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Abstract

Network disintegration or strengthening is a significant problem, which is widely

used in infrastructure construction, social networks, infectious disease prevention

and so on. But most studies assume that the cost of attacking anyone node is equal.

In this paper, we investigate the robustness of complex networks under a more re-

alistic assumption that costs are functions of degrees of nodes. A multi-objective,

elitism-based, evolutionary algorithm (MOEEA) is proposed for the network disin-

tegration problem with heterogeneous costs. By defining a new unit cost influence

measure of the target attack node and combining with an elitism strategy, some

combination nodes’ information can be retained. Through an ingenious update

mechanism, this information is passed on to the next generation to guide the popu-

lation to move to more promising regions, which can improve the rate of convergence

of the proposed algorithm. A series of experiments have been carried out on four

benchmark networks and some model networks, the results show that our method

performs better than five other state-of-the-art attack strategies. MOEEA can usu-

ally find min-cost network disintegration solutions. Simultaneously, through testing

different cost functions, we find that the stronger the cost heterogeneity, the better

performance of our algorithm.
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1. Introduction

Modern societies have many key networks such as transportation net-
works, power transmission networks, interconnected social networks, etc.,
which have huge impacts on the quality of life; thus protecting their robust-
ness and integrity becomes crucially important [1, 2]. On the other hand,
infectious disease networks, criminal networks, and terrorist organization
networks also exist. Such undesirable networks should be controlled and
disintegrated so as to minimize their detrimental effects on society. There-
fore, studying the robustness and the weakness of networks is of practical
importance [3, 4].

Network analysis suggests that the network integrity appears to be heav-
ily related to a small number of skeleton nodes (key nodes), which seems to
maintain the framework and the performance of network[5, 6]. In essence,
the problem of network disintegration is equivalent to finding the optimal
(minimum) set of these key nodes that may strongly influence the structural
integrity of the network [7, 8]. Consequently, we can enhance the robustness
of the network by protecting these key nodes to ensure the smooth running
of the transportation and logistics networks. On the other hand, the removal
of some key nodes can maximally fragment some undesirable networks [9],
which potentially provides key insight into the ways of controlling diseases
and isolating certain network nodes [10].

Network robustness has received much attention in the past. The net-
work disintegration is a very challenging problem; in fact, it is a non-
deterministic polynomial-time (NP) hard. Thus, it is unlikely to have any
efficient methods, most network attack strategies are still based on heuristic
ranking to identify influencing nodes [11]. Subsequently, various methods
were proposed for tackling this problem, which were usually approximation
algorithms based on different theories or assumptions, including the optimal
percolation theory [12], module-based attacks [13], the collective influence
(CI) algorithm [14], or the Min-Sum algorithm [7].

These methods based on the centrality of nodes treat the optimal dis-
mantling set as a collection of “well-performing” nodes. However, This
problem is essentially a collective problem [7]. Moreover, these methods are
not global optimization methods and cannot guarantee the optimality of
the solution [15]. In addition, studies have shown that many weakly con-
nected nodes that may be critical to the network structure were previously
ignored[16]. Subsequently, metaheuristic algorithms were used to solve the
network dismantling problem [17, 18]. These black-box types of global op-
timization algorithms were considered to be more suitable for this problem.
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However, an important issue is that most of the existing studies on net-
work robustness have an implicit assumption: the removal cost of any node
in the network is equal, regardless of its centrality or importance. This
assumption is not valid for many real-world networks. For example, the
removal of a hub node can be more costly than the other nodes. Also, it is
more difficult and costly to arrest the leader of a terrorist organization than
its ordinary members. In addition, when an infectious disease breaks out, it
is more effective to isolate super-spreaders without symptoms than the sim-
ple isolation of ordinary patients. In the case of the limited resources and
environment, it is more realistic to take account of the heterogeneous costs
in the strategy or model. Recent attempts in this respect have been carried
out, the cost of protecting or attacking a node was defined as a function
of its degree [19, 15], but there are still some shortcomings, which we will
explain in detail later.

A crucial issue is that existing methods do not really incorporate the
cost factor into the optimization process. When the cost function of the
nodes changes, the solutions obtained by these methods will not change
accordingly. So it is difficult to find a low-cost and efficient set of key nodes.
It can be expected that attacking a higher-degree node in a social system
can usually incur a higher cost than the same operation on a lower-degree
node. A reasonable attack strategy should find the optimal node or nodes
with lower costs, and the removal may cause more damage to the network.
However, the key issue is that the lower costs and higher damage seem to
be conflicting. Existing methods struggle to deal with this type of problem.

In fact, multi-objective metaheuristic algorithms are very powerful for
solving these challenging problems [20] and good at dealing with several
conflicting objectives [21, 22]. In contrast with single objective optimization,
there are multiple optimal solutions in multi-objective optimization, which
form the so-called Pareto Front. When the decision-maker needs to consider
some practical constraints, such as the execution budget and conditions,
Pareto optimal solutions can provide different choices or options for the
decision-maker.

Motivated by the above challenges, we now take a multi-objective meta-
heuristic approach to deal with such a problem. This paper proposes an
elitism-based multi-objective evolutionary algorithm for network disintegra-
tion problem with heterogeneous costs. In essence, the problem is treated
as a bi-objective problem: one objective is the cost of protecting or re-
moving/attacking nodes; the other is the extent to which the network is
disintegrated after removing the nodes. We assume that the removal cost
of a node can be either an exponential function or a power function of the
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node’s degree. Our proposed approach intends to find a set of nodes with
the lowest removal costs for network collapse and simultaneously try to pro-
vide more suitable choices for decision-makers with limited resources. Thus,
the main contributions of this work can be summarized as follows:

1. The network disintegration problem with heterogeneous costs is formu-
lated for the first time as a bi-objective problem by incorporating the
cost as one of the objective functions. A multi-objective, elitism-based,
evolutionary algorithm (MOEEA) is proposed to solve this problem,
which can find a set of better solutions efficiently.

2. A new unit cost importance measure is defined, which combines attack
cost and node importance to provide a measure for the comparison and
selection of nodes in multi-objective problems.

3. The combination influence of nodes has been considered to the pro-
posed algorithm. A reservation mechanism combining a unit cost in-
fluence measure is proposed for elite individuals. The reserved key
node combination information will participate in each offspring’s indi-
vidual generation process and guide the population to move to more
promising regions.

4. The parameter Ns is used to convert between local search and global
search to achieve a balance between exploitation and exploration.

Therefore, this paper is organized as follows. Section 2 discusses the
recent developments, whereas Section 3 introduces some background con-
cerning the estimation of measures and the optimization formulation for
complex network disintegration with heterogeneous costs. Section 4 focuses
on the proposed elitism-based multi-objective evolutionary algorithm, in-
cluding the preprocessing, elitism strategy, update mechanism, and the real-
ization of non-dominant solutions and selection mechanisms. Then, Section
5 presents a series of experiments on real networks and widely used network
models, followed by a summary of the comparison with five other methods.
Algorithm complexity analysis and some discussions are carried out in Sec-
tion 6. Finally, Section 7 draws some conclusions and discusses briefly the
relevant topics for further research.

2. Recent Developments

Complex networks exist in many areas, such as biological/ecological net-
works, disease transmission networks, logistics networks and others. Many
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studies have focused on network robustness in recent years, and different ap-
proaches and methods have tried to tackle the network dismantling problem,
though the results are mixed.

The importance of a node on a network is highly related to its ability
to influence the behavior of its neighbors. Therefore, an effective method
is to directly calculate the number of neighbors (i.e., the degree of nodes).
Degree centrality is widely used because of its simplicity and low compu-
tational complexity, and it often shows good performance. For example, in
the study of network vulnerability, compared with the betweenness, close-
ness and eigenvector, attacks according to degree centrality can effectively
destroy scale-free networks and exponential networks [23]. In addition, when
the propagation rate is very low, the degree centrality can reflect the diffu-
sion effect of nodes better than other centrality [24, 25].

The most classic disruptive method is called the High Degree First
(HDF) [26], which sorts the nodes in the network according to their de-
grees, and then the nodes with the highest degree are attacked first. The
advantage of HDF is its low computational complexity. High Degree Adap-
tive (HDA) method [27] is an adaptive version of HDF. HDA recalculates
the degrees of all remaining nodes after deleting a node, then carries out
sorting again. However, the degree of a node is a local characteristic, not a
global feature relative to the entire network [28, 29]. In other words, only
the nearest neighbor information is considered in these methods. Therefore,
the performance of these methods is not as efficient as expected.

By the energy minimization of a multi-body system, the collective influ-
ence (CI) essentially maps a random network onto an optimal percolation to
find out the minimal set of influencers [12]. This CI indicator of nodes is cal-
culated from the degree of neighborhoods with a radius `. As the adaptive
approach, the CI value of all nodes in the remaining network is calculated at
each iteration, and then the node with the highest CI value will be deleted.
The advantage of CI algorithm is that it can find some weak connection key
nodes.

Betweenness is another widely used centrality measure. The between-
ness of a node refers to the percentage of the shortest path between any two
nodes passing through the node [30]. Generally speaking, a node with high
betweenness is equivalent to a bridge connecting two communities, which
usually plays an important role in the network. The High Betweenness First
(HBF) [31] strategy is to sort the nodes according to their betweenness, and
then remove them from large to small. However, as more nodes are attacked
or deleted, the network structure will change, resulting in the betweenness
distribution may be very different from the initial network. Therefore, a
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High Betweenness Adaptive (HBA) method [32, 33] is proposed. HBA is
a self-adaptive method. Before deleting each node, it recalculates the be-
tweenness values of nodes and resorts them. Compared with the method
based on degree centrality, the method based on betweenness has higher
computational complexity, but it has some global properties.

All these strategies seem to be heuristic ranking [34, 2], which was based
on graph theory [9, 34, 35]. A serious issue is that these methods treat the
optimal dismantling set as a collection of nodes rather than a set of most
effective combination of nodes [7].

Subsequently, a two-step method is proposed by Anggraini et al. [36]:
the given network was divided into several isolated communities, and then
the critical nodes in each community are eliminated, respectively. How-
ever, community detection is still a difficult problem, and the key nodes
in the community may not be the same as the globally influential nodes.
Braunstein et al. [7] presented a three-stage minimum sum algorithm, and
its three stages are: a) min-sum message-passing algorithm was applied to
dismantling, b) a large component was broken into small ones by a greedy
procedure, and c) some nodes were reinserted to improve the algorithm ef-
ficiency.

Some preliminary studies used metaheuristic algorithms in network ro-
bustness or integrity. For example, Deng et al. suggested an optimized
attack strategy model and described the tabu search to dismantle net-
works [17]. However, this algorithm is a greedy approach, which may take a
considerable time cost to find an acceptable solution. Li et al. [18] introduces
a metaheuristic algorithm: a probabilistic algorithm, based on neighbor-
hood information. In their paper, a novel importance measure (IM) based
on centrality was defined, and the combination of nodes was considered in
the algorithm iteration process.

Although some network dismantling strategies showed promising results,
these algorithms have been based on an assumption: the cost of removing
any node is the same. This assumption is not suitable for any realistic
networks. For example, the cost of maintaining critical infrastructure will
be much higher than the cost of some conventional auxiliary facilities. In
fact, the same action on high degree nodes can usually incur a higher cost
in the system [15]. Therefore, a more sensible approach is to assume that
the removal cost is heterogeneous. The good news is that some researchers
started to investigate this for the problem of network disintegration with
heterogeneous costs.

Deng et al. [37] proposed an optimal strategy based on a limited cost
model, where the resource-limited condition is taken as the termination
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condition, and the attack nodes set is formed by gradually increasing the
number of nodes with a high probability. However, in essence, the so-called
unequal probability sampling method is the same as the ‘HDA removal’
method [27], which requires recalculating the selection probability in the
remaining nodes at every iteration. If α ≥ 0, the node with the highest
degree will be attacked, whereas, if α < 0, the node with the lowest degree
will be selected. This approach is essentially a node combination satisfaction
condition, not a global optimization problem.

Patron et al. [19] defined a parameter z(k), which indicates the contri-
bution relationship of the unit cost of removing all k degree nodes to the
network destruction. Therefore, the value of z(k) for each degree k is cal-
culated first, and then the attack is carried out in descending order. It is
worth noting that if z(k) is selected, all nodes with degree k will be removed
until the network is completely disintegrated. The node-set of the last se-
lected degree may be partially attacked. Their experimental results showed
that the elimination priorities according to the value of z(k), could be more
effective. This method partially considered the cost factor as part of the
problem. However, this method is still not a global optimization approach.

Deng et al. [38] presented a network disintegration model under a cost
constraint with three optimal attack strategies: the hub strategy (elimi-
nating nodes in descending order of degrees), the leaf strategy (eliminating
nodes in ascending order of degrees), and the average strategy (preferen-
tially deleting nodes close to the average degree). The effects of the three
strategies were discussed when the attack cost was heterogeneous. Their ex-
periment showed that the average strategy had an excellent disintegration
effect. This method can be considered as a simple variation of the heuristic
sorting method.

Ren et al. [15] presented an approach that the disintegration cost of
a node is proportional to or equivalent to the degree of the node. When
considering the attack cost, some of the existing algorithms for node/edge
removals became inefficient. In their paper, they introduced a modified edge
removal method, called the hierarchical power iterative normalized cut (HPI
N-cut). Their experimental results showed that their algorithm was superior
to almost all the node deletion and link deletion algorithms at the same cost.
However, this approach is still a single-objective approach.

In contrast, our new approach in this paper is a multi-objective approach
to solve the network disintegration problem with heterogeneous costs. An
elitism-based multi-objective evolutionary algorithm is proposed to iden-
tify the set of key nodes for both strengthening networks and potentially
destroying networks with the minimum cost.
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3. Background

3.1. Basic Definitions

An undirected network can be expressed as a graph G = (V,E) with the
number of N = |V | nodes and the number of M = |E| edges. Its adjacency
matrix can be represented as an N ×N matrix A = (aij)N×N . In addition,
it is required that aij = aji = 1 for any two adjacent nodes vi and vj .

When some nodes are removed from the network, the structure will be
destroyed, and the whole connectivity will be lost. The remaining network
may become several disconnected branches (the interior of each branch is
connected). The branch (sub-clusters) with the largest number of nodes is
called the largest connected branch. For a network with a probability distri-
bution of P (k) for the degrees of nodes, if it contains the largest connected
branch, the nodes connected by any edge in this branch must connect to
at least another edge. In other words, the average degree is at least 2 to
allow the existence of the largest connected branch in the network [6]. For
example, node i and node j are connected with each other such that the
average degree is

E[k] = 〈ki |i↔ j 〉 =
∑
ki

kiP (ki |i↔ j ) = 2, (1)

where ki represents the degree of node i, P (ki |i ↔ j) corresponds to the
probability that node i is connected to node j and the degree of node i is
ki. According to the Bayesian rule, P (ki |i↔ j) is equal to

P (ki |i↔ j)/P (i↔ j) = P (i↔ j| ki)P (ki)/P (i↔ j). (2)

For a random network with N nodes (ignoring loops), the following for-
mulas hold: P (i↔ j) = 〈k〉 /(N − 1), and P (i↔ j |ki ) = ki/(N − 1). Thus,
Eq. (1) becomes

κ ≡ E[k2]

E[k]
≡ <k2>

<k>
= 2. (3)

This is regarded as the critical disintegration threshold. When κ > 2, the
largest connected branch exists. On the other hand, κ < 2 means that the
graph only contains small connected branches, and thus the graph can be
regards as completely disintegrated [29].

The largest connected branch is an important indicator. If the largest
connected branch in the remaining network contains the majority of nodes,
it means that the network has not been greatly damaged. On the contrary,
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if the largest connected branch contains only a few nodes, it means that the
network has lost most of its connectivity and suffered great damage.

Before the network is completely disintegrated, we use the classical mea-
sure S(Q) in this paper to estimate the extent of the network damage. Here,
S(Q) is equal to the percentage of nodes in the largest branch after deleting
Q nodes among the total number of nodes in the original network. Note that
if the network is considered to have been completely disintegrated (κ < 2),
the value of S(Q) is equal to 0. In essence, the value of Q varies from 0 (no
nodes were attacked) to N (all removal), and Q is the attack intensity. When
the network completely disintegrates, it is considered that the network does
not contain the largest connected branch, so S(Q) is 0. Furthermore, to
evaluate the effectiveness of an attack strategy, a critical attack strength Qc
is often calculated, which can be considered as the minimum attack strength
needed to completely disintegrate the network [39, 40].

3.2. Optimization Formulation

It is unrealistic to assume that the attack cost of all nodes is equivalent.
As the centrality (importance) of the node increases, the cost of destroying
and strengthening the node shall also increase. Ren et al. [15] assumed that
the cost of a removing action was proportional to the node’s degree. Such
cost definition is reasonable, but is a relatively simplest approach. To be
realistic and practical, the removal cost of a node can be as a function of its
degree. For example, Patron et al. [19] defined the cost function c(ki) as:

(i) an exponential function:

c(ki) = eβki , β > 0, (4)

(ii) a power law:

c(ki) = (ki)
γ , γ > 0. (5)

where ki is the degree of the node i. For the exponential function, the costs
of nodes have strong heterogeneity. In this paper, we will use both the
exponential and power-law functions.

The additional consideration of costs for network disintegration leads
to a multi-objective problem for designing network attack strategies. One
objective is to maximize the extent of the damage, and the other objective is
to minimize the cost of removing target attack nodes. In fact, these two goals
are conflicting. As the centrality of a node increases, the cost will usually
increase. Removing nodes with high centrality or increasing the number
of nodes will destroy the network to a greater extent, but increased costs
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usually accompany this. This is the nature of multi-objective optimization,
the change of one objective will affect the other (or other objectives), and
thus Pareto optimal sets should be sought. When an attacker needs to
consider some restrictions, such as limited budget and time constraints,
Pareto optimal solutions provide different attack strategies or options, based
on existing resources, in the non-dominated sense.

It is noteworthy that such conflict is not contradictory; instead, they are
non-dominated solutions or options. The first objective is to minimize the
proportion of the largest connected branch in the network after removing
nodes. Hence, both objectives are minimization, not one maximization and
one minimization.

The current state of the network is represented by an N -length binary
string (x1, x2, · · · , xN ), xi ∈ {0, 1}, where xi = 1 indicates the status of node
i is existence, whereas xi = 0 indicates that the node i has been removed or
attacked. In this paper, we assume that the attack cost of a node depends
on its degree. If the degree of a node i is ki, the cost function of removing
this node is c(ki), as given in Eq. (4) or Eq. (5). Hence, the total cost for
all N nodes is

C =

N∑
i=1

(c(ki) ∗ xi). (6)

For multi-objective optimization, the objectives should be in the same
order so as to produce well-scaled or balanced Pareto Fronts. In our bi-
objective problem, the first objective is a percentage, so we can add a weight-
ing factor W to balance these two objectives. Therefore, the problem can be
formulated as a bi-objective binary integer programming problem subject to
relevant constraints. The goal is to find a set of binary strings satisfying the
conditions, such that both S(Q) and C are minimized:

Minimize F = {f1 = W ∗ S(Q), f2 = C} (7)

subject to

N∑
i=1

xi = N −Q, xi ∈ {0, 1}, ∀i. (8)

where Q is the attack strength, and S(Q) is the fraction of nodes in the
largest connected cluster after removing Q nodes. W is the weight factor,
we use W = 100 in this paper.
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This is essentially a bi-objective and binary integer programming prob-
lem. Since N can be very large, such problems can be NP-hard. Though
there are no efficient algorithms for solving such issues in general, approx-
imation methods and metaheuristic methods seem to be good alternatives.
Recently, some metaheuristic algorithms have been successfully applied to
deal with these problems with promising results. For example, a new firefly
multi-objective optimization algorithm based on chaos mechanism is used to
detect network communities [41]. A multi-objective evolutionary algorithm
based on structure and attribute similarity is used to solve the commu-
nity detection problem in attribute networks [42]. Zhang et al. proposed
a multi-objective evolutionary algorithm based on network simplification to
solve the problem of community detection in large-scale networks [43]. How-
ever, there is no method yet to solve the problem of network disintegration,
and there is no effective way to deal with the cost factor.

4. Elitism-based multi-objective evolutionary algorithm

Finding the best combination of attack nodes with the minimum total
removal cost in the network is computationally expensive. Such a challenging
problem becomes even more complicated when dealing with multi-objective
optimization. In this paper, we propose a multi-objective, elitism-based,
evolutionary algorithm (MOEEA), which uses an elitism mechanism with
the approach of reservation information. The initialization, elitism strategy,
update mechanism, and other details will be explained in detail below.

4.1. Initialization

Initialization is a crucial step for metaheuristic algorithms [44]. In fact,
proper initialization can greatly improve the performance of the algorithm.
On the one hand, we hope to obtain some guidance through some prior
knowledge of the problem, on the other hand, we hope that the population
has good diversity. Hence, the initial population (of size NP ) is generated
in two categories for the network dismantling problem.

In the first part, some prior knowledge and the information can be used
to guide the generation of solutions. Considering some centrality measures,
such as: the degree [28, 29], betweenness centrality [34], and the collective
influence [12] are widely used to identify the importance nodes in the net-
work [45]. In addition, this information is easily available. Therefore, some
individuals (of size three in this paper) are generated according to the de-
gree, betweenness, and collective influence of nodes. Specifically, by ranking
the nodal degrees in descending order, the first Q nodes are selected as the
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initial attack nodes. The bits of the binary string corresponding to these
selected attack nodes are 0s, while the remaining bits are 1s. Similarly, the
other two types of individuals are generated by ranking betweenness and
collective influence, respectively.

For the second part of the population, we perform the following oper-
ations: Q nodes are randomly selected from the network as attack nodes,
where the bits of binary strings corresponding to these nodes are 0s, and
other bits are 1s. Hence, (NP − 3) initial solutions can be generated, and
each of them is an N -length binary string X = {xi|i = 1, 2, · · · , N}. In this
way, the diversity of population can be improved.

These two ways together produce NP binary strings (individuals). All
NP individuals form the initial population, which can be considered as evo-
lutionary parents.

4.2. Definitions of unit cost important measure

Some classic disassembly strategies focus on those nodes with high cen-
trality, but ignore the interaction between nodes in the network. As a result,
some weakly-connected vulnerable nodes are often ignored. However, stud-
ies have shown that some low-centrality nodes may surprisingly be crucial
to the network integrity [12]. The loss of certain information leads to the
effectiveness of attack strategies based on these measures is not as high as
expected. A new measure is highly needed to evaluate the importance of
nodes.

Hence, Li et al. [18] proposed a novel centrality-based measure for net-
work disintegration problem: the importance measure (IM), which can be
understood as how many nodes are expected to be separated from the largest
connected branch by attacking the target node. IM can practically bet-
ter evaluate the importance of the node to the network collapse. Not only
the node’s neighbor information, but also the two-hop node information is
considered. The definition is briefly described as follows:

Definition 1. Suppose that the target attack node j, j ∈ (1, 2, · · ·Q), has T
directly connected neighbors and the t-th neighbor node is expressed as jt, jt ∈
(1, 2, · · · , T ). The importance measure (IM) of node j is defined as the sum
of the product of the degree of each neighbor node and the corresponding
contribution ratio [18]. The contribution ratio Pjt of node jt can be calculated
by the reciprocal of the number of all target attack nodes that are linked
directly to this neighbor node under consideration [18]. It is worth pointing
out that all neighbor nodes discussed here are not included in the largest
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connected branch, after the target node is removed from the network. That
is

IMj =
T∑

jt=1

Pjtkjt , (9)

Pjt =
1

|v|
, v = {k | ajt,k = 1, k ∈ Φ}, (10)

where kjt represents the degree of the node jt. Some neighbor nodes may
be connected to more than one target attack node at the same time. Here,
v represents the set of attack nodes that are directly connected to the node
jt, and |·| indicates the total number of elements in the whole set. The set
of target attack nodes is represented as Φ.

When the cost is considered, we can define the unit cost importance
measure for network disintegration:

Definition 2. The unit cost importance measure (UIM) is defined as the
quotient of the important measure (IM) to the attack cost of the correspond-
ing node. That is

UIMj =
IMj

cj
, (11)

where IMj and cj correspond to the importance measure (IM) and the cost
of j-th target attack node, respectively.

The unit cost important measure can be calculated by Algorithm 1.
With the above definition of UIM , it may be possible to select those more
destructive nodes to the network, but with a lower cost or the same cost.
This allows to disrupt a network and to reduce the attack cost. We will
elaborate on this point later when discussing the elitism strategy.

4.3. Elitism strategy

Many existing methods based on degree centrality focus on a single
node’s properties, leading to the loss of some structural information. How-
ever, the role of some weakly connected nodes cannot be ignored, and the
attack efficiency of combined nodes may be better than that of some high-
degree nodes. In fact, the network as a complex system has cascading effects
(interactions) between nodes. As an illustrative example, shown in Fig. 1,
the two nodes with the highest degree are Node 1 and Node 14. After at-
tacking these two nodes, there are 8 nodes (including Node 6, Node 7, Node
8, Node 9, Node 10, Node 11, Node 12, Node 13) in the largest connected
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Algorithm 1 Calculate the unit cost important measure.

1: Input: the adjacency matrix A, the attack intensity Q, the binary string
Xnow, the node i with degree ki, and the number of nodes N .

2: d← degree of nodes
3: Φ← the set of 0 bits in Xnow // target attack nodes index set
4: Atemp ← A
5: Atemp(Φ, :) ← 0Q×N ; Atemp(:,Φ) ← 0N×Q //the adjacency matrix

corresponding to Xnow

6: Get the node set = of the largest connected branch from Atemp
7: Ã← A
8: Ã(=, :)← 0; Ã(:,=)← 0;// delete the rows and columns (corresponding

to the nodes of set =) in the adjacency matrix.
9: for i = 1, 2, · · · , Q do

10: Ω(Φ(i))← the neighbor nodes of i-th element of Φ // based on Ã

11: end for
12: for j = 1, 2, · · · , Q do
13: if Ω(Φ(j)) == ∅ then
14: I(Φ(j)) = 0
15: else
16: IM(Φ(j)) // calculate by Eq.(9)

17: UIM(Φ(j)) = IM(Φ(j))
c(Φ(j))

18: end if
19: end for
20: return UIM as a vector.

branch. Obviously, the attack effect is far worse than that of the combi-
nation of Node 1 and Node 9, although the degree of Node 9 is not high.
The attack efficiency may be better by adding some weak-connected key
nodes [18] and the combination of nodes should be taken seriously.

In our MOEEA, elite individuals are used to store the better ‘combina-
tion information of nodes’ in each iteration, and guide each ‘parent individ-
ual’ to generate new offsprings.

The fitness value of each individual Xk(k = 1, 2, · · · , NP ) in the popula-
tion is F (k) = (f1(k), f2(k)), where f1(k) represents the extent of network
damage (the proportion of the remaining maximum connected branch), and
f2(k) represents the attack costs. For the initial population, we assume that
the first individual is an elite individual. By calculating each individual’s
fitness value, if the two objective function values of an individual are both
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Figure 1: Examples of node combination: the attack effect of two nodes with higher degree
(Node 1 and Node 14) is worse than another combination: Nodes 1 and 9.

less than or equal to the elite individual, a new elite individual is generated
to replace the previous one.

The effectiveness of elite individuals may be due to specific combinations
of some well-performing nodes. In order to make these right ‘genes’ have a
chance to pass on to the next generation, the elitism strategy in this paper
will be used in evolutionary process of the algorithm. Together with the
reservation mechanism, this approach will guide the population to move
towards more promising regions that may contain the optimality.

More specifically, according to the unit cost importance measure (UIM),
we can estimate the ‘performance’ of those target attack nodes in the elite
individual. At each iteration, the target attack nodes of the elite are sorted in
an ascending order according to the UIM . Then, a certain number of attack
nodes (in percentage) are stored to guide the generation of offsprings. That
is, bαQc are stored, where α ∈ (0, 1), and b·c means round toward negative
infinity. These reserved nodes will not be changed in subsequent update
mechanism. We use the sparsity of the adjacent matrix and only update the
part of the unreserved nodes. As a time-saving strategy, this elitism not only
preserves the combination of nodes as useful information, but also improves
the convergence of the algorithm. How to use combination information to
guide the population search process will be described in detail later in the
update mechanism.

For each offspring generated in the next generation, its fitness function
value is calculated. If f1(k) ≤ f1(elite) & f2(k) ≤ f2(elite), then individual k
becomes the new elite individual. In this way, the elitism strategy allows the
better individuals in the population to be stored and used for the algorithm
update.
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4.4. Update mechanism

A suitable update mechanism can produce better offsprings from par-
ents. Each time an individual is selected from the ‘parent population’, an
offspring individual is generated through the update mechanism until all the
NP parents generate the corresponding offsprings (the population size in the
next iteration is still NP ). The combination of information stored by the
elite individual will participate in the generation process of each offspring
individual.

In a binary string representation, the bit with status 1 represents a node
that is not attacked, and the set of these nodes is represented by Ψ. Nodes
with status 0s represent the target attack nodes, which are represented by
the set Φ. The set of nodes stored by the elitism strategy is denoted by
Λ. For a parent individual, we randomly select Ns bits to be updated.
Obviously, it is required that the numberNs is less than min{|Ψ| , |Φ|}, where
|·| is the number of the elements of the set. Note that Ns is not a fixed value,
but needs to be regenerated for each parent individual. A small value of Ns

means that the ‘parent individual’ updates only a small number of ‘genes’
and the algorithm undergoes a local search. If the randomly generated Ns

is large, the algorithm makes a big jump and avoids getting trapped in local
optimums. Ns is actually used to convert between local search and global
search to achieve a balance between exploitation and exploration.

Since there are three possible relationships between sets Λ and Φ, the
update mechanism is divided into three types:





Figure 2: Schematic representation of the relationship between sets Λ and Φ (Type A:
Λ ∈ Φ).

(1) Type A: Λ ∈ Φ
In this case, the nodes reserved in set Λ, according to elite individu-

als, are included in the targeted attack node-set, as shown in Fig. 2. This
means that the optimal node combination has been considered. Therefore,
Ns nodes are randomly selected in Φ, and their states are changed from 0
(removed) to 1 (present), and then another Ns nodes are randomly chosen
from Ψ and their states are changed from 1 to 0.
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Figure 3: Schematic representations of the relationship between sets Λ and Φ (Type B:
Λ ∩ Φ 6= ∅ & Λ /∈ Φ).





Figure 4: The third type of the relationship between sets Λ and Φ (Type C: Λ ∩ Φ = ∅).

(2) Type B: Λ ∩ Φ 6= ∅ & Λ /∈ Φ
As illustrated in Fig. 3, there are two scenarios. To be more specific,

if Ns < |Λ− Λ ∩ Φ|, Ns nodes (their states are 1s) are randomly selected
in set Λ − Λ ∩ Φ and their states are changed to 0. At the same time, Ns

nodes are randomly selected from the set Φ− Λ ∩ Φ. In fact, the states of
these corresponding bits in the binary string are 0s, and such states will be
changed to 1.

On the other hand, if Ns > |Λ− Λ ∩ Φ|, all states of the nodes in set
Λ− Λ ∩ Φ are turning into 0. Additionally, Ns − |Λ− Λ ∩ Φ| nodes are
selected randomly from the set Ψ− Λ ∩Ψ and their corresponding bits be-
come 0. In this way, Ns target attack nodes are newly added, So the Ns

nodes need to be randomly selected and removed from the attack node set
Φ; that is, their status changes to 1.

(3) Type C: Λ ∩ Φ = ∅
In this relationship, as shown in Fig. 4, there are also two scenarios. If

Ns < |Λ|, Ns nodes are randomly selected in set Λ to change the states
of their corresponding bits from 1 to 0, then Ns nodes in set Φ are chosen
randomly and the states of their corresponding bits are changed from 0 to
1.

On the other hand, if Ns > |Λ|, the states of nodes in Λ should be

17



changed from 1 to 0 at first, then Ns− |Λ| nodes are chosen from set Ψ−Λ
and the states of these nodes are changed from 1 to 0. In addition, the Ns

nodes in set Φ are chosen randomly and their states of their corresponding
bits are changed from 0 to 1.

4.5. Non-dominated solutions and selection mechanism

For multi-objective optimization, Pareto optimal sets are obtained, which
can provide options and trade-offs between the objectives. Briefly speaking,
an n-dimensional vector (or a solution) u = (u1, u2, · · ·un) is said to domi-
nate another vector or solution v = (v1, v2, · · · vn), if and only if uk ≤ vk for
∀k ∈ {1, 2, · · · , n} and the inequality becomes strictly inequality for at least
one k among all components (1, 2, ..., n). Therefore, a solution X∗ is called
a non-dominated solution if no solution X can be found such that F (X)
dominates F (X∗) [46].

The fast nondominated sorting (FNS) is proposed by Deb et al. [47],
which is widely used multi-objective optimization. By the way, although
MOEA/D [48] is also a widely used framework for multi-objective optimiza-
tion, it is not good at solving combinatorial optimization problems (the
premise of decomposition is that any solution in the neighborhood of the
current solution is still the solution of the problem). Therefore, we use the
FNS to sort and rank solutions in each iteration in this paper. Each individ-
ual is assigned a rank that reflects its nondomination level (the best level is
1 with no other solution dominating it, the next best level is 2, and so on).

To be more specific, at the beginning of the algorithm, the initial pop-
ulation can be regarded as the parent P0. By calculating each individual’s
objective fitness value, the elite individual is selected by the elitism strategy.
The parent population generates offspring population through the update
mechanism (the offsprings S0 composed of NP individuals). Then, a com-
bined population R0 = P0 ∪ S0 is formed, with a size of 2NP . This joint
population is then sorted by the NFS, leading to a new population of NP

individuals for the next generation.

4.6. The main steps of MOEEA

The main steps of the proposed MOEEA algorithm can be divided into
seven steps, which can be summarized as follows:

• Step 1: Initialize the algorithmic parameters and the population P0:
the total number of network nodes N , the attack strength Q, the
population size NP . Calculate the fitness values of P0.
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• Step 2: The termination criterion: When the number of iterations
reaches the preset value T =iterationmax, or the network meets the
complete disintegration condition κ ≤ 2, the iteration stops.

• Step 3: According to the elitism strategy, find the elite individual and
calculate the unit cost important measure (UIM) of its target attack
nodes.

• Step 4: Sort UIM in a descending order, and select bαQc nodes with
larger values as the storage node combination.

• Step 5: Population generation: generate the offspring population St
from the parent population Pt.

• Step 6: Form a combined population: Rt = Pt ∪ St, according to
the fast nondominated sorting approach, and select NP individuals as
the next-generation parent population Pt+1 from the combined 2NP

individuals.

• Step 7: Go to Step 2 unless the termination criterion is met.

These steps can be represented as the flowchart, shown in Fig. 5.

5. Numerical Experiments

After implementing our proposed approach, we have carried out a series
of numerical experiments using several networks and network instances. In
this section, we summarize the main results and the performance of the pro-
posed MOEEA. Since there is no multi-objective method yet to solve the
problem of heterogeneous cost network disintegration, we can only choose
some single-objective state-of-the-art disintegrate strategies and then calcu-
late the cost. A series of comparative analyses have been carried out between
MOEEA and five other classical and representative disintegrate strategies:
the high degree first (HDF), the high degree adaptive (HDA), the high be-
tweenness first (HBF), the high betweenness adaptive (HBA) and collective
influence (CI) algorithms. These five methods are widely recognized for their
more general applicability and good performance. Pareto fronts and perfor-
mance measures have been calculated, and the results will be presented and
discussed in this section.

Firstly, some real-world benchmark networks are used, including the
Zachary Karate Club, the Contiguous States of USA, the Dolphins and
the Jazz Musicians network. Secondly, three different model networks have
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Figure 5: The flowchart of the proposed MOEEA.

also been applied to validate the effectiveness of the proposed MOEEA. In
the simulations, the cost function has been assumed to be the exponential
function, as discussed earlier in Section 3. Then, a further comparison and
some evaluations have also been carried out so as to verify that the algorithm
is still valid for the power cost functions.

All the experiments have been carried out on a computer, running Win-
dows 10 with Intel i7-8700 CPU and 8GB RAMs, implemented using MAT-
LAB 2019b. Details of numerical experiments and the results will be given
soon after the discussion of the four benchmark networks.

5.1. Four benchmark networks

To systematically evaluate our proposed algorithm, four different types
of undirected, unweighted real-world benchmark networks have been used
to compare the performance of the present algorithm with those of five
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Table 1: Basic features of the four benchmark networks.

Network N M kmax

Karate Club 34 78 17
Contiguous States 49 109 8
Dolphin 62 159 12
Jazz Musicians 198 2742 100

other strategies. These networks span different areas, including social net-
works, physical networks, communication networks, and collaborative net-
works. The used datasets are available at the KONET link.1

The well-known Zachary Karate Club network is a widely used bench-
mark. The original data was collected by Wayne Zachary [49], concerning
a university karate club. This can be considered as a small-scale epitome of
a real-world social network [44]. This data set is often used to find socially
active people who maintain overall social relationships.

The Contiguous States of USA network [50] include 49 states of the
United States of America, excluding the states of Alaska and Hawaii. The
48 contiguous states and the District of Columbia are not connected by land
with the other states. In this network, an edge is used to denote that two
states share a border. This benchmark data set is used to simulate and plan
of some infrastructure construction, including the selection of large trans-
mission stations, large logistics warehouses, transportation transit stations,
and other locations.

The Dolphin network complied by David et al. [51, 52], which concerns
the relationship between bottlenose dolphins living in the fjords of New
Zealand. Edges represent their frequent associations and relationships, in-
cluding making friends between males, raising their offsprings by females,
and mating relationships.

Jazz Musicians network [53], as another benchmark, is considered as a
collaboration network. Each jazz musician is represented as a node, and
an edge represents a collaboration between two musicians. There are 198
musicians and 2742 edges in total.

Some basic statistical features of these four benchmark networks are
shown in Table 1, including the number of nodes N , the number of edges
M , and the maximum degree kmax.

1http://konect.uni-koblenz.de/networks/
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5.2. Experimental settings and result

All the algorithms and different models are all implemented and run on
the same computer. Each algorithm has been independently executed 20
times to reduce any possible dependence or influence of any initial config-
uration on the results. The population size of our MOEEA is set to 100,
the total number of iterations is taken as 100. The percentage of reservation
α = 0.2 is used. Since the CI algorithm is not very sensitive to the adjustable
parameter ` [12, 54], the ball radius ` is set to 3 in these experiments. For a
given attack intensity, the critical condition of network disintegration κ ≤ 2
is taken as the termination condition of theses five strategies: HDF, HDA,
HBF, HBA and CI.

To better investigate the impact of real costs and evaluate the perfor-
mance of the proposed algorithm, we have used the two cost functions de-
fined by [19]. Firstly, the performance of different disintegration methods is
studied when the cost is an exponential function as Eq. (4). The parameter
β is set to 0.4. The experiments are carried out in real networks and model
networks, respectively. Then the results are analyzed in detail. Besides,
the power-law cost function (Eq. (5)) is also used in our experiments, which
intends to verify the universality of the proposed algorithm. The parameter
γ = 0.6 is used. A comparison is carried out to see any possible influence of
different cost functions on the final results.

The results of the experiments are visualized and analyzed by using the
above parameter settings. As a multi-objective problem, under any attack
intensity, a Pareto Front, instead of a single solution, has been obtained.
This is the significant difference between the existing single-objective opti-
mization methods.

As examples, we have used the attack intensity Q = 7, Q = 17, Q = 18,
Q = 125 for the Karate Club network, Contiguous States of USA, Dolphin
network and Jazz Musician network, respectively. Their Pareto Fronts are
shown in Fig. 6.

The advantage of our bi-objective approach is that it not only solves the
problem but also gives decision-makers more choices. There may be some
nodes that are not easy to control in practice, thus alternative options and
choices are desirable. For example, a transmission power station may be
located in an area where transportation is not convenient, and the key sus-
pects in a criminal network cannot be identified. In such scenarios, different
alternatives should be considered and evaluated. Also, the elite individual
mentioned above might be the final solution when other choices are not
obvious.
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Figure 6: The Pareto Fronts of four benchmark networks.
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5.3. The experimental results of Exponential function

For a fair comparison of different methods, we use the final elite individ-
ual as the ‘optimal solution’ of MOEEA, because the other five disintegra-
tion strategies can only get one solution at a time. As the other methods
are all single-objective problems, we compare the two objectives separately:
1) compare the extent of damage to the network S(Q); 2) the cost of the
solution found by the algorithm.

Q

Figure 7: Comparison of experimental results of the Zachary Karate club network with
different methods.

Figure 8: Comparison of experimental results of the Contiguous States network with
different methods.

These features mean that two graphs are presented for each network.
The experimental results are summarized in Fig. 7 to Fig. 10. For the
Karate Club network, Fig. 7 shows the results of different methods. From
these two figures, we can see that, compared with HBA, HDA, HDF, HBF
and CI, the algorithm proposed in this paper performs more competitively.
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Figure 9: Comparison of experimental results of the Dolphins network with different
methods.

Figure 10: Comparison of experimental results of the Jazz Musicians network with
different methods.

The left figure has shown that MOEEA can destroy the network with fewer
key nodes than other methods. The cost curves of these methods in the
figure on the right show that the proposed method can find solutions with
lower costs. After the network has disintegrated, as the increase of attack
intensity, some low-cost attack strategy may be found by MOEEA. As a
matter of fact, when the attack intensity is small, in order to disintegrate
the network, the key nodes found by the algorithm often have high costs.
With the increase of attack intensity, some node combinations gradually
play a more critical role in the network disintegration.

For the Contiguous States network, the results and the comparison of
different strategies are summarized in Fig. 8. The critical attack strength
(S(Q) first approaches to zero) Qc for MOEEA is 17, while Qc is equal to
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19, 22, 27 for HDF, HBA, HBF, respectively. MOEEA can disintegrate the
network with a minimum number of nodes (attack performance is the same
as HDA and CI). From the lower cost curves, we can still see that, under
any attack intensity, the cost of MOEEA is the lowest among six strategies.
Therefore, MOEEA is more effective than the other five attack strategies.

For the Dolphins network, the results are shown in Fig. 9. When the
network is in a critical disintegration state, the value of Q reaches the critical
strength Qc. As presented on the left of the figure, the Qc for our proposed
MOEEA is also lower than or the same as that obtained by other five strate-
gies. When the attack intensity is Qc, our method is slightly higher in cost
than HBA and HBF, but the network has not yet disintegrated at this time
for these two methods. Furthermore, except for the attack intensity Qc (for
MOEEA), the cost of the attack nodes found by our method is far less than
that of the other five strategies.

As presented in Fig. 10, for the Jazz Musicians network, HBA cannot
dismantle the network. In terms of network disintegration, our method still
has some advantages, and in terms of cost, MOEEA can only find better
attack options at certain attack intensity. One reason is the close connection
within the Jazz Musicians network. The maximum degree of a node is k =
100, and the cost of this single node is exp(βk) = exp(40) ≈ 2.3538× 1017.
Therefore, other nodes with low cost will have much less impact on the
results.

Table 2: Cost comparisons of different methods for network collapse.
Networks HBA HDA HDF HBF CI MOEEA

Karate Club
Q 8 8 11 10 7 27

Cost 1.734e+03 1.736e+03 1.762e+03 1.747e+03 1.721e+03 113.185

Contiguous States
Q 22 17 19 27 17 21

cost 2.089e+02 1.877e+02 2.200e+02 2.449e+02 1.822e+02 160.984

Dolphins
Q 20 18 29 28 18 41

cost 7.011e+02 6.924e+02 7.956e+02 7.882e+02 6.924e+02 408.813

Jazz Musicians
Q - 125 182 158 123 190

cost - 2.829e+17 2.829e+17 2.829e+17 2.829e+17 7.347e+12

Table 3: The comparison of min-cost of MOEEA with other methods.
networks HBA HDA HDF HBF CI
Karate ↓ 93.47% ↓ 93.48% ↓ 93.58% ↓ 93.52% ↓ 93.42%
States ↓ 22.94% ↓ 14.23% ↓ 26.83% ↓ 34.27% ↓ 11.64%

Dolphins ↓ 0.4169% ↓ 40.96% ↓ 48.62% ↓ 48.13% ↓ 40.96%
Jazz ↓ 100% ↓ 100% ↓ 100% ↓ 100% ↓ 100%

For further analyses, some experimental details are summarized in Ta-
ble 2 and Table 3. The minimum costs of HBA, HDA, HBF, HDF, CI and
MOEEA for network disintegration are shown in Table 2. It can be seen
that the proposed MOEEA can dismantle the network at the lowest cost.
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When the Karate network attacks 27 nodes, the cost is 113.1850, which is
much lower than the CI algorithm’s 1720.7. The same thing happened on
the other three networks.That means the performance of MOEEA is better
than other disintegration strategies on these real networks.

More specifically, the other five methods are considered as baseline meth-
ods, the percentage of cost reduction of our method is shown in Table 3.
Compared with other methods, it can be seen that the cost of our method
is reduced by at least 11.64%. For the Jazz network, the cost found by
MOEEA is far less than other five algorithms. In summary, the MOEEA
can disintegrate the networks with the minimum cost.

5.4. The experiment of three model networks

The above networks are real small-scale networks. In this subsection, we
test three widely used model networks such as stochastic networks, small-
world networks and power-law networks. The Erdös and Rényi (ER) net-
work is the first stochastic network model [55], and the distribution of the
connections among nodes obeys the Poisson distribution. The Watts Stro-
gatz (WS) small-world network model has high clustering [56]. The Barabasi
Albert (BA) is a scale-free network model [26], which exhibits a power-law
distribution of degrees of nodes. Here, we have used these three model
networks to test the performance of our proposed MOEEA.

For the WS network, its average degree m and the removal probability p
are 4 and 0.5, respectively. For the BA network, the number of initial nodes
(m0) is set to 3, the removal probability p = 0.8 is used, and the average
degree (m0) is taken as 5. We used p = 0.02 for the ER network. The number
of nodes N of these model networks is 1000. The population number NP

of MOEEA is set to 100, and supposed the total number of iterations is
100. The cost function takes the exponential function mentioned above as
an example, and the results are visualized in Fig. 11 to Fig. 13.

Again from these two figures, we can see in general that the MOEEA
shows better performance than the other five attack strategies. For the BA
network, when the attack strength is greater than 380, the lowest cost of
MOEEA is 1.4009E+13, which is far less than the cost 2.2878E+17 of other
methods. For the ER network, the lowest cost of MOEEA is 1.3964E + 07,
which is less than the cost of other methods. In other words, the proposed
MOEEA requires a lower cost than other methods except for part of attack
strength (close to the cost of other methods) on a variety of model networks.
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Figure 11: Comparison of experimental results of the WS small-world network with
different methods.

Figure 12: Comparison of experimental results of the BA network with different methods.

5.5. The experiment of Power-law cost function

The experiments in this section investigate the universality of the pro-
posed algorithm and explore the possible influence of different cost functions
on the six strategies. To compare the results for four real networks, we have
carried out some further experiments by using another cost function: the
power-law cost function, which is defined as c(k) = kγ and γ = 0.6. All
other parameters of algorithms remain the same as before in the previous
experiments. The comparison results of different algorithms are shown in
Fig. 14 to Fig. 17.

Similar to the exponential cost function, MOEEA still shows a better
performance than other methods when the cost is a power function. CI
strategy can usually break up the network with fewer nodes for other five
comparison algorithms, and its attack performance is generally better than
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Figure 13: Comparison of experimental results of the ER network with different methods.

those of HBA, HDA, HDF and HBF. Its attack cost is slightly better than
the other four algorithms. Therefore, we focus on the comparison between
our algorithm and CI.

From Fig. 14, we can see that, when the attack strength is less than Qc,
MOEEA can find a more effective key node-set than CI strategy, which can
be proved from the lower S(Q) curve. In addition, we can see that the cost
curve of MOEEA is below the curve of CI. In other words, the cost of the
solution obtained by MOEEA is smaller than that of CI. The same is true
for the Contiguous States network, Dolphin network, and Jazz Musicians
network. (Only under some specific attack strength, the cost of MOEEA is
close to that of other methods. This is because there are some nodes with
high degree values in the network, and their costs are much higher than
other nodes. If these nodes are included in the key node set, the cost will be
relatively high.) Moreover, since MOEEA is a bi-objective algorithm, under
the same attack strength, we will get a set of Pareto optimal solutions. If
it is not required to completely disintegrate the network (there can still be
smaller connected branches), the costs can be even lower.

Furthermore, the Qc value and minimum cost of these six strategies are
given in Table 4. The cost values of these six methods become lowest when
the value of Q corresponds to the critical attack intensity Qc. The costs of
the MOEEA are the lowest for the Karate Club network and the Contiguous
States network. For the Dolphins network and Jazz musicians network, the
cost values for MOEEA are also lower than those for HBA, HDA, HDF,
HBF, and the same as that obtained by CI.

It is worth pointing out there is some difference from preceding results
using the exponential function. The reason may be that two different nodes,
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Figure 14: Comparison of experimental results of the Zachary Karate Club network with
different methods.
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Figure 15: Comparison of experimental results of the Contiguous States network with
different methods.

through a cost function (power function), map the originally two very dif-
ferent degree values to relatively close cost values. For example, for the Jazz
Musician network, the removal cost of the node with k = 100, using the
exponential function, is 2.3538×1017 as we mentioned before. However, the
cost in terms of the power-law function kγ is 1000.6 = 15.8489. Thus, the
costs by the power-law function are much lower and are relatively close to
each other. So, the influence of the cost objective on the final result of the
algorithm becomes smaller.

The comparison of the lowest cost value of the MOEEA with the values
of other methods are summarized in Table 5 where the values are the cost
reductions in percentage. The minimum cost of disintegrating the network
found by MOEEA is almost always lower than other methods, although
the percentages of reductions vary. The results of CI are mostly consistent
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Figure 16: Comparison of experimental results of the Dolphins network with different
methods.
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Figure 17: Comparison of experimental results of the Jazz Musicians network with
different methods.

with that of proposed MOEEA, which also shows that the solution found
by our algorithm is feasible. The above experiments and comparison show
that our proposed MOEEA can find a set of min-cost optimal key nodes to
disintegrate the networks.

6. Algorithm analysis

6.1. Parametric studies

In MOEEA, an elitist strategy is used and the combined information of
nodes is implemented based on parameter α. It can be considered as the
percentage of influence of the elite individual on the new offsprings, and α
takes values in the range (0, 1). In order to explore the effect of the value of
α on the performance of the algorithm, we have used three different types
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Table 4: Cost comparison of different methods for network collapse.
Fun HBA HDA HDF HBF CI MOEEA

Karate Club
N 8 8 11 10 7 7

Cost 30.401 30.765 38.948 35.325 27.142 26.360

Contiguous States
N 22 17 19 27 17 17

cost 59.620 48.437 55.239 73.184 47.430 46.822

Dolphins
N 20 18 29 28 18 18

cost 68.979 64.359 98.278 90.157 64.359 64.359

Jazz Musicians
N - 125 182 158 123 123

cost - 1063 1347.8 1222.8 1037.9 1037.9

Table 5: The comparison of the lowest cost of MOEEA with other methods.
networks HBA HDA HDF HBF CI
Karate ↓ 13.29% ↓ 14.32% ↓ 32.32% ↓ 25.38% ↓ 2.80%
States ↓ 21.47% ↓ 3.34% ↓ 15.24% ↓ 36.02% ↓ 1.29%

Dolphins ↓ 6.70% −0% ↓ 34.51% ↓ 28.61% −0%
Jazz - ↓ 2.36% ↓ 22.99% ↓ 15.12% −0%

of networks (all of which have 300 nodes) and compared the performance of
the algorithm for three networks, respectively.

In our experiments, the value of α varies from 0.1 to 0.9 with the incre-
ment of 0.1. First, we have used the Dolphin network for parametric study.
Then, we have used two model networks (i.e., ER and BA) for testing.
Five different network instances are selected for each type of network. For
the convenience of algorithm comparison, we have chosen a certain attack
strength for each network at which the network can be completely disinte-
grated (i.e., S(Q) equals 0), which allows us to compare the minimum attack
costs found by the algorithms. The results of the experiments are shown in
Fig. 18.

For Dolphin networks, when the attack strength is 49 (Q = 49), the
results of different values of α are shown in Fig. 18(a). It indicates that
when α = 0.8 for Dolphin network, the ‘Cost’ is the lowest. When α =
0.1, 0.4, 07, 0.9, the performance of MOEEA is also very good. As seen
in Fig. 18(b), for ER network, the attack cost is the best when α = 0.9.
Fig. 18(c) implies that the performance of MOEEA is sensitive to the value
of α for BA networks. When α is less than or equal to 0.4, the disintegration
cost is relatively low. In general, the performance of the algorithm decreases
when the value of α increases. Due to such influence of α, the value of α
in this paper is chosen randomly, and it can be expected that choosing the
right α value may give better results.

In addition, the parameters β and γ in the cost functions (i.e., exponen-
tial function and power law) are chosen arbitrarily in the paper, and the
focus is on the performance of the algorithm for solving network disintegra-
tion problems with heterogeneous costs. To investigate the effect of different
cost functions on the algorithm, we discuss the values of the parameters of
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(a) (b)

(c)

Figure 18: The experimental results of Dolphin, ER and BA networks with different
population sizes: (a) Dolphin network, (b) ER network, (c)BA network.

these cost functions.
Theoretically, the parameters β and γ can take any real number lager

than 0. However, when their values are less than 0.1, the effect of cost is very
small, which is similar to the network disintegration problem with equivalent
cost. So we set the values of the parameters to vary as 0.1, 0.5, 1 and 1.5.
Taking the small-world networks and ER network as examples, the network
sizes are set to 300 and five network instances have been selected randomly
for each type model. Other parameters in the algorithm remain unchanged.
In order to facilitate a fair comparison, the minimal cost of the key nodes
which make the network disintegration is calculated. The experiment results
are summarized in Table 6 to Table 9.

Table 6: The experimental results of ER networks with different values of β.
β HBA HDA HBF HDF CI MOEEA
0.1 167.00 159.07 244.53 263.03 158.38 155.40
0.5 1.35e+03 1.33e+03 1.88e+03 1.99e+03 1.30e+03 1.28e+03
1 2.35e+04 2.34e+03 2.99e+03 3.08e+04 2.23e+04 2.22e+04
1.5 5.13e+05 5.09e+05 5.95e+05 6.03e+05 4.74e+05 4.39e+05

For the exponential function, the results of SW network and ER network
with different values of parameter β are shown in Table 6 and Table 7. It
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Table 7: The experimental results of ER networks with different values of β.
β HBA HDA HBF HDF CI MOEEA
0.1 309.15 404.56 301.17 405.43 301.46 301.46
0.5 1.26e+04 1.57e+04 1.34e+04 1.57e+04 1.34e+04 9.41e+03
1 3.80e+06 4.44e+06 4.31e+06 4.44e+06 4.31e+06 9.61e+05
1.5 2.36e+09 2.68ee+09 2.67e+09 2.68e+09 2.67e+09 1.20e+08

can be seen that MOEEA can find the node set with the minimum cost
under different parameter ranges. As with the increase of parameter β,
the advantage of our algorithm becomes more significant, which shows once
again that our algorithm is better when the cost heterogeneity is stronger.

Table 8: The experimental results of SW networks with different values of γ.
γ HBA HDA HBF HDF CI MOEEA
0.1 119.23 112.55 175.39 189.29 112.47 110.17
0.5 223.76 213.57 328.87 353.88 212.73 208.73
1 497 480 727 779 476 468
1.5 1.12e+03 1.09e+03 1.62e+03 1.73e+03 1.08e+03 1.07e+03

Table 9: The experimental results of ER networks with different values of γ.
γ HBA HDA HBF HDF CI MOEEA
0.1 146.53 139.45 183.55 190.88 139.50 134.71
0.5 328.28 314.33 413.46 429.63 314.89 304.96
1 915 881 1153 1196 884 859
1.5 2.60e+03 2.51e+03 3.25e+03 3.37e+03 2.52e+03 2.46e+03

For the power law function, Table 6 and Table 7 show the results of the
SW network and ER network with different values of parameter γ. The
performance of the proposed algorithm is slightly better than the other
five algorithms no matter what the parameter value is. Therefore, we can
conclude that MOEEA is suitable for solving network disintegration problem
with different cost functions. In addition, the performance of the proposed
algorithm is better than these state-of-the-art algorithms.

6.2. Algorithmic convergence and complexity

For multi-objective problems, to assess the results obtained by the pro-
posed algorithm, the measurement error distance has been used as a perfor-
mance indicator [57]. This error distance is defined as

‖PF − PF ∗‖ =

N∑
i=1

min(d(~xi, v)), v ∈ PF ∗, xi ∈ PF.

where d(~xi, v) means the Euclidean distance between xi and the point v in
the baseline Pareto front PF ∗. Here, PF is the current Pareto Front found
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by the algorithm. The higher the value of ‖PF − PF ∗‖, the greater the
deviation of the found solution set from the baseline PF ∗.

Taking the Karate Club network as an example, the maximum number
of iterations is set to 2000, and the Pareto Front obtained is considered as
the baseline PF ∗. Then the Pareto Front is recorded every 10 iterations. By
plotting out the error distances during iterations, the variation of conver-
gence rates or the convergence property can be seen. As shown in Fig. 19,
the convergence curve indicate that the algorithm converges relatively fast
at first, which means that the MOEEA can find relatively good solutions by
few iterations. After the number of iterations reaches 200, the convergence
rate becomes slower and the algorithm gradually converges to a stable set
of solutions.
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Figure 19: Convergence curve of MOEEA.

Now we analyze the complexity of the proposed algorithm. During each
iteration, the unit cost importance measure of the target attack node is
calculated first. Since we only needs to calculate UIM values of the target
attack nodes in elite individual, the complexity is O(Q ∗ 〈k〉), where Q
is the attack intensity, 〈k〉 is the average degree of nodes in the network.
Then, these Q values are sorted using a fast sort method with complexity
O(Q logQ).

In addition, the complexity of the update strategy is low. The complex-
ity of fitness evaluations depends mainly on the calculation of the maxi-
mum connected cluster. Using the Depth First Search (DES) to calculate
the largest connected component, the complexity is O(N2). The algorithm
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complexity of non-dominated sorting is O(2 ∗ (Np)
2) where Np is the pop-

ulation size of the algorithm. Therefore, the complexity of each iteration
is O(Q 〈k〉 + Q logQ + (Np) ∗ N2 + 2 ∗ (Np)

2) , That is, the complexity of
the algorithm is at most O(Np ∗N2 + (Np)

2). When the number of nodes is
much larger than the population size, the overall complexity of our proposed
method is O(N3T ), where T is the maximum number of iterations.

6.3. Strength and weakness of MOEEA

In this paper, the network disintegration problem with heterogeneous
cost is solved as a multi-objective problem, and the cost factor is truly
included in the entire optimization process. Experiments have shown that
our proposed MOEEA can solve this problem well. Now we can discuss the
advantages and disadvantages of our algorithm.

Our MOEEA is the first attempt of its kind to use a multi-objective
metaheuristic algorithm to solve the minimum cost network disintegration
problem. We propose a unit cost importance measure (UIM), which com-
bines the cost and the importance of node and facilitates the selection and
comparison of nodes in subsequent algorithms. The elitist strategy not only
preserves the best combination information of nodes to guide the search
process of subsequent algorithms, but also stores and updates the ‘optimal
solution’ for each generation. And our algorithm only needs to calculate
UIM values of the target attacking nodes in the elite individual in each
iteration, so the calculation is not large. In addition, in the update strategy,
the number of ‘genes’ of a parent is randomly generated in each iteration;
that is, the local search and global search of the algorithm are dynamically
adjusted. It not only takes into account the convergence speed of the al-
gorithm, but also avoids the algorithm from falling into the local optimum.
Experimental results show that the MOEEA tends to find low-cost disin-
tegration solutions and the multiple Pareto optimal solutions obtained can
provide more choices for decision makers.

The computational cost of the multi-objective metaheuristic algorithm
is relatively high, but it can be improved through some algorithm paral-
lelization and modification, which will form an important topic for future
research.

7. Discussions

7.1. Illustrative Example for Visualization

In order to visualize the results of the algorithm, a rather small-scale
network: Askcal network, which is the communication network of Student
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Government in the University of Ljubljana [58] is used as an example to
observe the differences of different methods. The network contains 11 nodes
and 29 edges, and its connection mode is shown in the Fig. 20.
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Figure 20: Askcal network.

The power law function is used as the cost function. The experimental
results of the six algorithms are summarized in Table 10. It can be seen
that among these six algorithms, MOEEA finds the key nodes with the low-
est cost in the state of network disintegration. The corresponding network
nodes status are shown in Fig. 21 where all networks have lost most of their
connectivity.

Table 10: The comparisons of five algorithms with Askcal network.
MOEEA CI HBA HDA HBF HDF

S(Q) 0 0 0 0 0 0
Cost 34.16 51.30 49.44 51.30 48.87 51.30
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Figure 21: The state of the network after being attacked.

In fact, the members in this communication network are so closely con-
nected that the presence or absence of a few nodes does not affect the struc-
ture of the whole network. While the degree-based algorithms may fail, the
proposed algorithm can still perform well.
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7.2. The Role of Preprocessing

For simulating large-scale networks, there are two major challenges: stor-
age and computing efforts. Such challenges are also relevant in the big data
processing. Data reduction is usually used, that is, reducing the size of
the data without affecting (or at least not substantially affecting) the fi-
nal result. Therefore, it makes sense to preprocess the network before the
algorithm starts.

Figure 22: The schematic diagram for preprocessing.

Obviously, for a real-world network, not all nodes are equal. Some nodes
have little or no influence on the overall structure and performance of the
network, and these nodes are unlikely to be the key nodes we are looking for.
In fact, almost all networks can have isolated nodes and peripheral nodes
(their degree is 1, and such nodes are marked in blue in Fig. 22). Such nodes
have little impact on the collapse of the network and should be removed first
as part of preprocessing. For medium-sized networks, such preprocessing is
usually sufficient. For large-scale networks, we should continue to reduce
their sizes. More information is needed. From Fig. 22, it can be seen that
there are six nodes of degree 2 (marked in aquamarine colours) with one
edge connected to a peripheral node (marked with blue, or blue nodes), and
the other edge is only connected to one other node in the network. Attacking
such a 2-degree (aquamarine) node will only separate the two nodes from
the entire network, and thus has little effect on the network structure.

Hence, the degree of these nodes that need to be removed next for pre-
processing is 2. It is worth noting that not all nodes with a degree of 2 in the
network should be deleted. Because some nodes with degree 2 are critical
to the connection of two important branches in the network, such as the
three nodes marked in purple shown in Fig. 22. These nodes may be weakly
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connected, but they are key nodes, which can easily be neglected in the
existing centrality-based methods. Therefore, in the preprocessing step, the
node with degree 1 (blue nodes) should be deleted first; then, after the first
step, if the number of neighbors of the node with original degree 2 becomes
1, these nodes should be deleted. The pseudocode for such preprocessing
can be summarized in Algorithm 2.

Algorithm 2 Preprocessing the network.

1: Input: the adjacency matrix A
2: Atemp ← A
3: d← degree of nodes // calculate by Atemp, d is a 1×N vector.
4: dtemp ← d− 11×N
5: remove← the set of -1 and 0 bits in dtemp
6: Atemp(remove, :)← 0 // delete corresponding rows
7: Atemp(:, remove)← 0 // delete corresponding columns
8: dnew ← degree of nodes // recalculate by Atemp
9: remove← the set of 1 bits in dnew

10: Atemp(remove, :)← 0 //delete corresponding rows
11: Atemp(:, remove)← 0 //delete corresponding columns
12: return Atemp as the new adjacency matrix

The purpose of preprocessing is to reduce the size of the network and to
make the calculations faster. Taking the ER network with 1000 nodes as an
example, the parameter p is 0.003, γ is set to 0.4. For the convenience of
comparison, assuming that the attack strength is 300, both the population
size and the maximum number of iterations are set to 100. The running
time and cost of MOEEA with preprocessing are shown in the Table 11.

Table 11: Comparison of pretreatment effect.
time(s) cost

preprocessing + MOEEA 43.89 519.67
MOEEA 75.08 519.81

Our simulation shows that preprocessing can greatly accelerate the con-
vergence speed of the algorithm. The good thing is that preprocessing has
little influence on the selection of the key nodes in the network; that is,
it does not affect the final solution found by the algorithm. This step can
usually reduce the size of a large-scale problem significantly. It is worth
noting that if the network scale is not very large, there is no need to do such
preprocessing and we can skip this step.
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8. Conclusions and Further Research

Research on network disintegration can help manage and control large-
scale networks, such as transport networks, smart grids, infectious disease
control, and others. Heterogeneous cost network attack problems may be
relevant to many practical problems. In fact, most attack algorithms are
very inefficient when considering degree-based attack costs.

In this paper, network disintegration with the heterogeneous cost is mod-
elled as bi-objective optimization for the first time. We have proposed
a global optimizer (metaheuristic algorithm), called elitism-based multi-
objective evolutionary algorithm (MOEEA), which takes into account the
heterogeneous cost of nodes. By defining a new unit cost importance mea-
sure (UIM), the importance of nodes and their removal cost are combined as
an indicator, which makes it possible to select low-cost and efficient nodes.
The interaction between nodes is considered, and part of the combination in-
formation of nodes is transmitted to the offspring of the population through
elite individuals to guide the search process of the algorithm. In addition,
both the preprocessing and ingenious update mechanism make the algo-
rithm show better performance. We have compared our proposed MOEEA
method with five state-of-the-art attack strategies (HDF, HBF, HDA, HBA
and CI). The experimental results show that MOEEA can find lower cost
disintegration solutions for the four benchmark networks and three stochas-
tic model networks. When the heterogeneity of network nodes is higher, the
effect of our method is more significant.

The results presented in this paper are some preliminary results. Still,
they do indicate that a multi-objective optimization approach can provide
better strategies than those by existing single-objective optimization ap-
proaches. Therefore, it would be useful to extend the current approach to
investigate larger-scale real-world networks. In addition, further improve-
ments and modifications can be explored to see if we can further improve the
performance of the algorithm. Furthermore, it would be fruitful to extend
the present algorithm to solve higher-dimensional networks with real costs
incorporated in the mathematical formulations.
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