Modular covariants of cyclic groups of order p

Jonathan Elmer
Middlesex University, The Burroughs, London, NW4 $4 B T$, United Kingdom

A R T I C L E I N F O

Article history:

Received 14 November 2019
Available online 3 February 2022
Communicated by Bernd Ulrich

MSC:

13A50

Keywords:
Modular invariant theory
Covariants
Free module
Cohen-Macaulay
Hilbert series

A B S T R A C T

Let G be a cyclic group of order p and let V, W be $\mathbb{k} G$ modules. We study the modules of covariants $\mathbb{k}[V, W]^{G}=$ $\left(S\left(V^{*}\right) \otimes W\right)^{G}$. Recall that G has exactly p inequivalent indecomposable $\mathbb{k} G$-modules, denoted $V_{n}(n=1, \ldots, p)$ and V_{n} has dimension n. For any n, we show that $\mathbb{k}\left[V_{2}, V_{n}\right]^{G}$ is a free $\mathbb{k}\left[V_{2}\right]^{G}$-module (recovering a result of Broer and Chuai [1]) and we give an explicit set of covariants generating $\mathbb{k}\left[V_{2}, V_{n}\right]^{G}$ freely over $\mathbb{k}\left[V_{2}\right]^{G}$. For any n, we show that $\mathbb{k}\left[V_{3}, V_{n}\right]^{G}$ is a Cohen-Macaulay $\mathbb{k}\left[V_{3}\right]^{G}$-module (again recovering a result of Broer and Chuai) and we give an explicit set of covariants which generate $\mathbb{k}\left[V_{3}, V_{n}\right]^{G}$ freely over a homogeneous system of parameters for $\mathbb{k}\left[V_{3}\right]^{G}$. We also use our results to compute a minimal generating set for the transfer ideal of $\mathbb{k}\left[V_{3}\right]^{G}$ over a homogeneous system of parameters.
© 2022 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let G be a finite group, \mathbb{k} a field, and V and W finite-dimensional $\mathbb{k} G$-modules on which G acts linearly. Then G acts on the set of functions $V \rightarrow W$ according to the formula

[^0]$$
g \cdot \phi(v)=g \phi\left(g^{-1} v\right)
$$
for all $g \in G$ and $v \in V$.
We denote the set of polynomial functions $V \rightarrow W$ by $\mathbb{k}[V, W]$. With the above action, the G-fixed points $\mathbb{k}[V, W]^{G}$ are precisely the G-equivariant polynomial maps. We call such maps covariants. In the special case $W=\mathbb{k}$ with trivial G-action we write $\mathbb{k}[V]$ instead of $\mathbb{k}[V, \mathbb{k}]$, and the fixed points $\mathbb{k}[V]^{G}$ are called invariants.

For $f \in \mathbb{k}[V]$ and $\phi \in \mathbb{k}[V, W]$ we denote by $f \phi$ the pointwise product. Then one sees that, for all $g \in G$ and $v \in V$ we have

$$
g \cdot(f \phi)(v)=g(f \phi)\left(g^{-1} v\right)=g f\left(g^{-1} v\right) \phi\left(g^{-1} v\right)=f\left(g^{-1} v\right) g \phi\left(g^{-1} v\right)=(g \cdot f)(g \cdot \phi)(v)
$$

Therefore $\mathbb{k}[V]^{G}$ is a \mathbb{k}-algebra and $\mathbb{k}[V, W]^{G}$ is a $\mathbb{k}[V]^{G}$-module. We are interested in the structure of this module. Note that if the field \mathbb{k} is infinite, then $\mathbb{k}[V, W]$ can be identified with $S\left(V^{*}\right) \otimes W$, where the action on the tensor product is diagonal and the action on $S\left(V^{*}\right)$ is the natural extension of the action on V^{*} by algebra automorphisms.

If G is finite and the characteristic of \mathbb{k} does not divide $|G|$, then Schur's lemma implies that every covariant restricts to an isomorphism of some direct summand of $S\left(V^{*}\right)$ onto W. Thus, covariants can be viewed as "copies" of W inside $S\left(V^{*}\right)$. Otherwise, the situation is more complicated.

This question has been considered by a number of authors over the years. For example, Chevalley and Sheppard-Todd [2], [12] showed that if the characteristic of \mathbb{k} does not divide $|G|$ and G acts as a reflection group on V, then $\mathbb{k}[V]^{G}$ is a polynomial algebra and $\mathbb{k}[V, W]^{G}$ is free. More generally, Eagon and Hochster [8] showed that if the characteristic of \mathbb{k} does not divide $|G|$ then $\mathbb{k}[V, W]^{G}$ is a Cohen-Macaulay module (and $\mathbb{k}[V]^{G}$ a CohenMacaulay ring in particular). In the modular case, Hartmann [6] and Hartmann-Shepler [7] gave necessary and sufficient conditions for a set of covariants to generate $\mathbb{k}[V, W]^{G}$ as a free $\mathbb{k}[V]^{G}$-module, provided that $\mathbb{k}[V]^{G}$ is polynomial and $W \cong V^{*}$. Broer and Chuai [1] remove the restrictions on both W and $\mathbb{k}[V]^{G}$.

The present article is inspired by two particular results from [1], which we state here for convenience:

Proposition 1 ([1], Proposition 6). Let G be a finite group of order divisible by $p=$ $\operatorname{char}(\mathbb{k})$ and let V, W be $\mathbb{k} G$-modules.
(i) Suppose $\operatorname{codim}\left(V^{G}\right)=1$. Then $\mathbb{k}[V]^{G}$ is a polynomial algebra and $\mathbb{k}[V, W]^{G}$ is free as a graded module over $\mathbb{k}[V]^{G}$.
(ii) Suppose $\operatorname{codim}\left(V^{G}\right)=2$. Then $\mathbb{k}[V, W]^{G}$ is a Cohen-Macaulay graded module over $\mathbb{k}[V]^{G}$.

In the situation of (i) above, there is a method for checking a set of covariants generates $\mathbb{k}[V, W]^{G}$ over $\mathbb{k}[V]^{G}$, but no method of constructing generators. Meanwhile, in the
situation of (ii), there exists a polynomial subalgebra A of $\mathbb{k}[V]^{G}$ over which $\mathbb{k}[V, W]^{G}$ is a free module. It is not clear how to find module generators, or to check that they generate $\mathbb{k}[V, W]^{G}$.

The purpose of this article is to work towards making these results constructive. We investigate certain modules of covariants for V satisfying (i) or (ii) above and G a cyclic group of order p. Let V_{n} denote the unique indecomposable $\mathbb{k} G$-module of dimension n (the action of G on V_{n} will be described in the next section). In Section 5, for any n, we show that $\mathbb{k}\left[V_{2}, V_{n}\right]^{G}$ is a free $\mathbb{k}\left[V_{2}\right]^{G}$-module (recovering a result of Broer and Chuai) and we give an explicit set of covariants generating $\mathbb{k}\left[V_{2}, V_{n}\right]^{G}$ freely over $\mathbb{k}\left[V_{2}\right]^{G}$. For any n, we show in Section 6 that $\mathbb{k}\left[V_{3}, V_{n}\right]^{G}$ is a Cohen-Macaulay $\mathbb{k}\left[V_{3}\right]^{G}$-module (again recovering a result of Broer and Chuai) and we give an explicit set of covariants which generate $\mathbb{k}\left[V_{3}, V_{n}\right]^{G}$ freely over a homogeneous system of parameters for $\mathbb{k}\left[V_{3}\right]^{G}$. We also use our results to compute a minimal generating set for the transfer ideal of $\mathbb{k}\left[V_{3}\right]^{G}$ over a homogeneous system of parameters.

2. Preliminaries

From this point onwards we let G be a cyclic group of order p and \mathbb{k} a field of characteristic p. Let V and W be $\mathbb{k} G$-modules. We fix a generator σ of G. Recall that, up to isomorphism, there are exactly p indecomposable $\mathbb{k} G$-modules $V_{1}, V_{2}, \ldots, V_{p}$, where the dimension of V_{i} is i and each has fixed-point space of dimension 1. The isomorphism class of V_{i} is usually represented by a module of column vectors on which σ acts as left-multiplication by a single Jordan block of size i.

Suppose $W \cong V_{n}$. It is convenient to choose a basis $w_{1}, w_{2}, \ldots, w_{n}$ of W for which the action of G is given by

$$
\begin{aligned}
\sigma w_{1} & =w_{1} \\
\sigma w_{2} & =w_{2}-w_{1} \\
\sigma w_{3} & =w_{2}-w_{2}+w_{1} \\
\quad & \\
\sigma w_{n} & =w_{n}-w_{n-1}+w_{n-2}-\ldots \pm w_{1}
\end{aligned}
$$

(thus, the action of σ^{-1} is given by left-multiplication by a upper-triangular Jordan block). We do not (yet) choose a particular action on a basis for V, nor do we assume V is indecomposable; we let $v_{1}, v_{2}, \ldots, v_{m}$ be a basis of V and let x_{1}, \ldots, x_{m} be the dual of this basis.

Note that $\mathbb{k}[V]=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$, and a general element of $\mathbb{k}[V, W]$ is given by

$$
\phi=f_{1} w_{1}+f_{2} w_{2}+\ldots+f_{n} w_{n}
$$

where each $f_{i} \in \mathbb{k}[V]$. We define the support of ϕ by

$$
\operatorname{Supp}(\phi)=\left\{i: f_{i} \neq 0\right\}
$$

The operator $\Delta=\sigma-1 \in \mathbb{k} G$ will play a major role in our exposition. Notice that, for $\phi \in \mathbb{k}[V, W]^{G}$ we have

$$
\Delta(\phi)=0 \Rightarrow \sigma \cdot \phi=\phi
$$

and thus by induction $\sigma^{k} \phi=\phi$ for all k. So $\Delta(\phi)=0$ if and only if $\phi \in \mathbb{k}[V, W]^{G}$. Similarly for $f \in \mathbb{k}[V]$ we have $\Delta(f)=0$ if and only if $f \in \mathbb{k}[V]^{G}$.
Δ is a σ-twisted derivation on $\mathbb{k}[V]$; that is, it satisfies the formula

$$
\begin{equation*}
\Delta(f g)=f \Delta(g)+\Delta(f) \sigma(g) \tag{1}
\end{equation*}
$$

for all $f, g \in \mathbb{k}[V]$.
Further, using induction and the fact that σ and Δ commute, one can show Δ satisfies a Leibniz-type rule

$$
\begin{equation*}
\Delta^{k}(f g)=\sum_{i=0}^{k}\binom{k}{i} \Delta^{i}(f) \sigma^{k-i}\left(\Delta^{k-i}(g)\right) \tag{2}
\end{equation*}
$$

A further result, which can be deduced from the above and proved by induction is the rule for differentiating powers:

$$
\begin{equation*}
\Delta\left(f^{k}\right)=\Delta(f)\left(\sum_{i=0}^{k-1} f^{i} \sigma(f)^{k-1-i}\right) \tag{3}
\end{equation*}
$$

for any $k \geq 1$.
For any $f \in \mathbb{k}[V]$ we define the weight of f :

$$
\operatorname{wt}(f)=\min \left\{i>0: \Delta^{i}(f)=0\right\}
$$

Notice that $\Delta^{\mathrm{wt}(f)-1}(f) \in \operatorname{ker}(\Delta)=\mathbb{k}[V]^{G}$ for all $f \in \mathbb{k}[V]$. Another consequence of (2) is the following: let $f, g \in \mathbb{k}[V]$ and set $d=\mathrm{wt}(f), e=\mathrm{wt}(g)$. Suppose that

$$
d+e-1 \leq p
$$

Then

$$
\Delta^{d+e-1}(f g)=\sum_{i=0}^{d+e-1}\binom{d+e-1}{i} \Delta^{i}(f) \sigma^{d+e-1-i}\left(\Delta^{d+e-1-i}(g)\right)=0
$$

since if $i<e$ then $d+e-1-i>d-1$. On the other hand

$$
\begin{aligned}
\Delta^{d+e-2}(f g) & =\sum_{i=0}^{d+e-2}\binom{d+e-2}{i} \Delta^{i}(f) \sigma^{d+e-2-i}\left(\Delta^{d+e-2-i}(g)\right) \\
& =\binom{d+e-2}{i} \Delta^{d-1}(f) \sigma^{e-1}\left(\Delta^{e-1}(g)\right) \neq 0
\end{aligned}
$$

since $\binom{d+e-2}{i} \neq 0 \bmod p$. We obtain the following:
Proposition 2. Let $f, g \in \mathbb{k}[V]$ with $\operatorname{wt}(f)+\operatorname{wt}(g)-1 \leq p$. Then $\mathrm{wt}(f g)=\operatorname{wt}(f)+$ $\mathrm{wt}(g)-1$.

Also note that

$$
\Delta^{p}=\sigma^{p}-1=0
$$

which shows that $\operatorname{wt}(f) \leq p$ for all $f \in \mathbb{k}[V]^{G}$. Finally notice that

$$
\begin{equation*}
\Delta^{p-1}=\sum_{i=0}^{p-1} \sigma^{i} \tag{4}
\end{equation*}
$$

This is the Transfer map, a $\mathbb{k}[V]^{G}$-homomorphism $\operatorname{Tr}^{G}: \mathbb{k}[V] \rightarrow \mathbb{k}[V]^{G}$ which is wellknown to invariant theorists.

Now we have a crucial observation concerning the action of σ on W : for all $i=$ $1, \ldots, n-1$ we have

$$
\begin{equation*}
\Delta\left(w_{i+1}\right)+\sigma\left(w_{i}\right)=0 \tag{5}
\end{equation*}
$$

and $\Delta\left(w_{1}\right)=0$.
From this we obtain a simple characterisation of covariants:

Proposition 3. Let

$$
\phi=f_{1} w_{1}+f_{2} w_{2}+\ldots+f_{n} w_{n}
$$

Then $\phi \in \mathbb{k}[V, W]^{G}$ if and only if there exists $f \in \mathbb{k}[V]$ with weight $\leq n$ such that $f_{i}=\Delta^{i-1}(f)$ for all $i=1, \ldots, n$.

Proof. Assume $\phi \in \mathbb{k}[V, W]^{G}$. Then we have

$$
\begin{aligned}
0 & =\Delta\left(\sum_{i=1}^{n} f_{i} w_{i}\right) \\
& =\sum_{i=1}^{n}\left(f_{i} \Delta\left(w_{i}\right)+\Delta\left(f_{i}\right) \sigma\left(w_{i}\right)\right)
\end{aligned}
$$

$$
=\sum_{i=1}^{n-1}\left(\Delta\left(f_{i}\right)-f_{i+1}\right) \sigma\left(w_{i}\right)+\Delta\left(f_{n}\right) \sigma\left(w_{n}\right)
$$

where we used (5) in the final step. Now note that

$$
\left.\sigma\left(w_{i}\right)\right)=w_{i}+\left(\text { terms in } w_{i-1}, w_{i-2}, \ldots, w_{1}\right)
$$

for all $i=1, \ldots, n$. Thus, equating coefficients of w_{i}, for $i=n, \ldots, 1$ gives

$$
\Delta\left(f_{n}\right)=0, \Delta\left(f_{n-1}\right)=f_{n}, \ldots, \Delta\left(f_{2}\right)=f_{3}, \Delta\left(f_{1}\right)=f_{2}
$$

Putting $f=f_{1}$ gives $f_{i}=\Delta^{i-1}(f)$ for all $i=1, \ldots, n$ and $0=\Delta^{n}(f)$ as required.
Conversely, suppose that

$$
\phi=\sum_{i=1}^{n} \Delta^{i-1}(f) w_{i}
$$

for some $f \in \mathbb{k}[V]$ with $\Delta^{n}(f)=0$. Then we have

$$
\begin{aligned}
\Delta(\phi) & =\sum_{i=1}^{n} \Delta^{i-1}(f) \Delta\left(w_{i}\right)+\Delta^{i}(f) \sigma\left(w_{i}\right) \\
& =\sum_{i=2}^{n}\left(-\Delta^{i-1}(f) \sigma\left(w_{i-1}\right)+\Delta^{i}(f) \sigma\left(w_{i}\right)\right)+\Delta(f) \sigma\left(w_{1}\right) \quad \text { by } \\
& =\Delta^{n}(f) \sigma\left(w_{n}\right) \\
& =0
\end{aligned}
$$

as required.

Note that the support of any covariant is therefore of the form $\{1,2, \ldots, i\}$ for some $i \leq n$. We will write

$$
\operatorname{Supp}(\phi)=i
$$

if ϕ is a covariant and $\operatorname{Supp}(\phi)=\{1,2, \ldots, i\}$.
Introduce notation

$$
K_{n}:=\operatorname{ker}\left(\Delta^{n}\right)
$$

and

$$
I_{n}:=\operatorname{im}\left(\Delta^{n}\right)
$$

These are $\mathbb{k}[V]^{G}$-modules lying inside $\mathbb{k}[V]$.
Now we can define a map

$$
\begin{gather*}
\Theta: K_{n} \rightarrow \mathbb{k}[V, W]^{G} \\
\Theta(f)=\sum_{i=1}^{n} \Delta^{i-1}(f) w_{i} \tag{6}
\end{gather*}
$$

Clearly Θ is an injective, degree-preserving map of $\mathbb{k}[V]^{G}$-modules, and Proposition 3 implies it is also surjective. We conclude that

Proposition 4. K_{n} and $\mathbb{k}[V, W]^{G}$ are isomorphic as graded $\mathbb{k}[V]^{G}$-modules.

From this point onwards we set $V=V_{m}$ and $W=V_{n}$, with the basis of V chosen so that

$$
\begin{aligned}
\sigma x_{1} & =x_{1}+x_{2} \\
\sigma x_{2} & =x_{2}+x_{3} \\
\sigma x_{3} & =x_{3}+x_{4} \\
\vdots & \\
\sigma x_{m} & =x_{m} .
\end{aligned}
$$

Lemma 5. Let $z=x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{m}^{e_{m}}$. Let $d=\sum_{i=1}^{m} e_{i}(m-i), e=\sum_{i=1}^{m} e_{i}=\operatorname{deg}(z)$ and assume $d<p$. Then

$$
\mathrm{wt}(z)=d+1
$$

Proof. Applying Proposition 2 repeatedly and noting that $\mathrm{wt}\left(x_{i}\right)=m-i+1$, we find

$$
\begin{aligned}
\mathrm{wt}(z) & =\sum_{i=1}^{m}\left(e_{i}(m-i+1)-e_{i}+1\right)-(n-1) \\
& =\sum_{i=1}^{m}\left(e_{i}(m-i)\right)+1=d+1 .
\end{aligned}
$$

3. Hilbert series

Let \mathbb{k} be a field and let $S=\oplus_{i \geq 0} S_{i}$ be a positively graded \mathbb{k}-vector space. The dimension of each graded component of S is encoded in its Hilbert Series

$$
H(S, t)=\sum_{i \geq 0} \operatorname{dim}\left(S_{i}\right) t^{i}
$$

Proposition 4 implies that $H\left(\mathbb{k}[V, W]^{G}, t\right)=H\left(K_{n}, t\right)$. In this section we will outline a method for computing $H\left(K_{n}, t\right)$.

Each homogeneous component $\mathbb{k}[V]_{i}$ of $\mathbb{k}[V]$ is a $\mathbb{k} G$-module. As such, each one decomposes as a direct sum of modules isomorphic to V_{k} for some values of k. Write $\mu_{k}\left(\mathbb{k}[V]_{i}\right)$ for the multiplicity of V_{k} in $\mathbb{k}[V]_{i}$ and define the series

$$
H_{k}(\mathbb{k}[V])=\sum_{i \geq 0} \mu_{k}\left(\mathbb{k}[V]_{i}\right) t^{i} .
$$

The series $H_{k}\left(\mathbb{k}\left[V_{m}\right]\right)$ were studied by Hughes and Kemper in [9]. They can also be used to compute the Hilbert series of $\mathbb{k}\left[V_{m}\right]^{G} ; \operatorname{since} \operatorname{dim}\left(V_{k}^{G}\right)=1$ for all $k=1, \ldots, p$ we have

$$
\begin{equation*}
H\left(\mathbb{k}\left[V_{m}\right]^{G}, t\right)=\sum_{k=1}^{p} H_{k}\left(\mathbb{k}\left[V_{m}\right], t\right) . \tag{7}
\end{equation*}
$$

Now observe that

$$
\operatorname{dim}\left(\operatorname{ker}\left(\left.\Delta^{n}\right|_{V_{k}}\right)\right)=\left\{\begin{array}{rr}
n & k \geq n \\
k & \text { otherwise }
\end{array}\right.
$$

Therefore

$$
H\left(K_{n}, t\right)=\sum_{k=1}^{n-1} k H_{k}(\mathbb{k}[V], t)+\sum_{k=n}^{p} n H_{k}(\mathbb{k}[V], t) .
$$

We can write this as a series not depending on p :

$$
\begin{equation*}
H\left(K_{n}, t\right)=n H\left(\mathbb{k}[V]^{G}, t\right)-\left(\sum_{k=1}^{n-1}(n-k) H_{k}(\mathbb{k}[V], t)\right) \tag{8}
\end{equation*}
$$

using equation (7).
We will need the Hilbert Series of $I_{n}^{G}=\mathbb{k}[V]^{G} \cap I_{n}$ in the final section. For all $k=1, \ldots, p$ we have

$$
\operatorname{dim}\left(\Delta^{n}\left(V_{k}\right)\right)^{G}=\left\{\begin{array}{lr}
1 & k>n \\
0 & \text { otherwise }
\end{array}\right.
$$

Therefore

$$
H\left(I_{n}^{G}, t\right)=\sum_{k=n+1}^{p} H_{k}(\mathbb{k}[V], t),
$$

which we can write independently of p as

$$
\begin{equation*}
H\left(I_{n}^{G}, t\right)=H\left(\mathbb{k}[V]^{G}, t\right)-\left(\sum_{k=1}^{n} H_{k}(\mathbb{k}[V], t)\right) . \tag{9}
\end{equation*}
$$

4. Decomposition theorems

In this section we will compute the series $H_{k}\left(\mathbb{k}\left[V_{2}\right], t\right)$ and $H_{k}\left(\mathbb{k}\left[V_{3}\right], t\right)$ for all $k=$ $1, \ldots, p-1$.

Hughes and Kemper [9, Theorem 3.4] give the formula

$$
\begin{equation*}
H_{k}\left(\mathbb{k}\left[V_{m}\right], t\right)=\sum_{\gamma \in M_{2 p}} \frac{\gamma-\gamma^{-1}}{2 p} \gamma^{-k} \frac{1-\gamma^{p(m-1)} t^{p}}{1-t^{p}} \prod_{j=0}^{m-1}\left(1-\gamma^{m-1-2 j} t\right)^{-1} \tag{10}
\end{equation*}
$$

where $M_{2 p}$ represents the set of $2 p$ th roots of unity in \mathbb{C}. A similar formula is given for $H_{p}(\mathbb{k}[V], t)$ but we will not need this. The following result can be derived from the formula above, but follows more easily from [4, Proposition 3.4]:

Lemma 6. $H_{k}\left(\mathbb{k}\left[V_{2}, t\right]\right)=\frac{t^{k-1}}{1-t^{p}}$.
For V_{3} we will have to use Equation (10). This becomes

$$
H_{k}\left(\mathbb{k}\left[V_{3}\right], t\right)=\frac{1}{2 p(1-t)} \sum_{\gamma \in M_{2 p}} \frac{\left(\gamma-\gamma^{-1}\right) \gamma^{-k+2}}{\left(1-\gamma^{2} t\right)\left(\gamma^{2}-t\right)}
$$

Lemma 7.

$$
H_{k}\left(\mathbb{k}\left[V_{3}\right], t\right)=\left\{\begin{array}{lr}
\frac{t^{p-l}-t^{p-l-1}+t^{l+1}-t^{l}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)} & \text { if } k=2 l+1 \text { is odd } \\
0 & \text { if } k \text { is even } .
\end{array}\right.
$$

Proof. We evaluate

$$
\frac{\left(\gamma-\gamma^{-1}\right) \gamma^{-k+2}}{\left(1-\gamma^{2} t\right)\left(\gamma^{2}-t\right)}=\frac{A}{\gamma-t^{\frac{1}{2}}}+\frac{B}{\gamma+t^{\frac{1}{2}}}+\frac{C}{1-\gamma t^{\frac{1}{2}}}+\frac{D}{1+\gamma t^{\frac{1}{2}}}
$$

using partial fractions, finding

$$
\begin{gathered}
A=\frac{t^{-l+1}-t^{-l}}{\left(2 t^{\frac{1}{2}}\right)\left(1-t^{2}\right)}, \\
B=(-1)^{-k+3} \frac{t^{-l+1}-t^{-l}}{\left(-2 t^{\frac{1}{2}}\right)\left(1-t^{2}\right)}, \\
C=\frac{t^{l-1}-t^{l}}{2\left(t^{-1}-t\right)}, \\
D=(-1)^{-k+3} \frac{t^{l-1}-t^{l}}{2\left(t^{-1}-t\right)} .
\end{gathered}
$$

Now we compute:

$$
\begin{aligned}
\sum_{\gamma \in M_{2 p}} \frac{1}{\gamma-t^{\frac{1}{2}}} & =\sum_{\gamma \in M_{2 p}} \frac{-t^{-\frac{1}{2}}}{1-\gamma t^{-\frac{1}{2}}} \\
& =-t^{-\frac{1}{2}} \sum_{i=0}^{\infty} \sum_{\gamma \in M_{2 p}}\left(\gamma t^{-\frac{1}{2}}\right)^{i} \\
& =-t^{-\frac{1}{2}} 2 p \sum_{i=0}^{\infty}\left(t^{-\frac{1}{2}}\right)^{2 p i} \\
& =-t^{-\frac{1}{2}} 2 p \frac{1}{1-\left(t^{-\frac{1}{2}}\right)^{2 p}} \\
& =-t^{\frac{1}{2}} 2 p \frac{1}{1-t^{-p}} \\
& =2 p \frac{t^{p-\frac{1}{2}}}{1-t^{p}}
\end{aligned}
$$

Similarly we have

$$
\sum_{\gamma \in M_{2 p}} \frac{1}{\gamma+t^{\frac{1}{2}}}=-2 p \frac{t^{p-\frac{1}{2}}}{1-t^{p}}
$$

while

$$
\begin{aligned}
\sum_{\gamma \in M_{2 p}} \frac{1}{1-\gamma t^{\frac{1}{2}}} & =\sum_{i=0}^{\infty} \sum_{\gamma \in M_{2 p}}\left(\gamma t^{\frac{1}{2}}\right)^{i} \\
& =2 p \sum_{i=0}^{\infty}\left(t^{\frac{1}{2}}\right)^{2 p i} \\
& =2 p \sum_{i=0}^{\infty}\left(t^{p i}\right) \\
& =2 p \frac{1}{1-t^{p}}
\end{aligned}
$$

and similarly

$$
\sum_{\gamma \in M_{2 p}} \frac{1}{1+\gamma t^{\frac{1}{2}}}=2 p \frac{1}{1-t^{p}}
$$

as $\left\{-\gamma: \gamma \in M_{2 p}\right\}=M_{2 p}$.

It follows that

$$
\begin{aligned}
H_{k}\left(\mathbb{k}\left[V_{3}\right], t\right)= & \frac{1}{2 p(1-t)}\left(\frac{(A-B) 2 p t^{p-\frac{1}{2}}}{1-t^{p}}+\frac{2 p(C+D)}{1-t^{p}}\right) \\
= & \frac{1}{(1-t)\left(1-t^{p}\right)}\left(\frac{\left(1+(-1)^{-k+3}\right)\left(t^{p-l}-t^{p-l-1}\right)}{2\left(1-t^{2}\right)}\right. \\
& \left.+\frac{\left(1+(-1)^{-k+3}\right)\left(t^{l-1}-t^{l}\right)}{2\left(t^{-1}-t\right)}\right) \\
= & \begin{cases}\frac{t^{p-l}-t^{p-l-1}+t^{l+1}-t^{l}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)} & \text { if } k \text { is odd } \\
0 & \text { if } k \text { is even }\end{cases}
\end{aligned}
$$

as required.

5. Main results: $\boldsymbol{V}_{\mathbf{2}}$

We are now in a position to state our main results. First, suppose $V=V_{2}$ and $W=V_{n}$ where $n \leq p$. Then it's well known that $\mathbb{k}[V]^{G}$ is a polynomial ring, generated by x_{2} and

$$
N=\prod_{i=0}^{p-1} \sigma^{i}\left(x_{1}\right)=x_{1}^{p}-x_{1} x_{2}^{p-1}
$$

Therefore we have

$$
\begin{equation*}
H\left(\mathbb{k}[V]^{G}, t\right)=\frac{1}{(1-t)\left(1-t^{p}\right)} \tag{11}
\end{equation*}
$$

Proposition 8. We have

$$
H\left(K_{n}, t\right)=H\left(\mathbb{k}[V, W]^{G}, t\right)=\frac{1+t+t^{2}+\ldots+t^{n-1}}{(1-t)\left(1-t^{p}\right)}
$$

Proof. Using equations (8) and (11) and Lemma 6 we have

$$
H\left(K_{n}, t\right)=\frac{n}{(1-t)\left(1-t^{p}\right)}-\sum_{k=1}^{n-1} \frac{(n-k) t^{k-1}}{1-t^{p}}=\frac{1+t+t^{2}+\ldots+t^{n-1}}{(1-t)\left(1-t^{p}\right)}
$$

The result now follows from Proposition 4.
Theorem 9. The module of covariants $\mathbb{k}[V, W]^{G}$ is generated freely over $\mathbb{k}[V]^{G}$ by

$$
\left\{\Theta\left(x_{1}^{k}\right): k=0, \ldots, n-1\right\}
$$

where $\Theta\left(x_{1}^{0}\right)=\Theta(1)=w_{1}$.

Note that, by Proposition $1(\mathrm{i}), \mathbb{k}[V, W]^{G}$ is free over $\mathbb{k}[V]^{G}$ and we could use $[1$, Theorem 3] to check our proposed module generators. However, we prefer a more direct approach.

Proof. It follows from Lemma 5 that $\operatorname{wt}\left(x_{1}^{k}\right)=k+1$. Therefore $\operatorname{Supp}\left(\Theta\left(x_{1}^{k}\right)\right)=k+1$, and so it's clear that the $\mathbb{k}[V]^{G}$-submodule M of $\mathbb{k}[V, W]^{G}$ generated by the proposed generating set is free. Moreover, as $\operatorname{deg}\left(\Theta\left(x_{1}^{k}\right)\right)=k, M$ has Hilbert series

$$
\frac{1+t+t^{2}+\ldots+t^{n-1}}{(1-t)\left(1-t^{p}\right)}
$$

But by Proposition 8 , this is the Hilbert series of $\mathbb{k}[V, W]^{G}$. Therefore $M=\mathbb{k}[V, W]^{G}$ as required.

Corollary 10. K_{n} is a free $\mathbb{k}\left[V^{G}\right]$-module, generated by $\left\{x_{1}^{k}: k=0, \ldots, n-1\right\}$.
Proof. Follows from Theorem 9 above and the proof of Proposition 4.
Remark 11. The above was also obtained, in the special case $n=p-1$, by Erkus and Madran [5].

6. Main results: V_{3}

In this section let p be an odd prime and $V=V_{3}$. We begin by describing $\mathbb{k}[V]^{G}$. This has been done in several places before, for example [3] and [10, Theorem 5.8], but we include this for completeness.

We use a graded reverse lexicographic order on monomials $\mathbb{k}[V]$ with $x_{1}>x_{2}>x_{3}$. If $f \in \mathbb{k}[V]$ then the lead term of f is the term with the largest monomial in our order and the lead monomial is the corresponding monomial. If $f, g \in \mathbb{k}[V]$ we will write

$$
f>g
$$

if the lead monomial of f is greater than the lead monomial of g.
The results of section 3 can be used to show

$$
\begin{equation*}
H\left(\mathbb{k}[V]^{G}, t\right)=\frac{1+t^{p}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)} \tag{12}
\end{equation*}
$$

Note that using the given order, we have

$$
f>\Delta(f)
$$

for all $f \in \mathbb{k}[V]$.

We recall two popular means of constructing invariants. Let $f \in \mathbb{k}[V]$. As mentioned in section 2, the transfer

$$
\Delta^{p-1}(f)=\operatorname{Tr}^{G}(f)=\sum_{i=0}^{p-1}\left(\sigma^{i} f\right)
$$

and also the norm

$$
N(f)=\prod_{i=0}^{p-1}\left(\sigma^{i} f\right)
$$

of f both lie in $\mathbb{k}[V]^{G}$. It is easily shown that

$$
\begin{aligned}
& a_{1}:=x_{3}, \\
& a_{2}:=x_{2}^{2}-2 x_{1} x_{3}-x_{2} x_{3}, \\
& a_{3}:=N\left(x_{1}\right)=\prod_{i=0}^{p-1} \sigma^{i}\left(x_{1}\right)
\end{aligned}
$$

are invariants, and looking at their lead terms tells us that they form a homogeneous system of parameters for $\mathbb{k}[V]^{G}$, with degrees 1,2 and p.

Proposition 12. Let $f \in \mathbb{k}[V]^{G}$ be any invariant with lead term x_{2}^{p}. Let $A=\mathbb{k}\left[a_{1}, a_{2}, a_{3}\right]$. Then $f \notin A$. Consequently $\mathbb{k}[V]^{G}$ is a free A-module, whose generators are 1 and f.

Proof. It is clear that $f \notin A$, as its lead term is not in the subalgebra of $\mathbb{k}[V]$ generated by the lead terms of a_{1}, a_{2} and a_{3}. Therefore the A-submodule of $\mathbb{k}[V]^{G}$ generated by 1 and f has Hilbert series

$$
\frac{1+t^{p}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)}
$$

which is the Hilbert series of $\mathbb{k}[V]^{G}$ as required.
The obvious choice of invariant with lead term x_{2}^{p} is $N\left(x_{2}\right)$. However, we will use $\operatorname{Tr}^{G}\left(x_{1}^{p-1} x_{2}\right)$ instead. For the calculation of the lead term of this invariant see [11, Lemma 3.1] or Lemma 16 to come.

The following observation is a consequence of the generating set above.
Lemma 13. Let $f \in A$. Then the lead term of f is of the form $x_{1}^{p i} x_{2}^{2 j} x_{3}^{k}$ for some positive integers i, j, k.

Now let $W=V_{n}$ for some $n \leq p$. For the rest of this section, we set $l=\frac{1}{2} n$ if n is even, with $l=\frac{1}{2}(n-1)$ if n is odd. Our first task is to compute the Hilbert Series of
$\mathbb{k}[V, W]^{G}$. Once more we use equation (8) and the bijection Θ to do this. We omit the details.

Proposition 14.

$$
H\left(\mathbb{k}[V, W]^{G}, t\right)=\frac{1+2 t+2 t^{2}+\ldots+2 t^{l}+2 t^{p-l}+2 t^{p-l+1}+\ldots+t^{p}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)}
$$

if n is odd, while

$$
H\left(\mathbb{k}[V, W]^{G}, t\right)=\frac{1+2 t+2 t^{2}+\ldots+2 t^{l-1}+t^{l}+t^{p-l}+2 t^{p-l+1}+\ldots+2 t^{p-1}+t^{p}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)}
$$

if n is even.
Next, we need some information about the lead monomials of certain polynomials:
Lemma 15. Let $j \leq k<p$. Then $\Delta^{j}\left(x_{1}^{k}\right)$ has lead term

$$
\frac{k!}{(k-j)!} x_{1}^{k-j} x_{2}^{j}
$$

Proof. The proof is by induction on j, the case $j=0$ being clear. Suppose $1 \leq j<k$ and

$$
\Delta^{j}\left(x_{1}^{k}\right)=\frac{k!}{(k-j)!} x_{1}^{k-j} x_{2}^{j}+g
$$

where $g \in \mathbb{k}[V]$ has lead monomial $\leq x_{1}^{k-j-1} x_{2}^{j+1}$. Then

$$
\begin{aligned}
\Delta^{j+1}\left(x_{1}^{k}\right) & =\frac{k!}{(k-j)!} \Delta\left(x_{1}^{k-j} x_{2}^{j}\right)+\Delta(g) \\
& =\frac{k!}{(k-j)!} \Delta\left(x_{1}^{k-j}\right) \sigma\left(x_{2}^{j}\right)+x_{1}^{k-j} \Delta\left(x_{2}^{j}\right)+\Delta(g)
\end{aligned}
$$

Note that the lead monomial of $\Delta(g)$ is $<x_{1}^{k-j-1} x_{2}^{j+1}$. Now applying (3) shows that $\Delta\left(x_{2}^{j}\right)$ is divisible by x_{3} and

$$
\begin{aligned}
\Delta\left(x_{1}^{k-j}\right) & =x_{2}\left(x_{1}^{k-j-1}+x_{1}^{k-j-2} \sigma\left(x_{1}\right)+\ldots+\sigma\left(x_{1}\right)^{k-j-1}\right) \\
& =(k-j) x_{1}^{k-j-1} x_{2}+\text { smaller terms } .
\end{aligned}
$$

In addition,

$$
\sigma\left(x_{2}^{j}\right)=\left(x_{2}+x_{3}\right)^{j}=x_{2}^{j}+\text { smaller terms. }
$$

Therefore the lead term of $\Delta^{j+1}\left(x_{1}^{k}\right)$ is

$$
(k-j) \frac{k!}{(k-j)!} x_{1}^{k-j-1} x_{2}^{j+1}=\frac{k!}{(k-j-1)!} x_{1}^{k-j-1} x_{2}^{j+1}
$$

as required.
Similarly we have
Lemma 16. Let $j \leq k<p$. Then $\Delta^{j}\left(x_{1}^{k} x_{2}\right)$ has lead term

$$
\frac{k!}{(k-j)!} x_{1}^{k-j} x_{2}^{j+1}
$$

Proof. We have by (2)

$$
\Delta^{j}\left(x_{1}^{k} x_{2}\right)=\sum_{i=0}^{j}\binom{j}{i} \Delta^{j-i}\left(x_{1}^{k}\right) \sigma^{i}\left(\Delta^{i}\left(x_{2}\right)\right)
$$

Only the first two terms are nonzero, hence

$$
\begin{aligned}
\Delta^{j}\left(x_{1}^{k} x_{2}\right) & =\Delta^{j}\left(x_{1}^{k}\right) x_{2}+j \Delta^{j-1}\left(x_{1}^{k}\right) x_{3} \\
& =\frac{k!}{(k-j)!} x_{1}^{k-j} x_{2}^{j+1}+\text { smaller terms }
\end{aligned}
$$

where we used Lemma 15 is the last step.
We are now ready to state our main results. Let $V=V_{3}$ and $W=V_{n}$. For any $i=0,1, \ldots, n-1$ we define monomials

$$
M_{i}= \begin{cases}x_{1}^{i / 2} & \text { if } i \text { is even } \\ x_{1}^{(i-1) / 2} x_{2} & \text { if } i \text { is odd }\end{cases}
$$

and polynomials

$$
P_{i}=\left\{\begin{array}{lr}
\Delta\left(x_{1}^{p-i / 2}\right) & \text { if } i \text { is even, } i>0 \\
x_{1}^{p-(i+1) / 2} & \text { if } i \text { is odd }
\end{array}\right.
$$

with $P_{0}=x_{1}^{p-1} x_{2}$.
Theorem 17. Let $n \leq p$. Then K_{n} is a free A-module, generated by

$$
S_{n}=\left\{M_{0}, M_{1}, \ldots, M_{n-1}, \Delta^{p-n}\left(P_{0}\right), \Delta^{p-n}\left(P_{1}\right), \ldots, \Delta^{p-n}\left(P_{n-1}\right)\right\}
$$

Proof. By Lemma 2, the weight of M_{i} is $i+1$ for $i<p$, while the weight of P_{i} is

$$
\begin{cases}p & i \text { odd or zero } \\ p-1 & i \text { even, } i>0\end{cases}
$$

Therefore the given polynomials all lie in K_{n}. Further, the degree of M_{i} is $\left\lceil\frac{i}{2}\right\rceil$ and the degree of P_{i} is $p-\left\lceil\frac{i}{2}\right\rceil$ which shows that the A-module generated by S_{n} has Hilbert series bounded above by the Hilbert series of K_{n} given in Proposition 14, with equality if and only if it is free. Therefore it is enough to prove that S_{n} is linearly independent over A.

Applying Lemmas 15 and 16, the lead monomials of S_{n} are

$$
\begin{gathered}
\left\{1, x_{2}, x_{1}, x_{1} x_{2}, \ldots, x_{1}^{l-1} x_{2}, x_{1}^{l}\right. \\
\left.x_{1}^{n-l-1} x_{2}^{p-n+1}, x_{1}^{n-l} x_{2}^{p-n}, \ldots, x_{1}^{n-2} x_{2}^{p-n+1}, x_{1}^{n-1} x_{2}^{p-n}, x_{1}^{n-1} x_{2}^{p-n+1}\right\}
\end{gathered}
$$

if n is odd, and

$$
\begin{gathered}
\left\{1, x_{2}, x_{1}, x_{1} x_{2}, \ldots, x_{1}^{l-2} x_{2}, x_{1}^{l-1}, x_{1}^{l-1} x_{2}\right. \\
\left.x_{1}^{n-l} x_{2}^{p-n}, x_{1}^{n-l} x_{2}^{p-n+1}, x_{1}^{n-l+1} x_{2}^{p-n} \ldots, x_{1}^{n-2} x_{2}^{p-n+1}, x_{1}^{n-1} x_{2}^{p-n}, x_{1}^{n-1} x_{2}^{p-n+1}\right\}
\end{gathered}
$$

if n is even.
In either case, we note that none of the claimed generators have lead term divisible by x_{3}, that each has x_{1}-degree $<p$, that there are at most two elements in S_{n} with the same x_{1}-degree, and that when this happens these elements have x_{2}-degrees differing by 1. Combined with Lemma 13, we see that for every possible choice of $f \in A$ and $g \in S_{n}$, the lead monomial of $f g$ is different. Therefore there cannot be any A-linear relations between the elements of S_{n}.

Remark 18. A generating set for K_{p-1} over a different system of parameters can be found in [5].

Corollary 19. Let $n \leq p$. Then $\mathbb{k}[V, W]^{G}$ is a Cohen-Macaulay module, generated over A by

$$
\left\{\Theta\left(M_{0}\right), \Theta\left(M_{1}\right), \ldots, \Theta\left(M_{n-1}\right), \Theta\left(P_{0}\right), \Theta\left(\Delta^{p-n}\left(P_{1}\right)\right), \ldots, \Theta\left(\Delta^{p-n}\left(P_{n-1}\right)\right)\right\}
$$

Proof. Follows from Theorem 17 and the proof of Proposition 4.

7. Application to transfers

The transfer ideal $\operatorname{Tr}^{G}(\mathbb{k}[V])$ is widely studied in invariant theory. In the notation of this article, we have $\operatorname{Tr}^{G}(\mathbb{k}[V])=I_{p-1}^{G}=I_{p-1}$. In this section, we use our work on covariants to give minimal $\mathbb{k}[V]^{G}$-generating sets of the ideals I_{n-1}^{G} for each $n=1,2, \ldots, p$
when $V=V_{2}$, and minimal A-generating sets of the ideals I_{n-1}^{G} for each $n=1,2, \ldots, p$ when $V=V_{3}$. We retain the notation of sections 5 and 6 .

Theorem 20. Let $V=V_{2}$ and $1 \leq n \leq p$. Then I_{n-1}^{G} is a free $\mathbb{k}[V]^{G}$-module, generated by x_{2}^{n-1}.

Proof. The same argument as in Lemma 15 implies that $\Delta^{n-1}\left(x_{1}^{n-1}\right)=\lambda x_{2}^{n-1}$ for some nonzero constant λ, so $x_{2}^{n-1} \in I_{n-1}^{G}$. Using (9) we see that

$$
H\left(I_{n-1}^{G}, t\right)=\frac{t^{n-1}}{(1-t)\left(1-t^{n}\right)}
$$

As this is the Hilbert series of the ideal $x_{2}^{n-1} \mathbb{k}[V]^{G}$, the result follows.
For $V=V_{3}$ we need to do a bit more work. We define a set of invariants

$$
T_{n-1}=\left\{\Delta^{n-1}\left(M_{n-1}\right)\right\} \cup\left\{\Delta^{p-1}\left(P_{i}\right): i \text { odd or zero, } i<n\right\} .
$$

Bearing in mind the weight of M_{n-1} is n, and the weight of each P_{i} above is p, it's clear that $T_{n-1} \subset I_{n-1}^{G}$. We claim that

Proposition 21. T_{n-1} generates I_{n-1}^{G} as an A-module.
Proof. Let $h \in I_{n-1}^{G}$. Then we can write $h=\Delta^{n-1}(f)$ for some $f \in \mathbb{k}[V]^{G}$ with weight n, and by Proposition 3 we have $\Theta(f) \in \mathbb{k}\left[V, V_{n}\right]^{G}$. By Corollary 19 we can find elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}, \beta_{0}, \beta_{1}, \ldots, \beta_{n-1} \in A$ such that

$$
\Theta(f)=\sum_{i=0}^{n-1} \alpha_{i} \Theta\left(M_{i}\right)+\sum_{i=0}^{n-1} \beta_{i} \Theta\left(\Delta^{p-n}\left(P_{i}\right)\right)
$$

Equating coefficients of w_{n} in the above we obtain

$$
\left.h=\sum_{i=0}^{n-1} \alpha_{i} \Delta^{n-1}\left(M_{i}\right)+\sum_{i=0}^{n-1} \beta_{i} \Delta^{p-1}\left(P_{i}\right)\right)
$$

but since $\Delta^{n-1}\left(M_{i}\right)=0$ for $i<n-1$ and $\Delta^{p-1}\left(P_{i}\right)=0$ when i is even and $i>0$, we get $h \in A T_{n}$ as desired.
T_{n-1} does not generate I_{n-1}^{G} freely over A. To see this, note that if T_{n-1} were free over A, the resulting module would have Hilbert series

$$
\frac{t^{l}+t^{p-l}+t^{p-l+1}+\ldots+t^{p}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)}
$$

But using (9) to calculate the Hilbert series of I_{n}^{G} yields

$$
\begin{equation*}
H\left(I_{n-1}^{G}, t\right)=\frac{t^{l}+t^{p-l}}{(1-t)\left(1-t^{2}\right)\left(1-t^{p}\right)} \tag{13}
\end{equation*}
$$

which is strictly smaller. We claim, however, that T_{n} is a minimal generating set. The first step in our argument requires more knowledge of certain lead monomials:

Lemma 22. Let $j \leq k$ with $j+k<p$. Then $\Delta^{k+j}\left(x_{1}^{k}\right)$ can be expressed as

$$
2^{-j}(j+k)!\binom{k}{j} x_{2}^{k-j} x_{3}^{j}+\mu_{j, k} x_{1} x_{2}^{k-j-2} x_{3}^{j+1}+\text { smaller terms }
$$

for some constant $\mu_{j, k} \in \mathbb{k}$, where $\mu_{j, k}=0$ if $j-k<2$. In particular, the lead monomial of $\Delta^{k+j}\left(x_{1}^{k}\right)$ is $x_{2}^{k-j} x_{3}^{j}$.

Proof. For shorthand we write

$$
\lambda_{j, k}=2^{-j}(j+k)!\binom{k}{j}
$$

We begin by showing, for all $0<j \leq k$, that

$$
\begin{equation*}
\lambda_{j, k+1}=(j+k+1) \lambda_{j, k}+\binom{j+k+1}{2} \lambda_{j-1, k} \tag{14}
\end{equation*}
$$

The author wishes to thank Fedor Petrov for pointing out this fact. To prove it, note that

$$
\begin{aligned}
& \quad\binom{j+k+1}{2} \lambda_{j-1, k}+(j+k+1) \lambda_{j, k} \\
& =\frac{(j+k+1)(j+k)}{2} 2^{-j+1}(j+k-1)!\binom{k}{j-1}+(j+k+1) 2^{-j}(j+k)!\binom{k}{j} \\
& =2^{-j}(j+k+1)!\left(\binom{k}{j-1}+\binom{k}{j}\right) \\
& =2^{-j}(j+k+1)!\binom{k+1}{j} \\
& =\lambda_{j, k+1}
\end{aligned}
$$

as required.
The proof is by induction on j. First suppose $j=0$. We must show that

$$
\begin{equation*}
\Delta^{k}\left(x_{1}^{k}\right)=k!x_{2}^{k}+\mu_{0, k} x_{1} x_{2}^{k-2} x_{3}+\text { smaller terms } \tag{15}
\end{equation*}
$$

We prove this by induction on k. The case $k=1$ is clear (with $\mu_{0,1}=0$), so let $k \geq 1$. Then we have

$$
\begin{aligned}
\Delta^{k+1}\left(x_{1}^{k+1}\right) & =\Delta^{k+1}\left(x_{1}^{k} \cdot x_{1}\right) \\
& =\sum_{i=0}^{k+1}\binom{k+1}{i} \Delta^{k+1-i}\left(x_{1}^{k}\right) \sigma^{i}\left(\Delta^{i}\left(x_{1}\right)\right) \\
& =x_{1} \Delta^{k+1}\left(x_{1}^{k}\right)+(k+1)\left(x_{2}+x_{3}\right) \Delta^{k}\left(x_{1}^{k}\right)+\binom{k+1}{2} x_{3} \Delta^{k-1}\left(x_{1}^{k}\right)
\end{aligned}
$$

Now by Lemma 15 we have

$$
\Delta^{k-1}\left(x_{1}^{k}\right)=k!x_{1} x_{2}^{k-1}+f
$$

for some $f \in \mathbb{k}[V]$ with lead monomial $\leq x_{2}^{k}$. By induction we have

$$
\Delta^{k}\left(x_{1}^{k}\right)=k!x_{2}^{k}+\mu_{0, k} x_{1} x_{2}^{k-2} x_{3}+\text { smaller terms }
$$

and

$$
\begin{aligned}
\Delta^{k+1} x_{1}^{k}= & k!\Delta\left(x_{2}^{k}\right)+\mu_{0, k} x_{3} \Delta\left(x_{1} x_{2}^{k-2}\right)+\text { smaller terms } \\
= & k!x_{3}\left(x_{2}^{k-1}+x_{2}^{k-2} \sigma\left(x_{2}\right)+\ldots+\sigma\left(x_{2}\right)^{k-1}\right) \\
& +\mu_{0, k} x_{3}\left(x_{2} \sigma\left(x_{2}^{k-2}\right)+x_{1} \Delta\left(x^{k-2}\right)\right)+\text { smaller terms } \\
= & \left(k . k!+\mu_{0, k}\right) x_{2}^{k-1} x_{3}+\text { smaller terms. }
\end{aligned}
$$

So, ignoring terms smaller than $x_{1} x_{2}^{k-1} x_{3}$ we have

$$
\begin{aligned}
\Delta^{k+1}\left(x_{1}^{k+1}\right)= & \left(k . k!+\mu_{0, k}\right) x_{1} x_{2}^{k-1} x_{3}+(k+1)!x_{2}^{k+1}+(k+1) \mu_{0, k} x_{1} x_{2}^{k-1} x_{3} \\
& +k!\binom{k+1}{2} x_{1} x_{2}^{k-1} x_{3} \\
= & (k+1)!x_{2}^{k+1}+\left(k!\left(k+\binom{k+1}{2}\right)+(k+2) \mu_{0, k}\right) x_{1} x_{2}^{k-1} x_{3}
\end{aligned}
$$

from which the claim (15) follows.
Now suppose $j>0$. We proceed by induction on k. The initial case is $k=j$, so we must first show that

$$
\Delta^{2 k}\left(x_{1}^{k}\right)=2^{-k}(2 k)!x_{3}^{k} .
$$

We prove this by induction on k. The result is clear when $k=1$. Suppose that $k \geq 1$, then we have by (2)
$\Delta^{2 k+2}\left(x_{1}^{k+1}\right)=x_{1} \Delta^{2 k+2}\left(x_{1}^{k}\right)+(2 k+2)\left(x_{2}+x_{3}\right) \Delta^{2 k+1}\left(x_{1}^{k}\right)+\frac{(2 k+2)(2 k+1)}{2} x_{3} \Delta^{2 k}\left(x_{1}^{k}\right)$.
But by Lemma 5 , the weight of x_{1}^{k} is $2 k+1$, so the first two terms vanish. By induction we are left with

$$
\Delta^{2 k+2}\left(x_{1}^{k+1}\right)=\frac{(2 k+2)(2 k+1)}{2} x_{3} \frac{(2 k)!}{2^{k}} x_{3}^{k}=\frac{(2 k+2)!}{2^{k+1}} x_{3}^{k+1}
$$

as required.
Now suppose $k \geq j$, then we have

$$
\begin{aligned}
\Delta^{j+k+1}\left(x_{1}^{k+1}\right)= & \Delta^{j+k+1}\left(x_{1}^{k} \cdot x_{1}\right) \\
= & \sum_{i=0}^{j+k+1}\binom{j+k+1}{i} \Delta^{j+k+1-i}\left(x_{1}^{k}\right) \sigma^{i}\left(\Delta^{i}\left(x_{1}\right)\right) \\
= & x_{1} \Delta^{j+k+1}\left(x_{1}^{k}\right)+(j+k+1)\left(x_{2}+x_{3}\right) \Delta^{j+k}\left(x_{1}^{k}\right) \\
& +\binom{j+k+1}{2} x_{3} \Delta^{j-1+k}\left(x_{1}^{k}\right)
\end{aligned}
$$

Now by induction on k we have

$$
\Delta^{j+k}\left(x_{1}^{k}\right)=\lambda_{j, k} x_{2}^{k-j} x_{3}^{j}+\mu_{j, k} x_{1} x_{2}^{k-j-2} x_{3}^{j+1}+\text { smaller terms } .
$$

So

$$
\begin{aligned}
\Delta^{j+k+1}\left(x_{1}^{k}\right)= & \lambda_{j, k} x_{3}^{j} \Delta\left(x_{2}^{k-j}\right)+\mu_{j, k} x_{3}^{j+1} \Delta\left(x_{1} x_{2}^{k-j-2}\right)+\text { smaller terms } \\
= & \lambda_{j, k} x_{3}^{j}\left(x_{3}\right)\left(x_{2}^{k-j-1}+x_{2}^{k-j-2} \sigma\left(x_{2}\right)+\ldots+\sigma\left(x_{2}\right)^{k-j-1}\right) \\
& +\mu_{j, k} x_{3}^{j+1}\left(x_{2} \sigma\left(x_{2}^{k-j-2}\right)+x_{1} \Delta\left(x_{2}^{k-j-2}\right)\right)+\text { smaller terms } \\
= & \left(\lambda_{j, k}(k-j)+\mu_{j, k}\right) x_{3}^{j+1} x_{2}^{k-j-2}+\text { smaller terms. }
\end{aligned}
$$

Also by induction on j we have

$$
\Delta^{j-1+k}\left(x_{1}^{k}\right)=\lambda_{j-1, k} x_{2}^{k-j+1} x_{3}^{j-1}+\mu_{j-1, k} x_{1} x_{2}^{k-j-1} x_{3}^{j}+\text { smaller terms } .
$$

So, ignoring terms smaller than $x_{1} x_{2}^{k-j-1} x_{3}^{j+1}$ we have

$$
\begin{aligned}
\Delta^{j+k+1}\left(x_{1}^{k+1}\right)= & \left(\lambda_{j, k}(k-j)+\mu_{j, k}\right) x_{1} x_{3}^{j+1} x_{2}^{k-j-2} \\
& +(j+k+1)\left(\lambda_{j, k} x_{2}^{k+1-j} x_{3}^{j}+\mu_{j, k} x_{1} x_{2}^{k-j-1} x_{3}^{j+1}\right) \\
& +\binom{j+k+1}{2}\left(\lambda_{j-1, k} x_{2}^{k-j+1} x_{3}^{j}+\mu_{j-1, k} x_{1} x_{2}^{k-j-1} x_{3}^{j+1}\right) \\
= & \left((j+k+1) \lambda_{j, k}+\binom{j+k+1}{2} \lambda_{j-1, k}\right) x_{2}^{k+1-j} x_{3}^{j}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\lambda_{j, k}(k-j)+(j+k+2) \mu_{j, k}\right. \\
& \left.+\left(\begin{array}{cc}
j+k+1 & \\
= & 2
\end{array}\right) \mu_{j-1, k}\right) x_{1} x_{2}^{k-j-1} x_{3}^{j+1} \\
= & \lambda_{j, k+1} x_{2}^{k+1-j} x_{3}^{j} \\
& +\left(\lambda_{j, k}(k-j)+(j+k+2) \mu_{j, k}+\binom{j+k+1}{2} \mu_{j-1, k}\right) x_{1} x_{2}^{k-j-1} x_{3}^{j+1}
\end{aligned}
$$

where we used the observation at the beginning of the proof in the final step.
This completes the proof of the formula for $\Delta^{j+k}\left(x_{1}^{k}\right)$. Finally, note that $\lambda_{j, k} \neq 0$ modulo p if $j+k<p$.

We can use this result, along with Lemma 16 to determine the lead monomial of each element of T_{n-1} : we have

- $L M\left(\Delta^{n-1} M_{n-1}\right)=x_{3}^{l}$;
- $L M\left(\Delta^{p-1}\left(P_{0}\right)\right)=x_{2}^{p}$;
- $L M\left(\Delta^{p-1}\left(P_{i}\right)\right)=x_{2}^{p-i} x_{3}^{(i-1) / 2}$ when i is odd.

In particular for each $i<n$ odd or $i=0$ we have that

$$
\Delta^{p-1}\left(P_{i}\right) \notin A\left(\Delta^{n-1}\left(M_{n-1}\right), \Delta^{p-1}\left(P_{j}\right): j>i, \mathrm{j} \text { odd }\right),
$$

which is the ideal generated by the elements of T_{n-1} with degree smaller than the degree of $\Delta^{p-1}\left(P_{i}\right)$, since each of these had lead monomial divisible by a larger power of x_{3} than $(i-1) / 2$. This shows that T_{n-1} is indeed a minimal generating set.

References

[1] Abraham Broer, Jianjun Chuai, Modules of covariants in modular invariant theory, Proc. Lond. Math. Soc. (3) 100 (3) (2010) 705-735.
[2] Claude Chevalley, Invariants of finite groups generated by reflections, Am. J. Math. 77 (1955) 778-782.
[3] Leonard Eugene Dickson, On Invariants and the Theory of Numbers, Dover Publications, Inc., New York, 1966.
[4] Jonathan Elmer, Symmetric powers and modular invariants of elementary abelian p-groups, J. Algebra 492 (2017) 157-184.
[5] Deniz Erdemirci Erkuş, Uğur Madran, On generalized invariants of cyclic groups, J. Pure Appl. Algebra 219 (6) (2015) 2463-2470.
[6] J. Hartmann, Transvection free groups and invariants of polynomial tensor exterior algebras, Transform. Groups 6 (2) (2001) 157-164.
[7] Julia Hartmann, Anne V. Shepler, Reflection groups and differential forms, Math. Res. Lett. 14 (6) (2007) 955-971.
[8] M. Hochster, John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Am. J. Math. 93 (1971) 1020-1058.
[9] Ian Hughes, Gregor Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Commun. Algebra 28 (4) (2000) 2059-2088.
[10] Barbara R. Peskin, Quotient-singularities and wild p-cyclic actions, J. Algebra 81 (1) (1983) 72-99.
[11] R. James Shank, S.A.G.B.I. bases for rings of formal modular seminvariants [semi-invariants], Comment. Math. Helv. 73 (4) (1998) 548-565.
[12] G.C. Shephard, J.A. Todd, Finite unitary reflection groups, Can. J. Math. 6 (1954) 274-304.

[^0]: E-mail address: j.elmer@mdx.ac.uk.

