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Abstract.  Based on an Artificial Neural Network model, Cell Assembly-based 

Task Analysis is a new method that outputs a task performance model composed 

of integrated mind-brain Cell Assemblies, which are currently believed to be the 

most plausible, general organisation of the brain and how it supports mental 

operations.  A simplified model of Cell Assemblies and their cognitive 

architecture is described and then used in the method.  A brief sub-task is 

analysed.  The method’s utility to research in  Artificial Intelligence, neuroscience 

and cognitive psychology is discussed and the possibility of a General Theory 

suggested. 
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1 Introduction 
A Cell Assembly (CA) is a collection of cooperating neurons and such neurons may be 

biological or artificial.  CAs can represent both the content and the processes of thought 

in humans and in Artificial Intelligences (AIs).  In contrast to the traditional separation 

of mind and brain, or hardware and software, CAs provide a single description of the 

physical and the informational.   

There is a long history of ideas in computing influencing psychological theories [1] 

and as an example of this a new Task Analysis (TA) method has been developed.  It 

describes human task performance in terms of a simplified model of the brain CAs 

involved.   These CAs are based on an Artificial Neural Network (ANN) model.  The 

new Cell Assembly-based Task Analysis (CAbTA) method exploits TA’s practical, 

engineering approach to modelling human cognition.  Overall, the approach is similar 

to that of GOMS – Goals, Operations, Methods and Selection rules [2, 3] – method’s 

implementation of its output as symbolic AI production systems such as ACT-R [4, 5] 

and EPIC [6].  Similarly, CAbTA can describe CA-based ANN task performance in a 

sophisticated, consistent manner that can be directly related to an AI’s CAs and their 

architecture at lower, operational levels, thus enhancing ANN design, implementation 

and testing. 

 

1.1 Cell Assemblies and Brains 

The human brain has around 1011 neurons [7] and there is considerable evidence, 

summarised by [8], that much of the brain is CA-based.  There is a tight binding 

between the physical properties of a CA and its functional, information processing ones.  



Although there are cortical areas that have specialised functions, defining exact 

functionality is often difficult because this depends on the tested task range.  Such 

functionality problems remain at whatever physiological level of detail studied. 

Predating Newell’s [9] work on cognitive architecture, Hebb’s 1949 theory [10] is 

that each concept is represented by a collection of firing neurons.  Hebb’s theory has 

been considerably extended [8], particularly with the development of CA-based ANNs.  

Hebb’s concepts now represent Long Term Memory (LTM) and active mental content 

and processes, e.g. calculation [11], which CAs naturally represent as they must change 

over time.  CAs can also modify processes by providing pre-ignition structure.  

Powerful cognition in less neurally endowed species may involve as few as two 

hundred neurons [12].  In humans the size range of CAs is suggested as 103 to 107 

neurons, although upper estimates may be “super-CAs composed of many sub-CAs” 

[8].  Most neurons, at different times, will have membership of different CAs, although 

type may be restricted, e.g. a neuron in the primary visual cortex might always be 

involved with visual processing.  

Once ignited, CAs can persist for longer than it takes for a neuron to fatigue.  

Therefore, for CA persistence of several seconds or more there must be a pool of non-

firing neurons that can replace fatiguing neurons (see PotN, section 2.1).  With long 

term CA persistence, a neuron might fire repeatedly, fatigue, recover, and then fire 

repeatedly again.   

 

The QPID Model.  A simple model is that CAs can exist in four states: Quiescent, 

Priming, Ignited, and Decaying (Q, P, I and D, respectively, pronounced “Cupid”).   

While physiologically similar, functionally the four states differ significantly: Q-state 

CAs are structured for permanent storage; P-states prepare a CA for ignition and 

support cooperative and competitive attentional mechanisms; I-states are active CAs; 

and D-states prepare CAs for their LTM Q-state.  The reality is complicated, e.g. P-

state CA structure will change as priming approaches ignition; or D-state decay may 

return to some notional resting state, or remain primed for re-ignition, or suffer a 

refractory period where re-ignition is harder.   

In QPID, a new Q-state is never quite the same as its precursor; the notionally same 

CA will differ in the set of neurons involved in each ignition, and neurons themselves 

change over time, e.g. synaptic growth. Thus, the CA’s functional definition must be at 

a sufficiently high level of description that such differences can be ignored.  Some 

concept of levels of detail is common in many areas.  The super-CA/sub-CA proposal 

and QPID model fits well with TA’s extensive use of levels.   

 

Cell Assemblies and Artificial Neural Networks.  CA-based ANNs use simplified 

neuron models that mimic brain operation.  Most are self-organising, i.e. they can learn.  

Anderson [5] discusses learning in detail but ACT-R only models human learning like 

any other task.  There is, however, a complete difference between modelling how 

people learn and the inherent, self-directed, internal learning that is typical in ANNs. 

The Cell Assembly roBots (CABots) demonstrate both new object and 

environmental learning, and they can solve problems, all without human programmer 

intervention [13, 14].  They are the starting point for CAbTA’s CA models. 

CA-based ANNs suffer the same definition problems as biological CAs as once 

running, and learning, CA functionality is difficult to infer, even though the whole 



system can be inspected.  Software functionality in symbolic AIs is well understood as 

these use traditional programming methods.  Unfortunately, symbolic AIs lack any 

operational level mapping between brains and computers. 

A variety of neuron models are available that run on CA-based simulators, e.g. the 

CABots used spiking neurons, some with adaptation [15].  While smaller than human 

brains, Furber, et al. [16] used neuromorphic hardware (SpiNNaker) to simulate, in 

real-time, billion neuron CA-based models. 

Crucially, even simple CA-based systems have been proved to be Turing machines, 

given enough neurons, i.e. they can compute any legal mathematical or logical 

expression [17].  Therefore, anything written using traditional programming, including 

symbolic AI code, can be done using simulated neuron-based CAs.  Currently, run-time 

efficiency remains a problem, but performance should continue to improve, although 

Huyck’s CABots already run in real time on a PC. 

The existing computational modelling work, e.g.[14], and computational theory [17] 

shows that CAs are a solution to all computable problems, and a reasonably simple 

implementation to many problems.  Thus a CA-based TA could be implemented 

computationally reasonably easily.  

 

1.2 Task Analysis and Symbolic Artificial Intelligence 

GOMS output resembles program pseudo-code so is easy to implement as symbolic AI 

production systems like ACT-R and EPIC.  Anderson and Lebiere [4] say such systems 

“are the only modelling formalism capable of spanning a broad range of tasks, dealing 

with complex cognition …”, and ACT-R has “a profound sense of psychological 

reality”; Anderson [5] sees EPIC as an ACT-R 6.0 precursor, contributing “Perceptual-

Motor” modules.  EPIC’s developers’ claims are more cautious [18, 6].  

Anderson [5] defines cognitive architecture as a specification of how “the brain … 

achieves the function of the mind.”   Problematically, symbolic AI systems’ program 

code makes no attempt to mimic the brain, although Anderson [5] attempts, post hoc, 

some relationships to brain areas.  The theoretical issue concerns simulation fidelity, 

how well one thing, a symbolic AI, can mimic another, the brain, when operationally 

they are completely different.   

The Achilles’ Heel of symbolic AIs is their reliance on human programmers.  If a 

GOMS model changes, then its symbolic AI equivalent must be reprogrammed.  While 

ACT-R, and other cognitive architectures like Soar [19], can learn, these typically work 

by parameter setting or generating new rules from old ones.  Unlike CA-based ANNs, 

they are not capable of symbol grounding [20]. 

There are hundreds of TA methods and all have a cognitive, psychological 

component.  As Kieras [3] notes, “a task analysis for system design must be rather more 

informal and primarily heuristic in flavour compared to scientific research.”  Using 

Card, Moran and Newell’s [2] cognitive psychology, GOMS is a psychologically 

sophisticated TA method, yet is easily criticised scientifically.   

The basic engineering argument in GOMS, and generally in TA, is that some 

cognitive representations and processes similar to those identified during an analysis 

must occur.  For example, a TA might identify using Short Term Memory (STM), but 

whether this is Miller [21], or Baddeley and Hitch [22, 23], or involves other temporary 

stores [24] is moot.  Similarly, TAs will identify when decisions are made, but the 



decision making mechanisms are left unspecified.  GOMS is good at predicting human 

performance, although Kieras [3, 25] is cautious, and there are exceptions [26].   

 

1.3 Cell Assembly-based Task Analysis 

The models of behavioural causality in the Square of Identity (Figure 1) possess two 

types of identity: (i_1) horizontally, where AI implementation is identical with 

biological specification; and (i_2) vertically, where cognitive, functional 

representations and their operational execution have traditional Identity Theory identity 

[27, 28]; or Feigl [29] in 1958: that mental events “are identical with certain 

(presumably configurational) aspects of the neural processes”.  

 

 
 

Fig. 1. The Square of Identity: (A) Main figure; (B) with interdisciplinary and cross-

level identity functions; and (C) the General Theory possibility. 

 

In the top half of Figure 1A, GOMS output pseudo-code is a mental model of task 

performance with i_1 type identity with symbolic AIs (e.g. ACT-R, EPIC).  

Programmers must interpret and convert GOMS requirement specifications into 

symbolic AI ones, so i_1 type identity will not be perfect.  Even a compiler like 

automation would suffer the logical compilation deduction cheat: producing one legal 

program does not preclude other legal ones.  Since, with enough neurons, a CA-based 

ANN is a proved Turing machine, then any GOMS-based symbolic AI could be re-

implemented using CAs, with similar i_1 caveats at the symbolic level. 

The CAbTA approach covers all of Figure 1A.  Starting with an operational level 

CA-based ANN model, this was used to design the mental, symbolic outputs of the task 

analysed.  This could be used to build a CA-based symbolic AI with true identity (i_2) 

with its lower, operational level as there is only one CA, described at different levels.  

CAbTA’s task models enjoy similar mind-brain i_2 identity. 

Accepting i_1 identity limitations, Figure 1B illustrates the logical identities that 

allow interdisciplinary (biology versus computing) and inter-level (symbolic versus 

operational) reasoning.  Of the figure’s six identity functions, one example could use a 

simplified ANN-based mental model to reason about brain functions that for human 



psychology are unknown or too complicated to express.  Similarly, as was done 

developing CAbTA, an operational level CA-based ANN model drove the symbolic 

level psychological model, which then allowed generation of the task’s operational 

level brain model. 

Figure 1C illustrates the General Theory possibility.  This would provide description, 

explanation and models of the same type for human and artificial minds and their 

operations, because all would be CA-based.   

The Square of Identity offers no protection from fault, in modelling or 

implementation.  As engineering, TA makes no claims to meeting experimental 

cognitive psychology’s scientific requirements.  TA’s practical approach, however, 

encapsulates scientifically known psychology, applying such to real task performance.  

CAbTA offers similar analytical power to GOMS, with similar symbolic level 

opportunities to GOMS’ relationships to ACT-R and EPIC; but suffering the same 

problem, to be practical, i.e. good enough for engineering.  GOMS, while expensive, is 

good at modelling task performance and has good predictive adequacy.  The same can 

be expected of CAbTA. 

 

2 The Cell Assembly-based Task Analysis Models 
CAbTA has two models of task performance. The first models brain CAs and the 

second relationships between these CAs. 

 

2.1 The Simplified Cell Assembly Model (SCAM) 

The standard CA graphical representation plots number of neurons firing against time 

[30, 8].  Using this with the QPID model, a Simplified Cell Assembly Model (SCAM) 

is defined by eight parameters: four relating to time and four to number of neurons 

firing (Figure 2). 

 

 
 

Fig. 2. The Simplified CA Model (SCAM) diagram. 

 

The four SCAM parameters associated with number of neurons are: 

PotN – potential number of neurons that could have CA membership; 

Thresh – threshold where there are sufficient neurons firing for CA ignition; 

IgMax – maximum number of firing neurons at CA ignition; 

IgFat – fatigue as number of firing neurons at CA ignition extinction. 



 

The four SCAM parameters associated with time are: 

P50% - time when a CA is primed to 50% of the required neurons firing to reach 

ignition threshold; 

IgTIg – ignited CA’s time of ignition; 

IgTEx – ignited CA’s time of extinction;  

D50% – time when a CA decays to 50% of the neurons firing at CA extinction 

(IgFat). 

 

Each CA identified has an entry in the SCAM Table defined by these eight parameters. 

 

2.2 The Cell Assembly Architecture Relationship (CAAR) Diagram 

In the CAAR Diagram, each CA identified is represented by a box and the relationships 

between CAs by arrows.  The latter are complex and analysts must consider: how CAs 

interact; what information is transferred; and CA priming and decay.  Horizontally, the 

CAAR Diagram separates types of CA: Perceptual; Cognitive; and Motor.  Within 

graphical constraints, sequence and time are represented vertically, increasing 

downwards.   

The CAAR Diagram is “architectural”; it shows the changing structure between 

ignited CAs.  This paper’s CAbTA used a default cognitive architecture of Cognitive 

CA chains (Figure 3). 

 

 
 

Fig. 3. The Default CAAR Diagram. 

 

CAbTA is not architecturally prescriptive and this paper’s analysis found alternatives, 

for example, when expert performance binds Perceptual and Motor CAs.   

 

2.3 The Main Analysis Document (MAD) 

Each CA has a standardised entry in the Main Analysis Document (MAD), Figure 4.  

The free text description is created during analysis and eventually the SCAM Table and 

Diagram are added. The CAAR Diagram is derived from the INPUTS/OUTPUTS list. 

Punctuation indicates time, from none meaning simultaneity and increasing separation 

using commas, semicolons, and colons; a full stop indicates no overlap in time.   

 



 
 

Fig. 4.  Each CA’s MAD style. 

 

3 Method 

An overview is provided of the kettle filling task, data collection, and analysis. 

 

3.1 The Task 

The task analysed involves the task performer entering his home’s kitchen, moving to 

the hot water preparation area and then lifting the kettle and moving it to the sink for 

emptying and refilling.  This highly familiar task allows focus on the new TA method.  

The high level Activity List, see [31], in Figure 5 summarises the task. 

This task’s low level CAbTA demonstrates that the cognitive requirements are 

considerable.  The right hand must weave a complex path to the kettle handle, avoiding 

objects, using overhead visual information (arrow <2> in Figure 5); when lifting the 

kettle <3>, its weight must be estimated kinesthetically for effective and efficient kettle 

location, velocity and acceleration over the drainer <4>.  Except when the drainer is 

empty, each of the kettle’s flights over it is different; the largest pan lid rises 30cm 

above drainer base height, 60% above kettle height.   

To emphasise the task’s cognitive complexity, programming a robot using 

traditional techniques, including symbolic AI, to do what non-psychologists would 

consider a simple task, would be difficult and expensive because of the variability in 

the task environment.  Being more human-like, ANNs should provide a better robotic 

solution and CAbTA can provide a task specification that would allow robotic behavior 

to emulate human task performance. 



 

 
 

Fig. 5. ‘The Task’ as a high level Activity List. 

 

3.2 Data Collection 

Data was collected using a repeated trials, self-observation, heuristic approach, i.e. the 

first author, a TA expert (hence “heuristic”), observed himself more than thirty times 

over a month, making notes after each trial to create a far more detailed Activity List 

than the summary in Figure 5.  Some trials recorded time at two task points (see section 

4.1).   

Even after more than two decades of domestic task performance, new things were 

learned during the CAbTA research.  For example, the “approach” to the kettle’s 

location was found to be invariant, starting with the right foot mid-doorway and taking 

three strides, and a right foot shuffle.  Outside the kitchen was discovered a “shuffle 

zone” where, from any of four directions, footsteps were adjusted for mid-doorway 

launch. 

As another example, the left hand was not adequately considered initially.  Careful 

observation identified complex ballistic, and then visual negative feedback controlled, 

behaviours tracking the kettle’s lid to interception near the black tile <4> in Figure 5. 

Furthermore, the approach behaviour was observed and analysed for the other three 

house residents, i.e. with a more traditional separation between task actor and observer.  

Of the two long term residents, one, about the same height as the main subject, took the 

same three strides, launching on the right foot; the shorter one launched right-footed, 

but took five steps.  In contrast, the third, an athletic man in his early thirties, who had 

only been in the house half a year, never repeated his approach and often was off target 

by a foot or more. 

 

 

3.3 CAbTA Method 

Expert task analysts will recognise the basic process of inferring mental states and 

processes from behavioural data, including inferences from the unobserved, such as 

estimating the kettle’s weight.  This is what makes TA different from mere performance 

observation, and what makes is so useful in engineering design and evaluation, although 



the cost is that the quality of a TA is dependent on the psychological expertise of task 

analysts.  CAbTA’s representation of such mental states and processes is no more 

complicated or difficult from the representations used in any sophisticated TA method. 

The basic CAbTA analysis cycle starts by identifying a small set of related CAs 

associated with an Activity List line; some of these may have been suggested as outputs 

from already analysed CAs.  Given a mnemonic name and an acronym, analysis begins 

with specifying CA type: Cognitive; Perceptual; or Motor.  New entries for each CA 

are started in the MAD (section 2.3) and previously analysed CA inputs may be linked.  

Each CA has a new line in the SCAM Table, which, when completed, is copied under 

the MAD’s standard table header. 

The MAD’s descriptive text is started by specifying each CA’s function and the 

inputs that will ignite it.  The text then records the issues considered and the reasons for 

the parameter values added to the SCAM table.   For an expert, duration parameter 

estimation is relatively easy, although for priming (P50%) the preceding CAs need 

considering.  In contrast, those relating to number of neurons must be based on a CA-

based brain model.  Analyst’s decision consistency is more important than the assigned 

values as these can be later modified, e.g. by multiplying by appropriate constants. 

Once a SCAM table line is completed, then that CA’s SCAM diagram can be drawn 

and inserted into the MAD. 

New inputs between the CAs being analysed, and their outputs, between them and 

to putative subsequent CAs need determining.  The information contained in the inputs 

and outputs needs specifying and for longer persisting CAs when transmissions occur.  

There may be cycles of CAs affecting each other, which may be excitatory or inhibitory, 

and transmitted information may change during cycles. Textual descriptions and the 

tabulated CA inputs and outputs are added to the MAD.   

Next, the newly analysed CAs are added to the CAAR Diagram.  Within graphic 

design limitations, this step should be automatic as all the information is already in the 

MAD.  Experience suggests that adding to the CAAR Diagram will necessitate iteration 

of previous steps.  Such cyclical changes are typical in TA and are exploited within 

CAbTA as part of its extensive cross checking procedures, essential for any manually 

performed TA, i.e. without specialised software support (section 5.1).   

 

4 Results 
The main result is the demonstration that a CAbTA is possible.  The MAD describes 

each CA; the SCAM Table (Table 1) and CAAR Diagram (Figure 8) summarise the 

analysis, and the results are described in more detail in sections 4.2 and 4.3, 

respectively. 

 

4.1 Time Results 

From the kitchen entrance, timing data was collected from two steps in the task: (i) at 

kettle handle grip (CA 23 –  MRHH); and (ii) at the end, filling the kettle (CA 64 – 

MPTSU): these were averaged at 4.1seconds and 9seconds, respectively. 

Generally, time data is less important than sequence in most TAs.  The time data was 

problematic in this study because, even though a highly practiced task, if the task was 

immediately repeated, then times tended to become shorter.  Such repeated trials data 

was not included in the averages quoted above. 

 



 

Table 1. The SCAM Table for the kettle filling task. 

 

 
 

 

 

 



4.2 SCAM Results 

Sixty four CAs were identified: 34.4% (22/64) cognitive; 39.1% (25/64) perceptual; 

and 26.6% (17/64) motor. Perceptual CAs were 80% (20/25) visual; the others were: 

12% (3/25) touch and 8% (2/25) kinaesthetic and were not analysed further. 

Ignoring those CAs still ignited at the end of the analysis, 48 CAs were analysed 

(Table 2). 

 

Table 2.  Average data for the 8 SCAM parameters. 

 
CA Type PotN Thresh IgMax IgFat P50% IgTIg IgTEx D50% 

All 11.1 3.3 6.8 5.7 4.5 4.7 5.4 5.5 

Cognitive 10.4 2.8 6.6 5.2 3.8 4.1 5.0 5.2 

Visual 14.4 5.0 8.6 7.5 4.5 4.7 5.3 5.4 

Motor 9.5 2.6 5.9 4.9 5.3 5.4 6.1 6.2 

 

Figure 6 shows the average SCAM Diagrams. 

 

 
 

Fig. 6. Averaged SCAM diagrams: (A) All; (B) Cognitive; (C) Visual; and (D) Motor. 

 

The differences in Figures 6b-d shows that the CA brain model and cognitive 

architecture appear to have been applied appropriately and consistently, e.g. neuron 

numbers (PotN) are highest for the large visual cortex (Table 3a).   

 



Table 3a.  Difference in PotN means.  

(/ represents vertical parameter divided by horizontal one.) 

 /All /Cognitive /Motor 

Visual/ 29.7% 38.5% 51.6% 

Cognitive/ -6.4% - 9.5% 

Motor/ -14.4% - - 

 

Similar, consistent results can be seen for Threshold and IgMax (Tables 3b and 3c).  

 

Table 3b. Difference in Threshold means. 

 /All /Cognitive /Motor 

Visual/ 51.6% 78.6% 92.3% 

Cognitive/ -15.1% - 7.7% 

Motor/ -21.2% - - 

 

Table 3c. Difference in IgMax means. 

 /All /Cognitive /Motor 

Visual/ 26.5% 30.3% 45.8% 

Cognitive/ -2.9% - 1.1% 

Motor/ -13.2% - - 

 

Further, similar results were found for Fatigue (IgMax–IgFat), which overall was 

16.2%: Cognitive 21.2%; Visual 12.8%; and Motor 17.0%.   

Ignition Duration (IgTEx–IgTIg) analysis (Figure 7) suggests two CA types: short 

(<0.5seconds) or persisting (>1second).  This result was not anticipated, but it is hardly 

surprising and is explicable in terms of brief CA chains versus complex CAs persisting. 

 

 
Fig. 7. CA Ignition Durations as line graphs and histograms. 



 
Fig. 8.  The CAAR Diagram for the kettle filling task. 



4.3 CAAR Results 

The CAAR Diagram is shown in Figure 8.  Ignoring touch and kinaesthetic CAs (5), 

inhibitory relationships (7), and external motor outputs, there remained 89 relationships 

in the CAAR Diagram, as summarised graphically in Figure 9. 

The default CAAR model (section 2.2) was adhered to, although the “basic chain” 

had some branches (18 Cognitive CAs, 26 outputs). The intended, tight binding 

between cognitive/visual CAs (N=16) was observed (20 versus 21); only 5% (4/89) 

were visual/motor relationships.  With one exception, all 14 motor CAs had cognitive 

inputs (N=17), although many motor CAs cause behavior that then provides sensory 

inputs back into the system.   

 
Fig. 9. CA relationships results. 

 

5 Discussion 

While GOMS facilitates implementation of symbolic level AIs, CAbTA completes the 

Square of Identity (section 1.3) at both symbolic and operational levels.  This creates 

opportunities in AI, neuroscience and cognitive psychology for new intradisciplinary 

and interdisciplinary research.   

 

5.1 Cell Assembly-based Task Analysis 

Developing a TA method that produces putative cognitive/brain CAs is a major success.  

The initial analysis required repeated iterations as CAbTA was developed from scratch, 

e.g. a dozen different SCAM Diagram graphics were tried, and SCAM parameter 

redesign also changed these diagrams.  The final two thirds of the analysis went 

smoothly and iteration involved changing CAs but not the method, i.e. in a manner 

similar to, and no more difficult than, any other sophisticated TA method. 

The highly structured MAD was the core representation and contains the entire 

analysis; the SCAM Table and CAAR Diagram were generated from it, although were 

invaluable for reasoning about CAs. 

 

Checking and Software Tools.  Psychologically sophisticated TA methods are 

complicated to do and, when done manually, typographical and transcription errors are 

common. From the outset, CAbTA was designed with testing mechanisms and these 

proved necessary, even though copy-and-paste was used whenever possible.   



There is a necessity for specialised software to support TA methods [32].  Such tools 

will make TAs easier, faster and less error prone and are likely to change the method.  

Tool programming can identify poor method specification, often where analysts use 

craft skills.  Also, software can facilitate things impractical in manual analyses, e.g. a 

CAAR Diagram improvement might provide cycle information, e.g. using multiple 

arrowheads for the cycles observed between cognitive and perceptual CAs; or, 

automating SCAM Diagram drawing could easily incorporate desirable, non-linear 

P50% and D50% parameters. 

The software engineering temptation is to automate CAbTA’s manual method, i.e. 

tables and diagrams being produced from a MAD editor.  More creative approaches 

could make a SCAM Diagram drawing package central, advantageously reducing 

analysts’ inputs.   

 

Levels.  Sixty four CAs may seem a lot of analysis for nine seconds but other 

sophisticated TAs would probably produce similar amounts of detail.  Possibly all CA-

based TAs will be low level and therefore be unsuitable for long duration tasks, 

although many safety critical subtasks need detailed, if expensive, analysis, sometimes 

within other TA methods.  A CA library might allow meta-level task description with 

only occasional descent to lower levels.   

A CA meta-architecture needs developing and specifying.  This might include 

distant brain areas, but mostly localised ones, e.g. sets of ignited CAs might initially 

just share neurons but over time become a super-CA with reliable lower level co-

ignition, at least when there is not super-CA competition.  Such a model hypothesises 

a tighter binding between CAs than that of just interacting with each other.   In TA, the 

levels concept is ubiquitous so development would focus on brain and CA-based AI 

meta-architectures.  Some cognitive psychology literature, e.g. on attention, may need 

redrafting to better fit CA level analyses. 

 

5.2 Artificial Intelligence, Neuroscience and Psychology 

The Square of Identity (Figure 1) summarises the integrated modelling of biological 

minds and brains and AI ones.  CAs conflate descriptions of functional, symbolic levels 

and lower, operational ones as i_2 type identity.  Admittedly i_1 biological and AI 

systems identity is weaker because of alternatives.  As a General Theory, a CA-based 

perspective should profoundly influence AI, neuroscience and cognitive psychology 

models and theories.  Existing experimental cognitive psychology and neuroscience 

could be re-expressed as similar CA-based systems and redirect future research towards 

better CA specifications and cognitive architectures for both human and machine 

intelligences.   

Modelled on ignited CAs, which although ephemeral, can be studied in minds, brains 

and machines, the QPID model demonstrates how little is known about the Q, P and D 

states, e.g. how sub-ignition threshold CAs cooperate and compete.  

If future AIs are CA-based, then CAbTA can facilitate systems development by 

suggesting: CA types needed, their properties and operations over time, how they 

interact, and their cognitive architecture.  ANNs can test alternative CAs and 

architectures and the results fed back to cognitive and neuroscience research.  Existing 

working CA-based systems give confidence in the ability to make CAbTA model 



simulations from spiking neurons, and would support further exploration of simulated 

CA behaviour [33]. 

 

6 Conclusions 
CAbTA’s theoretical core is the exploitation of TA as an engineering discipline, i.e. 

using the standard TA defence that, even if not quite right, similar mental operations to 

those identified must occur during task performance.  The consequences are manifold.  

A General Theory that integrates brain and mind in humans and machines is within 

the approach’s scope. 

AI, neuroscience and cognitive psychology can all benefit from adopting a CA 

perspective and CA-based theories and models.  Exponential benefits should accrue to 

interdisciplinary collaborations where the CA view provides a common language, 

classes of models, and epistemology. 

The CAbTA research reported here is novel but can only be seen as a first step to the 

development of Cell Assembly-based Task Analysis methods.  The authors are looking 

to recruit resources, human and financial, to support further development. 
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