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ABSTRACT
Visual attribution (VA) in relation to medical images is an essential aspect of modern automation-
assisted diagnosis. Since it is generally not straightforward to obtain pixel-level ground-truth labelling
of medical images, classification-based interpretation approaches have become the de facto standard
for automated diagnosis, in which the ability of classifiers to make categorical predictions based on
class-salient regions is harnessed within the learning algorithm. Such regions, however, typically con-
stitute only a small subset of the full range of features of potential medical interest. They may hence
not be useful for VA of medical images where capturing all of the disease evidence is a critical require-
ment. This hence motivates the proposal of a novel strategy for visual attribution that is not reliant on
image classification. We instead obtain normal counterparts of abnormal images and find discrepancy
maps between the two. To perform the abnormal-to-normal mapping in unsupervised way, we em-
ploy a Cycle-Consistency Generative Adversarial Network, thereby formulating visual attribution in
terms of a discrepancy map that, when subtracted from the abnormal image, makes it indistinguish-
able from the counterpart normal image. Experiments are performed on three datasets including a
synthetic, Alzheimer’s disease Neuro imaging Initiative and, BraTS dataset. We outperform baseline
and related methods in both experiments.

1. Introduction
Medical image classification is becoming a vital aspect

of patient stratification, disease progression assessment, treat-
ment response and disease severity grading within a modern
medical setting. Consequently, it is increasingly important
for practitioners to understand the salient information un-
derlying these automated classifications, which in turn mo-
tivates the study of visual attribution (VA) [1, 2, 3, 4, 5].
The need for VA arises because machine diagnosis typically
differs from that of human experts in key respects; for in-
stance, a radiologist is trained via observation of many ab-
normal/normal images such that they are able to transfer their
internally-learned representation of the disease to novel im-
age settings. Their training hence enables them to analyze a
image by finding abnormalities that differ from a conjectured
counterpart normal representation of the equivalent healthy
patient. A supervised classification system, by contrast, will
typically seek to identify key features indicative of the dis-
tinction between normal and abnormal tissue [1].

Inspired by this conjectured expert modus operandi, we
seek a methodology capable of the production of a counter-
part normal image in relation to an input image such that
we may use this ‘normal’ image to analyze the input image.
By accompanying input images with their counterpart nor-
mal images it hence becomes possible to provide a visual
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analogy-based counterfactual explanation for the automated
diagnostic decision.

Visual attribution is currently addressed by initially train-
ing a deep neural network (DNN) based image classifier and
then using one of the following two approaches: 1) applica-
tion of forward propagation (or activation) to find regions of
the input image responsible for making predictions (e.g. [1],
or else 2) using backpropagation to analyze the gradient of
the prediction with respect to the input image [2]. Neural
network classification based visual attribution approaches
consequently tend to exhibit common limitations, potentially
leading to undesirable outcomes in certain settings. In par-
ticular, since neural network classifiers are trained to mini-
mize mutual information between inputs and outputs, they
are implicitly conditioned to utilise the fewest possible input
features. Consequently, DNN classifiers typically make pre-
dictions based on certain salient regions rather than entire
objects of interest. In other words, a classifier may disregard
low-discrimination features when dominant features with a
sufficiency of information about the target are available (an
early study [6] demonstrated that if evidence of a particular
class is present in multiple regions of an image, e.g. mul-
tiple indicators of disease within a medical image, a DNN
classifier will likely disregard a significant fraction of this
evidence).

Within the domain of medical image diagnosis, by con-
trast, it is highly desirable to visually attribute evidence of a
disease in such a way as to capture all of the disease effects
present. This hence motivates us to propose a novel strategy
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for visual attribution that is not reliant on image classifica-
tion, as distinct themajority of extant techniques. We instead
aim to obtain normal counterparts1 of abnormal images and
find discrepancy maps between the two.

To do this, we leverage, as a stepping-off point, a recently-
proposed generative adversarial network architecture (ANT-
GAN) [7] capable of generating normal-looking correlates
(if not strict counterparts) of the abnormal images. Since
it is generally unrealistic to obtain contemporaneous normal
and abnormal pairs practically, ANT-GAN learns to perform
the abnormal-to-normal mapping in unsupervised way via
the application of the Cycle-Consistecy GAN principle, in
which an inversemapping and cycle consistency (i.e. forwards-
backwards) loss is introduced to the GAN in order to tackle
tasks for which paired training data does not exist.

By utilizing and extending this capacity of cycle-consistent
GANs to produce abnormal-to-normal translation medical
image pairs, we shall demonstrate that it is possible to re-
formulate visual attribution in terms of a discrepancy map
that, when subtracted from the abnormal image, will make
it indistinguishable from the counterpart normal image. To
this end, we propose a class of generative models for learn-
ing discrepancy maps as a function of abnormal images. In
particular, we propose an VA-extended ANT architecture,
dubbedVisually-AttributedAbnormal-to-Normal Translation
GAN (VANT-GAN), that learns to generate discrepancymaps
simultaneously to learning to perform abnormal-to-normal
translation.

Our approach thus aims to improve on the Visual Attri-
bution GAN (VA-GAN) method proposed in [8], in which
a map is learned that, when added into an abnormal image,
renders it indistinguishable from images of the normal class.
Since themap-generating function in the VA-GAN case does
not aim to produce the normal counterpart of an abnormal
image but rather any normal-looking image, the learned im-
age translation may depict discrepancies irrelevant to medi-
cal diagnosis. We shall, in contrast, set out to constrain the
unconstrained abnormal-to-normal image translation func-
tion of [8] by generating normal counterparts of abnormal
images in order to reduce false-positive visual attributions.

2. Current State-of-the-Art in Medical Visual
Attribution
Visual attribution (VA) in relation to medical images is

currently performed predominantly via the Class Activation
Map (CAM) [1] paradigm of classifier explanation. CAM
in its original form used global pooling to highlight the dis-
criminative regions of the input image most important to the
CNN in reaching a decision; however, the method was later
improved by replacing global average pooling with gradient-
based feature attribution (referred to as grad-CAM [2]). Since
grad-CAM tends to produce a coarse-grained visualization,
the authors in [3] proposes guided grad-CAM that utilises
a guided-backpropagative approach. A similar attempt to

1That is, visual counterparts that would be indistinguishable to the ab-
normal image, were it not to exhibit the effects of disease.

enhance the resultant maps, smooth-Grad [4], adds visual
noise of differing magnitudes to an image, taking the aver-
age of the produced sensitivity maps for the final enhanced
mapping. CAM-based VA techniques have found wide use
across the medical domain e.g. in digital pathological im-
ages for bladder cancer prediction [5], prostate cancer detec-
tion [9], benign and malignant cutaneous tumors classifica-
tion [10], Covid-19 detection fromCT scans [11], Alzheimer
diagnosis in MRI images [12], malarial parasite detection
in thin blood-smear images [13], bone age assessment [14],
interpretable CNN based cervical cancer [15], brain gen-
der detection [16], tuberculosis visualization in Chest X-rays
[17, 18], diabetic retinopathy classification and visualization
[19, 6, 20].

Despite their widespread adoption, CAM-basedmethods
are limited in their resolution by the final layer of the model.
Consequently, post-processing is often required to enhance
the output resolution. A further issue is that the DNN clas-
sifiers employed in CAM-based methods tend to preferen-
tially select highly discriminative features, while ignoring
low-discrimination features leading to imperfect VA [8].

Tomitigate the disadvantages of CAM-based techniques,
a generative VA method for medical images was proposed
[8]. Themethod uses a generative adversarial network (GAN)
with Wasserstein loss function to transform abnormal medi-
cal images so as tomake them indistinguishable from normal
medical images. Although the method outperforms CAM-
based techniques on medical images, the generated VA often
contains undesirable artifacts as a consequence of the uncon-
strained abnormal-to-normal translation; that is, since nor-
mal and abnormal images are not aligned, the generator also
learns to attribute irrelevant discrepancies between unpaired
images. In order to constrain the abnormal-to-normal trans-
lation, a GAN architecture employing a cycle-consistent loss
function was proposed in [7]. Here, VA is expressed via the
difference between an abnormal image with corresponding
normal image. The main disadvantage of the method, how-
ever, is its requirement of post-processing in order to deal
with the resolution mismatch of abnormal and synthesised
normal images.

In order to addressed these limitations in the current SotA
relating to GAN-based medical image VA, we seek in this
paper to develop an architecture that, rather than conducting
explicit abnormal-to-normal translation, instead exhibits the
capacity to learn a VA map similar to that of the Residual-
GAN [7], that when added to an abnormal image, will di-
rectly translate it into the corresponding normal image. How-
ever, in commonwith [7], we employ cyclic-consistency loss
function to constrain the abnormal-to-normal image transla-
tion.

3. Proposed VANT-GAN Methodology
We indicate normal medical images by xn and abnormal

images by xa. We further assume that the xn and xa ob-
servations are sampled from distributions pn(x) and pa (x),respectively, and that an abnormal image differs from its cor-
responding normal image (i.e. from same patient) only by
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Figure 1: VANT-GAN model diagram with an example image from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
dataset. Four networks are employed: a generator trained to output discrepancy maps, a discriminator trained to discriminate
normal images, a generator trained to synthesise abnormal images given a generated normal image, and a discriminator to
discriminate abnormal images.

the characteristic disease markers. Within this setting, when
given an abnormal image as input, we seek to produce a dis-
ease effect map/visual attribution map that contains all of
the features that distinguish an abnormal image xai from its
counterpart normal image xni . In other words, we wish to
generate a map that, when subtracted from the abnormal im-
age xai , produces an image indistinguishable from its coun-
terpart normal image xni . Mathematically,

xni = xai −M(xai ) (1)
where xni , xai andM(xai ) are of the same dimensions.

Ideally, to model the functionM , a data-set consisting of
normal and abnormal image pairs is required, however, this
is something that it is generally unrealistic to obtain in real
clinical practice. A previous study proposed VAGAN (Vi-
sual Attribution Generative Adversarial Network) for learn-
ing the function M in an under-constrained setting; i.e. by
aiming to translate an abnormal image into an arbitrary nor-
mal image, rather than a strict counterpart normal image.
Consequently, the disease effect map M produced by this
approach may contain many false positives, reflective of ir-
relevant discrepancies between the unpaired normal and ab-
normal images. We instead build on recent developments
in abnormal-to-normal image translation (ANT) in order to
learn anM capable of translating an abnormal image into its
counterpart normal image, rather than an arbitrary normal-
looking image. The ANT model is described in Subsection
3.1 and theM model in Subsection 3.2.
3.1. Abnormal-To-Normal Translation

Sun et. al proposed in [7] a generative adversarial net-
work based ANT model (a.k.a. ANT-GAN) for generating
normal counterparts to abnormal images. The main com-

ponent of their model is a generator A2N that takes, as in-
put, an abnormal image x and produces as output the normal
counterpart A2N (x). For learning to converge, the genera-
tor must produce a realistic normal x̂n = A2N (xa) capable
of fooling the normal discriminator DN . The cycle con-
sistency regularization principle is leveraged via a generator
N2A and a discriminator DA that constrain the model to
produce a counterpart normal. The ANT-GAN model can
thus be defined as an objective function consisting of three
distinct parts: a GAN model GAN , a cycle-consistent loss
CC , and an anomaly mask loss AM . Mathematically,

 = GAN + �CCCC + �AMAM (2)
whereGAN is used to simultaneously train generatorsA2Nand N2A and is defined as follows:

GAN = Epa
[

lnDA(xa)
]

+ Epn
[

lnDN (xn)
]

+

Epn[ln(1−DA(N2A(xn)))]+Epa
[

ln (1 − DN (A2N (xa)))
]

(3)
The cyclic-consistent loss C is used to transform nor-

mal and abnormal images into one another, and helps in the
learning of A2M and N2A:

CC = Epa
[

|

|

|

|

|

|

N2A
(

A2N (xa)
)

− xa||
|

|

|

|2

]

+ Epn
[

|

|

|

|

|

|

A2N
(

N2A (xn)
)

− (A2N (xa))||
|

|

|

|2

]

(4)
CC allows additional information to be transferred be-

tween abnormal and normal medical images while learning
their corresponding generators. The first term aims to recon-
struct a given abnormal image following its translation into
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a normal image, and the second term aims to reconstruct a
given normal image following its translation into an abnor-
mal image.

AM is used to isolate and modify the disease markers
within the image while keeping the normal region within the
image unchanged. AM is defined as:

AM = Epa(x)
[

|

|

|

|

|

|

(

1 −Mx
)

⊙ A2N (xa) − xa||
|

|

|

|2

]

(5)
where ⊙ denotes element-wise multiplication, 1 represents
an input-sized all-onesmatrix andMx is an image-sizedmarker
matrix.
3.2. VANT-GAN Visual Attribution Map

Generation Model
In contrast to the ANT-GAN model, in which a genera-

tor explicitly synthesizes a normal counterpart from an ab-
normal image as A2N ∶ xai → xni , VANT-GAN seeks
to embody a generator A2M capable of taking an abnor-
mal image xa as input so as to produce a map, Mxa , via
A2M ∶ xai → Mxa , that when subtracted from the ab-
normal image, xai , outputs a normal image xni . If the gener-ator A2M has converged effectively, then the discriminator
DN ideally cannot distinguish between the real and fake (or
synthesized) xni . In contrast to VAGAN’s under-constrainedmap generator, VANT-GAN further embodies a cycle con-
sistency loss in order to constrain the generatorA2M so as to
be able to translate an abnormal image into its normal coun-
terpart. To achieve cycle consistency, VANT-GAN hence
learns an additional generator N2A by using discriminator
DA in a similar manner to ANT-GAN.

To achieve this, we import ANT-GAN’s loss function in
Equation 3 into V ANT−GAN as follows:

V ANT−GAN = Epa
[

lnDA(xa)
]

+Epn
[

lnDN (xn)
]

+

Epn
[

ln (1 − DA(N2A(x
n)))

]

+

Epa
[

ln (1 − DN (xa + A2M (xa)))
] (6)

We redefine the cycle-consistencyV ANT−CC by chang-
ing CC as follows:

V ANT−CC = Epa
[

|

|

|

|

|

|

N2A
(

xa + A2M (xa)
)

− xa||
|

|

|

|1

]

+Epn
[

|

|

|

|

|

|

xa + A2M
(

N2A (xn)
)

−
(

xa + A2M (xa)
)

|

|

|

|

|

|1

]

(7)
The cycle consistency lossV ANT−CC (Equation 7) con-

sists of two terms: first, forward cycle consistency which
aims to bring back an abnormal image xa after translating
it to its counterpart normal image xn, i.e. xa → xa −
A2M (xa) → N2A(xa−A2M (xa)), and second, backward
cycle consistency which aims to reproduce xn after translat-
ing it to xa, i.e. xn → N2A(xn) → xn = xa−A2M (N2A(xn)).

Finally, we define a loss V ANT that optimizes VANT-
GAN as follows:

V ANT = V ANT−GAN + �V ANT−CC (8)
Once VANT-GAN is trained, we retain only the genera-

tor A2M and discard the generator N2A and discriminators
DA and DN . In the application stage, we thus input an in-
stance of the positive class to the network A2M in order to
obtain the visual attribution mapM(xa).

The proposed model is illustrated in Figure 1.

4. Implementation
4.1. Network Architecture

The generator network is adapted from [21], which demon-
strates excellent results in unpaired image-to-image transla-
tion. This network has three components: an encoder, a set
of residual blocks, and a decoder. The encoder shrinks the
representation of input imagewhile increasing the number of
channels. This encoder is comprised of three Convolution-
InstanceNorm-Relu layers. The first convolution layer in
the encoder is of kernel_size=7, stride=1, with k=64 fil-
ters. The remaining two convolutions are of kernel_size=3,
stride=2, with k=128 filters. We utilize the concept of re-
flection padding to reduce the artefacts produced by these
convolution layers. The encoder block is then passed to a set
of either 6 or 9 residual blocks with k=256 filters (9 resid-
ual blocks are used where the input image size is greater
than 128 by 128 pixels). The output of this residual block is
then re-expanded in the decoder section via two transpose-
convolutions with k filters, each followed by an InstanceNor-
malization and a Relu layer. An additional convolutional
layer is applied to produce the final output in RGB format.
For our Discriminator network, we utilize the concept of
PatchGAN as adopted in [22]. PatchGAN was introduced to
identify whether overlapping image patches are real or fake.
We use four convolution layers with kernel_size=4, stride=2
and k increasing filters followed by InstanceNormalization
and LeakyRelu activation with a slope of 0.2. Finally, the
last convolution layer is applied with kernel_size=1 to pro-
duce a 1-dimensional output.
4.2. Training Details

To stabilize the training we use least-square loss instead
of negative log likelihood as adopted in [23]. Following the
strategy of [24] we update the discriminator using a buffer of
50 previously generated outputs. The training procedure is
carried out on a batch of size 1 via the Adam optimizer set to
a 0.0002 initial learning rate, linearly decaying to zero over
half of the total epochs. Initial weights are initialized ran-
domly from a Gaussian distribution of (0, 0.02). The loss
weights (wcycle=10 andwidentity=0.5wcycle) are copied fromour baseline architecture [21].

5. Experiments
We perform experiments on a synthetic dataset and two

publicly available medical imaging datasets, the ADNI and
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BratS dataset. We evaluate the proposed VANT-GAN VA
approach against the immediately comparable visual expla-
nation methods indicated in the Introduction, namely; CAM
[1], gradCAM [2], and VA-GAN [8]. Note that, whereas
CAM and gradCAM utilize classification networks, VA-
GAN,ANT-GANand the proposedVANT-GANemploy image-
translation networks. To further assist comparison, all tested
networks are built using a similar discriminator architecture
to that of the proposed method. However, for CAM meth-
ods, we replace the last two layers with a global average
pooling layer followed by a dense prediction in order to cre-
ate class-specific activation maps for visual explanation, as
described in [1]. We quantitatively compare the respective
methodologies using the Dice-Coefficient, Intersection over
Union (IoU) and normalized cross correlation (NCC) eval-
uation metrics for synthetic and BraTs since ground truths
are available for these datasets. We follow [8] to assess per-
formance of the compared models on the ADNI dataset. As
ground truths are not available for the ADNI dataset, NCC
score is used to evaluate the models.
5.1. Experiments on Synthetic Data
5.1.1. Synthetic dataset

Alongside the indicated real medical imaging datasets,
we evaluate the proposed and related VA approaches on a
synthetically generated dataset consisting of 10000 128x128
images separated into two label classes such that one half
of the dataset represents the healthy control group (label 0)
and the remaining half represents the patient group (label 1).
The images are generated via the data generation process set
out in [8]. Healthy control group images are constructed by
convolution of random iid Gaussian noise with a Gaussian
blurring filter. Images of the patient control group are pro-
duced via the same noise generation process; however, they
also contain effects attributable to one of two distinct disease
processes. These effects are visually-manifested through in-
sertion of a circle in the top left side of the image (disease
process A), or a circle at the bottom right-hand side (dis-
ease process B) (note that both diseases processes share the
same Class 1 label). The circles are placed randomly with
a maximum 5-pixel offset in each direction via uniform ran-
dom sampling in order to add further visual variety. Samples
images are shown in Figure 2.
5.1.2. Evaluation Protocol

We divide the data on the basis of a 80-20 train/test set
split, following the protocol of [8]. For quantitative evalu-
ation, we calculate IoU and Dice score between the disease
maps and the visual explanation. We use the maximum pixel
value as a threshold to convert the visual explanation map
into a binary mask. Following [8], we also employ the nor-
malized cross correlation (NCC) measure between ground-
truth maps and the predicted visual explanation maps.
5.1.3. Results

Quantitative results with respect to the synthetic data are
reported in Table 1 for all of the tested methods. Results
clearly indicate the relative supremacy of the proposedmethod;

Figure 2: Synthetic data examples. Left of the dotted line
are samples of Class 1 (i.e. the disease class) and right of
the dotted line are samples of Class 0 (i.e. the normal class).
The upper row shows the input and the bottom row shows the
ground truth.

Table 1

IoU, Dice Scores and NCC Scores of evaluated methods on
synthetic data.

Method IoU Dice

CAM 10.4 18.8

gradCAM 30.7 47

VA-GAN 872 92.8

ICAM 89.3 93.1

VANT-GAN 91.4 95.5

examples of visual explanation maps for all of the methods
are shown in Figure 3. It is apparent that the CAM-based
methods tend to focus on areas where the circles are dis-
tributed uniformly, and are unable to provide fine-grained
visualization maps (the effect can clearly be observed from
the visualization map of the CAM-based methods in Figure
3). It is further apparent that VA-GAN produces noisy vi-
sualization maps due to its under-constrained mapping from
unaligned noisy images; the noisy maps contain many false
positives which degrade VA-GAN performance (this effect
can be seen in the visual explanation map of VA-GAN from
Figure 3). Contrarily, the proposed method produces far
more plausible visual explanation maps primarily due to the
constrainedCycleGAN-basedmapping, VANT-GANcan thus
better describe the input image w.r.t. the generated CI.
5.2. Experiments on Medical Imaging Data
5.2.1. Datasets

Alzheimer’s Disease Neuroimaging Initiative dataset:
From the ADNI cohort, we selected 5778 3D T-1 weighted
MR images of 1288 subjects with two of the labels: MCI
(label 0) or AD (label 1). A 1.5T magnet is used to obtain
2839 of the total images with the rest of the images obtained
using a 3Tmagnet. A number of subjects are converted from
MCI to AD over the years, scanned at regular intervals. Al-
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Figure 3: Examples of visualization maps of the compared methods on synthetic data.

though these correspondences are not used for the training
here, however, we exploit their advantages.

Standard operations in the FSL toolbox are used to pre-
process each of the images in data; this pre-processing in-
cludes reorientation, registering images to MNI space, crop-
ping and correcting inhomogeneous fields. The ROBEX al-
gorithm is then applied to skull-strip the images. Finally,
the images are resampled to 1.3 mm3, followed by normal-
ization to a range between -1 to 1. The final voxel size is
128x256x256.

BraTs dataset: The dataset contains brain MRIs clas-
sified into normal and tumorous classes. We preprocess the
data to filter out MRI slices that contain the full brain. The
dataset contains 3174 images where 2711 are tumorous and
463 are non-tumorous. We split each set into 80-20 train/test
sets, resulting in 2538 training images and 636 testing im-
ages. The filtered slices are resized to 256 × 256 and the
data normalized to the 0-to-1 range. We further increase the
data size by performing run-time augmentation on training
sets through random jittering and mirroring. For augment-
ing, the images are scaled to 286 ×286 and then randomly
cropped to 256 × 256.
5.2.2. Evaluation

We use the visual explanation maps generated by the net-
works for semantic segmentation of disease affected regions.
We split each dataset into 80-20 train/test sets. To gauge the
efficacy of the respective networks, we employ mean IoU
and Dice coefficient (i.e. the standard metrics to evaluate se-
mantic segmentation methods). To calculate these metrics,
we convert the visual explanation maps into binary masks.
The highest value of the explanation map is used as a thresh-
old to convert the visual explanation map into a binary mask.
5.2.3. Results

Table 2 sets out quantitative results for each of these ex-
periments. The proposed method significantly outperforms
the other methods. Examples of the visual explanation maps
for the ADNI data are as depicted in Figure 4.

The results and findings are consistent with the synthetic

CAM ICAM VANT-GAN Grad-CAM VA-GAN

Figure 4: Example visualization maps of the compared meth-
ods with respect to the ADNI dataset
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Figure 5: Example of Normal and Abnormal Images from the
ADNI dataset

data. We believe that CAM-based methods show limited
performance as a result of focusing only on a minimal set
of the most discriminative features while disregarding the
rest. The visual explanations of the CAM method are hence
noisy, low resolution and often falsely-oriented. gradCAM
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improves on the explanations of the CAM approach in terms
of noise and resolution. However, the gradCAM explanation
region is much smaller than that of the ground truth. VA-
GAN can detect edges around the infected area; however, the
explanation is appreciably noisy (especially so on zooming-
in the visualization map). ICAM reduces the noise in the vi-
sual attribution map; however, the explanation is not exclu-
sive in terms of its coverage of the affected region. The pro-
posed VANT-GAN method, by contrast, outperforms other
methods in its exclusive coverage of the affected region.

We also compare our method with the baseline ANT-
GANmethod, as shown in the visual results in Figure 6. For
this comparison, we use ANT-GAN to translate an abnormal
image into normal counterpart and then subtract the abnor-
mal image from the normal image to obtain the visual attri-
bution map. Finally, we apply a threshold on the residual
image to obtain the reported results. It may be seen that, as
ANT-GAN does not explicitly learn a visual attributionmap,
it is unable to cope with minor changes (such as translation)
that typically occur during the translation phase. Further,
ANT-GAN cannot explicitly regularize the characteristics of
the visual attribution map (since visual attribution is implic-
itly produced as by-product of ANT-GAN’s abnormal-to-
normal translation, we cannot explicitly regularize the shape
of the visual attribution map).

Heatmap

(ANT-GAN)

Translated

(ANT-GAN)Abnormal
Translated

(VANT-GAN)

Heatmap

(VANT-GAN)

Figure 6: Comparison of ANT-GAN with VANT-GAN

The quantitative and visual results on BraTs dataset are
shown respectively in Table 2. We notice that these results

Table 2

Scores of evaluated methods on ADNI dataset

NCC Score on ADNI dataset

Method Mean Std

CAM 0.09 0.07

gradCAM 0.11 0.09

VAGAN 0.27 0.15

ICAM 0.30 0.28

VANT-GAN 0.36 0.35

Table 3

IoU and Dice Scores of evaluated methods on BraTS datasets

BraTS dataset

Method IoU Score Dice Score

CAM 30.8 45.1

gradCAM 54.7 60.3

ANT-GAN 76.3 80.1

VA-GAN 89.5 93.2

VANT-GAN 91.4 94

are consistent with our previous results on synthetic andADNI
datasets.

(2b).png

Figure 7: Example visualization maps of the compared meth-
ods with the BraTS dataset

6. Conclusion
In this paper, a novel visual attribution (VA) technique is

developed with respect to medical images (although intrin-
sically applicable to general images), one that leverages the
capacity of cycle-consistent GANs in conjunction with the
concept of the Residual GAN to generate counterpart nor-
mal images in relation to abnormal (i.e. diseased) input im-
ages. The resulting VANT-GAN model is thus capable of
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providing a conjectured ‘healthy’ image to medical practi-
tioners in order to highlight the process by which automated
disease classification is arrived at. The model thus deploys a
cycle-consistent GAN architecture for joint learning of both
a normal and a visual attribution map.

Experimental results demonstrate that, by contrast with
back-propagation-based and pre-existing counterfactual VA
techniques, the proposedmethod produces significantlymore
refined visual attributionmaps for highlighting diseasemark-
ers in the input image than the current state-of-the-art.

Because the proposed approach relies on translation across
two domains, it intrinsically only caters for VA of a sin-
gle disease. VA for multiple diseases potentially thus re-
quires computationally expensive training of multiple indi-
vidual models per disease. Future work will thus investi-
gate the possibility of explicitly multiclass VA techniques. It
will also be of interest to investigate whether spatial regular-
ization of the generated map would further improve results
and potentially also enable direct generation of the binary
mask. Finally, it will be of interested to apply the proposed
approach to Covid-19 datasets, in particular in relation to is-
sue of ‘long Covid’ diagnosis.
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