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Abstract—The current increase in the Internet traffic along
with the global crisis have accelerated the roll-out of the
next generation 5G network and key enabling technologies.
In this context, addressing the end-to-end Quality of Service
(QoS) provisioning in order to guarantee a sustainable service
delivery to the end-users became of paramount importance.
Some of the enabling technologies that could play a key role in
this regard are Software Defined Network (SDN) and Machine
Learning (ML). This paper proposes REDO, a Reinforcement
lEarning-based Dynamic rOuting algorithm selection method
that decides on the conventional routing algorithm to be
applied on the traffic flows within a SDN environment. REDO
will dynamically select the most appropriate routing algorithm
from a set of centralized routing algorithms (MHA, WSP, SWP,
MIRA) that maximizes the reward function from the network.
The proposed REDO solution is implemented and evaluated
using an experimental setup based on Mininet, Floodlight
controller and Open vSwitch switches. The results show that
REDO outperforms other state-of-the-art solutions.

Index Terms—SDN, ML, QoS, Routing Algorithms

I. INTRODUCTION

Looking at the recent advancements in network tech-
nologies, it can be noticed that the classical network ar-
chitecture has evolved towards a complex architecture with
vendor-specific designed interfaces to accommodate the
ever increasing traffic demands. According to Cisco, video
traffic will reach 82% of all IP traffic by 2022 [1]. Thus,
it becomes essential to consider Quality of Service (QoS)
requirements within the network management functions.
Unlike the previous generations, the fifth generation (5G)
of mobile networks provides a new foundational archi-
tecture with stringent requirements of Network Function
Virtualisation (NFV), massive scalability, high reliability and
added flexibility [2]. Therefore, Software Defined Network
(SDN), NFV and Artificial Intelligence/Machine Learning
(AI/ML) have become key components in the design of next
generation networks.

Previous works have investigated the use of Machine
Learning for network routing [3], [4]. Uzakgider et al. [5]
introduce a Reinforcement Learning (RL)-based routing
algorithm that determines when to re-route the traffic to
minimize the packet loss. Experimental results show that
the proposed system achieves better results when compared
to the shortest path routing and greedy-based approaches.

However, complex scenarios with large-scale topologies are
not addressed in this study. Similarly, Sendra et al. [6]
propose an intelligent routing protocol for SDN based on
RL. Whereas, Lin et al. [7] introduce a RL-based QoS-aware
adaptive routing in a multi-layer hierarchical SDN environ-
ment. Hossain et al. [8] proposed a RL-driven QoS-aware
routing algorithm to detect and prevent link congestion.
The proposal is evaluated under normal and congestion
scenarios and the results show that the proposed approach
outperforms the Dijkstra algorithm-based method. Simi-
larly, the work in [9] uses an AI prediction mechanism to
determine the congestion expectation and also studies the
path optimization for finding the route in the network to
avoid congestion. Kumar et al. [10] explores the use of ML
algorithms (i.e. K-means clustering and cosine similarity)
to select the least congested route in SDN from a list of
possible paths.

In contrast to the related works, this work proposes
REDO, a Reinforcement lEarning-based Dynamic rOuting
algorithm selection method that makes use of the Q-
learning as a RL algorithm. The proposed algorithm is
trained to decide on the most suitable conventional routing
algorithm to be applied on the traffic flows within a SDN
environment. The inclusion of reinforcement learning in
the SDN-based environment increases the cognitive abili-
ties of the decision-making procedure [11]. The proposed
approach is not focusing on designing a new routing
algorithm that meets multiple constraints. Instead, REDO
decides intelligently on the routing algorithm to be applied
based on the reward that complies with the Service Level
Agreement (SLA) requirement of service.

II. PROPOSED REDO FRAMEWORK

Figure 1 illustrates the framework of the proposed REDO
solution built on top of the SDN architecture, consisting
of: (1) REDO - the proposed Reinforcement lEarning-based
Dynamic rOuting algorithm selection block that makes
use of Q-learning to decide on the most suitable routing
algorithm to be applied in the network from a set of
routing algorithms (i.e., Minimum Hop Algorithm (MHA)
[12], Widest Shortest Path (WSP) [12], [13], Shortest Widest
Path (SWP) [12], [13], and Minimum Interference Routing



Fig. 1. Proposed SDN-based REDO Framework

Algorithm (MIRA) [14]); (2) Routing Manager - reroutes the
active flows based on the output from REDO; (3) Policy
Repository - stores the SLO (Service Level Objective) policy
rules describing the technical interpretation in measurable
terms (e.g. throughput, packet loss, etc.); (4) Topology
Tracker - maintains a global image of the instantaneous
network state and maps the physical network diagram
to its graphical representation; (5) Admission Control -
accepts/rejects incoming traffic requests; (6) Flow Monitor
- periodically collecting statistics of all flows and main-
tains the flow state; (7) Active Flow Tracker - tracks
active/inactive flows in the network.

III. SYSTEM MODEL

A. Problem Formulation

The SDN network in the data plane is modeled by a
graph G(V ,E) where E is the set of links and V is the
set of nodes, with each node representing an SDN switch.
A routing algorithm will find a feasible path P described
by a set of links P = l1, ..., ln that connect the source and
destination nodes. Each link l ∈ E has a finite capacity Cl

while the remaining available bandwidth BWl of link l is
determined by BWl =Cl−

∑
a f , where a f is the total bit rate

of the passing flow f . Each traffic flow f belongs to a set
of flows F = (

Fqos ∪Fbkg
)

where Fqos and Fbkg represent
the sets of QoS and background flows, respectively. Each
flow f is further classified according to the network services
of certain traffic class v (e.g. video, HTTP, FTP), which is
denoted by fv . The main objective is to route the flows in a
network to maximize the flows that satisfy the SLA require-
ment in terms of throughput, packet loss and rejection rate.
However, the optimization problem is subject to constraints
that needs to be satisfied to solve the problem, such that:

maximize
∑
f ∈F

∑
p∈P

up, f (x f · y f · z f ) (1a)

subject to
∑
f ∈F

dl , f ·a f ≤Cl , ∀l ∈ E , (1b)∑
p∈P

up, f = 1, ∀ f ∈ F, (1c)∑
x f = 0, ∀ f ∈ F, (1d)∑
y f = 0, ∀ f ∈ F, (1e)∑
z f = 0, ∀ f ∈ F, (1f)

x f ∈ {0,1} , ∀ f ∈ F, (1g)

y f ∈ {0,1} , ∀ f ∈ F, (1h)

z f ∈ {0,1} , ∀ f ∈ F, (1i)

dl , f ∈ {0,1} , ∀ f ∈ F,∀l ∈ E , (1j)

up, f ∈ {0,1} , ∀ f ∈ F,∀p ∈ P (1k)

where dl , f is a decision variable with value 1 if the flow
f is passing along link l and 0 otherwise; Cl represents the
capacity of link l and a f is the total bit rate of flow f .
Constraint (1b) indicates that the sum of throughput of the
flows routed over a link l should not exceed its capacity Cl .
Constraint (1c) indicates that a flow in the network shall
be routed on one path only, where up, f ∈ {0,1} is a decision
variable that takes the value up, f = 0 if path p is not selected
by flow f , and the value up, f = 1, otherwise. Constraints
((1d))-((1f)) are defined to indicate that the active flow f
should satisfy the SLA requirement. Where x f , y f , and
z f are decision variable with value 0 if flow f satisfies
the requirement Q f ,thr , Q f ,l oss , and Q f ,r e j respectively and
1 otherwise. Constraints ((1g))-((1k)) indicate the variable
based on a binary selection.

Solving the above problem using the RL approach brings
several benefits compared to the traditional methods (e.g.
heuristics). For example, RL algorithm is used for solving
sequential decision problems without knowledge about the
analytical model of the underlying system. Furthermore, RL
is well designed for learning to optimize the problem [15]
and the generalization by RL is much more flexible [16].

B. RL-Based Solution

RL enables an agent to take an action in order to maxi-
mize a defined reward function. By this, the RL algorithm
chooses and applies the action on the current state. As
a result, the SDN system moves into the next state and
the reward function evaluates the system performance and
updates the value of the action selection in the previous
state. In the following, the state space, action, and the
reward function are defined.

1) state space: In Q-learning, the system states are
mapped to actions in order to maximize the long term
reward. Thus, the system state S is defined as:

S = [
ψ, βqos , αqos , φqos

]
(2)

where ψ ∈ {
l ow, medi um, hi g h

}
is the traffic load. βqos

indicates if the throughput requirement is met for QoS
service type. Similarly, αqos indicates if the packet loss rate
requirement of QoS service type is met. Finally, φqos shows



if the rejection ratio is satisfying a certain level. The function
of each parameter is given as follows:

βqos =


1 if

∑
x fqos = 0,

0 if
∑

x fqos > 0

(3)

αqos =


1 if

∑
y fqos = 0,

0 if
∑

y fqos > 0

(4)

φqos =


1 if

∑
z fqos = 0,

0 if
∑

z fqos > 0

(5)

2) action space: The action space contains a set of
routing algorithms Oqos . The action taken on the state at
time t can be denoted as oqos (t ), where oqos (t ) ∈ Oqos

represents the routing algorithm applied on the QoS flow
fqos at time t . The action is applied on the QoS traffic only,
while for the rest of the traffic the routing strategy is static.

3) reward function: When an action is executed on a
given state, the system shall observe in the upcoming time a
new state of the network and it receives a reward as a feed-
back. The reward is determined by a function that maps the
performance of an action taken in a given state into a scalar
value by indicating how good the applied action is on that
state. The reward consists of three sub-rewards obtained
independently. The first sub-reward function describes how
much the measured throughput of a flow varies from the
SLA requirement and is defined as:

RT H , fv =


1−

[
qv,thr −ã fv

qv,thr

]
i f ã fv ≤ qv,thr

1 i f ã fv > qv,thr

(6)

where ã fv is the measured throughput of flow fv and
qv,thr ∈ Q f is the minimum throughput requirement of a
certain traffic class v . If the requirement of a flow is met, the
reward function returns the highest possible reward value
of 1.

Similarly, the second sub-reward represents the flow
performance in terms of the packet loss rate defined as:

RPL, fv =


1−

[
b̃ fv −qv,loss

b̃ fv

]
i f b̃ fv ≥ qv,l oss

1 i f b̃ fv < qv,l oss

(7)

where b̃ fv is the measured packet loss rate of a flow fv

that belongs to the traffic class v , while qv,l oss ∈Q f is the
maximum packet loss requirement. On the other hand, the
third sub-reward is based on the rejection rate for a specific
traffic class v and is given by:

RRR,v =


1−

[
c̃v−qv,r e j

c̃v

]
i f c̃v ≥ qv,r e j

1 i f c̃v < qv,r e j

(8)

where c̃v is the measured rejection rate that belongs to
the traffic class v , while qv,r e j ∈ Q f is the rejection rate
requirement.

The overall reward for each traffic class v , is computed
based on the following equation:

Rv = wT H ∗
∑

fv∈Fv RT H , fv

N
+wPL∗

∑
fv∈Fv RPL, fv

N
+wRR ∗RRR,v

(9)
where wT h , wPL and wRR represent the weights for

the throughput, packet loss, and rejection rate respectively.
Finally, the total reward is computed as a weighted sum of
rewards of all traffic classes.

For the proof-of-concept in this work, four routing algo-
rithms MHA, WSP, SWP and MIRA are defined in the action
set Oqos = {M H A, W SP, SW P, M I R A} for routing the QoS-
based traffic. While the background traffic is routed using
MIRA. The QoS service type is represented by the HD video
traffic class, while the background service type is repre-
sented by SD video, HTTP, and FTP traffic classes. Thus, the
traffic class v ∈ {HD vi deo, SD vi deo, HT T P, F T P }. The
weights wT h=wPL=wRR = 1/3 are assumed to be equally
important. While the total reward is given by:

R = wHD_V i deo ∗RHD_V i deo︸ ︷︷ ︸
QoS ser vi ce t y pe

+wSD_V i deo ∗RSD_V i deo +w f t p ∗RF T P +wht t p ∗RHT T P︸ ︷︷ ︸
B ackg r ound ser vi ce t y pe

(10)

where the traffic class weights are assigned based on the
traffic ratios estimated by Cisco as detailed next.

In the training stage, the phase was executed on 60
individual trials. An individual trail is defined as a test
scenario of a total run time of 1500 seconds. With respect to
the traffic, the setup generates for each trail new values of
the random seed in order to get a random set of traffic. The
discount factor determines how much to weigh the value
of maximum expected future rewards on the cumulative
rewards. The discount factor is chosen near 1 to ensure
convergence to the optimal policy. For the purpose of this
study, the discount factor is set to λ = 0.9 in order to let
the agent propagate long-term rewards. On the other side,
the learning rate determines how fast the model learns from
the changes imposed by the environment. In this study, the
learning rate is set to α= 0.01.

IV. EXPERIMENTAL SETUP

A. Test Environment

The performance evaluation of the proposed REDO
framework is done through an experimental setup consist-



ing of three main elements: (i) Mininet 1 - used to emulate
the SDN data plane; (ii) external Floodlight OpenFlow
controller 2 - provides RESTful API and network services;
and (iii) the application layer - containing the network man-
agement for performance evaluation. The entire experiment
is hosted on a powerful machine to accommodate the traffic
load. The SDN controller and the entire application layer
run on a virtual computer (2.2GHz multiprocessor of 4
CPU units with memory size of 16GB), while the Mininet
test-bench is running on another virtual machine (2.2GHz
multiprocessor of 4 CPU units with memory size of 32GB).
Each virtual machine is running Linux-Ubuntu Server. Open
vSwitch 3 is used as a software SDN switch.
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Fig. 2. AT&T network topology used in the experimental setup

To emulate a real dynamic network environment, the
AT&T topology from Internet Topology Zoo [17] was used
as seen in Fig. 2. The network nodes are replaced by
SDN-Openflow switches. Each switch has a host directly
connected that generates data traffic. Two types of services
are generated: guaranteed QoS-based service consisting of
live HD video streaming and background services consisting
of buffered SD video streaming, web browsing and file
transfer traffic. In order to generate live HD and buffered
SD video, VLC player tool is employed with a CBR encoder.
The video source is created by using the FFMPEG video and
audio converter 4. On the other hand, HTTP and FTP traffic
are generated using Ostinato 5 traffic generator tool. Based
on the traffic classes, it is possible to evaluate different
traffic mix and load on the network.

According to Cisco forecast, video traffic volume will
reach 82% of all IP traffic by the year 2022 [1]. Based
on these statistics, the traffic mix ratio in our experiment
setup is determined such that 82% of the total traffic
is represented by video traffic and the remaining 18% is
represented by HTTP and FTP traffic. Additionally, the total
volume of 82% video traffic can be divided into 63% live
HD video and 19% buffered SD video [18]. The remaining of

1Mininet-http://mininet.org
2Floodlight-: http://www.projectfloodlight.org
3ovsswitch-http://openvswitch.org
4FFMPEG-tool,” https://ffmpeg.org
5Ostinato-https://ostinato.org/

18% is divided equally between HTTP and FTP traffic. The
same ratios are maintained under different traffic loads. The
parameters for live HD are as follows: 665Kbps average bit-
rate, 24 frames per sec., and a resolution of 1280x720 pixels.
The buffered SD video has an average bit-rate of 285Kbps,
24 frames per sec., and a resolution of 640x360 pixels. Both
videos have a duration of 5 minutes. The parameters for
the HTTP and FTP traffic model are chosen based on [19].

The performance of the proposed REDO solution is
compared against the four routing algorithms MHA, WSP,
SWP and MIRA in terms of throughput, packet loss, flow
rejection, PSNR and Mean Opinion Score (MOS). A mapping
of PSNR to MOS, used to subjectively assess the users’
Quality of Experience (QoE) is given in Table I [20].

TABLE I
PSNR AND SSIM TO MOS MAPPING [20]

MOS PSNR SSIM

5 (Excellent) ≥ 45 ≥ 0.99

4 (Good) ≥ 33 & < 45 ≥ 0.95 & < 0.99

3 (Fair) ≥ 27.4 & < 33 ≥ 0.88 & < 0.95

2 (Poor) ≥ 18.7 & < 27.4 ≥ 0.5 & < 0.88

1 (Bad) < 18.7 < 0.5

B. Evaluation Scenarios

The total experiment duration is set to 1500 seconds. The
destination node is chosen at random other than the source
node within the network. In order to maintain the traffic
mix ratio, each link in the topology operates at the speed
of 1 Mb/s. A larger link capacity in the topology requires
a higher number of HTTP and FTP flows to sustain the
traffic ratio. In order to evaluate the routing algorithms
under dynamic network conditions, three different levels
of network load are considered such as: 0.5 (low load), 0.75
(medium load), and 1.0 (high load). The network load is
computed based on the link load, link capacity and the
number of links within the network topology.

The minimum throughput requirements for each traffic
class is set to 658Kbps for live HD video, 279Kbps for
buffered SD video, 14Kbps for Web browsing and 180Kbps
for file transfer. In general, video is considered sensitive
to network degradation. In order to satisfy the human
perception, video quality becomes noticeable at packet loss
of 0.5% and annoying when greater than 2% [21]. Based on
this, the maximum acceptable packet loss rate is defined
for live HD video traffic as 1% and 2% for the buffered
SD video traffic. Other background traffic like HTTP and
FTP have guarantees of zero packet loss rate. In terms of
rejection rate requirement, the SLO policy is defined for the
entire traffic and is set to 25% for the QoS video traffic and
35% for the background video traffic.

V. RESULTS AND DISCUSSIONS

There are two phases involved in the RL process: train-
ing and testing. The training phase is used to learn the
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TABLE II
AVERAGED ESTIMATED PSNR AND MOS UNDER DIFFERENT TRAFFIC LOADS, WHERE L = LOW LOAD, M = MEDIUM LOAD, AND H = HIGH LOAD

MHA WSP SWP MIRA REDO

l m h l m h l m h l m h l m h

HD PSNR [dB] 25.4 21.3 21 27.8 22.2 21.6 23 17.5 16.5 27 21.8 20.7 39.4 33.1 29.4

MOS Poor Poor Poor Fair Poor Poor Poor Bad Bad Poor Poor Poor Good Good Fair

SD PSNR [dB] 51.7 41.1 35.6 60 33.4 38.2 34.5 26.7 26.1 57.7 37.6 37.1 56 50.5 44.2

MOS Exc. Good Good Exc. Good Good Good Poor Poor Exc. Good Good Exc. Exc. Good

optimal policy that maximizes the long-term reward. In the
experimental test, the training phase was executed on 60
individual trials for each given scenario that is defined by
traffic load. An individual trail is defined as a test scenario
of a total run time of 1500 seconds. With respect to the
traffic, the setup generates for each trail new values of the
random seed in order to get a random set of traffic. In order
to have a fair exploration of all possible state-action pairs,
the ε-greedy was set to zero. This means that all actions
are randomly chosen in all system states. Once the system
is trained, the testing phase is executed. In this phase, the
algorithm exploits the learned Q-table based on the actual

networking states. In this case, the ε value is 1. In order
to compare fairly the five routing algorithms under various
baseline factors (e.g. traffic load), the same sequence of
experiment condition are ran on each scenario. The results
were averaged over 5 simulation trails per scenario.

Figures 3 and 4 show that the proposed REDO solu-
tion outperforms the other routing algorithms in terms
of throughput and packet loss. For example, under low
load, REDO drastically reduces the packet loss to 1.07%
for the QoS-based services while MHA, WSP, SWP, MIRA
achieves an average packet loss of 5.34%, 4.09%, 7.03%,
and 4.47%, respectively. As shown in Table II, this implies



accordingly an estimated averaged PSNR of 39.4dB for the
proposed REDO method. Thus, REDO makes a significant
improvement in terms of minimizing the packet loss when
compared to the classical routing algorithms. Figure 5
shows that all solutions lead to more rejections in the
incoming flows of QoS-based traffic class when the network
load increases. Due to the increase in the total amount of
the generated video traffic while the network capacity stays
fixed, this implies an increase in the flow rejection rate of
the QoS-based services.

Overall, the results indicate that the proposed REDO
outperforms other classical routing algorithms in terms of
maximizing throughput and minimizing the packet loss
when the network load increases from low to high. REDO
provides a Good (see Table II) user perceived quality under
low and medium traffic loads, and a Fair user perceived
QoE under high traffic load without penalizing the other
traffic classes. In contrast, all the other routing algorithms
provide a Fair (e.g., WSP and MIRA) and Poor (e.g., MHA
and SWP) user perceived QoE under low traffic load which
drops to Poor (e.g., MHA, WSP, and MIRA) and Bad (e.g.,
SWP) user perceived QoE under medium and high traffic
loads. Consequently, in order to accommodate more QoS-
based traffic flows, the classical routing algorithms will
sacrifice the users’ perceived quality for this traffic class
as well as will penalize the performance of the other traffic
classes.
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that are generated in the experiment test.

VI. CONCLUSIONS

This paper proposes REDO, a Reinforcement lEarning-
based Dynamic rOuting algorithm selection method that
decides the most suitable routing algorithm to be applied
on the traffic flows in SDN to enable QoS provisioning.
REDO was implemented and evaluated using an experi-
mental setup based on Mininet, Floodlight controller and
Open vSwitch switches. Several scenarios are considered
to demonstrate the benefits of REDO under realistic net-
work conditions. When compared to other state-of-the-
art routing algorithms (e.g., MHA, WSP, SWP, MIRA), the
results show that on average REDO outperforms them and
finds the best trade-off between throughput, packet loss
and rejection rate for the QoS-based traffic class without
penalizing the other background traffic classes.
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