THE RELATIVE HELLER OPERATOR AND RELATIVE COHOMOLOGY FOR THE KLEIN 4-GROUP.

JONATHAN ELMER

ABSTRACT. Let G be the Klein Four-group and let \Bbbk be an arbitrary field of characteristic 2. A classification of indecomposable $\Bbbk G$ -modules is known. We calculate the relative cohomology groups $H^i_\chi(G,N)$ for every indecomposable $\Bbbk G$ -module N, where χ is the set of proper subgroups in G. This extends work of Pamuk and Yalcin to cohomology with non-trivial coefficients. We also show that all cup products in strictly positive degree in $H^*_\chi(G,\Bbbk)$ are trivial.

1. Introduction

Let G be a finite group and \mathbb{k} a field of characteristic p > 0. If p / |G|, then every representation of G over \mathbb{k} is projective. Thus, by decomposing the regular module $\mathbb{k}G$ we can obtain all isomorphism classes of $\mathbb{k}G$ -modules immediately.

From now on assume p||G|. Then the above is no longer true. However, it is well-known that, given a kG-module M, we can find a projective module P_0 and a surjective kG-morphism

$$\pi_0: P_0 \to M$$
.

If we choose P_0 and π_0 so that P_0 has smallest possible dimension, then this pair is unique, and known as the projective cover of M. The kernel of π_0 is denoted $\Omega(M)$. This is known as the Heller shift of M. $\Omega(-)$ can be viewed as an operation on the set of $\Bbbk G$ -modules which takes indecomposable modules to indecomposable modules.

This construction can be iterated. For each i > 0, let $\pi_i : P_i \to \Omega^i(M)$ be the projective cover of $\Omega^i(M)$. By composing these maps with the inclusions $\Omega^i(M) \to P_{i-1}$, we obtain an exact sequence

$$(1) \dots P_i \to P_{i-1} \to \dots \to P_0 \to M \to 0.$$

This is an example of a projective resolution for M. If N is any kG-module, then the above induces a complex

$$0 \to \operatorname{Hom}_{\Bbbk G}(P_0, N) \to \ldots \to \operatorname{Hom}_{\Bbbk G}(P_i, N) \to \ldots$$

which is not exact in general. The homology groups of this complex are by definition the groups $\operatorname{Ext}^i_{\Bbbk G}(M,N)$. A special case is

$$H^i(G, N) := \operatorname{Ext}_{\Bbbk G}^i(\Bbbk, N).$$

We call this the cohomology of G with coefficients in N.

There is a long and fruitful history of study of the cohomology groups $H^i(G, N)$ in modular representation theory. Further, one may define a pairing

$$\smile: H^i(G, \mathbb{k}) \otimes H^j(G, \mathbb{k}) \to H^{i+j}(G, \mathbb{k})$$

Date: September 10, 2021.

¹⁹⁹¹ Mathematics Subject Classification. 20J06,20C20.

Key words and phrases. cohomology of groups, relative cohomology, modular representation theory, cup product.

which gives $H^*(G, \mathbb{k})$ the structure of a graded-commutative graded ring. A celebrated theorem of Evens (see [3, Theorem 4.2.1]) states that, for any G, the ring $H^*(G, \mathbb{k})$ is finitely generated.

Now let χ be a set of proper subgroups of G. A kG-module M is said to be projective relative to χ if M is a direct summand of $\bigoplus_{X \in \chi} M \downarrow_X \uparrow^G$. Other equivalent definitions will be given in section 2. It is less well-known, but still true, that every kG-module has a unique relative projective cover with respect to χ . This is defined to be a kG-module Q_0 of smallest dimension such that

- (1) Q_0 is projective relative to χ ;
- (2) There is a surjective kG-morphism $\pi_0: Q_0 \to M$ which splits on restriction to each $X \in \chi$.

The kernel of π_0 is denoted $\Omega_{\chi}(M)$ and called the relative Heller shift of M with respect to χ . We can mimic the construction of (1) to obtain a relative projective resolution of M, that is, an exact sequence

$$(2) \ldots Q_i \to Q_{i-1} \to \ldots \to Q_0 \to M \to 0.$$

of kG modules which are projective relative to χ and in which the connecting homomorphisms split over each $X \in \chi$. Given any kG-module N, the above induces a complex

$$0 \to \operatorname{Hom}_{\Bbbk G}(Q_0, N) \to \ldots \to \operatorname{Hom}_{\Bbbk G}(Q_i, N) \to \ldots$$

which is in general no longer exact. The homology groups of this complex are by definition the relative Ext-groups $\operatorname{Ext}^i_{\Bbbk G,\chi}(M,N)$. The relative cohomology of G with respect to χ with coefficients in N is the special case

$$H^i_{\chi}(G,N) := \operatorname{Ext}^i_{\Bbbk G,\chi}(\Bbbk,N).$$

Further, one may define a pairing

$$\smile: H^i_\chi(G, \mathbb{k}) \otimes H^j_\chi(G, \mathbb{k}) \to H^{i+j}_\chi(G, \mathbb{k})$$

which gives $H^*_{\gamma}(G, \mathbb{k})$ the structure of a graded-commutative graded ring.

Computations of $H_{\chi}^{i}(G, N)$ are rare in the literature. It is notable that the ring $H_{\chi}^{*}(G, \mathbb{k})$ is not finitely generated in general. This was first discovered by Blowers [4], who showed that if G_1 and G_2 are finite groups of order divisible by p, and χ_1, χ_2 are sets of subgroups of G_1, G_2 respectively with order divisible by p, then all products of elements of positive degree in $H_{\chi}^{*}(G, \mathbb{k})$ are zero, where $G = G_1 \times G_2$ and $\chi = \{G_1 \times X : X \in \chi_2\} \cup \{X \times G_2 : X \in \chi_1\}$. See also [5].

For the rest of this section, let $G = \langle \sigma, \tau \rangle$ denote the Klein four-group, and let \mathbb{R} be a field of characteristic 2. We set $\chi = \{H_1, H_2, H_3\}$, the set of all proper nontrivial subgroups of G, where $H_1 = \langle \sigma \rangle, H_2 = \langle \tau \rangle, H_3 = \langle \sigma \tau \rangle$.

The cohomology groups $H^i_{\chi}(G, \mathbb{k})$ were computed, by indirect means, by Pamuk and Yalcin [10]. In the present article we recover their result, and also compute $H^i_{\chi}(G, N)$ for any $\mathbb{k}G$ -module N. Our methods are more direct; we compute an explicit relative projective resolution for each N. Of course we are helped enormously by the fact that the representations of G are completely classified. Our first main result is:

Theorem 1. Let M be an indecomposable kG-module, which is not projective relative to χ . Then we have

$$\Omega_{\chi}(M) \cong \Omega^{-2}(M)$$

if M has odd dimension, and

$$\Omega_{\chi}(M) \cong M$$

otherwise.

The ring structure of $H_{\chi}^*(G, \mathbb{k})$ was not considered in [10]. Note, however, that if χ' is a subset of χ with size 2, then all products in $H_{\chi'}^*(G, \mathbb{k})$ are zero, by a special case of Blowers' result. It is perhaps not surprising, therefore, that we have

Theorem 2. Let $\alpha_1, \alpha_2 \in H^*_{\chi}(G, \mathbb{k})$, where both have strictly positive degree. Then $\alpha_1 \smile \alpha_2 = 0$.

This paper is organised as follows. In section 2 we define relative projectivity and derive the results we will need to do the computations in later sections. This section follows [9, Section 2] fairly closely. As most proofs can be constructed by adapting familiar results on projectivity to the relative case, they are omitted. In section 3 we describe the classification of modules for the Klein-four group and prove Theorem 1. We also compute $H^i_{\chi}(G,N)$ for every kG-module N and prove Theorem 2.

1.1. **Notation.** All groups under consideration are finite groups, and for any group G, by a $\Bbbk G$ -module we mean a finitely-generated \Bbbk -vector space with compatible G action. The one-dimensional trivial $\Bbbk G$ -module will be denoted by \Bbbk_G or simply \Bbbk when the group acting is obvious, and for $n \in \mathbb{N}$ and M a $\Bbbk G$ -module we write nM for the direct sum of n copies of M.

Acknowledgements. Thanks to an anonymous referee for some helpful suggestions.

2. Relative projectivity

In this section, let p>0 be a prime and let G be a finite group of order divisible by p. Let \Bbbk be a field of characteristic p and let χ be a set of subgroups of G. Now let M be a finitely generated $\Bbbk G$ -module. M is said to be *projective relative to* χ if the following holds: let $\phi: M \to Y$ be a $\Bbbk G$ -homomorphism and $j: X \to Y$ a surjective $\Bbbk G$ -homomorphism which splits on restriction to any subgroup of $H \in \chi$, then there exists a $\Bbbk G$ -homomorphism ψ making the following diagram commute.

Dually, one says that M is injective relative to χ if the following holds: given an injective $\Bbbk G$ -homomorphism $i:X\to Y$ which splits on restriction to each $H\in\chi$ and a $\Bbbk G$ -homomorphism $\phi:X\to M$, there exists a $\Bbbk G$ -homomorphism ψ making the following diagram commute.

These notions are equivalent to the usual definitions of projective and injective $\Bbbk G$ -modules when we take $\chi = \{1\}$. We will say a $\Bbbk G$ -homomorphism is χ -split if it splits on restriction to each $H \in \chi$. Since a $\Bbbk G$ -module is projective relative to H if and only if it is also projective relative to the set of all subgroups of H, we often assume χ is closed under taking subgroups.

We denote the set of G-fixed points in M by M^G . For any $H \leq G$ there is a &G-map $M^H \to M^G$ defined as follows:

$$\operatorname{Tr}_H^G(x) = \sum_{\sigma \in S} \sigma x$$

where $x \in M$ and S is a left-transversal of H in G. This is called the relative trace or transfer. It is clear that the map is independent of the choice of S. If H = 1 we usually write this as Tr^G and call it simply the trace or transfer. For any set of subgroups χ of G we define the subspace

$$M^{G,\chi} := \sum_{H \in \chi} \operatorname{Tr}_H^G(M^H)$$

and quotient

$$M_\chi^G:=\frac{M^G}{M^{G,\chi}}.$$

Now let N be another kG-module. We can define an action of G on $\operatorname{Hom}_k(M,N)$:

$$(g \cdot \phi)(x) = g\phi(g^{-1}x)$$
 for $g \in G, x \in M$.

Notice that with this action we have $\operatorname{Hom}_{\Bbbk}(M,N)^G = \operatorname{Hom}_{\Bbbk G}(M,N)$. Further, the transfer construction gives a map

$$\operatorname{Tr}_H^G: \operatorname{Hom}_{\Bbbk H}(M,N) \to \operatorname{Hom}_{\Bbbk G}(M,N).$$

There are various ways to characterize relative projectivity:

Proposition 3. Let G be a finite group of order divisible by p, χ a set of subgroups of G and M a &G-module. Then the following are equivalent:

- (i) M is projective relative to χ ;
- (ii) Every χ -split epimorphism of $\Bbbk G$ -modules $\phi: N \to M$ splits;
- (iii) M is injective relative to χ ;
- (iv) Every χ -split monomorphism of $\Bbbk G$ -modules $\phi: M \to N$ splits;
- (v) M is a direct summand of $\bigoplus_{H \in \chi} M \downarrow_H \uparrow^G$;
- (vi) M is a direct summand of a direct sum of modules induced from subgroups in χ
- (vii) There exists a set of homomorphisms $\{\beta_H : H \in \chi\}$ such that $\beta_H \in \operatorname{Hom}_{\Bbbk H}(M,M)$ and $\sum_{H \in \chi} \operatorname{Tr}_H^G(\beta_H) = \operatorname{id}_M$.

The last of these is called Higman's criterion.

Proof. The proof when χ consists of a single subgroup of G can be found in [2, Proposition 3.6.4]. This can easily be generalised.

For homomorphisms $\alpha \in \operatorname{Hom}_{\Bbbk G}(M,N)$ we have the following:

Lemma 4. Let M, N be kG-modules, χ a collection of subgroups of G, and $\alpha \in \operatorname{Hom}_{kG}(M,N)$. Then the following are equivalent:

- (i) α factors through $\bigoplus_{H \in \mathcal{X}} M \downarrow_H \uparrow^G$.
- (ii) α factors through some module which is projective relative to χ .
- (iii) There exist homomorphisms $\{\beta_H \in \operatorname{Hom}_{\Bbbk H}(M,N) : H \in \chi\}$ such that $\alpha = \sum_{H \in \chi} \operatorname{Tr}_H^G(\beta_H)$.

Proof. This is easily deduced from [2, Proposition 3.6.6].

The above tells us that $\operatorname{Hom}_{\mathbb{k}}(M,N)^{G,\chi}$ consists of the $\mathbb{k}G$ -homomorphsims which factor through a module which is projective relative to χ . We write

$$\underline{\mathrm{Hom}}_{\Bbbk G}^{\chi}(M,N) := \mathrm{Hom}_{\Bbbk}(M,N)_{\chi}^{G}.$$

Let M be a kG-module and let X be a kG-module that is projective relative to χ . It is easily shown, using Proposition 3, that $M \otimes X$ is projective relative to χ . For example, the module $M \otimes X$ where $X = \bigoplus_{H \in \chi} \mathbb{k}_H \uparrow^G$ is projective relative to χ . Moreover, with X as defined above, the natural map $\sigma : M \otimes X \to M$ given by

$$\sigma(m \otimes x) = m$$

is a χ -split kG-epimorphism (to see the splitting, use the Mackey Theorem). It follows that for each M, there exists a kG-module Q_0 which is projective relative to χ and a χ -split kG-epimorphism $\pi_0: Q_0 \to M$.

Let $\pi_0: Q_0 \to M$ and $\pi'_0: \to Q'_0 \to M$ be two such pairs. The proof of Schanuel's Lemma (see [2, Lemma 1.5.3, Lemma 3.9.1]) extends more or less verbatim to the relative case; if $K_0 = \ker(\pi_0)$ and $K'_0 = \ker(\pi'_0)$ then $K_0 \oplus Q'_0 \cong K'_0 \oplus Q_0$.

If we choose among all such pairs, one in which the dimension of Q_0 is minimal, the kernel K_0 is defined uniquely. This pair (Q_0, π_0) is called the relative projective cover of M. For this choice we set $\Omega_{\chi}(M) = K_0$. We can interact this construction, setting $\Omega_{\chi}^{i}(M) = \Omega_{\chi}(\Omega_{\chi}^{i-1}(M))$. Minimality implies that if K'_{0} is the kernel of any other χ -split $\Bbbk G$ -epimorphism $Q'_0 \to M$, then $K'_0 \cong \Omega_{\chi}(M) \oplus (rel.proj)$, where (rel. proj) is some module which is projective relative to χ .

Dually, we always have that M is a submodule of $M \otimes X$ with $X = \bigoplus_{H \in \mathcal{X}} \mathbb{k}_H \uparrow^G$, and the inclusion $\rho: M \to M \otimes X$ splits on restriction to each $H \in \chi$. It follows that for each M, there exists a kG-module J_0 and a χ -split kG-monomorphism $\rho_0: M \to J_0.$

Let $\rho_0: M \to J_0$ and $\rho_0': M \to J_0'$ be two such pairs. Again, by the relative version of Schanuel's Lemma, if $C_0 = \operatorname{coker}(\pi)$ and $C'_0 = \operatorname{coker}(\pi'_0)$ then $C_0 \oplus J'_0 \cong$ $C_0' \oplus J_0$.

If we choose among all such pairs, one in which the dimension of J_0 is minimal, the cokernel C_0 is defined uniquely. The pair (J_0, ρ_0) is called a relative injective hull of M with respect to χ . For this choice we set $\Omega_{\chi}^{-1}(M) = C_0$. We can iterate this construction, setting $\Omega_{\chi}^{-i}(M) = \Omega_{\chi}^{-1}(\Omega_{\chi}^{-(i-1)}(M))$. Minimality implies that if C'_0 is the kernel of any other χ -split kG-monomorphism $M \to J_0$, then $C_0' \cong \Omega_{\chi}^{-1}(M) \oplus (rel.proj)$, where (rel. proj) is some module which is projective relative to χ .

The following gives some properties of the operators Ω_{γ}^{i} .

Proposition 5. Let M_1, M_2 be kG-modules without summands which are projective relative to χ , and i, j nonzero integers. Then:

- $\begin{array}{ll} \text{(i)} & \Omega_\chi^i(M_1 \oplus M_2) \cong \Omega_\chi^i(M_1) \oplus \Omega_\chi^i(M_2); \\ \text{(ii)} & \Omega_\chi^i(M)^* \cong \Omega_\chi^{-i}(M^*); \\ \text{(iii)} & M \cong \Omega_\chi(\Omega_\chi^{-1}(M)) \oplus \ (\textit{rel. proj}) \cong \Omega_\chi^{-1}(\Omega_\chi(M)) \oplus \ (\textit{rel. proj.}). \end{array}$

Proof. (i) is obvious. (ii,iii) are easily deduced from the relative version of Schanuel's Lemma.

(i) above shows that Ω_{χ}^{i} is a well-defined operator on the set of indecomposable kG-modules which are not relatively projective to χ . Note that (iii) does not say that $\Omega_{\chi} \circ \Omega_{\chi}^{-1}$ is the identity in general. If we define $\Omega_{\chi}^{0}(M)$ to be the direct sum of all summands of M which are not projective relative to χ , then we have $\Omega^{i+j} = \Omega^i_{\gamma} \circ \Omega^j_{\gamma}$ for all i and j.

The following result is sometimes useful.

Lemma 6. Let M be a &G-module which is projective relative to a set χ of subgroups of G. Then $M^G = \sum_{H \in \mathcal{X}} \operatorname{Tr}_H^G(M^H)$.

Proof. See [9, Lemma 2.9] As a consequence of the above, if $M = N \oplus$ (rel. proj.), we get that $M_{\chi}^G = N_{\chi}^G$. The operators Ω_{χ}^i extend in a natural way to homomorphisms between modules. Let $f \in \operatorname{Hom}_{\Bbbk G}(M,N)$. Let $(Q,\pi),(Q',\pi')$ be the relative projective covers of M,N. Then the relative projectivity of Q ensures the existence of a homomorphism $\bar{f} \in \operatorname{Hom}_{\Bbbk G}(Q,Q')$ making the following diagram commute

and an easy diagram chase shows that the image of $\Omega_{\chi}(f, \bar{f}) := \bar{f}|_{\ker(\pi)}$ is contained in $\ker(\pi')$. In this way, f induces a homomorphism

$$\Omega_{\chi}(f,\bar{f}) \in \operatorname{Hom}_{\Bbbk G}(\Omega_{\chi}(M),\Omega_{\chi}(N)).$$

Moreover, this homomorphism factors through a relative projective if and only if f does so.

The homomorphism $\Omega_{\chi}(f, \bar{f})$ depends, as the notation suggests, on the choice of \bar{f} in general. However, if \bar{f} and $\tilde{f} \in \operatorname{Hom}_{\Bbbk G}(Q, Q')$ are both homomorphisms making the diagram commute, then one can show that

$$\Omega_{\chi}(f,\bar{f}) - \Omega_{\chi}(f,\tilde{f})$$

factors through a relative projective.

For a given homomorphism $f: M \to N$, denote by [f] its equivalence class in $\underline{\operatorname{Hom}}_{\Bbbk G}^{\chi}(M,N)$. By the discussion following Lemma 4, the equivalence class

$$[\Omega_\chi(f,\bar{f})] \in \underline{\mathrm{Hom}}^\chi_{\Bbbk G}(\Omega_\chi(M),\Omega_\chi(N))$$

does not depend on \bar{f} , so we write this as $\Omega_{\chi}[f]$. In this way, we obtain a well-defined homomorphism

$$\Omega_{\chi}: \underline{\operatorname{Hom}}_{\Bbbk G}^{\chi}(M, N) \to \underline{\operatorname{Hom}}_{\Bbbk G}^{\chi}(\Omega_{\chi}(M), \Omega_{\chi}(N)).$$

In a similar fashion, let $(J, \rho), (J', \rho')$ be the relative injective hulls of M, N respectively. Then relative injectivity of J' ensures the existence of a homomorphism $\tilde{f} \in \text{Hom}(J, J')$ making the following diagram commute,

$$\Omega_{\chi}(M) \longleftarrow \qquad \qquad J \longleftarrow \qquad M \longleftarrow \qquad 0$$

$$\Omega_{\chi}^{-1}(f,\tilde{f}) \qquad \qquad \tilde{f} \qquad \qquad f \qquad \qquad \downarrow$$

$$\Omega_{\chi}^{-1}(N) \longleftarrow \qquad J' \longleftarrow \qquad N \longleftarrow \qquad 0$$

and a diagram chase shows that \tilde{f} induces a homomorphism

$$\Omega_\chi^{-1}(f,\tilde f)\in \operatorname{Hom}(\Omega_\chi^{-1}(M),\Omega_\chi^{-1}(N)).$$

Moreover $\Omega_{\chi}^{-1}(f,\tilde{f})$ factors through a projective if and only if f does so, and although $\Omega_{\chi}^{-1}(f,\tilde{f})$ depends on the choice of \tilde{f} in general, the equivalence class

 $[\Omega_{\chi}^{-1}(f,\tilde{f})]$ depends only on f, so we write it as $\Omega_{\chi}^{-1}[f]$. Thus, we obtain a welldefined homomorphism

$$\Omega_\chi^{-1}: \underline{\mathrm{Hom}}_{\Bbbk G}^\chi(M,N) \to \underline{\mathrm{Hom}}_{\Bbbk G}^\chi(\Omega_\chi^{-1}(M),\Omega_\chi^{-1}(N)).$$

One can show further that, for $[f] \in \underline{\mathrm{Hom}}_{\Bbbk G}^{\chi}(M,N)$ we have

$$[f] = \Omega_\chi^{-1} \Omega_\chi[f] = \Omega_\chi \Omega_\chi^{-1}[f],$$

which justifies the following:

Proposition 7. For all $i \in \mathbb{Z}$, $\Omega^i_{\gamma}(-)$ induces an isomorphism

$$\underline{\mathrm{Hom}}_{\Bbbk G}^{\chi}(M,N) \cong \underline{\mathrm{Hom}}_{\Bbbk G}^{\chi}(\Omega_{\chi}^{i}(M),\Omega_{\chi}^{i}(N)).$$

As explained in the introduction, the idea of a relatively projective cover can be extended to a relatively projective resolution; that is, an exact complex

$$(3) \ldots \to Q_i \to Q_{i-1} \to \ldots \to Q_0 \to M \to 0$$

of relatively projective modules in which the connecting homomorphisms split over χ . If

$$(4) \qquad \dots \to Q'_i \to Q'_{i-1} \to \dots \to Q'_0 \to M \to 0$$

is another relatively projective resolution, then it turns out that any two chain maps between them are chain homotopic (see [2, Theorem 3.9.3] for the version with χ consisting of one subgroup - the proof of the more general version is the same). Consequently, for any kG-module N, the homology groups of the induced complex

$$0 \to \operatorname{Hom}_{\Bbbk G}(Q_0, N) \to \ldots \to \operatorname{Hom}_{\Bbbk G}(Q_i, N) \to \ldots$$

are independent of the choice of resolution. The homology groups of this complex are by definition the relative Ext-groups $\operatorname{Ext}^i_{\Bbbk G,\chi}(M,N)$. The relative cohomology of G with respect to χ with coefficients in N is the special case

$$H^i_{\gamma}(G,N) := \operatorname{Ext}^i_{\Bbbk G,\gamma}(\Bbbk,N).$$

We will use a minimal relative projective resolution of the trivial module to compute relative cohomology; that is, a relatively projective resolution

(5)
$$\ldots \to Q_i \stackrel{\partial_{i-1}}{\to} Q_{i-1} \to \ldots \stackrel{\partial_0}{\to} Q_0 \to \mathbb{k} \to 0.$$

in which $\ker(\partial_{i-1}) = \Omega^i_{\chi}(\mathbb{k})$. We can construct this by taking for each i a short exact sequence

$$0 \to \Omega_{\chi}^{i+1}(\mathbb{k}) \xrightarrow{\rho_i} Q_i \xrightarrow{\pi_i} \Omega_{\chi}^i(\mathbb{k}) \to 0$$

and setting $\partial_i := \rho_i \pi_{i+1}$. For each i let

$$\delta_i: \operatorname{Hom}_{\Bbbk G}(Q_i, \Bbbk) \to \operatorname{Hom}_{\Bbbk G}(Q_{i+1}, \Bbbk)$$

denote the map induced by ∂_i .

Our main tool will be the following:

Proposition 8. Let N be a kG-module. Then we have

- $\begin{array}{ll} \text{(i)} \ \ H^0_\chi(G,N) = N^G;\\ \text{(ii)} \ \ H^i_\chi(G,N) \cong \underline{\mathrm{Hom}}^\chi_{\Bbbk G}(\Omega^i_\chi(\Bbbk),N). \end{array}$

The proof is the same as in the case $\chi = \{1\}$, but we give a sketch for lack of a good reference to this proof.

Proof. We first show that for each $i \geq 0$,

$$\ker(\delta_i) \cong \operatorname{Hom}_{\Bbbk G}(\Omega^i_{\chi}(\Bbbk), N).$$

To see this, let $\phi \in \ker(\delta_i) \subseteq \operatorname{Hom}_{\Bbbk G}(Q_i, N)$. For $x \in \Omega^i_{\chi}(\Bbbk)$, choose $q \in Q_i$ such that $\pi_i(q) = x$ and define $\hat{\phi}(x) = \phi(q)$. Then $\hat{\phi} \in \operatorname{Hom}_{\Bbbk G}(\Omega^i_{\chi}(\Bbbk, N))$. The assignment $\phi \to \hat{\phi}$ is well-defined: for if $q' \in Q_i$ with $\pi_i(q') = x$ and $\tilde{\phi}(x) := \phi(q')$, then since $q - q' \in \ker(\pi_i)$ we get $q - q' \in \operatorname{Im}(\partial_i)$ and $\phi(q - q') = 0$ since $\phi \in \ker(\delta_i)$. Conversely, given $\phi \in \operatorname{Hom}_{\Bbbk G}(\Omega^i_{\chi}(\Bbbk), N)$ we can define $\hat{\phi} = \phi \circ \pi_i \in \ker(\delta_i)$. It's easy to see that the two assignments are inverse to each other.

This in particular shows that (i) holds, since $\operatorname{Hom}_{\Bbbk G}(\Bbbk,N) \cong N^G$. We now show that $\operatorname{im}(\delta_{i-1})$ consists of the homomorphisms in $\operatorname{Hom}_{\Bbbk G}(\Omega^i(\Bbbk),N)$ which factor through a module which is projective relative to χ . To see this, first suppose $\phi \in \operatorname{im}(\delta_{i-1}) \subseteq \operatorname{Hom}_{\Bbbk G}(Q_i,N)$, say $\phi = \psi \circ \partial_{i-1}$ where $\psi \in \operatorname{Hom}_{\Bbbk G}(Q_{i-1},N)$. Then with $x \in \Omega^i_\chi(\Bbbk)$ and $q, \hat{\phi}$ as before we note that

$$\psi \circ \rho_{i-1}(x) = \psi \circ \rho_{i-1} \circ \pi_i(q) = \psi \circ \partial_i(q) = \phi(q) = \hat{\phi}(x)$$

which shows that $\hat{\phi}$ factors through the module Q_{i-1} which is projective relative to χ . Conversely, if $\phi \in \operatorname{Hom}_{\Bbbk G}(\Omega_{\chi}^{i}, \Bbbk)$ factors through any module which is projective relative to χ , then it factors through Q_{i-1} , because ρ_{i-1} is injective and Q_{i-1} is also an injective module with respect to χ by Lemma 3.

One can define a pairing $\smile: H^i_\chi(G, \Bbbk) \otimes H^j_\chi(G, \Bbbk) \to H^{i+j}_\chi(G, \Bbbk)$ in a few different ways. On the one hand, elements of $H^*_\chi(G, \Bbbk) = \operatorname{Ext}^*_{\Bbbk G, \chi}(\Bbbk, \Bbbk)$ can be viewed as equivalence classes of extensions of \Bbbk by \Bbbk split over χ , and the usual Yoneda splice gives the required pairing; see [2, Section 2.6,3.9] for details in the case χ consisting of only one subgroup. Some other constructions in the case $\chi = \{1\}$ are given in [6], and all of these extend in a natural way to arbitrary χ . Happily, all these methods give the same construction. In the present article we will use the following construction: recall that

$$H^i_{\chi}(G, \mathbb{k}) \cong \underline{\operatorname{Hom}}^{\chi}_{\mathbb{k}G}(\Omega^i_{\chi}(\mathbb{k}), \mathbb{k}).$$

Similarly

$$H^j_\chi(G,\Bbbk) = \underline{\mathrm{Hom}}^\chi_{\Bbbk G}(\Omega^j_\chi(\Bbbk),\Bbbk) \cong \underline{\mathrm{Hom}}^\chi_{\Bbbk G}(\Omega^{i+j}_\chi(\Bbbk),\Omega^i_\chi(\Bbbk))$$

with the second isomorphism arising from Proposition 7. Therefore we may define a product as follows: for $\alpha \in H^i_\chi(G, \mathbb{k})$ and $\beta \in H^j_\chi(G, \mathbb{k})$ choose $f \in \operatorname{Hom}_{\mathbb{k} G}(\Omega^i_\chi(\mathbb{k}), \mathbb{k})$, $g \in \operatorname{Hom}_{\mathbb{k} G}(\Omega^j_\chi(\mathbb{k}), \mathbb{k})$ respresenting α, β respectively. Then $\Omega^i_\chi(g) \in \operatorname{Hom}_{\mathbb{k} G}(\Omega^{i+j}_\chi(\mathbb{k}), \Omega^i_\chi(\mathbb{k}))$, so that

$$f \circ \Omega^i_{\chi}(g) \in \operatorname{Hom}_{\Bbbk G}(\Omega^{i+j}_{\chi}(\Bbbk), \Bbbk).$$

We take $\alpha \smile \beta$ to be the cohomology class represented by $f \circ \Omega^i_{\chi}(g)$. This is called the *cup product* of α and β .

3. Representations of $C_2 \times C_2$

In this section, let $G = \langle \sigma, \tau \rangle$ denote the Klein four-group, and let \mathbb{k} be a field of characteristic 2 (not necessarily algebraically closed). We set $\chi = \{H_1, H_2, H_3\}$, the set of all proper nontrivial subgroups of G, where $H_1 = \langle \sigma \rangle$, $H_2 = \langle \tau \rangle$, $H_3 = \langle \sigma \tau \rangle$.

set of all proper nontrivial subgroups of G, where $H_1 = \langle \sigma \rangle, H_2 = \langle \tau \rangle, H_3 = \langle \sigma \tau \rangle$. Let $X := \sigma - 1 \in \Bbbk G$, $Y := \tau - 1 \in \Bbbk G$. Then $X^2 = Y^2 = 0$, $\Bbbk G$ is isomorphic to the quotient ring

$$R := \mathbb{k}[X, Y]/(X^2, Y^2),$$

and kG-modules can be viewed as R-modules. We will describe R-modules by means of the diagrams for modules popularised by Alperin in [1]. In these diagrams,

nodes represent basis elements, and two nodes labelled a and b are joined by a southwest directed arrow if Xa = b, and by a south-east directed arrow if Ya = b. If no south-west arrow begins at a then it is understood that Xa = 0, similarly for Y.

Our statement of the classification of kG-modules resembles that found in [7], which is based on calculations first found in [8]. We recommend the former reference as an easily accessible proof.

Proposition 9. Let M be an indecomposable kG-module. Then M is isomorphic to one of the following:

(1) The module V_{2n+1} $(n \ge 0)$, with odd dimension 2n+1 and diagram

(2) The module $V_{-(2n+1)}$ $(n \ge 0)$, with odd dimension 2n+1 and diagram

Note that $V_1 \cong V_{-1} \cong \mathbb{k}$, with trivial G-action, but otherwise these modules are pairwise non-isomorphic.

(3) The module $V_{2n,\infty}$, $(n \ge 1)$, with even dimension 2n and diagram

(4) The module $V_{2n,\theta}$, $(n \ge 1)$, with even dimension 2n and diagram,

Here, $\theta(x) = \sum_{i=0}^{n} \lambda_i x^{n-i}$ is a power of an irreducible monic polynomial with coefficients in \mathbb{k} and the dotted line labelled by θ indicates that $Xa_1 = \sum_{i=1}^{n} \lambda_i b_i$.

(5) The projective indecomposable module P, with dimension 4 and diagram

The following, also taken from [7], may be proved directly from the classification above.

Proposition 10. Let M be an indecomposable $\mathbb{k}G$ -module. Then we have

- (1) $M \cong M^*$ if M is even-dimensional.
- (2) $M^* \cong V_{-(2n+1)}$ if $M \cong V_{2n+1}$ is odd dimensional.

(3) $M^* \cong V_{2n+1}$ if $M \cong V_{-(2n+1)}$ is odd-dimensional.

Clearly (3) follows from (2) above, but we include it for completeness. In addi-

Proposition 11. Let M be an indecomposable kG-module. Then we have

- (1) $\Omega(M) \cong M$ if M is even-dimensional.
- (2) $\Omega^{-1}(M) \cong V_{-(2n+3)}$ if $M \cong V_{-(2n+1)}$ is odd dimensional. (3) $\Omega(M) \cong V_{2n+3}$ if $M \cong V_{2n+1}$ is odd-dimensional.

Again (3) follows from (2) when we take into account that $\Omega(M)^* \cong \Omega^{-1}(M^*)$ in general.

3.1. **Relative shifts.** The goal of this subsection is to prove Theorem 1.

Among the indecomposable kG-modules listed in the previous section, only four are projective relative to χ . These are the projective indecomposable P, and the three modules $V_{2,\infty}$, $V_{2,x}$ and $V_{2,x+1}$. Here the last two are the indecomposable modules $V_{2,\theta}$ where $\theta(x)$ is the monic irreducible x or $x+1 \in \mathbb{k}[x]$. Note that τ acts trivially on $V_{2,\infty} = \mathbb{k}_{H_2} \uparrow^G$, while σ acts trivially on $V_{2,x} = \mathbb{k}_{H_1} \uparrow^G$ and $\sigma \tau$ acts trivially on $V_{2,x+1} = \mathbb{k}_{H_3} \uparrow^G$. As these three play in important role in what follows, we denote them by Q_{τ}, Q_{σ} and $Q_{\sigma\tau}$ respectively. We set $Q = Q_{\sigma} \oplus Q_{\tau} \oplus Q_{\sigma\tau}$.

We begin by considering odd-dimensional modules.

Lemma 12. Let $n \geq 0$:

- (1) The relative projective cover of $V_{-(2n+1)}$ is $Q \oplus nP$.
- (2) We have $\Omega_{Y}(V_{-(2n+1)}) \cong V_{-(2n+5)}$.

Proof. Let $M \cong V_{-(2n+1)}$ and let $\pi: N \to M$ be its relative projective cover with respect to χ . N must decompose as a direct sum of modules of the form P, Q_{σ} Q_{τ} and $Q_{\sigma\tau}$.

Let $a_1, a_2, \ldots, a_n, b_0, b_1, \ldots, b_n$ be a basis of M, with action given by the diagram as in Proposition 9. Since π is a surjective $\mathbb{k}G$ -map and no a_i is fixed by any element of G, the same must be true of their unique pre-images. The modules Q_{σ} , Q_{τ} and $Q_{\sigma\tau}$ all have non-trivial kernels. Therefore N contains at least n copies of P.

On the other hand, we have, for any i,

$$(6) M \downarrow_{H_i} \cong \mathbb{k}_{H_i} \oplus n \mathbb{k} H_i$$

The restrictions to H_1 of P, Q_{τ} and $Q_{\sigma\tau}$ contain no trivial H_1 -summands. So Nmust contain a direct summand isomorphic to Q_{σ} if π is to split on restriction to H_1 . A similar argument (restricting to H_2, H_3) shows that N must contain summands isomorphic to Q_{τ} and $Q_{\sigma\tau}$.

We will construct a surjective kG-homomorphism $Q \oplus nP \to M$. The following diagrams label the basis elements:

(the diagram for $Q_{\sigma\tau}$ is not as described in Proposition 9, but makes sense, because $Xa_1 = Ya_1 = b_1$ in this case). We now define a linear map $\pi: Q \oplus nP \to M$ by

- $\pi(w_i) = a_i \text{ for } i = 1, ..., n.$
- $\pi(x_i) = b_{i-1}$ for i = 1, ..., n.
- $\pi(y_i) = b_i$ for i = 1, ..., n.

- $\pi(z_i) = 0$ for i = 1, ..., n.
- $\pi(s_i) = 0$ for i = 1, 2, 3.
- $\pi(r_1) = \pi(r_3) = a_0$.
- $\pi(r_2) = a_n$.

The reader should check that π is a $\Bbbk G$ -homomorphism. The kernel of π is spanned by

$$\{z_i: i=1,\ldots,n\}\cup\{s_1,s_2,s_3\}\cup\{x_i+y_{i-1}: i=2,\ldots,n\}\cup\{x_1+r_1,x_1+r_3,y_n+r_2\}.$$

It has dimension 2n + 5, and the fixed-point space within this module is spanned by $\{z_1, z_2, \ldots, z_n, s_1, s_2, s_3\}$, so it has dimension n + 3. It is easily checked that no element of the kernel outside of the fixed-point space is fixed by any subgroup H_i . Therefore

$$\ker(\pi) \downarrow_{H_i} \cong \mathbb{k}_{H_i} \oplus (n+2)\mathbb{k}H_i$$

for any i. This, combined with (6) and the fact that

$$(Q \oplus nP) \downarrow_{H_i} \cong 2 \mathbb{k}_{H_i} \oplus (2n+2) \mathbb{k} H_i$$

shows that π splits on restriction to any H_i . The construction ensures the minimality of $Q \oplus nP$, so $Q \oplus nP = N$, proving (1). Further, $\Omega_{\chi}(M) = \ker(\pi)$, and the classification of kG-modules, together with the fact that $\ker(\pi)$ must be indecomposable, implies that $\ker(\pi) \cong V_{-(2n+5)}$, proving (2).

The following follows immediately from the above using Propositions 10 and 5(3).

Lemma 13. Let
$$n \geq 0$$
: Then we have $\Omega_{\chi}(V_{(2n+5)}) \cong V_{(2n+1)}$.

To complete the picture for odd-dimensional modules, it remains only to show that

Lemma 14. Let $M \cong V_3$. Then:

- (1) The relative projective cover of M is Q;
- (2) We have $\Omega_{\chi}(M) \cong V_{-3}$.

Proof. We have $M \downarrow_{H_i} \cong \Bbbk_{H_i} \oplus \Bbbk H_i$, for i = 1, 2, 3, so once more the projective cover must contain a summand isomorphic to Q. We shall construct a $\Bbbk G$ -homomorphism $\pi: Q \to M$. We retain the notation for a basis of Q used in Lemma 12; a basis for M is $\{a_0, a_1, b_1\}$ with action given as in the classification.

Define:

- $\pi(r_1) = a_0$
- $\pi(r_2) = a_1$
- $\pi(r_3) = a_0 + a_1$.
- $\pi(s_1) = \pi(s_2) = \pi(s_3) = b_1$.

The reader should check this is a &G-homomorphism. The kernel of π is spanned by $\{s_1 + s_2, s_2 + s_3, r_1 + r_2 + r_3\}$, and the fixed-point space of the kernel is two-dimensional, spanned by $\{s_1 + s_3, s_2 + s_3\}$. Noting that

$$X(r_1 + r_2 + r_3) = s_2 + s_3, Y(r_1 + r_2 + r_3) = s_1 + s_3,$$

we see that the kernel of π is indecomposable, and as a kG-module is isomorphic to V_{-3} . Therefore

$$\ker(\pi)_{H_i} \oplus \Bbbk_{H_i} \oplus \Bbbk H_i$$

for all i, from which we deduce that π splits on restriction to each H_i . Our construction ensures the minimality of Q, so Q is indeed the relative projective cover of M, proving (1), and $\ker(\pi) = \Omega_{\chi}(M) \cong V_{-3}$, proving (2).

We now turn to even dimensional modules. Note that $V_{2,\infty} = Q_{\tau}$ is already projective relative to χ , so $\Omega_{\chi}(V_{2,\infty})$ is not defined.

Lemma 15. Let $n \geq 2$ and $M \cong V_{2n,\infty}$. Then:

- (1) The relative projective cover of M is $2Q_{\tau} \oplus (n-1)P$;
- (2) We have $\Omega_{\gamma}(M) \cong M$.

Proof. Let $\pi: N \to M$ be the relative projective cover of M. Notice that

$$(7) M \downarrow_{H_i} = n \mathbb{k} H_i$$

for i = 1, 3 whereas

$$M\downarrow_{H_2}=2\Bbbk_{H_2}\oplus(n-1)\Bbbk H_2.$$

So if $\pi: N \to M$ is to split on restriction to H_2 , N must contain a pair of direct summands isomorphic to Q_{τ} . On the other hand, retaining the notation from Proposition 9, the basis elements a_1, \ldots, a_{n-1} are not fixed by any element of G, so the same must be true of their unique pre-images in N. From this it follows that N must contain n-1 direct summands isomorphic to P.

We will construct a kG-homomorphism $2Q_{\tau} \oplus (n-1)P \to M$. The following diagram gives the labelling for a basis of the domain:

We define:

- $\pi(w_i) = a_i \text{ for } i = 1, \dots, n-1.$
- $\pi(x_i) = b_i \text{ for } i = 1, \dots, n-1.$
- $\pi(y_i) = b_{i+1}$ for i = 1, ..., n-1.
- $\pi(z_i) = 0$ for $i = 1, \dots, n-1$.
- $\pi(r_1) = b_1$.
- $\pi(s_1) = 0$.
- $\bullet \ \pi(r_2) = a_n.$
- $\pi(s_2) = b_n$.

The reader should check that π is a $\Bbbk G$ -homomorphism. The kernel of π is spanned by

$${z_i : i = 1, \dots, n-1} \cup {x_i + y_{i-1} : i = 2, \dots, n-1} \cup {s_1, x_1 + r_2, y_{n-1} + s_2}.$$

This has dimension 2n. The fixed points within this module are spanned by

$$\{z_i: i=1,\ldots,n-1\} \cup \{s_1\}.$$

These span the fixed points of H_1 and H_3 , while H_2 has a fixed point space of dimension n+1, spanned by the above and $y_{n+1}+s_2$. Therefore we have

$$\ker(\pi) \downarrow_{H_i} \cong n \Bbbk H_i$$

for i = 1, 3 and

$$\ker(\pi)\downarrow_{H_2}\cong 2\Bbbk_{H_2}\oplus (n-1)\Bbbk H_2.$$

Note that

$$(2Q_{\tau} \oplus (n-1)P)\downarrow_{H_i} \cong 2n \Bbbk H_i$$

for i = 1, 3 and

$$(2Q_{\tau} \oplus (n-1)P)\downarrow_{H_2} \cong 4\Bbbk_{H_2} \oplus (2n-2)\Bbbk H_i.$$

Thus, π splits on restriction to each H_i . The construction ensures the minimality of $2Q_{\tau} \oplus (n-1)P$, so this is equal to N and we have (1). Further, $\ker(\pi) = \Omega_{\chi}(M)$ must be indecomposable. By the classification (looking at the dimension of the

fixed point space of each subgroup of G to distinguish among modules of even dimension) we must have $\Omega_{\chi}(M) \cong M$ as required for (2).

Notice that if $\theta(x) = x^n$, then $V_{2n,\theta}$ can be obtained from $V_{2n,\infty}$ by applying the automorphism of G which swaps σ and τ . Similarly if $\theta(x) = (x+1)^n$, then $V_{2n,\theta}$ can be obtained from $V_{2n,\infty}$ by applying the automorphism of G which swaps $\sigma\tau$ and τ . We therefore obtain immediately from Lemma 15 above that $\Omega_{\chi}(M) = M$ if M is one of these.

It remains only to prove the following:

Lemma 16. Let $n \geq 1$ and let $M \cong V_{2n,\theta}$, where θ is neither x^n nor $(x+1)^n$.

- (1) The relative projective cover of M is nP;
- (2) $\Omega_{\gamma}(M) \cong M$.

Proof. Observe that $M \downarrow_{H_i} = n \mathbb{k} H_i$ for each i. The proof of [7, Proposition 3.1] shows that the projective (as opposed to relatively projective) cover of M is nP and $\Omega(M) \cong M$, so there is a surjective kG-homomorphism $\pi: nP \to M$ with kernel isomorphic to M. Noting that $nP \downarrow_{H_i} \cong 2n \mathbb{k} H_i$ for each i, we see that π splits on restriction to each H_i . On the other hand, if N is a $\mathbb{k}G$ -module having Q_{τ} (resp. $Q_{\sigma}, Q_{\sigma\tau}$) as a direct summand then $N \downarrow_{H_i}$ contains a pair of trivial $\mathbb{k}H_i$ -modules as direct summand, and no surjective homomorphism $N \to M$ may split. This shows the minimality of the dimension of nP among relatively projective modules with a χ -split epimorphism to M, i.e. we have proved (1). We also have

$$\Omega_{\chi}(M) = \ker(\pi) = \Omega(M) \cong M$$

as required for (2).

Remark 17. Combining all the Lemmas in this section with Proposition 11, we obtain Theorem 1.

3.2. Computing Cohomology. In this subsection we will determine $H^i(G,N)$ for all $i \geq 0$ and for all indecomposable kG-modules N. First observe that if Nis projective relative to χ , then $H^i(G,N)=0$ for all i>0: this is an immediate consequence of Proposition 8(ii). Further, recall from part (i) of the same that $H_{\gamma}^{0}(G,N)=N^{G}$ for any kG-module. It follows that:

Proposition 18. Let
$$N \in \{P, Q_{\sigma}, Q_{\tau}, Q_{\sigma\tau}\}$$
. Then,
$$\dim(H^i_{\chi}(G, N)) = \left\{ \begin{array}{ll} 1 & i = 0, \\ 0 & otherwise. \end{array} \right.$$

Now we consider even-dimensional modules which are not relatively projective. Recall that for i > 0 we have

 $H^i_\chi(G,N) = \underline{\mathrm{Hom}}^\chi_{\Bbbk G}(\Omega^i_\chi(\Bbbk),N) \cong \underline{\mathrm{Hom}}^\chi_{\Bbbk G}(\Bbbk,\Omega^{-i}_\chi(N)) \cong \underline{\mathrm{Hom}}^\chi_{\Bbbk G}(\Bbbk,N) \cong N^G_\chi$ using the fact that, for these modules N, we have $\Omega_{\gamma}^{-i}(N) \cong N$.

We obtain by direct calculation:

Proposition 19. Let N be an even-dimensional &G-module which is not projective relative to χ . Then.

$$\dim(H^i_\chi(G,N)) = \left\{ \begin{array}{ll} n & i=0 \\ n-1 & otherwise \end{array} \right.$$

if $N \cong V_{2n,\infty}$ or $N \cong V_{2n,\theta}$ where $\theta(x) = x^n$ or $\theta(x) = (x+1)^n$, while

$$\dim(H^i_{\gamma}(G,N)) = n$$

for any i, if $V \cong V_{2n,\theta}$ for some other choice of θ .

For odd-dimensional modules we proceed as follows. Let N be an odd-dimensional indecomposite module and let i > 0. Then

$$H^i_\chi(G,N) = \underline{\mathrm{Hom}}_{\Bbbk G}(\Omega^i_\chi(\Bbbk),N) \cong \underline{\mathrm{Hom}}_{\Bbbk G}(\Bbbk,\Omega^{-i}_\chi(N) \cong \underline{\mathrm{Hom}}_{\Bbbk G}(\Bbbk,\Omega^{2i}(N)) \cong \Omega^{2i}(N)^G_\chi$$

using Theorem 1. Suppose $N \cong V_{2n+1}$ where $n \geq 0$. Then $\Omega^{2i}(N) \cong V_{2(n+2i)+1}$. A basis for $V_{2(n+2i)+1}$ is given by $\{a_0, a_1, \ldots, a_{n+2i}, b_1, b_2, \ldots, b_{n+2i}\}$, with action given by the diagram in Proposition 9. The b_i are all fixed points, and in addition a_0 is fixed by H_1 , a_{n+2i} by H_2 and $a_0 + a_1 + \ldots + a_{n+2i}$ by H_3 . Therefore b_1, b_{n+2i} and $b_1 + b_2 + \ldots + b_{n+2i}$ lie in $\Omega^{2i}(N)^{G,\chi}$. We therefore have

Proposition 20. Let $N \cong V_{2n+1}$ for some $n \geq 0$. Then

- (1) $\dim(H^0_{\chi}(G,N)) = n \text{ if } n > 0, \text{ and } 1 \text{ if } n = 0.$
- (2) $\dim(H_{\nu}^{i}(G, N)) = \max(0, n + 2i 3)$ for i > 0.

Remark 21. This includes [10, Theorem 1.2] as a special case (n = 0).

For the remaining odd dimensional modules things are a little more complicated, since $\Omega^{2i}(N)$ eventually moves into the "positive" part of the spectrum. We begin by noting that if $n \geq 0$, then $V_{-(2n+1)}^{H_i} = V_{-(2n+1)}^G$ for all i. Therefore $(V_{-(2n+1)})^{G,\chi} = 0$.

Now let $N \cong V_{-(2n+1)}$ where $n \geq 1$. For $i \leq n/2$ we have $\Omega^{2i}(N) \cong V_{-(2(n-2i)+1)}$. Therefore

$$H^i_\chi(G,N) = \underline{\mathrm{Hom}}_{\Bbbk G}(\Omega^i_\chi(\Bbbk),N) \cong \underline{\mathrm{Hom}}_{\Bbbk G}(\Bbbk,\Omega^{-i}_\chi(N)) \cong \underline{\mathrm{Hom}}_{\Bbbk G}(\Bbbk,\Omega^{2i}(N)) \cong \Omega^{2i}(N)^G.$$

For i > n/2 we have $\Omega^{2i}(N) \cong V_{2(2i-n)+1}$. We therefore obtain the following:

Proposition 22. Let $N \cong V_{-(2n+1)}$ where $n \geq 1$. Then

$$\dim(H^i_{\chi}(G,N)) = \left\{ \begin{array}{ll} n + 1 - 2i & i \leq n/2 \\ \max(0,2i - n - 3) & i > n/2. \end{array} \right.$$

3.3. Calculating cup products. The aim of this section is to prove Theorem 2. We begin with a lemma:

Lemma 23. Let $M \cong V_{-(2m+1)}$ and $N \cong V_{-(2n+1)}$ for some $m > n \geq 0$. Let $\phi \in \operatorname{Hom}_{\Bbbk G}(M,N)$. Then

- (1) $\operatorname{im}(\phi) \subseteq N^G$;
- (2) $M^{G} \subseteq \ker(\phi)$.

Proof. Note first that $\phi(M^G) \subseteq N^G$ for arbitrary G and $\Bbbk G$ -modules M and N. Let $a_1, a_2, \ldots, a_m, b_0, b_1, \ldots, b_m$ and $a'_1, a'_2, \ldots, a'_n, b'_0, b'_1, \ldots, b'_n$ be bases of M and N respectively, with action given by the diagrams in proposition 9. Note that if n = 0, then (1) is immediate. So suppose n > 0 and (1) does not hold: then we can find a maximal $k \ge 1$ such that $\phi(a_k) \notin N^G$.

We claim that k = m. To see this, write

$$\phi(a_k) = \sum_{i=1}^n \lambda_i a_i' \mod N^G.$$

Then

$$\phi(b_k) = \phi(Ya_k) = Y\phi(a_k) = \sum_{i=1}^n \lambda_i b_i'.$$

If k < m then also

$$\phi(b_k) = \phi(X a_{k+1}) = X \phi(a_{k+1}) = 0$$

since $\phi(a_{k+1}) \in N^G$. So $\lambda_i = 0$ for all i and $\phi(a_k) \in N^G$, a contradiction.

Now we claim that, for all $0 \le j \le n$, we have

(9)
$$\phi(a_{m-j}) = \sum_{i=j+1}^{n} \lambda_i a'_{i-j} \mod N^G$$

and $\lambda_i = 0$ for i = 1, ..., j. We prove this by induction on j. The base case j = 0 is true by definition. Assuming the above for some $0 \le j < n$ and noting that n < m, we have

$$\phi(b_{m-j-1}) = \phi(Xa_{m-j}) = X\phi(a_{m-j}) = \sum_{i=j+1}^{n} \lambda_i b'_{i-j-1}.$$

But

$$\phi(b_{m-j-1}) = \phi(Ya_{m-j-1}) = Y\phi(a_{m-j-1}) \in YN = \langle b'_1, \dots, b'_n \rangle$$

which shows that $\lambda_{i+1} = 0$. Therefore

$$\phi(b_{m-j-1}) = \sum_{i=j+2}^{n} \lambda_i b'_{i-j-1}$$

which shows that

$$\phi(a_{m-j-1}) = \sum_{i=j+2}^{n} \lambda_i a'_{i-j-1} \mod N^G$$

proving our claim. Taking j = n in (9) shows that $\phi(a_m) \in N^G$, a contradiction. This proves (1).

For (2), let $x \in M^G$. We may write

$$x = \sum_{i=0}^{m} \mu_i b_i$$

for some coefficients μ_i . Then

$$\phi(x) = \sum_{i=0}^{m} \mu_i \phi(b_i) = \mu_0 \phi(Xa_0) + \sum_{i=1}^{m} \mu_i \phi(Ya_{i-1}) = \mu_0 X \phi(a_0) + Y \phi(\sum_{i=1}^{n} \mu_i a_i) = 0$$

by (1).

The following is immediate:

Corollary 24. Let $L \cong V_{-(2l+1)}$, $M \cong V_{-(2m+1)}$ and $N \cong V_{-(2n+1)}$ for some $l > m > n \ge 0$. Let $\phi \in \operatorname{Hom}_{\Bbbk G}(M, N)$ and $\psi \in \operatorname{Hom}_{\Bbbk G}(L, M)$. Then $\phi \circ \psi = 0$.

We may now proceed with the proof of Theorem 2:

Proof. Let i, j > 0. Let $\alpha \in H^i_{\chi}(G, \mathbb{k})$ and $\beta \in H^j_{\chi}(G, \mathbb{k})$. Choose $\phi \in \operatorname{Hom}_{\mathbb{k}G}(\Omega^i_{\chi}(\mathbb{k}), \mathbb{k})$ and $\psi \in \operatorname{Hom}_{\mathbb{k}G}(\Omega^j_{\chi}(\mathbb{k}), \mathbb{k})$, such that the equivalence classes

$$[\phi] \in \operatorname{\underline{Hom}}_{\Bbbk G}^{\chi}(\Omega_{\chi}^{i}(\Bbbk), \Bbbk), [\psi] \in \operatorname{\underline{Hom}}_{\Bbbk G}^{\chi}(\Omega_{\chi}^{j}(\Bbbk), \Bbbk)$$

represent α and β respectively. By definition, $\alpha \smile \beta$ is represented by $[\phi \circ \Omega^i_{\chi}(\psi)]$. By Lemma 12 we have

$$\phi \in \text{Hom}(V_{-(2i+1)}, V_{(-1)}), \Omega^i_{\gamma}(\psi) \in \text{Hom}(V_{-(2i+2j+1)}, V_{-(2i+1)})$$

and by Corollary 24 the composition of these two is the trivial map.

References

- [1] J. L. Alperin. Diagrams for modules. J. Pure Appl. Algebra, 16(2):111-119, 1980.
- [2] D. J. Benson. Representations and cohomology. I, volume 30 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1998. Basic representation theory of finite groups and associative algebras.
- [3] D. J. Benson. Representations and cohomology. II, volume 31 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1998. Cohomology of groups and modules.
- [4] James V. Blowers. The cohomology rings of certain finite permutation representations. Proc. Amer. Math. Soc., 45:157–163, 1974.
- [5] Daniel G. Brown. Relative cohomology of finite groups and polynomial growth. J. Pure Appl. Algebra, 97(1):1–13, 1994.
- [6] Jon F. Carlson. Cohomology and representation theory. In *Group representation theory*, pages 3–45. EPFL Press, Lausanne, 2007.
- [7] Sunil Chebolu and Ján Minác. Representations of the miraculous Klein group. Math. Newsl., 21/22(4-1):135-145, 2012.
- [8] S. B. Conlon. Modular representations of $C_2 \times C_2$. J. Austral. Math. Soc., 10:363–366, 1969.
- [9] Jonathan Elmer. Symmetric powers and modular invariants of elementary abelian p-groups. J. Algebra, 492:157–184, 2017.
- [10] Semra Pamuk and Ergün Yalçı n. Relative group cohomology and the orbit category. Comm. Algebra, 42(7):3220–3243, 2014.

MIDDLESEX UNIVERSITY, THE BURROUGHS, HENDON, LONDON, NW4 4BT UK Email address: j.elmer@mdx.ac.uk