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Abstract—Tangible User Interfaces (TUI)s extend the 

domain of reality-based human-computer interaction by 

providing users the ability to manipulate digital data using 

physical objects which embody representational significance. 

Whilst various advancements have been registered over the past 

years through the development and availability of TUI toolkits, 

these have mostly converged towards the deployment of tabletop 

TUI architectures. In this context, markers used in current 

toolkits can only be placed underneath the tangible objects to 

provide recognition. Albeit being effective in various literature 

studies, the limitations and challenges of deploying tabletop 

architectures have significantly hindered the proliferation of 

TUI technology due to the limited audience reach such systems 

can provide. Furthermore, available marker sets restrict the 

placement and use of tangible objects since if placed on top of 

the tangible object, the marker will interfere with the shape and 

texture of the object limiting the effect the TUI has on the end-

user. To this end, this paper proposes the design and 

development of an innovative tangible marker set specifically 

designed towards the development of vertical TUIs. The 

proposed marker set design was optimized through a genetic 

algorithms to ensure robustness in scale invariance, the 

capability of being successfully detected with distances of up to 

3.5 meters and a true occlusion resistance of up to 25%, where 

the marker is recognized and not tracked. Open-source versions 

of the marker set are provided through research license on 

www.details_left_intentionally_empty_for_review.edu 
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I. INTRODUCTION 

Over recent years, TUI technology has gained popularity 
in many different fields. The most popular TUI architecture is 
the tabletop form, which uses a semi-translucent surface to 
allow a projector to project from underneath the table and 
diffuse the graphics on the table surface [1], [2]. The semi 
translucency is also important to allow a camera inside the 
table to have a clear view of any markers placed flat on the 
table surface. The software part of the system includes two 
different parts of applications, which implement a one-way 
communication between them. The first system is a toolkit 
used to recognize the orientation and position of a set of 
markers placed on top of the table. The second system is 
specifically designed and developed to show various 
animations on the table surface via the projector in response 
to marker movement. In most cases, the second system is 
developed for a single TUI application. On the contrary, the 
toolkit is used for all the different graphical system 
implementations.  

A TUI can include various different audio, visual and 
tactile feedback elements, this results in various sensory 
engagements which overall assist the user to better understand 

and envision the concept being delivered by the TUI system 
[3]. Furthermore, a TUI system promotes collaborative 
working and learning [4]. In the education sector, it was 
observed that a TUI also attributes to better knowledge 
retention when compared to wimp interfaces [1]. This 
technology gained popularity because of the smooth transition 
between physical and digital interaction enabling the end-user 
to manipulate digital data by moving tangible objects. This 
aspect of a TUI system is based on the MCRpd human-
computer interaction model [5]. 

Not every aspect of a TUI is positive though, the 
implementation part of a TUI system tends to be challenging. 
Current marker recognition toolkits come with various 
difficulties during and after the implementation of a TUI 
system [6]. Such difficulties are holding the acceptance of 
such an advantageous technology. Implementation 
complications include the high procurement expenses and the 
significant footprint needed by a tabletop TUI which in some 
cases constrains the number of places the TUI can be installed 
in [2]. Furthermore, in most cases, technical expertise is 
needed before and during the operation of the TUI system 
limiting the wide adoption of such systems. The adoption of a 
vertical TUI architecture [7], aims to mitigate some 
difficulties experienced with TUI tabletops. Unfortunately, 
however, this experimental architecture made use of a bulky 
back-projection configuration due to the type of markers 
employed within the setup. The utilized marker set also 
hindered the exposure and use of tangible objects within the 
setup, undermining its effectiveness to exploit the inherent 
effectiveness of TUI elements. 

To this end, in order to eliminate all the aforementioned 
TUI problems, a new marker set was developed to enable the 
development of vertical TUIs which virtually eliminate the 
procurement expenses for dedicated hardware, but rather uses 
a conventionally available whiteboard – projector – camera 
setup as defined in [8]. Although many marker technologies 
already exist, none of them can be used in a true vertical TUI 
setup. Existing markers will either interfere with the shape and 
texture of the tangible object while others cannot be 
effectively recognized from the required whiteboard camera 
distance. 

II. LITERATURE REVIEW 

In image processing a marker recognition algorithm can be 
characterized by the following strengths; marker recognition 
rate, perspective resistance, inter-marker distance, marker 
occlusion resistance, marker scale invariance, illumination 
invariance, minimal false positive detection and marker 
jittering resistance. A method to recognize markers in 
suboptimal lighting conditions was introduced in [9] where it 
was demonstrated that marker edges can be estimated. To 
recognize a partly occluded marker however, the rebuild of the 



whole marker can only be done from the partial visible data 
[10]. Experiments with Artoolkit showed that some additional 
factors may negatively affect the recognition rate of this 
engine, such as the quality of the camera used for tracking, the 
marker printing quality, the smoothness of the surface used 
and the complexity of the objects surrounding the marker [11]. 

As illustrated in Fig. 1, the most popular frameworks in 
current literature employ bitonal (black and white) markers for 
better contrast ratios which leads to improved detection rates 
[12][13][14][15][16]. Furthermore, the 2D planar markers 
illustrated in Fig. 1(a-d), apart from identification they were 
also designed to calculate their pose estimation, which has 
seen wide adoption in augmented reality, photogrammetry and 
computer vision applications. 

 

Fig. 1: Sample marker sets from current literature toolkits including: (a) 
Artoolkit, (b) Trackmate, (c) ARTag, (d) X-Tag, (e) reacTIVision 

In difference to the planar markers illustrated above, Fig. 
2 depicts the currently available circular markers in literature. 
The marker in Fig. 2(a) was proposed initially proposed in 
[17] and further improved in [18]. This type of marker pattern 
and the proposed detection system showed robust results in 
recognition rate and occlusion resistance. Unfortunately, 
however, this marker was not designed for rotation detection 
and the circular pattern limits the number of markers that can 
be generated without affecting the inter-marker distance. 
Conversely, the fiducial marker depicted in Fig. 2(b), was 
designed for multiple usages, one of which is pose estimation 
[19]. Whilst concluding that this marker has high occlusion 
resistance and is robust against different types of noise [20], 
the intrinsic nature of the marker design pose a restrictive limit 
on the distance from which it can be recognized and tracked 
due to the small size of the dots used and inherent data 
complexity. 

As a marker can be occluded or distorted by many factors 
during physical operation, a solution to such a problem was 
proposed in [21], whereby estimation on the marker location 
during brief periods of marker occlusions where mitigated by 
a Kalman filter [22]. Given the nature of the Kalman filter 
adopted, the marker pose data was also smoothened. As 
concluded from experimental tests, the tracking approach 
undertaken by TUI toolkits such as Reactivision [13] on 
markers shown in Fig. 1(e), poses a further limitation since it 
was observed that each fiducial can be partly occluded during 
the tracking state only and is not recognized at all when it is 
presented in front of the camera already occluded.  

 

Fig. 2: (a) Concentric Circle Marker (b) RUNE-Tag Marker 

The aforementioned marker sets have all reported good 
recognition rates when used in their intended environment 
involving little to no occlusions. Unfortunately, however, 
none of the current markers shows applicability towards the 
unique requirements for effective usage in a vertical TUI 
setup, since such markers need to have enough space for a 
tangible object to be placed on top of them without occluding 
their unique data pattern. Apart from this, the marker needs to 
have enough clusters of “pixels” that it can be easily 
recognized from a distance of 2.5 to 3 meters given the 
contextual use and setup of vertical surfaces. Furthermore, in 
a vertical TUI setup, each marker has to be recognized even if 
a part of it is already occluded when presented in the capture 
frame. This is because in a vertical TUI setup as shown in Fig. 
3, marker occlusions are greatly increased, occlusions such as 
the tangible object or its shadow.  

 

Fig. 3: Marker Occluded by the Tangible Object's Shadow 

When further taking users into account, marker occlusions 
are increased drastically because the user may occlude a 
significant part of the marker just by standing in front of it or 
by simply moving the object. This implies that required 
marker set cannot reliably rely on tracking in such a scenario 
but should alternatively incorporate sufficient information in 
its design for true occlusion resistance. In contrast, current 
circular markers which may be used in this type of 
configuration are either too complex to be detected from the 
required distance while using a reasonable marker size or lack 
some important requirement such as rotation detection. This 
led to the need of a new marker design which retains its patter 
visible whilst providing enough in order to enable the 
placement of a tangible object on top of it without interfering 
with the visual shape and texture of the tangible object itself. 

Moreover, based on the requirements elicited from 
recognition engines currently available in literature [8], [13], 
[16], markers with a sudden change in contrast and multiple 
edges will help improve the recognition rate. In the case of a 
vertical TUI, such factors will improve marker recognition 
rate even though a part of it is occluded by the object’s shadow 
and/or the user’s hand. To counteract such big occlusions each 
marker pattern has to be unique all around so when the 
algorithm detects the visible part of that particular marker it 
won’t recognize it as a false positive. Whilst the amount of 
data in each marker has to be enough for marker uniqueness 
and pose information, this pattern complexity is concurrently 
limited by the recognition distance between the marker and 
the capturing setup. This unique criterion thus presents an 
optimization tradeoff for marker sets to be suitable in Vertical 
TUI setup adoptions which are further compounded by a 
scalability requirement for different sized markers which 
enable marker size adaption dictated by different tangible 
object sizes. 

 

 

 



III. MARKER DESIGN 

To limit the complexity and burden in adopting the 
proposed marker set, a simple passive marker design was 
developed that could be commonly printed on paper and 
required minimal hardware to recognize/operate. In line with 
literature, in order to reach good recognition rates, the 
markings needed to embed various sudden changes in contrast 
and present multiple sharp edges in different sizes. A salient 
change between the pixels and the background will also help 
increase the recognition rates, so a bitonal (black and white) 
color was chosen. Given that markers need to be visible from 
the front, the most appropriate shape identified was that of a 
circular structure with a white space in the middle for 
placement of the tangible object. Other shapes will simply use 
more scene space or limit more the space for the recognition 
pattern. 

The pattern to be recognized had to be big enough that it 
can be detected using a mid-range webcam or a mobile device. 
At the same time, the overall marker needed to be small 
enough to keep the marker at a reasonable size and not occupy 
significantly the vertical interface. To this end, a scale 
invariant design was adopted whereby the scale of each pixel 
and the white space between them would vary depending on 
the entire size of the marker. This allowed for marker scaling, 
which could be changed according to the physical size of the 
tangible object placed on top of it. Moreover, this scale 
invariance was designed to retain a recognition rate for 
conventional projection/whiteboard setups at a distance of 2.5 
to 3 meters away. 

Preliminary pattern testing was performed using digital 
images. The pattern tested was searched for features sets and 
a score was accredited depending on the number of features 
and the inter-marker distance between the sets. The best 
pattern recorded was that of containing and manipulating data 
within three concentric circles placed within each other. 
Subsequently, an experimental pattern testing was carried out 
by printing and placing the pattern to be tested on a white 
foreground, so only the pattern features are detected. All 
markers were printed using a laser printer set to 600 dots per 
inch (DPI). Each marker was then tested twice using a mid-
ranged web camera and a mobile phone used as a camera 
which were placed at various distances. Apart from the 
number of features found and the distance between each 
feature, the distance between the marker and the camera was 
also used to determine the recognition quality of each 
experimental pattern. 

Following the empirical knowledge obtained from these 
experiments, the final marker version was designed with three 
individual circles made up of 21 square pixels each resulting 
in a 63 pixel marker. As depicted in Fig. 4, each pixel was 
widened vertically to overlap on the other circles in order to 
create various distance variations between each sharp edge. 
This design produced not less than 100 features per marker. 
The resulting markers were well recognized from a 3.5 meter 
distance and features were distributed all around the marker 
with good distance between them. The amount of pixels 
allows 4,096 different marker combinations that were later 
reduced to 300 in order to make each marker unique all around 
the circle pattern for better occlusion resistance and a bigger 
inter-marker space.  

 

Fig. 4: Final Marker Design 

IV. GENERATING THE MARKER SET 

A. Marker Generation Algorithm 

To systematically create an optimal set of unique markers, 
a genetic algorithm was used whereby marker designs were 
represented inside the algorithm by an array of binary values. 
Each value represents one pixel, with 1 implying a colored or 
black pixel whilst 0 representing blank space or white pixels. 
The fitness function was designed to compare each individual 
marker with the rest of the population and calculate the 
frequency of similar groups of N pixels. The two markers with 
the least amount of similarities were then selected for iterative 
reproduction and the marker, which has the most same groups 
of pixels, is replaced by the offspring. To maintain diversity 
within the whole population, each offspring is mutated based 
on a random variable. 

This strategy ensured that the algorithm prevented 
premature convergence within a local minima. Another 
validation was implemented to control the early random 
creation of the population were each group of N pixels are 
compared with the whole population in a sliding window 
manner before they are accepted and added to the population 
multi-dimensional array. Comparison of pixels was conducted 
to imitate the real life comparison of the marker pattern and 
thus the binary array representing the marker pixels was be 
divided into distinct rows and columns for an effective 
comparison with the binary data of other markers as illustrated 
in Fig. 5. This methodology took into account the manner in 
which popular computer vision toolkits operate and thus 
aimed to reduce the potential false positive rate when different 
features of the complex patterns are detected in each frame.

 

Fig. 5: Binary Data Converted to Marker Pattern 

B. Fitness Function 

As illustrated in Fig. 6, the fitness function was developed 
to use a sliding window of 3 pixels. Two sliding windows 
were correspondingly adopted on each paired comparison. So 
as to account for each possible placement of the circular 
marker, the sliding windows were iteratively rotated through 
full revolutions, assessing the pixel similarity at each 
rotational increment by 1 pixel (17.143 degrees). This process 
was subsequently conducted to directly compare each 

 

 



considered marker with the remaining marker set population 
consecutively.  

 

Fig. 6: Sliding Window Fitness Function 

To this end, the fitness function was able to quantify the 
amount of sliding window matches a single marker has with 
the entire population. Markers with the least amount of 
matches are chosen to produce a new offspring which replaces 
the chromosome with the biggest amount of matches. 

C. Maintaining Diversity within the Population 

The crossover method used to generate an offspring takes 
genes from both of the parents which are randomly selected to 
create the chromosome for the offspring. To maintain 
diversity within the population and prevent premature 
convergence of the algorithm, after the crossover function, 
each offspring is mutated by randomly selecting and inverting 
up to 30 different genes. Fig. 7 illustrates the crossover 
function logic in more detail.  

 

Fig. 7: Crossover Approach 

D. Convergence of the Algorithm 

The genetic algorithm reaches a global minimum when the 
amount of most similar pixels remained consistent for 500 
generations. This threshold was found by reducing the 
population number by 50 each time the genetic algorithm 
converges to a global minimum. The first population amount 
was 700 where it reached the global minima with a maximum 
number of 400 matches, so the population was iteratively 
reduced by 50 and followed by another genetic algorithm 
execution until an acceptable number of matches was reached. 

E. Rendering the Marker Set 

After the genetic algorithm converges, each binary array 
representation is automatically converted to illustrate a pixel 
value within the marker image. Each pixel was created using 
the Java Arc2D class, whereby the width and height of each 
pixel were set by adjusting the arc stroke. Finally, the marker 
was smoothened by parsing through an antialiasing image 
filter. After calculating and setting the location of each group 
(circle) of pixels the arcs had to be evenly spaced from each 
other, this was achieved by dividing equally dividing the 
circular pattern by 21 pixel positions, and altering the arc 
angle position as illustrated in Fig. 8.  

 

Fig. 8: Marker Pixel Placement 

For each marker, a high-resolution buffered image was 
created and set with a size of 2100x2100. The substantial size 
allowed the scaling to various different marker sizes to later 
be printed in high fidelity. Java 2d graphics were then created 
from the buffered image and used to draw the pixels according 
to the binary data arrays generated by the genetic algorithm. 

V. MARKER SET FILTERING 

A. Correlation between Markers 

To minimize the potential rate of false positives on the 
generated set of 300 markers, these candidate elements were 
further filtered according to their respective Hamming 
distance. Since Hamming distance calculations are not 
rotationally invariant, each marker was progressively rotated 
by 17.143 degrees (the pixel width) and each time compared 
with the remaining population until it reached a full 360-
degree rotation. The smallest/worst hamming distance results 
with each rotation were recorded and finally, the hamming 
distance value of each individual marker was used to rank the 
markers from least similar to most similar. Fig. 9 depicts the 
comparison process adopted for each marker which was 
consecutively undertaken the rest of the population. The 
obtained results from this analysis are illustrated in Fig. 10 
where unique markers are ranked according to their hamming 
distance. 

Fig. 9: Rotated Hamming distance Markers Comparison 

 

 

 

 



 

Fig. 10: Hamming Distance Results for the population marker set 

B. Recognition Engine Marker Filtering 

To further refine and optimize the selection of the 
complete marker set, a second filter was developed to assess 
each marker for its occlusion resistance whilst retaining no 
false positive detection. This test was designed to faithfully 
emulate an extreme user interaction process with the TUI 
marker where, as illustrated in Fig. 11(a), approximately 25% 
of the marker is occluded by the user’s hand. This implies that 
from a recognition perspective, such occlusion might provide 
a set of different features each time a frame is processed. The 
technique chosen to elicit the best markers was to load the 
consecutively load markers in accordance with the previously 
ranked hamming distance and display them in a window while 
using an obstruction to occlude 25%. To account for the 
circular nature of the marker, the occlusion was rotated in the 
form of an animation which gradually covers the marker 
through a 360° rotation as illustrated in Fig. 11(b). A template 
matching approach was then used to recognize each marker 
while keeping a record on each marker recognition rate and 
false positives as shown in Fig. 11(c). 

 

Fig. 11: (a) Hand Occlusion (b) Rotating occlusion path (c) Rotating 

occlusion animation 

The occlusive animation was executed for a duration of 19 
seconds till it revolved around the entire marker. Based on a 
capturing and processing rate of 30 frames per second (FPS), 
this methodology processed 570 frames during the occlusion 
animation on each marker, ensuring the sufficient capture of 
different potential feature vector sets. A frequency count was 
retained on the number of successfully recognized frames 
within this sample as well as a record of false positives 
generated on each marker. The results for the recognition rate 
amongst the entire marker population is illustrated in Fig. 12. 

 

Fig. 12: Occlusion resistance and false positives test results 

So as to establish a threshold criterion on the amount of 
occlusion resistance available through the designed marker 
set, a progressive test sequence was adopted, whereby in each 
iteration the amount of occlusion applied across each marker 
was increased. This test was performed by increasing the 
animation occlusion by 3.6 degrees (1%) after each marker set 
test, and iterated until the recognition rate was decreased 
below 75%, at which point the functionality was deemed 
practically unusable. The results illustrated in Fig. 13 were 
collected by averaging each test results. It was concluded that 
the system was effectively usable up to a maximum occlusion 
of 31%, where an 89.54% recognition rate was achieved.  

 

Fig. 13: Maximum Marker Occlusion Test 

VI. TESTING AND EVALUATION 

In line with common approaches adopted by recognition 
engines, the proposed marker set was evaluated through the 
adoption of a SIFT feature detection algorithm [23] and 
classified using a k-nearest neighbor classifier. This 
methodology was developed to provide an objective analysis 
of the strengths and limitations of the proposed designs, 
enabling the gathering of results on uniqueness, recognition 
from different distances and marker scale invariance. During 
marker evaluation, the web camera parameters were left 
unchanged capturing at 2.1 megapixels (MP)s running at 30 
FPS. A second test was later executed using a mid-range 
smartphone device (Samsung Galaxy Note 4) with a camera 
capturing capability at 16 MP at 30 FPS. For data consistency, 
each marker was printed with a laser printer set to 600 Dots 
per Inch (DPI) and each captured image was digitally cropped 
onto a whiteboard area of 1.8m x 1.2m. 

A total of 14 markers were tested starting from an 8cm 
diameter to a maximum of 17cm with an incremental 
difference in diameter of 1cm between each marker. The 
camera distance from the marker in test ranged between 1.6m 
to 3.5m, spanning between the minimum distance needed to 
capture the entire whiteboard to the maximum distance 
depending on the whiteboard size and the projector distance. 
The test at each position was set to last 10 seconds; during this 
time a total of 300 frames (30FPS x 10 seconds) were captured 
for each marker. The recognition rate with respect to capture 
distance and marker size is illustrated in Fig.14. 

The space available for the tangible object on top of each 
marker in cm² is half of the marker diameter size, e.g. the 
space available on a 13cm marker is 6.5cm². To this end, 
practical constraints of common physical objects imply that 
most common adoptions will utilize 13-16cm markers 
providing an area of 6.5cm²-8cm² of tangible placement area 
respectively. A potential limitation of this marker set is that 
some objects which due to their appearance and form factor, 
might additionally challenge a marker due to excessive 
occlusion or unplanned object features. 

 

 

 

 



 

Fig. 14: Recognition rate of different marker scales against camera distance. 
Straight lines denote capture from a 2.1MP camera and dotted lines represent 

results from a 16 MP smartphone camera. 

Results illustrated in Fig. 14 concluded that a mid-ranged 
web camera with a 2.1MP sensor had a 98% recognition rate 
on markers with a diameter between 13cm and 14cm from a 
maximum distance of 2.5m. Markers with a 15cm diameter 
and greater had a 100% recognition rate from distances 
ranging between 1.6m to 3.5m. More effectively, the 16MP 
smartphone sensor had a 93% recognition rate on markers 
with a 10cm diameter from 2.5m distance. Moreover, markers 
with an 11cm diameter and greater were recognized at over 
97.6% of the time from distances ranging between 1.6m to 
3.5m. 

The marker set was also tested for false positives by 
exposing each marker for two minutes from a typical 
whiteboard projector setup distance of 2.9m. For data 
consistency, during this test, the image was digitally cropped 
on the whiteboard area. This test concluded that the proposed 
marker set has an average true positive rate of 98.99% and an 
average false positive rate of 1.6325%. This test was executed 
with true recognition and no prediction algorithms were used. 

VII. CONCLUSION 

This paper presents a new marker set that aims to directly 
alleviate TUI implementation barriers currently faced by 
developers and users of TUI tabletop systems. The proposed 
marker set reintroduces vertical TUI setups as an attractive 
alternative due to their inherent simplistic hardware and 
calibration setups. Such systems also eliminate the need and 
expenses incurred into building custom-made tabletop 
architectures which require constant maintenance and 
hardware/software calibrations. The attractive results gained 
by the proposed marker set outline a true positive rate of 
98.99% and a false positive rate of 1.6325% making it 
possible to develop vertical TUIs with robust real-time 
recognition. The proposed marker set is intrinsically designed 
for scale invariance, allowing the provision and detection of 
pose information from capturing distances of up to 3.5 meters 
[8]. Furthermore, through the use of optimizing algorithms 
and filters, markers are able to guarantee a true occlusion 
resistance of at least 25% during operation, making the setup 
robust to vertical TUI interactions. 
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