THE RELATIVE HELLER OPERATOR AND RELATIVE COHOMOLOGY FOR THE KLEIN 4-GROUP.

JONATHAN ELMER

Abstract

Let G be the Klein Four-group and let \mathbb{k} be an arbitrary field of characteristic 2. A classification of indecomposable $\mathbb{k} G$-modules is known. We calculate the relative cohomology groups $H_{\chi}^{i}(G, N)$ for every indecomposable $\mathbb{k} G$-module N, where χ is the set of proper subgroups in G. This extends work of Pamuk and Yalcin to cohomology with non-trivial coefficients. We also show that all cup products in strictly positive degree in $H_{\chi}^{*}(G, \mathbb{k})$ are trivial.

1. Introduction

Let G be a finite group and \mathbb{k} a field of characteristic $p>0$. If $p \chi|G|$, then every representation of G over \mathbb{k} is projective. Thus, by decomposing the regular module $\mathbb{k} G$ we can obtain all isomorphism classes of $\mathbb{k} G$-modules immediately.

From now on assume $p||G|$. Then the above is no longer true. However, it is well-known that, given a $\mathbb{k} G$-module M, we can find a projective module P_{0} and a surjective $\mathbb{k} G$-morphism

$$
\pi_{0}: P_{0} \rightarrow M
$$

If we choose P_{0} and π_{0} so that P_{0} has smallest possible dimension, then this pair is unique, and known as the projective cover of M. The kernel of π_{0} is denoted $\Omega(M)$. This is known as the Heller shift of $M . \Omega(-)$ can be viewed as an operation on the set of $\mathbb{k} G$-modules which takes indecomposable modules to indecomposable modules.

This construction can be iterated. For each $i>0$, let $\pi_{i}: P_{i} \rightarrow \Omega^{i}(M)$ be the projective cover of $\Omega^{i}(M)$. By composing these maps with the inclusions $\Omega^{i}(M) \rightarrow$ P_{i-1}, we obtain an exact sequence

$$
\begin{equation*}
\ldots P_{i} \rightarrow P_{i-1} \rightarrow \ldots \rightarrow P_{0} \rightarrow M \rightarrow 0 \tag{1}
\end{equation*}
$$

This is an example of a projective resolution for M. If N is any $\mathbb{k} G$-module, then the above induces a complex

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{k} G}\left(P_{0}, N\right) \rightarrow \ldots \rightarrow \operatorname{Hom}_{\mathbb{k} G}\left(P_{i}, N\right) \rightarrow \ldots
$$

which is not exact in general. The homology groups of this complex are by definition the groups $\operatorname{Ext}_{\mathbb{k} G}^{i}(M, N)$. A special case is

$$
H^{i}(G, N):=\operatorname{Ext}_{\mathrm{k} G}^{i}(\mathbb{k}, N) .
$$

We call this the cohomology of G with coefficients in N.
There is a long and fruitful history of study of the cohomology groups $H^{i}(G, N)$ in modular representation theory. Further, one may define a pairing

$$
\smile: H^{i}(G, \mathbb{k}) \otimes H^{j}(G, \mathbb{k}) \rightarrow H^{i+j}(G, \mathbb{k})
$$

Date: September 10, 2021.
1991 Mathematics Subject Classification. 20J06,20C20
Key words and phrases. cohomology of groups, relative cohomology, modular representation theory, cup product.
which gives $H^{*}(G, \mathbb{k})$ the structure of a graded-commutative graded ring. A celebrated theorem of Evens (see [3, Theorem 4.2.1]) states that, for any G, the ring $H^{*}(G, \mathbb{k})$ is finitely generated.

Now let χ be a set of proper subgroups of G. A $\mathbb{k} G$-module M is said to be projective relative to χ if M is a direct summand of $\oplus_{X \in \chi} M \downarrow_{X} \uparrow^{G}$. Other equivalent definitions will be given in section 2. It is less well-known, but still true, that every $\mathbb{k} G$-module has a unique relative projective cover with respect to χ. This is defined to be a $\mathbb{k} G$-module Q_{0} of smallest dimension such that
(1) Q_{0} is projective relative to χ;
(2) There is a surjective $\mathbb{k} G$-morphism $\pi_{0}: Q_{0} \rightarrow M$ which splits on restriction to each $X \in \chi$.
The kernel of π_{0} is denoted $\Omega_{\chi}(M)$ and called the relative Heller shift of M with respect to χ. We can mimic the construction of (1) to obtain a relative projective resolution of M, that is, an exact sequence

$$
\begin{equation*}
\ldots Q_{i} \rightarrow Q_{i-1} \rightarrow \ldots \rightarrow Q_{0} \rightarrow M \rightarrow 0 \tag{2}
\end{equation*}
$$

of $\mathbb{k} G$ modules which are projective relative to χ and in which the connecting homomorphisms split over each $X \in \chi$. Given any $\mathbb{k} G$-module N, the above induces a complex

$$
0 \rightarrow \operatorname{Hom}_{\mathfrak{k} G}\left(Q_{0}, N\right) \rightarrow \ldots \rightarrow \operatorname{Hom}_{\mathbb{k} G}\left(Q_{i}, N\right) \rightarrow \ldots
$$

which is in general no longer exact. The homology groups of this complex are by definition the relative Ext-groups $\operatorname{Ext}_{\mathbb{k} G, \chi}^{i}(M, N)$. The relative cohomology of G with respect to χ with coefficients in N is the special case

$$
H_{\chi}^{i}(G, N):=\operatorname{Ext}_{\mathbb{k} G, \chi}^{i}(\mathbb{k}, N) .
$$

Further, one may define a pairing

$$
\smile: H_{\chi}^{i}(G, \mathbb{k}) \otimes H_{\chi}^{j}(G, \mathbb{k}) \rightarrow H_{\chi}^{i+j}(G, \mathbb{k})
$$

which gives $H_{\chi}^{*}(G, \mathbb{k})$ the structure of a graded-commutative graded ring.
Computations of $H_{\chi}^{i}(G, N)$ are rare in the literature. It is notable that the ring $H_{\chi}^{*}(G, \mathbb{k})$ is not finitely generated in general. This was first discovered by Blowers [4], who showed that if G_{1} and G_{2} are finite groups of order divisible by p, and χ_{1}, χ_{2} are sets of subgroups of G_{1}, G_{2} respectively with order divisible by p, then all products of elements of positive degree in $H_{\chi}^{*}(G, \mathbb{k})$ are zero, where $G=G_{1} \times G_{2}$ and $\chi=\left\{G_{1} \times X: X \in \chi_{2}\right\} \cup\left\{X \times G_{2}: X \in \chi_{1}\right\}$. See also [5].

For the rest of this section, let $G=\langle\sigma, \tau\rangle$ denote the Klein four-group, and let \mathbb{k} be a field of characteristic 2 . We set $\chi=\left\{H_{1}, H_{2}, H_{3}\right\}$, the set of all proper nontrivial subgroups of G, where $H_{1}=\langle\sigma\rangle, H_{2}=\langle\tau\rangle, H_{3}=\langle\sigma \tau\rangle$.

The cohomology groups $H_{\chi}^{i}(G, \mathbb{k})$ were computed, by indirect means, by Pamuk and Yalcin [10]. In the present article we recover their result, and also compute $H_{\chi}^{i}(G, N)$ for any $\mathbb{k} G$-module N. Our methods are more direct; we compute an explicit relative projective resolution for each N. Of course we are helped enormously by the fact that the representations of G are completely classified. Our first main result is:

Theorem 1. Let M be an indecomposable $\mathbb{k} G$-module, which is not projective relative to χ. Then we have

$$
\Omega_{\chi}(M) \cong \Omega^{-2}(M)
$$

if M has odd dimension, and

$$
\Omega_{\chi}(M) \cong M
$$

otherwise.

The ring structure of $H_{\chi}^{*}(G, \mathbb{k})$ was not considered in [10]. Note, however, that if χ^{\prime} is a subset of χ with size 2 , then all products in $H_{\chi^{\prime}}^{*}(G, \mathbb{k})$ are zero, by a special case of Blowers' result. It is perhaps not surprising, therefore, that we have
Theorem 2. Let $\alpha_{1}, \alpha_{2} \in H_{\chi}^{*}(G, \mathbb{k})$, where both have strictly positive degree. Then $\alpha_{1} \smile \alpha_{2}=0$.

This paper is organised as follows. In section 2 we define relative projectivity and derive the results we will need to do the computations in later sections. This section follows [9, Section 2] fairly closely. As most proofs can be constructed by adapting familiar results on projectivity to the relative case, they are omitted. In section 3 we describe the classification of modules for the Klein-four group and prove Theorem 1. We also compute $H_{\chi}^{i}(G, N)$ for every $\mathbb{k} G$-module N and prove Theorem 2.
1.1. Notation. All groups under consideration are finite groups, and for any group G, by a $\mathbb{k} G$-module we mean a finitely-generated \mathbb{k}-vector space with compatible G action. The one-dimensional trivial $\mathbb{k} G$-module will be denoted by \mathbb{k}_{G} or simply \mathbb{k} when the group acting is obvious, and for $n \in \mathbb{N}$ and M a $\mathbb{k} G$-module we write $n M$ for the direct sum of n copies of M.
Acknowledgements. Thanks to an anonymous referee for some helpful suggestions.

2. Relative projectivity

In this section, let $p>0$ be a prime and let G be a finite group of order divisible by p. Let \mathbb{k} be a field of characteristic p and let χ be a set of subgroups of G. Now let M be a finitely generated $\mathbb{k} G$-module. M is said to be projective relative to χ if the following holds: let $\phi: M \rightarrow Y$ be a $\mathbb{k} G$-homomorphism and $j: X \rightarrow Y$ a surjective $\mathbb{k} G$-homomorphism which splits on restriction to any subgroup of $H \in \chi$, then there exists a $\mathbb{k} G$-homomorphism ψ making the following diagram commute.

Dually, one says that M is injective relative to χ if the following holds: given an injective $\mathbb{k} G$-homomorphism $i: X \rightarrow Y$ which splits on restriction to each $H \in \chi$ and a $\mathbb{k} G$-homomorphism $\phi: X \rightarrow M$, there exists a $\mathbb{k} G$-homomorphism ψ making the following diagram commute.

These notions are equivalent to the usual definitions of projective and injective $\mathbb{k} G$-modules when we take $\chi=\{1\}$. We will say a $\mathbb{k} G$-homomorphism is χ-split if it splits on restriction to each $H \in \chi$. Since a $\mathbb{k} G$-module is projective relative to H if and only if it is also projective relative to the set of all subgroups of H, we often assume χ is closed under taking subgroups.

We denote the set of G-fixed points in M by M^{G}. For any $H \leq G$ there is a $\mathbb{k} G$-map $M^{H} \rightarrow M^{G}$ defined as follows:

$$
\operatorname{Tr}_{H}^{G}(x)=\sum_{\sigma \in S} \sigma x
$$

where $x \in M$ and S is a left-transversal of H in G. This is called the relative trace or transfer. It is clear that the map is independent of the choice of S. If $H=1$ we usually write this as Tr^{G} and call it simply the trace or transfer. For any set of subgroups χ of G we define the subspace

$$
M^{G, \chi}:=\sum_{H \in \chi} \operatorname{Tr}_{H}^{G}\left(M^{H}\right)
$$

and quotient

$$
M_{\chi}^{G}:=\frac{M^{G}}{M^{G, \chi}}
$$

Now let N be another $\mathbb{k} G$-module. We can define an action of G on $\operatorname{Hom}_{\mathbb{k}}(M, N)$:

$$
(g \cdot \phi)(x)=g \phi\left(g^{-1} x\right) \text { for } g \in G, x \in M
$$

Notice that with this action we have $\operatorname{Hom}_{\mathbb{k}}(M, N)^{G}=\operatorname{Hom}_{\mathbb{k} G}(M, N)$. Further, the transfer construction gives a map

$$
\operatorname{Tr}_{H}^{G}: \operatorname{Hom}_{\mathfrak{k} H}(M, N) \rightarrow \operatorname{Hom}_{\mathrm{k} G}(M, N)
$$

There are various ways to characterize relative projectivity:
Proposition 3. Let G be a finite group of order divisible by p, χ a set of subgroups of G and $M a \mathbb{k} G$-module. Then the following are equivalent:
(i) M is projective relative to χ;
(ii) Every χ-split epimorphism of $\mathbb{k} G$-modules $\phi: N \rightarrow M$ splits;
(iii) M is injective relative to χ;
(iv) Every χ-split monomorphism of $\mathbb{k} G$-modules $\phi: M \rightarrow N$ splits;
(v) M is a direct summand of $\oplus_{H \in \chi} M \downarrow_{H} \uparrow^{G}$;
(vi) M is a direct summand of a direct sum of modules induced from subgroups in χ
(vii) There exists a set of homomorphisms $\left\{\beta_{H}: H \in \chi\right\}$ such that $\beta_{H} \in$ $\operatorname{Hom}_{\mathbb{k} H}(M, M)$ and $\sum_{H \in \chi} \operatorname{Tr}_{H}^{G}\left(\beta_{H}\right)=\operatorname{id}_{M}$.
The last of these is called Higman's criterion.
Proof. The proof when χ consists of a single subgroup of G can be found in [2, Proposition 3.6.4]. This can easily be generalised.

For homomorphisms $\alpha \in \operatorname{Hom}_{\mathbb{k} G}(M, N)$ we have the following:
Lemma 4. Let M, N be $\mathbb{k} G$-modules, χ a collection of subgroups of G, and $\alpha \in$ $\operatorname{Hom}_{\mathbb{k} G}(M, N)$. Then the following are equivalent:
(i) α factors through $\oplus_{H \in \chi} M \downarrow_{H} \uparrow^{G}$.
(ii) α factors through some module which is projective relative to χ.
(iii) There exist homomorphisms $\left\{\beta_{H} \in \operatorname{Hom}_{\mathbb{k} H}(M, N): H \in \chi\right\}$ such that $\alpha=\sum_{H \in \chi} \operatorname{Tr}_{H}^{G}\left(\beta_{H}\right)$.
Proof. This is easily deduced from [2, Proposition 3.6.6].
The above tells us that $\operatorname{Hom}_{\mathbb{k}}(M, N)^{G, \chi}$ consists of the $\mathbb{k} G$-homomorphsims which factor through a module which is projective relative to χ. We write

$$
\underline{\operatorname{Hom}}_{\mathfrak{k} G}^{\chi}(M, N):=\operatorname{Hom}_{\mathbb{k}}(M, N)_{\chi}^{G}
$$

Let M be a $\mathbb{k} G$-module and let X be a $\mathbb{k} G$-module that is projective relative to χ. It is easily shown, using Proposition 3 , that $M \otimes X$ is projective relative to χ. For example, the module $M \otimes X$ where $X=\bigoplus_{H \in \chi} \mathbb{k}_{H} \uparrow^{G}$ is projective relative to χ. Moreover, with X as defined above, the natural map $\sigma: M \otimes X \rightarrow M$ given by

$$
\sigma(m \otimes x)=m
$$

is a χ-split $\mathbb{k} G$-epimorphism (to see the splitting, use the Mackey Theorem). It follows that for each M, there exists a $\mathbb{k} G$-module Q_{0} which is projective relative to χ and a χ-split $\mathbb{k} G$-epimorphism $\pi_{0}: Q_{0} \rightarrow M$.

Let $\pi_{0}: Q_{0} \rightarrow M$ and $\pi_{0}^{\prime}: \rightarrow Q_{0}^{\prime} \rightarrow M$ be two such pairs. The proof of Schanuel's Lemma (see [2, Lemma 1.5.3, Lemma 3.9.1]) extends more or less verbatim to the relative case; if $K_{0}=\operatorname{ker}\left(\pi_{0}\right)$ and $K_{0}^{\prime}=\operatorname{ker}\left(\pi_{0}^{\prime}\right)$ then $K_{0} \oplus Q_{0}^{\prime} \cong K_{0}^{\prime} \oplus Q_{0}$.

If we choose among all such pairs, one in which the dimension of Q_{0} is minimal, the kernel K_{0} is defined uniquely. This pair $\left(Q_{0}, \pi_{0}\right)$ is called the relative projective cover of M. For this choice we set $\Omega_{\chi}(M)=K_{0}$. We can interate this construction, setting $\Omega_{\chi}^{i}(M)=\Omega_{\chi}\left(\Omega_{\chi}^{i-1}(M)\right)$. Minimality implies that if K_{0}^{\prime} is the kernel of any other χ-split $\mathbb{k} G$-epimorphism $Q_{0}^{\prime} \rightarrow M$, then $K_{0}^{\prime} \cong \Omega_{\chi}(M) \oplus($ rel.proj), where (rel. proj) is some module which is projective relative to χ.

Dually, we always have that M is a submodule of $M \otimes X$ with $X=\bigoplus_{H \in \chi} \mathbb{k}_{H} \uparrow^{G}$, and the inclusion $\rho: M \rightarrow M \otimes X$ splits on restriction to each $H \in \chi$. It follows that for each M, there exists a $\mathbb{k} G$-module J_{0} and a χ-split $\mathbb{k} G$-monomorphism $\rho_{0}: M \rightarrow J_{0}$.

Let $\rho_{0}: M \rightarrow J_{0}$ and $\rho_{0}^{\prime}: M \rightarrow J_{0}^{\prime}$ be two such pairs. Again, by the relative version of Schanuel's Lemma, if $C_{0}=\operatorname{coker}(\pi)$ and $C_{0}^{\prime}=\operatorname{coker}\left(\pi_{0}^{\prime}\right)$ then $C_{0} \oplus J_{0}^{\prime} \cong$ $C_{0}^{\prime} \oplus J_{0}$.

If we choose among all such pairs, one in which the dimension of J_{0} is minimal, the cokernel C_{0} is defined uniquely. The pair $\left(J_{0}, \rho_{0}\right)$ is called a relative injective hull of M with respect to χ. For this choice we set $\Omega_{\chi}^{-1}(M)=C_{0}$. We can iterate this construction, setting $\Omega_{\chi}^{-i}(M)=\Omega_{\chi}^{-1}\left(\Omega_{\chi}^{-(i-1)}(M)\right)$. Minimality implies that if C_{0}^{\prime} is the kernel of any other χ-split $\mathbb{k} G$-monomorphism $M \rightarrow J_{0}$, then $C_{0}^{\prime} \cong \Omega_{\chi}^{-1}(M) \oplus($ rel.proj) , where (rel. proj) is some module which is projective relative to χ.

The following gives some properties of the operators Ω_{χ}^{i}.
Proposition 5. Let M_{1}, M_{2} be $\mathbb{k} G$-modules without summands which are projective relative to χ, and i, j nonzero integers. Then:
(i) $\Omega_{\chi}^{i}\left(M_{1} \oplus M_{2}\right) \cong \Omega_{\chi}^{i}\left(M_{1}\right) \oplus \Omega_{\chi}^{i}\left(M_{2}\right)$;
(ii) $\Omega_{\chi}^{i}(M)^{*} \cong \Omega_{\chi}^{-i}\left(M^{*}\right)$;
(iii) $M \cong \Omega_{\chi}\left(\Omega_{\chi}^{-1}(M)\right) \oplus($ rel. proj $) \cong \Omega_{\chi}^{-1}\left(\Omega_{\chi}(M)\right) \oplus$ (rel. proj.).

Proof. (i) is obvious. (ii,iii) are easily deduced from the relative version of Schanuel's Lemma.
(i) above shows that Ω_{χ}^{i} is a well-defined operator on the set of indecomposable $\mathbb{k} G$-modules which are not relatively projective to χ. Note that (iii) does not say that $\Omega_{\chi} \circ \Omega_{\chi}^{-1}$ is the identity in general. If we define $\Omega_{\chi}^{0}(M)$ to be the direct sum of all summands of M which are not projective relative to χ, then we have $\Omega^{i+j}=\Omega_{\chi}^{i} \circ \Omega_{\chi}^{j}$ for all i and j.

The following result is sometimes useful.
Lemma 6. Let M be $a \mathbb{k} G$-module which is projective relative to a set χ of subgroups of G. Then $M^{G}=\sum_{H \in \chi} \operatorname{Tr}_{H}^{G}\left(M^{H}\right)$.

Proof. See [9, Lemma 2.9]

As a consequence of the above, if $M=N \oplus$ (rel. proj.), we get that $M_{\chi}^{G}=N_{\chi}^{G}$. The operators Ω_{χ}^{i} extend in a natural way to homomorphisms between modules. Let $f \in \operatorname{Hom}_{\mathbb{k} G}(M, N)$. Let $(Q, \pi),\left(Q^{\prime}, \pi^{\prime}\right)$ be the relative projective covers of M, N. Then the relative projectivity of Q ensures the existence of a homomorphism $\bar{f} \in \operatorname{Hom}_{\mathbb{k} G}\left(Q, Q^{\prime}\right)$ making the following diagram commute

and an easy diagram chase shows that the image of $\Omega_{\chi}(f, \bar{f}):=\left.\bar{f}\right|_{\operatorname{ker}(\pi)}$ is contained in $\operatorname{ker}\left(\pi^{\prime}\right)$. In this way, f induces a homomorphism

$$
\Omega_{\chi}(f, \bar{f}) \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}(M), \Omega_{\chi}(N)\right)
$$

Moreover, this homomorphism factors through a relative projective if and only if f does so.

The homomorphism $\Omega_{\chi}(f, \bar{f})$ depends, as the notation suggests, on the choice of \bar{f} in general. However, if \bar{f} and $\tilde{f} \in \operatorname{Hom}_{\mathbb{k} G}\left(Q, Q^{\prime}\right)$ are both homomorphisms making the diagram commute, then one can show that

$$
\Omega_{\chi}(f, \bar{f})-\Omega_{\chi}(f, \tilde{f})
$$

factors through a relative projective.
For a given homomorphism $f: M \rightarrow N$, denote by $[f]$ its equivalence class in $\operatorname{Hom}_{k G}^{\chi}(M, N)$. By the discussion following Lemma 4, the equivalence class

$$
\left[\Omega_{\chi}(f, \bar{f})\right] \in \operatorname{Hom}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}(M), \Omega_{\chi}(N)\right)
$$

does not depend on \bar{f}, so we write this as $\Omega_{\chi}[f]$. In this way, we obtain a welldefined homomorphism

$$
\Omega_{\chi}: \underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}(M, N) \rightarrow \underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}(M), \Omega_{\chi}(N)\right) .
$$

In a similar fashion, let $(J, \rho),\left(J^{\prime}, \rho^{\prime}\right)$ be the relative injective hulls of M, N respectively. Then relative injectivity of J^{\prime} ensures the existence of a homomorphism $\tilde{f} \in \operatorname{Hom}\left(J, J^{\prime}\right)$ making the following diagram commute,

and a diagram chase shows that \tilde{f} induces a homomorphism

$$
\Omega_{\chi}^{-1}(f, \tilde{f}) \in \operatorname{Hom}\left(\Omega_{\chi}^{-1}(M), \Omega_{\chi}^{-1}(N)\right)
$$

Moreover $\Omega_{\chi}^{-1}(f, \tilde{f})$ factors through a projective if and only if f does so, and although $\Omega_{\chi}^{-1}(f, \tilde{f})$ depends on the choice of \tilde{f} in general, the equivalence class
$\left[\Omega_{\chi}^{-1}(f, \tilde{f})\right]$ depends only on f, so we write it as $\Omega_{\chi}^{-1}[f]$. Thus, we obtain a welldefined homomorphism

$$
\Omega_{\chi}^{-1}:{\underset{\operatorname{Hom}}{k G}}_{\chi}^{\chi}(M, N) \rightarrow \operatorname{Hom}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}^{-1}(M), \Omega_{\chi}^{-1}(N)\right) .
$$

One can show further that, for $[f] \in \underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}(M, N)$ we have

$$
[f]=\Omega_{\chi}^{-1} \Omega_{\chi}[f]=\Omega_{\chi} \Omega_{\chi}^{-1}[f]
$$

which justifies the following:
Proposition 7. For all $i \in \mathbb{Z}, \Omega_{\chi}^{i}(-)$ induces an isomorphism

$$
\underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}(M, N) \cong \underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}^{i}(M), \Omega_{\chi}^{i}(N)\right) .
$$

As explained in the introduction, the idea of a relatively projective cover can be extended to a relatively projective resolution; that is, an exact complex

$$
\begin{equation*}
\ldots \rightarrow Q_{i} \rightarrow Q_{i-1} \rightarrow \ldots \rightarrow Q_{0} \rightarrow M \rightarrow 0 \tag{3}
\end{equation*}
$$

of relatively projective modules in which the connecting homomorphisms split over χ. If

$$
\begin{equation*}
\ldots \rightarrow Q_{i}^{\prime} \rightarrow Q_{i-1}^{\prime} \rightarrow \ldots \rightarrow Q_{0}^{\prime} \rightarrow M \rightarrow 0 \tag{4}
\end{equation*}
$$

is another relatively projective resolution, then it turns out that any two chain maps between them are chain homotopic (see [2, Theorem 3.9.3] for the version with χ consisting of one subgroup - the proof of the more general version is the same). Consequently, for any $\mathbb{k} G$-module N, the homology groups of the induced complex

$$
0 \rightarrow \operatorname{Hom}_{\mathfrak{k} G}\left(Q_{0}, N\right) \rightarrow \ldots \rightarrow \operatorname{Hom}_{\mathfrak{k} G}\left(Q_{i}, N\right) \rightarrow \ldots
$$

are independent of the choice of resolution. The homology groups of this complex are by definition the relative Ext-groups Ext $\mathrm{E}_{\mathrm{k} G, \chi}^{i}(M, N)$. The relative cohomology of G with respect to χ with coefficients in N is the special case

$$
H_{\chi}^{i}(G, N):=\operatorname{Ext}_{\mathbb{k} G, \chi}^{i}(\mathbb{k}, N)
$$

We will use a minimal relative projective resolution of the trivial module to compute relative cohomology; that is, a relatively projective resolution

$$
\begin{equation*}
\ldots \rightarrow Q_{i} \xrightarrow{\partial_{i-1}} Q_{i-1} \rightarrow \ldots \xrightarrow{\partial_{0}} Q_{0} \rightarrow \mathbb{k} \rightarrow 0 \tag{5}
\end{equation*}
$$

in which $\operatorname{ker}\left(\partial_{i-1}\right)=\Omega_{\chi}^{i}(\mathbb{k})$. We can construct this by taking for each i a short exact sequence

$$
0 \rightarrow \Omega_{\chi}^{i+1}(\mathbb{k}) \xrightarrow{\rho_{i}} Q_{i} \xrightarrow{\pi_{j}} \Omega_{\chi}^{i}(\mathbb{k}) \rightarrow 0
$$

and setting $\partial_{i}:=\rho_{i} \pi_{i+1}$. For each i let

$$
\delta_{i}: \operatorname{Hom}_{\mathbb{k} G}\left(Q_{i}, \mathbb{k}\right) \rightarrow \operatorname{Hom}_{\mathbb{k} G}\left(Q_{i+1}, \mathbb{k}\right)
$$

denote the map induced by ∂_{i}.
Our main tool will be the following:
Proposition 8. Let N be $a \mathbb{k} G$-module. Then we have
(i) $H_{\chi}^{0}(G, N)=N^{G}$;
(ii) $H_{\chi}^{i}(G, N) \cong \operatorname{Hom}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}^{i}(\mathbb{k}), N\right)$.

The proof is the same as in the case $\chi=\{1\}$, but we give a sketch for lack of a good reference to this proof.

Proof. We first show that for each $i \geq 0$,

$$
\operatorname{ker}\left(\delta_{i}\right) \cong \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i}(\mathbb{k}), N\right)
$$

To see this, let $\phi \in \operatorname{ker}\left(\delta_{i}\right) \subseteq \operatorname{Hom}_{\mathbb{k} G}\left(Q_{i}, N\right)$. For $x \in \Omega_{\chi}^{i}(\mathbb{k})$, choose $q \in Q_{i}$ such that $\pi_{i}(q)=x$ and define $\hat{\phi}(x)=\phi(q)$. Then $\hat{\phi} \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i}(\mathbb{k}, N)\right)$. The assignment $\phi \rightarrow \hat{\phi}$ is well-defined: for if $q^{\prime} \in Q_{i}$ with $\pi_{i}\left(q^{\prime}\right)=x$ and $\tilde{\phi}(x):=\phi\left(q^{\prime}\right)$, then since $q-q^{\prime} \in \operatorname{ker}\left(\pi_{i}\right)$ we get $q-q^{\prime} \in \operatorname{im}\left(\partial_{i}\right)$ and $\phi\left(q-q^{\prime}\right)=0$ since $\phi \in \operatorname{ker}\left(\delta_{i}\right)$. Conversely, given $\phi \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i}(\mathbb{k}), N\right)$ we can define $\hat{\phi}=\phi \circ \pi_{i} \in \operatorname{ker}\left(\delta_{i}\right)$. It's easy to see that the two assignments are inverse to each other.

This in particular shows that (i) holds, since $\operatorname{Hom}_{\mathfrak{k} G}(\mathbb{k}, N) \cong N^{G}$. We now show that $\operatorname{im}\left(\delta_{i-1}\right)$ consists of the homomorphisms in $\operatorname{Hom}_{\mathbb{k} G}\left(\Omega^{i}(\mathbb{k}), N\right)$ which factor through a module which is projective relative to χ. To see this, first suppose $\phi \in \operatorname{im}\left(\delta_{i-1}\right) \subseteq \operatorname{Hom}_{\mathbb{k} G}\left(Q_{i}, N\right)$, say $\phi=\psi \circ \partial_{i-1}$ where $\psi \in \operatorname{Hom}_{\mathbb{k} G}\left(Q_{i-1}, N\right)$. Then with $x \in \Omega_{\chi}^{i}(\mathbb{k})$ and $q, \hat{\phi}$ as before we note that

$$
\psi \circ \rho_{i-1}(x)=\psi \circ \rho_{i-1} \circ \pi_{i}(q)=\psi \circ \partial_{i}(q)=\phi(q)=\hat{\phi}(x)
$$

which shows that $\hat{\phi}$ factors through the module Q_{i-1} which is projective relative to χ. Conversely, if $\phi \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i}, \mathbb{k}\right)$ factors through any module which is projective relative to χ, then it factors through Q_{i-1}, because ρ_{i-1} is injective and Q_{i-1} is also an injective module with respect to χ by Lemma 3 .

One can define a pairing $\smile: H_{\chi}^{i}(G, \mathbb{k}) \otimes H_{\chi}^{j}(G, \mathbb{k}) \rightarrow H_{\chi}^{i+j}(G, \mathbb{k})$ in a few different ways. On the one hand, elements of $H_{\chi}^{*}(G, \mathbb{k})=\operatorname{Ext}_{\mathbb{k} G, \chi}^{*}(\mathbb{k}, \mathbb{k})$ can be viewed as equivalence classes of extensions of \mathbb{k} by \mathbb{k} split over χ, and the usual Yoneda splice gives the required pairing; see [2, Section 2.6,3.9] for details in the case χ consisting of only one subgroup. Some other constructions in the case $\chi=\{1\}$ are given in [6], and all of these extend in a natural way to arbitrary χ. Happily, all these methods give the same construction. In the present article we will use the following construction: recall that

$$
H_{\chi}^{i}(G, \mathbb{k}) \cong \underline{\operatorname{Hom}_{\mathbb{k} G}^{\chi}}\left(\Omega_{\chi}^{i}(\mathbb{k}), \mathbb{k}\right) .
$$

Similarly

$$
H_{\chi}^{j}(G, \mathbb{k})=\operatorname{Hom}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}^{j}(\mathbb{k}), \mathbb{k}\right) \cong \operatorname{Hom}_{\mathfrak{k} G}^{\chi}\left(\Omega_{\chi}^{i+j}(\mathbb{k}), \Omega_{\chi}^{i}(\mathbb{k})\right)
$$

with the second isomorphism arising from Proposition 7. Therefore we may define a product as follows: for $\alpha \in H_{\chi}^{i}(G, \mathbb{k})$ and $\beta \in H_{\chi}^{j}(G, \mathbb{k})$ choose $f \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i}(\mathbb{k}), \mathbb{k}\right)$, $g \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{j}(\mathbb{k}), \mathbb{k}\right)$ respresenting α, β respectively. Then $\Omega_{\chi}^{i}(g) \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i+j}(\mathbb{k}), \Omega_{\chi}^{i}(\mathbb{k})\right)$, so that

$$
f \circ \Omega_{\chi}^{i}(g) \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i+j}(\mathbb{k}), \mathbb{k}\right) .
$$

We take $\alpha \smile \beta$ to be the cohomology class represented by $f \circ \Omega_{\chi}^{i}(g)$. This is called the cup product of α and β.

3. Representations of $C_{2} \times C_{2}$

In this section, let $G=\langle\sigma, \tau\rangle$ denote the Klein four-group, and let \mathbb{k} be a field of characteristic 2 (not necessarily algebraically closed). We set $\chi=\left\{H_{1}, H_{2}, H_{3}\right\}$, the set of all proper nontrivial subgroups of G, where $H_{1}=\langle\sigma\rangle, H_{2}=\langle\tau\rangle, H_{3}=\langle\sigma \tau\rangle$.

Let $X:=\sigma-1 \in \mathbb{k} G, Y:=\tau-1 \in \mathbb{k} G$. Then $X^{2}=Y^{2}=0, \mathbb{k} G$ is isomorphic to the quotient ring

$$
R:=\mathbb{k}[X, Y] /\left(X^{2}, Y^{2}\right),
$$

and $\mathbb{k} G$-modules can be viewed as R-modules. We will describe R-modules by means of the diagrams for modules popularised by Alperin in [1]. In these diagrams,
nodes represent basis elements, and two nodes labelled a and b are joined by a southwest directed arrow if $X a=b$, and by a south-east directed arrow if $Y a=b$. If no south-west arrow begins at a then it is understood that $X a=0$, similarly for Y.

Our statement of the classification of $\mathbb{k} G$-modules resembles that found in [7], which is based on calculations first found in [8]. We recommend the former reference as an easily accessible proof.

Proposition 9. Let M be an indecomposable $\mathbb{k} G$-module. Then M is isomorphic to one of the following:
(1) The module $V_{2 n+1}(n \geq 0)$, with odd dimension $2 n+1$ and diagram

(2) The module $V_{-(2 n+1)}(n \geq 0)$, with odd dimension $2 n+1$ and diagram

Note that $V_{1} \cong V_{-1} \cong \mathbb{k}$, with trivial G-action, but otherwise these modules are pairwise non-isomorphic.
(3) The module $V_{2 n, \infty},(n \geq 1)$, with even dimension $2 n$ and diagram

(4) The module $V_{2 n, \theta},(n \geq 1)$, with even dimension $2 n$ and diagram,

Here, $\theta(x)=\sum_{i=0}^{n} \lambda_{i} x^{n-i}$ is a power of an irreducible monic polynomial with coefficients in \mathbb{k} and the dotted line labelled by θ indicates that $X a_{1}=$ $\sum_{i=1}^{n} \lambda_{i} b_{i}$.
(5) The projective indecomposable module P, with dimension 4 and diagram

The following, also taken from [7], may be proved directly from the classification above.

Proposition 10. Let M be an indecomposable $\mathbb{k} G$-module. Then we have
(1) $M \cong M^{*}$ if M is even-dimensional.
(2) $M^{*} \cong V_{-(2 n+1)}$ if $M \cong V_{2 n+1}$ is odd dimensional.
(3) $M^{*} \cong V_{2 n+1}$ if $M \cong V_{-(2 n+1)}$ is odd-dimensional.

Clearly (3) follows from (2) above, but we include it for completeness. In addition,
Proposition 11. Let M be an indecomposable $\mathbb{k} G$-module. Then we have
(1) $\Omega(M) \cong M$ if M is even-dimensional.
(2) $\Omega^{-1}(M) \cong V_{-(2 n+3)}$ if $M \cong V_{-(2 n+1)}$ is odd dimensional.
(3) $\Omega(M) \cong V_{2 n+3}$ if $M \cong V_{2 n+1}$ is odd-dimensional.

Again (3) follows from (2) when we take into account that $\Omega(M)^{*} \cong \Omega^{-1}\left(M^{*}\right)$ in general.
3.1. Relative shifts. The goal of this subsection is to prove Theorem 1.

Among the indecomposable $\mathbb{k} G$-modules listed in the previous section, only four are projective relative to χ. These are the projective indecomposable P, and the three modules $V_{2, \infty}, V_{2, x}$ and $V_{2, x+1}$. Here the last two are the indecomposable modules $V_{2, \theta}$ where $\theta(x)$ is the monic irreducible x or $x+1 \in \mathbb{k}[x]$. Note that τ acts trivially on $V_{2, \infty}=\mathbb{k}_{H_{2}} \uparrow^{G}$, while σ acts trivially on $V_{2, x}=\mathbb{k}_{H_{1}} \uparrow^{G}$ and $\sigma \tau$ acts trivially on $V_{2, x+1}=\mathbb{k}_{H_{3}} \uparrow^{G}$. As these three play in important role in what follows, we denote them by Q_{τ}, Q_{σ} and $Q_{\sigma \tau}$ respectively. We set $Q=Q_{\sigma} \oplus Q_{\tau} \oplus Q_{\sigma \tau}$.

We begin by considering odd-dimensional modules.
Lemma 12. Let $n \geq 0$:
(1) The relative projective cover of $V_{-(2 n+1)}$ is $Q \oplus n P$.
(2) We have $\Omega_{\chi}\left(V_{-(2 n+1)}\right) \cong V_{-(2 n+5)}$.

Proof. Let $M \cong V_{-(2 n+1)}$ and let $\pi: N \rightarrow M$ be its relative projective cover with respect to χ. N must decompose as a direct sum of modules of the form P, Q_{σ}, Q_{τ} and $Q_{\sigma \tau}$.

Let $a_{1}, a_{2}, \ldots, a_{n}, b_{0}, b_{1}, \ldots, b_{n}$ be a basis of M, with action given by the diagram as in Proposition 9. Since π is a surjective $\mathbb{k} G$-map and no a_{i} is fixed by any element of G, the same must be true of their unique pre-images. The modules Q_{σ}, Q_{τ} and $Q_{\sigma \tau}$ all have non-trivial kernels. Therefore N contains at least n copies of P.

On the other hand, we have, for any i,

$$
\begin{equation*}
M \downarrow_{H_{i}} \cong \mathbb{k}_{H_{i}} \oplus n \mathbb{k} H_{i} \tag{6}
\end{equation*}
$$

The restrictions to H_{1} of P, Q_{τ} and $Q_{\sigma \tau}$ contain no trivial H_{1}-summands. So N must contain a direct summand isomorphic to Q_{σ} if π is to split on restriction to H_{1}. A similar argument (restricting to H_{2}, H_{3}) shows that N must contain summands isomorphic to Q_{τ} and $Q_{\sigma \tau}$.

We will construct a surjective $\mathbb{k} G$-homomorphism $Q \oplus n P \rightarrow M$. The following diagrams label the basis elements:

Q_{σ}

Q_{τ}

$Q_{\sigma \tau}$

(the diagram for $Q_{\sigma \tau}$ is not as described in Proposition 9, but makes sense, because $X a_{1}=Y a_{1}=b_{1}$ in this case). We now define a linear map $\pi: Q \oplus n P \rightarrow M$ by

- $\pi\left(w_{i}\right)=a_{i}$ for $i=1, \ldots, n$.
- $\pi\left(x_{i}\right)=b_{i-1}$ for $i=1, \ldots, n$.
- $\pi\left(y_{i}\right)=b_{i}$ for $i=1, \ldots, n$.
- $\pi\left(z_{i}\right)=0$ for $i=1, \ldots, n$.
- $\pi\left(s_{i}\right)=0$ for $i=1,2,3$.
- $\pi\left(r_{1}\right)=\pi\left(r_{3}\right)=a_{0}$.
- $\pi\left(r_{2}\right)=a_{n}$.

The reader should check that π is a $\mathbb{k} G$-homomorphism. The kernel of π is spanned by
$\left\{z_{i}: i=1, \ldots, n\right\} \cup\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{x_{i}+y_{i-1}: i=2, \ldots, n\right\} \cup\left\{x_{1}+r_{1}, x_{1}+r_{3}, y_{n}+r_{2}\right\}$.
It has dimension $2 n+5$, and the fixed-point space within this module is spanned by $\left\{z_{1}, z_{2}, \ldots, z_{n}, s_{1}, s_{2}, s_{3}\right\}$, so it has dimension $n+3$. It is easily checked that no element of the kernel outside of the fixed-point space is fixed by any subgroup H_{i}. Therefore

$$
\operatorname{ker}(\pi) \downarrow_{H_{i}} \cong \mathbb{k}_{H_{i}} \oplus(n+2) \mathbb{k} H_{i}
$$

for any i. This, combined with (6) and the fact that

$$
(Q \oplus n P) \downarrow_{H_{i}} \cong 2 \mathbb{k}_{H_{i}} \oplus(2 n+2) \mathbb{k} H_{i}
$$

shows that π splits on restriction to any H_{i}. The construction ensures the minimality of $Q \oplus n P$, so $Q \oplus n P=N$, proving (1). Further, $\Omega_{\chi}(M)=\operatorname{ker}(\pi)$, and the classification of $\mathbb{k} G$-modules, together with the fact that $\operatorname{ker}(\pi)$ must be indecomposable, implies that $\operatorname{ker}(\pi) \cong V_{-(2 n+5)}$, proving (2).

The following follows immediately from the above using Propositions 10 and $5(3)$.
Lemma 13. Let $n \geq 0$: Then we have $\Omega_{\chi}\left(V_{(2 n+5)}\right) \cong V_{(2 n+1)}$.
To complete the picture for odd-dimensional modules, it remains only to show that

Lemma 14. Let $M \cong V_{3}$. Then:
(1) The relative projective cover of M is Q;
(2) We have $\Omega_{\chi}(M) \cong V_{-3}$.

Proof. We have $M \downarrow_{H_{i}} \cong \mathbb{k}_{H_{i}} \oplus \mathbb{k} H_{i}$, for $i=1,2,3$, so once more the projective cover must contain a summand isomorphic to Q. We shall construct a $\mathbb{k} G$-homomorphism $\pi: Q \rightarrow M$. We retain the notation for a basis of Q used in Lemma 12; a basis for M is $\left\{a_{0}, a_{1}, b_{1}\right\}$ with action given as in the classification.

Define:

- $\pi\left(r_{1}\right)=a_{0}$
- $\pi\left(r_{2}\right)=a_{1}$
- $\pi\left(r_{3}\right)=a_{0}+a_{1}$.
- $\pi\left(s_{1}\right)=\pi\left(s_{2}\right)=\pi\left(s_{3}\right)=b_{1}$.

The reader should check this is a $\mathbb{k} G$-homomorphism. The kernel of π is spanned by $\left\{s_{1}+s_{2}, s_{2}+s_{3}, r_{1}+r_{2}+r_{3}\right\}$, and the fixed-point space of the kernel is twodimensional, spanned by $\left\{s_{1}+s_{3}, s_{2}+s_{3}\right\}$. Noting that

$$
X\left(r_{1}+r_{2}+r_{3}\right)=s_{2}+s_{3}, Y\left(r_{1}+r_{2}+r_{3}\right)=s_{1}+s_{3},
$$

we see that the kernel of π is indecomposable, and as a $\mathbb{k} G$-module is isomorphic to V_{-3}. Therefore

$$
\operatorname{ker}(\pi)_{H_{i}} \oplus \mathbb{k}_{H_{i}} \oplus \mathbb{k} H_{i}
$$

for all i, from which we deduce that π splits on restriction to each H_{i}. Our construction ensures the minimality of Q, so Q is indeed the relative projective cover of M, proving (1), and $\operatorname{ker}(\pi)=\Omega_{\chi}(M) \cong V_{-3}$, proving (2).

We now turn to even dimensional modules. Note that $V_{2, \infty}=Q_{\tau}$ is already projective relative to χ, so $\Omega_{\chi}\left(V_{2, \infty}\right)$ is not defined.

Lemma 15. Let $n \geq 2$ and $M \cong V_{2 n, \infty}$. Then:
(1) The relative projective cover of M is $2 Q_{\tau} \oplus(n-1) P$;
(2) We have $\Omega_{\chi}(M) \cong M$.

Proof. Let $\pi: N \rightarrow M$ be the relative projective cover of M. Notice that

$$
\begin{equation*}
M \downarrow_{H_{i}}=n \mathbb{k} H_{i} \tag{7}
\end{equation*}
$$

for $i=1,3$ whereas

$$
\begin{equation*}
M \downarrow_{H_{2}}=2 \mathbb{k}_{H_{2}} \oplus(n-1) \mathbb{k} H_{2} . \tag{8}
\end{equation*}
$$

So if $\pi: N \rightarrow M$ is to split on restriction to H_{2}, N must contain a pair of direct summands isomorphic to Q_{τ}. On the other hand, retaining the notation from Proposition 9 , the basis elements a_{1}, \ldots, a_{n-1} are not fixed by any element of G, so the same must be true of their unique pre-images in N. From this it follows that N must contain $n-1$ direct summands isomorphic to P.

We will construct a $\mathbb{k} G$-homomorphism $2 Q_{\tau} \oplus(n-1) P \rightarrow M$. The following diagram gives the labelling for a basis of the domain:

We define:

- $\pi\left(w_{i}\right)=a_{i}$ for $i=1, \ldots, n-1$.
- $\pi\left(x_{i}\right)=b_{i}$ for $i=1, \ldots, n-1$.
- $\pi\left(y_{i}\right)=b_{i+1}$ for $i=1, \ldots, n-1$.
- $\pi\left(z_{i}\right)=0$ for $i=1, \ldots, n-1$.
- $\pi\left(r_{1}\right)=b_{1}$.
- $\pi\left(s_{1}\right)=0$.
- $\pi\left(r_{2}\right)=a_{n}$.
- $\pi\left(s_{2}\right)=b_{n}$.

The reader should check that π is a $\mathbb{k} G$-homomorphism. The kernel of π is spanned by

$$
\left\{z_{i}: i=1, \ldots, n-1\right\} \cup\left\{x_{i}+y_{i-1}: i=2, \ldots, n-1\right\} \cup\left\{s_{1}, x_{1}+r_{2}, y_{n-1}+s_{2}\right\}
$$

This has dimension $2 n$. The fixed points within this module are spanned by

$$
\left\{z_{i}: i=1, \ldots, n-1\right\} \cup\left\{s_{1}\right\}
$$

These span the fixed points of H_{1} and H_{3}, while H_{2} has a fixed point space of dimension $n+1$, spanned by the above and $y_{n+1}+s_{2}$. Therefore we have

$$
\operatorname{ker}(\pi) \downarrow_{H_{i}} \cong n \mathbb{k} H_{i}
$$

for $i=1,3$ and

$$
\operatorname{ker}(\pi) \downarrow_{H_{2}} \cong 2 \mathbb{k}_{H_{2}} \oplus(n-1) \mathbb{k} H_{2}
$$

Note that

$$
\left(2 Q_{\tau} \oplus(n-1) P\right) \downarrow_{H_{i}} \cong 2 n \mathbb{k} H_{i}
$$

for $i=1,3$ and

$$
\left(2 Q_{\tau} \oplus(n-1) P\right) \downarrow_{H_{2}} \cong 4 \mathbb{k}_{H_{2}} \oplus(2 n-2) \mathbb{k} H_{i}
$$

Thus, π splits on restriction to each H_{i}. The construction ensures the minimality of $2 Q_{\tau} \oplus(n-1) P$, so this is equal to N and we have (1). Further, $\operatorname{ker}(\pi)=\Omega_{\chi}(M)$ must be indecomposable. By the classification (looking at the dimension of the
fixed point space of each subgroup of G to distinguish among modules of even dimension) we must have $\Omega_{\chi}(M) \cong M$ as required for (2).

Notice that if $\theta(x)=x^{n}$, then $V_{2 n, \theta}$ can be obtained from $V_{2 n, \infty}$ by applying the automorphism of G which swaps σ and τ. Similarly if $\theta(x)=(x+1)^{n}$, then $V_{2 n, \theta}$ can be obtained from $V_{2 n, \infty}$ by applying the automorphism of G which swaps $\sigma \tau$ and τ. We therefore obtain immediately from Lemma 15 above that $\Omega_{\chi}(M)=M$ if M is one of these.

It remains only to prove the following:
Lemma 16. Let $n \geq 1$ and let $M \cong V_{2 n, \theta}$, where θ is neither x^{n} nor $(x+1)^{n}$. Then:
(1) The relative projective cover of M is $n P$;
(2) $\Omega_{\chi}(M) \cong M$.

Proof. Observe that $M \downarrow_{H_{i}}=n \mathbb{k} H_{i}$ for each i. The proof of [7, Proposition 3.1] shows that the projective (as opposed to relatively projective) cover of M is $n P$ and $\Omega(M) \cong M$, so there is a surjective $\mathbb{k} G$-homomorphism $\pi: n P \rightarrow M$ with kernel isomorphic to M. Noting that $n P \downarrow_{H_{i}} \cong 2 n \mathbb{k} H_{i}$ for each i, we see that π splits on restriction to each H_{i}. On the other hand, if N is a $\mathbb{k} G$-module having Q_{τ} (resp. $\left.Q_{\sigma}, Q_{\sigma \tau}\right)$ as a direct summand then $N \downarrow_{H_{i}}$ contains a pair of trivial $\mathbb{k} H_{i}$-modules as direct summand, and no surjective homomorphism $N \rightarrow M$ may split. This shows the minimality of the dimension of $n P$ among relatively projective modules with a χ-split epimorphism to M, i.e. we have proved (1). We also have

$$
\Omega_{\chi}(M)=\operatorname{ker}(\pi)=\Omega(M) \cong M
$$

as required for (2).
Remark 17. Combining all the Lemmas in this section with Proposition 11, we obtain Theorem 1.
3.2. Computing Cohomology. In this subsection we will determine $H^{i}(G, N)$ for all $i \geq 0$ and for all indecomposable $\mathbb{k} G$-modules N. First observe that if N is projective relative to χ, then $H^{i}(G, N)=0$ for all $i>0$: this is an immediate consequence of Proposition 8(ii). Further, recall from part (i) of the same that $H_{\chi}^{0}(G, N)=N^{G}$ for any $\mathbb{k} G$-module. It follows that:
Proposition 18. Let $N \in\left\{P, Q_{\sigma}, Q_{\tau}, Q_{\sigma \tau}\right\}$. Then,

$$
\operatorname{dim}\left(H_{\chi}^{i}(G, N)\right)=\left\{\begin{array}{cc}
1 & i=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Now we consider even-dimensional modules which are not relatively projective. Recall that for $i>0$ we have

$$
H_{\chi}^{i}(G, N)=\underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}^{i}(\mathbb{k}), N\right) \cong \underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}\left(\mathbb{k}, \Omega_{\chi}^{-i}(N)\right) \cong \underline{\operatorname{Hom}}_{\mathbb{k} G}^{\chi}(\mathbb{k}, N) \cong N_{\chi}^{G}
$$

using the fact that, for these modules N, we have $\Omega_{\chi}^{-i}(N) \cong N$.
We obtain by direct calculation:
Proposition 19. Let N be an even-dimensional $\mathbb{k} G$-module which is not projective relative to χ. Then.

$$
\operatorname{dim}\left(H_{\chi}^{i}(G, N)\right)=\left\{\begin{array}{cc}
n & i=0 \\
n-1 & \text { otherwise }
\end{array}\right.
$$

if $N \cong V_{2 n, \infty}$ or $N \cong V_{2 n, \theta}$ where $\theta(x)=x^{n}$ or $\theta(x)=(x+1)^{n}$, while

$$
\operatorname{dim}\left(H_{\chi}^{i}(G, N)\right)=n
$$

for any i, if $V \cong V_{2 n, \theta}$ for some other choice of θ.

For odd-dimensional modules we proceed as follows. Let N be an odd-dimensional indecomposble module and let $i>0$. Then
$H_{\chi}^{i}(G, N)=\underline{\operatorname{Hom}}_{k}\left(\Omega_{\chi}^{i}(\mathbb{k}), N\right) \cong \underline{\operatorname{Hom}}_{\mathbb{k} G}\left(\mathbb{k}, \Omega_{\chi}^{-i}(N) \cong \underline{\operatorname{Hom}}_{\mathbb{k} G}\left(\mathbb{k}, \Omega^{2 i}(N)\right) \cong \Omega^{2 i}(N)_{\chi}^{G}\right.$
using Theorem 1. Suppose $N \cong V_{2 n+1}$ where $n \geq 0$. Then $\Omega^{2 i}(N) \cong V_{2(n+2 i)+1}$. A basis for $V_{2(n+2 i)+1}$ is given by $\left\{a_{0}, a_{1}, \ldots, a_{n+2 i}, b_{1}, b_{2}, \ldots, b_{n+2 i}\right\}$, with action given by the diagram in Proposition 9. The b_{i} are all fixed points, and in addition a_{0} is fixed by $H_{1}, a_{n+2 i}$ by H_{2} and $a_{0}+a_{1}+\ldots+a_{n+2 i}$ by H_{3}. Therefore $b_{1}, b_{n+2 i}$ and $b_{1}+b_{2}+\ldots+b_{n+2 i}$ lie in $\Omega^{2 i}(N)^{G, \chi}$. We therefore have

Proposition 20. Let $N \cong V_{2 n+1}$ for some $n \geq 0$. Then
(1) $\operatorname{dim}\left(H_{\chi}^{0}(G, N)\right)=n$ if $n>0$, and 1 if $n=0$.
(2) $\operatorname{dim}\left(H_{\chi}^{i}(G, N)\right)=\max (0, n+2 i-3)$ for $i>0$.

Remark 21. This includes [10, Theorem 1.2] as a special case $(n=0)$.
For the remaining odd dimensional modules things are a little more complicated, since $\Omega^{2 i}(N)$ eventually moves into the "positive" part of the spectrum. We begin by noting that if $n \geq 0$, then $V_{-(2 n+1)}^{H_{i}}=V_{-(2 n+1)}^{G}$ for all i. Therefore $\left(V_{-(2 n+1)}\right)^{G, \chi}=0$.

Now let $N \cong V_{-(2 n+1)}$ where $n \geq 1$. For $i \leq n / 2$ we have $\Omega^{2 i}(N) \cong V_{-(2(n-2 i)+1)}$. Therefore
$H_{\chi}^{i}(G, N)=\underline{\operatorname{Hom}}_{k}\left(\Omega_{\chi}^{i}(\mathbb{k}), N\right) \cong \underline{\operatorname{Hom}}_{\mathbb{k} G}\left(\mathbb{k}, \Omega_{\chi}^{-i}(N) \cong \underline{\operatorname{Hom}}_{\mathbb{k} G}\left(\mathbb{k}, \Omega^{2 i}(N)\right) \cong \Omega^{2 i}(N)^{G}\right.$.
For $i>n / 2$ we have $\Omega^{2 i}(N) \cong V_{2(2 i-n)+1}$. We therefore obtain the following:
Proposition 22. Let $N \cong V_{-(2 n+1)}$ where $n \geq 1$. Then

$$
\operatorname{dim}\left(H_{\chi}^{i}(G, N)\right)=\left\{\begin{array}{cc}
n+1-2 i & i \leq n / 2 \\
\max (0,2 i-n-3) & i>n / 2
\end{array}\right.
$$

3.3. Calculating cup products. The aim of this section is to prove Theorem 2. We begin with a lemma:
Lemma 23. Let $M \cong V_{-(2 m+1)}$ and $N \cong V_{-(2 n+1)}$ for some $m>n \geq 0$. Let $\phi \in \operatorname{Hom}_{\mathfrak{k} G}(M, N)$. Then
(1) $\operatorname{im}(\phi) \subseteq N^{G}$;
(2) $M^{G} \subseteq \operatorname{ker}(\phi)$.

Proof. Note first that $\phi\left(M^{G}\right) \subseteq N^{G}$ for arbitrary G and $\mathbb{k} G$-modules M and N. Let $a_{1}, a_{2}, \ldots, a_{m}, b_{0}, b_{1}, \ldots, b_{m}$ and $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}, b_{0}^{\prime}, b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ be bases of M and N respectively, with action given by the diagrams in proposition 9 . Note that if $n=0$, then (1) is immediate. So suppose $n>0$ and (1) does not hold: then we can find a maximal $k \geq 1$ such that $\phi\left(a_{k}\right) \notin N^{G}$.

We claim that $k=m$. To see this, write

$$
\phi\left(a_{k}\right)=\sum_{i=1}^{n} \lambda_{i} a_{i}^{\prime} \quad \bmod \quad N^{G}
$$

Then

$$
\phi\left(b_{k}\right)=\phi\left(Y a_{k}\right)=Y \phi\left(a_{k}\right)=\sum_{i=1}^{n} \lambda_{i} b_{i}^{\prime} .
$$

If $k<m$ then also

$$
\phi\left(b_{k}\right)=\phi\left(X a_{k+1}\right)=X \phi\left(a_{k+1}\right)=0
$$

since $\phi\left(a_{k+1}\right) \in N^{G}$. So $\lambda_{i}=0$ for all i and $\phi\left(a_{k}\right) \in N^{G}$, a contradiction.

THE RELATIVE HELLER OPERATOR AND RELATIVE COHOMOLOGY FOR THE KLEIN 4-GROUB

Now we claim that, for all $0 \leq j \leq n$, we have

$$
\begin{equation*}
\phi\left(a_{m-j}\right)=\sum_{i=j+1}^{n} \lambda_{i} a_{i-j}^{\prime} \quad \bmod \quad N^{G} \tag{9}
\end{equation*}
$$

and $\lambda_{i}=0$ for $i=1, \ldots, j$. We prove this by induction on j. The base case $j=0$ is true by definition. Assuming the above for some $0 \leq j<n$ and noting that $n<m$, we have

$$
\phi\left(b_{m-j-1}\right)=\phi\left(X a_{m-j}\right)=X \phi\left(a_{m-j}\right)=\sum_{i=j+1}^{n} \lambda_{i} b_{i-j-1}^{\prime} .
$$

But

$$
\phi\left(b_{m-j-1}\right)=\phi\left(Y a_{m-j-1}\right)=Y \phi\left(a_{m-j-1}\right) \in Y N=\left\langle b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right\rangle
$$

which shows that $\lambda_{j+1}=0$. Therefore

$$
\phi\left(b_{m-j-1}\right)=\sum_{i=j+2}^{n} \lambda_{i} b_{i-j-1}^{\prime}
$$

which shows that

$$
\phi\left(a_{m-j-1}\right)=\sum_{i=j+2}^{n} \lambda_{i} a_{i-j-1}^{\prime} \quad \bmod \quad N^{G}
$$

proving our claim. Taking $j=n$ in (9) shows that $\phi\left(a_{m}\right) \in N^{G}$, a contradiction. This proves (1).

For (2), let $x \in M^{G}$. We may write

$$
x=\sum_{i=0}^{m} \mu_{i} b_{i}
$$

for some coefficients μ_{i}. Then
$\phi(x)=\sum_{i=0}^{m} \mu_{i} \phi\left(b_{i}\right)=\mu_{0} \phi\left(X a_{0}\right)+\sum_{i=1}^{m} \mu_{i} \phi\left(Y a_{i-1}\right)=\mu_{0} X \phi\left(a_{0}\right)+Y \phi\left(\sum_{i=1}^{n} \mu_{i} a_{i}\right)=0$
by (1).
The following is immediate:
Corollary 24. Let $L \cong V_{-(2 l+1)}, M \cong V_{-(2 m+1)}$ and $N \cong V_{-(2 n+1)}$ for some $l>m>n \geq 0$. Let $\phi \in \operatorname{Hom}_{\mathfrak{k} G}(M, N)$ and $\psi \in \operatorname{Hom}_{\mathfrak{k} G}(L, M)$. Then $\phi \circ \psi=0$.

We may now proceed with the proof of Theorem 2:
Proof. Let $i, j>0$. Let $\alpha \in H_{\chi}^{i}(G, \mathbb{k})$ and $\beta \in H_{\chi}^{j}(G, \mathbb{k})$. Choose $\phi \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{i}(\mathbb{k}), \mathbb{k}\right)$ and $\psi \in \operatorname{Hom}_{\mathbb{k} G}\left(\Omega_{\chi}^{j}(\mathbb{k}), \mathbb{k}\right)$, such that the equivalence classes

$$
[\phi] \in \operatorname{Hom}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}^{i}(\mathbb{k}), \mathbb{k}\right),[\psi] \in \operatorname{Hom}_{\mathbb{k} G}^{\chi}\left(\Omega_{\chi}^{j}(\mathbb{k}), \mathbb{k}\right)
$$

represent α and β respectively. By definition, $\alpha \smile \beta$ is represented by $\left[\phi \circ \Omega_{\chi}^{i}(\psi)\right]$. By Lemma 12 we have

$$
\phi \in \operatorname{Hom}\left(V_{-(2 i+1)}, V_{(-1)}\right), \Omega_{\chi}^{i}(\psi) \in \operatorname{Hom}\left(V_{-(2 i+2 j+1)}, V_{-(2 i+1)}\right)
$$

and by Corollary 24 the composition of these two is the trivial map.

References

[1] J. L. Alperin. Diagrams for modules. J. Pure Appl. Algebra, 16(2):111-119, 1980.
[2] D. J. Benson. Representations and cohomology. I, volume 30 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1998. Basic representation theory of finite groups and associative algebras.
[3] D. J. Benson. Representations and cohomology. II, volume 31 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1998. Cohomology of groups and modules.
[4] James V. Blowers. The cohomology rings of certain finite permutation representations. Proc. Amer. Math. Soc., 45:157-163, 1974.
[5] Daniel G. Brown. Relative cohomology of finite groups and polynomial growth. J. Pure Appl. Algebra, 97(1):1-13, 1994.
[6] Jon F. Carlson. Cohomology and representation theory. In Group representation theory, pages 3-45. EPFL Press, Lausanne, 2007.
[7] Sunil Chebolu and Ján Minác. Representations of the miraculous Klein group. Math. Newsl., 21/22(4-1):135-145, 2012.
[8] S. B. Conlon. Modular representations of $C_{2} \times C_{2}$. J. Austral. Math. Soc., 10:363-366, 1969.
[9] Jonathan Elmer. Symmetric powers and modular invariants of elementary abelian p-groups. J. Algebra, 492:157-184, 2017.
[10] Semra Pamuk and Ergün Yalçı n. Relative group cohomology and the orbit category. Comm. Algebra, 42(7):3220-3243, 2014.

Middlesex University, The Burroughs, Hendon, London, NW4 4BT UK
Email address: j.elmer@mdx.ac.uk

