
related to new paths, branches or crashes discovered by the last input [47]. AFL is
the most popular fuzzer following this strategy and it has several extensions, such as
AFLFast [14] or FairFuzz [54]. Other tools either work similarly, like Libfuzzer [74], or
extend its abilities, like QSYM [86].

Although fuzzers can be understood as search-based strategies, especially when they
are mutation-based, the two communities normally tend to separate their main targets.
Normally the main target of search-based algorithms is the oracle problem, related to
the functionality of the software, while the main target of fuzzers is exposing crashes and
sometimes exploitable vulnerabilities. Two good tools that normally work in tandem to
expose vulnerabilities are the AddressSanitizer [75] and crashwalk [64], a triage system
for vulnerabilities.

5.1 Popular Tools

Fuzzing started mainly as a black-box approach for system testing where different strate-
gies were applied to a set of inputs. Examples of tools from these times were zzuf [43]
and Radamsa [42]. The former, Zzuf, considers the input in its binary form and mu-
tates some bits to generate new ones. These modifications are deterministic. The latter,

10

Héctor D. Menéndez

Radamsa, is similar to Zzuf although it includes different heuristic and operates with
different types of inputs such as network ones.

AFL [87] led the evolution to feedback-based or mutation-based fuzzers. AFL in-
struments the whole program (normally in C or C++ during compilation time by using
either Clang or GCC) and uses this instrumentation as a guidance that shows which
pair of branches (or transitions) have already been covered. Starting with a set of seeds,
it queues them. It will mutate the elements of this queue through heuristics to discover
new transitions. If a mutated seed discovers a new transition, it will be added at the
end of the queue to continue with the mutation process. Two popular extensions of
AFL are AFLFast [14] and FairFuzz [54], whose aim is to maximize the exposition of
rare paths. AFLFast has a scheduler controlling how many times a seed has been mu-
tated. This helps to select the next seed from the queue that will be mutated. FairFuzz
goes a step further, it does not only smartly select the seeds, but it also selects the
heuristics that will mutate these seeds. Another popular tool, in this case, embedded
into the LLVM compiler infrastructure, is Libfuzzer [74]. This library generates inputs
for a specific function (or target), which becomes the entry-point of the program.

Some tools extend the abilities of fuzzers. For example, QSYM combines fuzzing
with concolic execution to reach those targets whose branch conditions are difficult for
the heuristics [86]. Also, some fuzzers combine with grammars to improve the generation
of structured inputs. Some examples of these fuzzers are Gramfuzz [39], which uses the
input’s grammar to construct structured trees based on them and mutate the trees
directly to preserve the structure, and Superion [82], which constructs on top of the
previous idea by generating two new mutation strategies, one based on sub-trees and
the other one on dictionaries. In contrast with grammar-based approaches, fuzzers like
AFL use dictionaries during the input generation process.

For those interested in fuzzing datasets, Google provides a service named the con-
tinues fuzzing services for open source software or OSS-Fuzz [76] and also a benchmark
system to compare new fuzzing implementations named FuzzBench [62]. Also, to per-
form a proper comparison with the state-of-the-art in fuzzing, Klees et al. collected a
set of good practices in fuzzing with pieces of advice related to formal comparisons [47].

6 Diversity methods

Testing processes aim to provide a comprehensive exploration of the behavioural space
of a program to detect potential errors in the program’s logic or bugs [63]. Although
this idea would immediately lead to the notion of diversity, considering that testing is
not infinite and will need to stop at some point, multiple factors limit this exploration,
and different techniques have been introduced to compensate for these problems.

One of the first things that diversity-based testing aims to define is the notion of
diversity. In terms of our previous formalization (Section 2), we can define the diver-
sity of inputs (I), outputs (O) or behaviours (B). The goal is either to maximize the
diversity or increment it, but the definition of diversity can lead to a long debate in
different areas. If we consider the domains of spaces for I, O and B, for a determin-
istic program, we can consider that |I| ≥ |B| ≥ |O| (i.e. there are more inputs than
behaviours and more behaviours than outputs). It is not possible to have more inputs
than potential behaviours, because one input leads to one behaviour, considering the
notion of a path as behaviour and, equivalently, to outputs. However, this information
loss between inputs, behaviours and outputs makes diversity non-transitive.

Some of the definitions will consider diversity as spread within any of these domains.

11

Software Testing or The Bugs’ Nightmare

The more areas of the space that are cover, the better [23]. Others would define it
in terms of probability. In this case, we can define the tester as a generator G and
aim to calculate how close this generator is to a specific probability distribution, for
example, the uniform distribution where every element has a probability of 1/|D| where
D is the domain. In this case, our generator would generate a different input, output
or behaviour every time. This is kind of obvious in terms of input-based generation
because it is simple to improve diversity in terms of inputs. But behaviours and outputs
are not so simple [61]. Normally, to reach these goals we either need a semantic notion
of the program or to discard inputs when they are not increasing the diversity [3]. Some
examples of these are the different approaches to output diversity, for example, output
uniqueness [3] generates multiple inputs and discards those that generate the same
output. On the other hand, Reza et al. use Simulink to generate outputs and define
a notion of similarity in the output space to discard similar outputs [59]. In contrast
with these two, output diversity driven creates a generator that generates inputs whose
output follows a near-uniform distribution, eliminating the need for discarding inputs
[61].

Some authors also try to add diversity directly inside of symbolic execution. A good
example was introduced by Gotlieb et al. [36], where the authors generate a uniform
testing tool that was based on symbolic execution. Also, the work of Chakabordy on
r-wise independent hash functions goes in this direction [23]. In this work, the authors
consider the sampling process of the solver bias in terms of diversity. To avoid this bias,
they include new constraints in the program’s function and force the solver to sample
from different domain regions through these new constraints. This increase the spreads
and improves diversity.

7 Common Problems and Future Challenges

Although these techniques are good for detecting bugs there are several problems in
testing that need a deeper understanding. One of the main problems is scalability [90].
Some of the techniques that allow a deeper understanding of the program, like symbolic
execution (Section 4), do not allow to scale to large programs easily (without the extra
help of concolic execution), while other techniques that scale, like fuzzers (Section 5),
require a deeper understanding or how to construct better inputs to deal with difficult
cases.

Another relevant testing problem is multi-lingual programs, where the instrumen-
tation might reach some parts of the program but not others. Multi-lingual programs
very common in several projects (Github is a good example of it [83]) and is becoming
an interesting challenge in different testing disciplines. For instance, researchers are
trying to combine formal languages for SQL and C to perform complete coverage [2].

Following the previous point, normally different languages apply to different cloud
services, and the combination of these services also needs to be tested. This is called
cloud-testing and focuses on both: testing as a cloud-service and testing apps in the
cloud [33]. Considering that the internet is tending to the cloud, it is important to be
able to reach all these services during the testing process.

From a theoretical point of view, one of the most relevant problems in testing is when
to stop, as Marcel Böhme stated in his STADS framework [13]. Having a notion about
the total percentage of coverage discovered during the testing process and a prediction
of how much effort is required to discover new paths or bugs will allow the tester to
decide when to stop, especially considering that processes like fuzzing normally last

12

Héctor D. Menéndez

days.
Testing concurrent programs is becoming a relevant topic considering that programs

leverage the multicore nature of current technologies. Concurrency is one of the limita-
tions of symbolic execution that model checking aims to solve [48], however, modelling
concurrency also requires modelling potential non-determinism during the program exe-
cution that depends on how the multiple threads are organised by the operating system
[9]. One of the main goals during concurrency testing is to achieve high synchroniza-
tion coverage among the different threads [44]. For that, normally threads are scheduled
and the testing process aims to cover all the potential scheduled pairs of threads in a
similar way that branches are covered in traditional testing. However, although several
approaches have been tried in this area, there is still a lot of work to do to provide
complete coverage of concurrent programs [9].

Another interesting testing focus comes with artificial intelligence and machine
learning. Apart from those techniques that use machine learning to test program, which
were recently collected by Zhang et al. [91], there are researchers developing testing
techniques to test machine learning algorithms, either on general machine learning,
such as [84], or for the specifics of deep learning implementations, where the neurons
of the neural net are the coverage goal [79]. Riccio et al. recently collected multiple
different approaches and methodologies for machine learning testing [70]. When testing
machine learning, there are two main goals during the testing process: explore the non-
determinism of a machine learning system and expose specific adversarial samples that
can spoil the classification of the system and might be a threat for future applications
of this technology.

8 Conclusions

Automatic software testing is a wide field of research with several different branches that
sometimes compete or cross between them. Methods like symbolic execution or search-
based algorithms can normally complement each other to achieve better results when
bugs need to be exposed. Also, when coverage is not the only goal but a baseline for
testing, diversity becomes the best complement to identify potential inputs that might
activate unknown bugs, considering its ability to improve the exploration process in
adversarial situations as those generated by solvers.

From a performance perspective, fuzzers are gaining major importance not just
for their ability to test programs in a system testing way but also because of their
performance. They are efficient and they are currently evolving to include techniques
related not just to search but also symbolic execution.

Finally, the future challenges of testing will deal with scalability, which is the current
target of fuzzers; multiple languages or services, which is the way the cloud is designed
these days; and non-deterministic scenarios, as those produced during concurrency or
when machine learning or artificial intelligent systems are under test.

Acknowledgements

I want to dedicate this paper to the person, mentor and friend who opened my eyes
to the testing world: Dr David J. Clark. David hired me via the InfoTestSS project
(EPSRC EP/P005888/1) that I also want to acknowledge. Finally, I want to acknowl-
edge the CREST group where I had hundreds of discussions and coffees about research,

13

Software Testing or The Bugs’ Nightmare

including interesting reading groups, open workshops and several amazing research ac-
tivities, like our ICSE Fridays. If you, reader, have the opportunity to spend time there,
trust me, you won’t reject it.

License
This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

References

[1] Afsoon Afzal, Jeremy Lacomis, Claire Le Goues, and Christopher S Timperley.
A turing test for genetic improvement. In Proceedings of the 4th International
Workshop on Genetic Improvement Workshop, pages 17–18, 2018.

[2] Md Imran Alam, Raju Halder, and Jorge Sousa Pinto. A deductive reason-
ing approach for database applications using verification conditions. Journal of
Systems and Software, page 110903, 2021. doi: 10.1016/j.jss.2020.110903. URL
http://dx.doi.org/10.1016/j.jss.2020.110903.

[3] Nadia Alshahwan and Mark Harman. Augmenting test suites effectiveness by in-
creasing output diversity. In 2012 34th International Conference on Software En-
gineering (ICSE), pages 1345–1348. IEEE, 2012. doi: 10.1109/icse.2012.6227083.
URL http://dx.doi.org/10.1109/icse.2012.6227083.

[4] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge Uni-
versity Press, 2016.

[5] Saswat Anand, Corina S Păsăreanu, and Willem Visser. Jpf–se: A symbolic ex-
ecution extension to java pathfinder. In International conference on tools and
algorithms for the construction and analysis of systems, pages 134–138. Springer,
2007.

[6] Damiano Angeletti, Enrico Giunchiglia, Massimo Narizzano, Alessandra Puddu,
and Salvatore Sabina. Automatic test generation for coverage analysis using cbmc.
In International Conference on Computer Aided Systems Theory, pages 287–294.
Springer, 2009. doi: 10.1007/978-3-642-04772-5 38. URL http://dx.doi.org/

10.1007/978-3-642-04772-5_38.

[7] Andrea Arcuri. Test suite generation with the many independent objective (mio)
algorithm. Information and Software Technology, 104:195–206, 2018. doi: 10.1016/
j.infsof.2018.05.003. URL http://dx.doi.org/10.1016/j.infsof.2018.05.003.

[8] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration testing. IEEE
Security & Privacy, 3(1):84–87, 2005.

[9] Vinay Arora, Rajesh Bhatia, and Maninder Singh. A systematic review of
approaches for testing concurrent programs. Concurrency and Computation:

14

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
http://dx.doi.org/10.1016/j.jss.2020.110903
http://dx.doi.org/10.1109/icse.2012.6227083
http://dx.doi.org/10.1007/978-3-642-04772-5_38
http://dx.doi.org/10.1007/978-3-642-04772-5_38
http://dx.doi.org/10.1016/j.infsof.2018.05.003

Héctor D. Menéndez

Practice and Experience, 28(5):1572–1611, 2016. doi: 10.1002/cpe.3711. URL
http://dx.doi.org/10.1002/cpe.3711.

[10] Thomas Ball and James R Larus. Optimally profiling and tracing programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(4):1319–
1360, 1994. doi: 10.1145/143165.143180. URL http://dx.doi.org/10.1145/

143165.143180.

[11] Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
Automated software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pages 257–269, 2015.

[12] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version
2.0. In Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories (Edinburgh, England), volume 13, page 14, 2010.

[13] Marcel Böhme. Stads: Software testing as species discovery. ACM Transactions
on Software Engineering and Methodology (TOSEM), 27(2):1–52, 2018.

[14] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based grey-
box fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, pages 1032–1043, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978428.
URL http://doi.acm.org/10.1145/2976749.2978428.

[15] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 2329–2344. ACM, 2017.

[16] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[17] Bobby R Bruce, Justyna Petke, and Mark Harman. Reducing energy consumption
using genetic improvement. In Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, pages 1327–1334, 2015. doi: 10.1145/
2739480.2754752. URL http://dx.doi.org/10.1145/2739480.2754752.

[18] Dan Bruce, Héctor D Menéndez, and David Clark. Dorylus: An ant colony
based tool for automated test case generation. In International Symposium on
Search Based Software Engineering, pages 171–180. Springer, 2019. doi: 10.1007/
978-3-030-27455-9 13. URL http://dx.doi.org/10.1007/978-3-030-27455-9_

13.

[19] Dan Bruce, Héctor D Menéndez, Earl T Barr, and David Clark. Ant colony opti-
mization for object-oriented unit test generation. In International Conference on
Swarm Intelligence, pages 29–41. Springer, 2020. doi: 10.1007/978-3-030-60376-2
3. URL http://dx.doi.org/10.1007/978-3-030-60376-2_3.

[20] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, 2013.

15

http://dx.doi.org/10.1002/cpe.3711
http://dx.doi.org/10.1145/143165.143180
http://dx.doi.org/10.1145/143165.143180
http://doi.acm.org/10.1145/2976749.2978428
http://dx.doi.org/10.1145/2739480.2754752
http://dx.doi.org/10.1007/978-3-030-27455-9_13
http://dx.doi.org/10.1007/978-3-030-27455-9_13
http://dx.doi.org/10.1007/978-3-030-60376-2_3

Software Testing or The Bugs’ Nightmare

[21] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

[22] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. Exe: Automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), 12(2):1–38, 2008.

[23] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and
Moshe Y Vardi. On parallel scalable uniform sat witness generation. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 304–319. Springer, 2015. doi: 10.1007/978-3-662-46681-0 25. URL
http://dx.doi.org/10.1007/978-3-662-46681-0_25.

[24] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008. doi: 10.1007/978-3-540-78800-3 24. URL
http://dx.doi.org/10.1007/978-3-540-78800-3_24.

[25] Kalyanmoy Deb, Ashish Anand, and Dhiraj Joshi. A computationally efficient
evolutionary algorithm for real-parameter optimization. Evolutionary computation,
10(4):371–395, 2002. doi: 10.1162/106365602760972767. URL http://dx.doi.

org/10.1162/106365602760972767.

[26] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002. doi: 10.1109/4235.996017. URL
http://dx.doi.org/10.1109/4235.996017.

[27] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.
IEEE computational intelligence magazine, 1(4):28–39, 2006.

[28] Ibrahim K El-Far and James A Whittaker. Model-based software testing. Ency-
clopedia of Software Engineering, 2002.

[29] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages
416–419, 2011.

[30] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276–291, 2012.

[31] Gordon Fraser and Andrea Arcuri. Evosuite at the sbst 2016 tool competition. In
Proceedings of the 9th International Workshop on Search-Based Software Testing,
pages 33–36, 2016.

[32] Zhoulai Fu and Zhendong Su. Achieving high coverage for floating-point code
via unconstrained programming. ACM SIGPLAN Notices, 52(6):306–319, 2017.
doi: 10.1145/3062341.3062383. URL http://dx.doi.org/10.1145/3062341.

3062383.

16

http://dx.doi.org/10.1007/978-3-662-46681-0_25
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1162/106365602760972767
http://dx.doi.org/10.1162/106365602760972767
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1145/3062341.3062383
http://dx.doi.org/10.1145/3062341.3062383

Héctor D. Menéndez

[33] Jerry Gao, Xiaoying Bai, and Wei-Tek Tsai. Cloud testing-issues, challenges, needs
and practice. Software Engineering: An International Journal, 1(1):9–23, 2011.

[34] Ali Ghanbari. Toward practical automatic program repair. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1262–1264. IEEE, 2019. doi: 10.1109/ase.2019.00156. URL http://dx.doi.

org/10.1109/ase.2019.00156.

[35] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 213–223, 2005. doi: 10.1007/
978-3-642-19237-1 4. URL http://dx.doi.org/10.1007/978-3-642-19237-1_

4.

[36] Arnaud Gotlieb and Matthieu Petit. A uniform random test data generator for
path testing. Journal of Systems and Software, 83(12):2618–2626, 2010. doi: 10.
1016/j.jss.2010.08.021. URL http://dx.doi.org/10.1016/j.jss.2010.08.021.

[37] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic test data
generation using constraint solving techniques. ACM SIGSOFT Software En-
gineering Notes, 23(2):53–62, 1998. doi: 10.1145/271771.271790. URL http:

//dx.doi.org/10.1145/271771.271790.

[38] John J Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE Transactions on systems, man, and cybernetics, 16(1):122–128, 1986.

[39] Tao Guo, Puhan Zhang, Xin Wang, and Qiang Wei. Gramfuzz: Fuzzing testing of
web browsers based on grammar analysis and structural mutation. In 2013 Sec-
ond International Conference on Informatics & Applications (ICIA), pages 212–
215. IEEE, 2013. doi: 10.1109/icoia.2013.6650258. URL http://dx.doi.org/10.

1109/icoia.2013.6650258.

[40] Neelam Gupta, Aditya P Mathur, and Mary Lou Soffa. Generating test data for
branch coverage. In Proceedings ASE 2000. Fifteenth IEEE International Confer-
ence on Automated Software Engineering, pages 219–227. IEEE, 2000.

[41] Klaus Havelund and Thomas Pressburger. Model checking java programs using
java pathfinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

[42] Aki Helin. Radamsa fuzzer, 2006.

[43] S Hocevar. zzuf—multi-purpose fuzzer, 2011.

[44] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean Har-
rold. Testing concurrent programs to achieve high synchronization coverage.
In Proceedings of the 2012 International Symposium on Software Testing and
Analysis, pages 210–220, 2012. doi: 10.1145/2338965.2336779. URL http:

//dx.doi.org/10.1145/2338965.2336779.

[45] Paul C Jorgensen and Carl Erickson. Object-oriented integration testing. Commu-
nications of the ACM, 37(9):30–38, 1994. doi: 10.1201/9781439889503-29. URL
http://dx.doi.org/10.1201/9781439889503-29.

17

http://dx.doi.org/10.1109/ase.2019.00156
http://dx.doi.org/10.1109/ase.2019.00156
http://dx.doi.org/10.1007/978-3-642-19237-1_4
http://dx.doi.org/10.1007/978-3-642-19237-1_4
http://dx.doi.org/10.1016/j.jss.2010.08.021
http://dx.doi.org/10.1145/271771.271790
http://dx.doi.org/10.1145/271771.271790
http://dx.doi.org/10.1109/icoia.2013.6650258
http://dx.doi.org/10.1109/icoia.2013.6650258
http://dx.doi.org/10.1145/2338965.2336779
http://dx.doi.org/10.1145/2338965.2336779
http://dx.doi.org/10.1201/9781439889503-29

Software Testing or The Bugs’ Nightmare

[46] James C King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[47] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Eval-
uating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2123–2138. ACM, 2018.

[48] Daniel Kroening and Michael Tautschnig. Cbmc–c bounded model checker. In In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 389–391. Springer, 2014.

[49] William B Langdon and Mark Harman. Grow and graft a better cuda pknot-
srg for rna pseudoknot free energy calculation. In Proceedings of the Com-
panion Publication of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, pages 805–810, 2015. doi: 10.1145/2739482.2768418. URL
http://dx.doi.org/10.1145/2739482.2768418.

[50] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
S3: syntax-and semantic-guided repair synthesis via programming by examples.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, pages 593–604, 2017.

[51] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. Overfitting in
semantics-based automated program repair. Empirical Software Engineering, 23
(5):3007–3033, 2018. doi: 10.1145/3180155.3182536. URL http://dx.doi.org/

10.1145/3180155.3182536.

[52] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
Genprog: A generic method for automatic software repair. Ieee transactions
on software engineering, 38(1):54–72, 2011. doi: 10.1109/tse.2011.104. URL
http://dx.doi.org/10.1109/tse.2011.104.

[53] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
A systematic study of automated program repair: Fixing 55 out of 105 bugs for
$8 each. In 2012 34th International Conference on Software Engineering (ICSE),
pages 3–13. IEEE, 2012.

[54] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages 475–485.
ACM, 2018. doi: 10.1145/3238147.3238176. URL http://dx.doi.org/10.1145/

3238147.3238176.

[55] Hareton KN Leung and Lee White. Insights into regression testing (software test-
ing). In Proceedings. Conference on Software Maintenance-1989, pages 60–69.
IEEE, 1989. doi: 10.1109/icsm.1989.65194. URL http://dx.doi.org/10.1109/

icsm.1989.65194.

[56] Yi Li, Shaohua Wang, and Tien N Nguyen. Dlfix: Context-based code transfor-
mation learning for automated program repair. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, pages 602–614, 2020.

18

http://dx.doi.org/10.1145/2739482.2768418
http://dx.doi.org/10.1145/3180155.3182536
http://dx.doi.org/10.1145/3180155.3182536
http://dx.doi.org/10.1109/tse.2011.104
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1109/icsm.1989.65194
http://dx.doi.org/10.1109/icsm.1989.65194

Héctor D. Menéndez

[57] Jason D Lohn, William F Kraus, and Gary L Haith. Comparing a coevolu-
tionary genetic algorithm for multiobjective optimization. In Proceedings of the
2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol-
ume 2, pages 1157–1162. IEEE, 2002. doi: 10.1109/cec.2002.1004406. URL
http://dx.doi.org/10.1109/cec.2002.1004406.

[58] Kasper Luckow, Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar, Malte
Isberner, Temesghen Kahsai, Zvonimir Rakamarić, and Vishwanath Raman. Jd
art: a dynamic symbolic analysis framework. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 442–459.
Springer, 2016.

[59] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. Test
generation and test prioritization for simulink models with dynamic behavior.
IEEE Transactions on Software Engineering, 45(9):919–944, 2018. doi: 10.1109/
tse.2018.2811489. URL http://dx.doi.org/10.1109/tse.2018.2811489.

[60] Patrick McAfee, Mohamed Wiem Mkaouer, and Daniel E Krutz. Cate: Concolic
android testing using java pathfinder for android applications. In 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and Systems (MO-
BILESoft), pages 213–214. IEEE, 2017. doi: 10.1109/mobilesoft.2017.35. URL
http://dx.doi.org/10.1109/mobilesoft.2017.35.

[61] HD Menendez, M Boreale, D Gorla, and D Clark. Output sampling for output
diversity in automatic unit test generation. IEEE Transactions on Software En-
gineering, 2020. doi: 10.1109/tse.2020.2987377. URL http://dx.doi.org/10.

1109/tse.2020.2987377.

[62] László Szekeres Jonathan Metzman, Abhishek Arya, and L Szekeres. Fuzzbench:
Fuzzer benchmarking as a service. Google Security Blog, 2020.

[63] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The art of
software testing, volume 2. Wiley Online Library, 2004.

[64] Ben Nagy. Crashwalk. https://github.com/bnagy/crashwalk/, 2015. [Online;
accessed 17-February-2021].

[65] Clementine Nebut, Franck Fleurey, Yves Le Traon, and J-M Jezequel. Automatic
test generation: A use case driven approach. IEEE Transactions on Software
Engineering, 32(3):140–155, 2006. doi: 10.1109/tse.2006.22. URL http://dx.

doi.org/10.1109/tse.2006.22.

[66] Una-May O’Reilly, Jamal Toutouh, Marcos Pertierra, Daniel Prado Sanchez,
Dennis Garcia, Anthony Erb Luogo, Jonathan Kelly, and Erik Hemberg. Ad-
versarial genetic programming for cyber security: A rising application domain
where gp matters. Genetic Programming and Evolvable Machines, 21(1):219–
250, 2020. doi: 10.1007/s10710-020-09389-y. URL http://dx.doi.org/10.1007/

s10710-020-09389-y.

[67] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating
branch coverage as a many-objective optimization problem. In 2015 IEEE 8th
international conference on software testing, verification and validation (ICST),

19

http://dx.doi.org/10.1109/cec.2002.1004406
http://dx.doi.org/10.1109/tse.2018.2811489
http://dx.doi.org/10.1109/mobilesoft.2017.35
http://dx.doi.org/10.1109/tse.2020.2987377
http://dx.doi.org/10.1109/tse.2020.2987377
https://github.com/bnagy/crashwalk/
http://dx.doi.org/10.1109/tse.2006.22
http://dx.doi.org/10.1109/tse.2006.22
http://dx.doi.org/10.1007/s10710-020-09389-y
http://dx.doi.org/10.1007/s10710-020-09389-y

Software Testing or The Bugs’ Nightmare

pages 1–10. IEEE, 2015. doi: 10.1109/icst.2015.7102604. URL http://dx.doi.

org/10.1109/icst.2015.7102604.

[68] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated
test case generation as a many-objective optimisation problem with dynamic se-
lection of the targets. IEEE Transactions on Software Engineering, 44(2):122–158,
2017. doi: 10.1109/tse.2017.2663435. URL http://dx.doi.org/10.1109/tse.

2017.2663435.

[69] Justyna Petke, Saemundur O Haraldsson, Mark Harman, William B Langdon,
David R White, and John R Woodward. Genetic improvement of software: a
comprehensive survey. IEEE Transactions on Evolutionary Computation, 22(3):
415–432, 2017.

[70] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael
Weiss, and Paolo Tonella. Testing machine learning based systems: a systematic
mapping. Empirical Software Engineering, 25(6):5193–5254, 2020.

[71] Raul Santelices, James A Jones, Yanbing Yu, and Mary Jean Harrold. Lightweight
fault-localization using multiple coverage types. In 2009 IEEE 31st International
Conference on Software Engineering, pages 56–66. IEEE, 2009. doi: 10.1109/icse.
2009.5070508. URL http://dx.doi.org/10.1109/icse.2009.5070508.

[72] Koushik Sen. Concolic testing. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pages 571–572, 2007.

[73] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine
for c. ACM SIGSOFT Software Engineering Notes, 30(5):263–272, 2005. doi:
10.21236/ada482657. URL http://dx.doi.org/10.21236/ada482657.

[74] K Serebryany. libfuzzer a library for coverage-guided fuzz testing. LLVM project,
2015.

[75] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In 2012 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 12), pages 309–318, 2012.

[76] Kostya Serebryany. Oss-fuzz-google’s continuous fuzzing service for open source
software. 2017.

[77] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automat-
ically characterizing large scale program behavior. ACM SIGPLAN Notices, 37
(10):45–57, 2002. doi: 10.1145/635508.605403. URL http://dx.doi.org/10.

1145/635508.605403.

[78] SN Sivanandam and SN Deepa. Genetic algorithms. In Introduction to genetic
algorithms, pages 15–37. Springer, 2008.

[79] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. Concolic testing for deep neural networks. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
pages 109–119, 2018. doi: 10.1145/3238147.3238172. URL http://dx.doi.org/

10.1145/3238147.3238172.

20

http://dx.doi.org/10.1109/icst.2015.7102604
http://dx.doi.org/10.1109/icst.2015.7102604
http://dx.doi.org/10.1109/tse.2017.2663435
http://dx.doi.org/10.1109/tse.2017.2663435
http://dx.doi.org/10.1109/icse.2009.5070508
http://dx.doi.org/10.21236/ada482657
http://dx.doi.org/10.1145/635508.605403
http://dx.doi.org/10.1145/635508.605403
http://dx.doi.org/10.1145/3238147.3238172
http://dx.doi.org/10.1145/3238147.3238172

Héctor D. Menéndez

[80] Dolores R. Wallace and Roger U. Fujii. Software verification and validation: an
overview. Ieee Software, 6(3):10–17, 1989.

[81] Chao Wang, Mahmoud Said, and Aarti Gupta. Coverage guided systematic con-
currency testing. In Proceedings of the 33rd International Conference on Soft-
ware Engineering, pages 221–230, 2011. doi: 10.1145/1985793.1985824. URL
http://dx.doi.org/10.1145/1985793.1985824.

[82] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: grammar-aware
greybox fuzzing. In Proceedings of the 41st International Conference on Software
Engineering, pages 724–735. IEEE Press, 2019. doi: 10.1109/icse.2019.00081. URL
http://dx.doi.org/10.1109/icse.2019.00081.

[83] Shangwen Wang, Xiaoguang Mao, and Yue Yu. An initial step towards organ
transplantation based on github repository. IEEE Access, 6:59268–59281, 2018.
doi: 10.1109/access.2018.2872669. URL http://dx.doi.org/10.1109/access.

2018.2872669.

[84] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. Testing and validating machine learning classifiers by meta-
morphic testing. Journal of Systems and Software, 84(4):544–558, 2011.

[85] Qian Yang, J Jenny Li, and David M Weiss. A survey of coverage-based testing
tools. The Computer Journal, 52(5):589–597, 2009. doi: 10.1093/comjnl/bxm021.
URL http://dx.doi.org/10.1093/comjnl/bxm021.

[86] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. {QSYM}: A
practical concolic execution engine tailored for hybrid fuzzing. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 745–761, 2018.

[87] M. Zalewski. American fuzzy lop, 2019. URL http://lcamtuf.coredump.cx/

afl/.

[88] Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier,
2009.

[89] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. The fuzzing book, 2019.

[90] Jie Zhang, Muyao Zhu, Dan Hao, and Lu Zhang. An empirical study on the
scalability of selective mutation testing. In 2014 IEEE 25th International Sym-
posium on Software Reliability Engineering, pages 277–287. IEEE, 2014. doi:
10.1109/issre.2014.27. URL http://dx.doi.org/10.1109/issre.2014.27.

[91] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering,
2020. doi: 10.1109/tse.2019.2962027. URL http://dx.doi.org/10.1109/tse.

2019.2962027.

21

http://dx.doi.org/10.1145/1985793.1985824
http://dx.doi.org/10.1109/icse.2019.00081
http://dx.doi.org/10.1109/access.2018.2872669
http://dx.doi.org/10.1109/access.2018.2872669
http://dx.doi.org/10.1093/comjnl/bxm021
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1109/issre.2014.27
http://dx.doi.org/10.1109/tse.2019.2962027
http://dx.doi.org/10.1109/tse.2019.2962027

	Introduction
	Automatic Test Generation
	Search-Based Methods
	Popular Algorithms
	Out-Of-The-Box Applications

	Symbolic Execution
	Popular Tools

	Fuzzers
	Popular Tools

	Diversity methods
	Common Problems and Future Challenges
	Conclusions

