
LearnSDN: Optimizing Routing Over
Multimedia-based 5G-SDN using Machine

Learning
Ahmed Al-Jawad1, Ioan-Sorin Coms, a2, Purav Shah1, Ramona Trestian1

1Middlesex University, London, UK
aa3512@live.mdx.ac.uk, {p.shah, r.trestian}@mdx.ac.uk

2 Swiss Distance University of Applied Sciences, Brig, Switzerland
ioan-sorin.comsa@ffhs.ch

(UHD) VR, cloud gaming, etc. However, these multimedia-
rich applications will require strict Quality of Service (QoS)
requirements that need to be accommodated on vari-
ous devices characterized by a heterogeneity of hardware
platforms and accessed over dynamic network conditions
which might hamper their potential [3]. One of the major
5G objectives is to enable the QoS provisioning among three
service classes: enhanced Mobile Broadband (eMBB), Ultra
Reliable Low Latency Communication (URLLC) and massive
Machine Type Communication (mMTC).

The literature provides a wide range of solutions that
aim to overcome these challenges and improve QoS, in-
cluding the use of Multi-Path Transmission Control Protocol
(MPTCP) in SDN to improve network resources utilization
and the user’s QoE for delivering multimedia services over
5G networks [4]. Similarly, Rischke et al. in [5] propose QR-
SDN, a Reinforcement Learning (RL) routing approach for
SDN that enables multi-path routing.

Qadeer et al. [6] explore the use of heuristic RL for
flow-level dynamic bandwidth allocation within an SDN-
enabled edge cloud system. While Zheng et al. [7] introduce
a supervised ML method that classifies the traffic based
on specific QoS requirements. The authors propose QAR,
a QoS aware routing algorithm that aims to find the most
suitable path that minimizes the average link occupation
time or maximizes the average path residual capacity. On
other hand, Chiu et al. [8] propose RED-STAR, a reinforce-
ment discrete learning service-oriented multipath routing
solution for SDN. RED-STAR classifies the service network
traffic and makes use of a differentiated reward scheme to
dynamically distribute the appropriate routes to the specific
service traffic. In our previous work [9], [10], we used RL to
select the best routing algorithm for the QoS-based traffic
flows only, while the routing strategy for the background
traffic flows was set static. However, this approach would
actually disturb the users’ Quality of Experience (QoE) of
QoS-based traffic due to constant interruptions triggered
by periodical re-routing decisions.

In contrast to the previous works, this paper introduces
LearnSDN and utilizes RL to decide the most appropriate
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I. INTRODUCTION

The advances of technology in the area of Machine
Learning (ML), Software Defined N etworks ( SDN) a s well
as the rapid deployment of 5G networks are expected to
revolutionize the way we communicate, perceive and com-
pute data by enabling a ubiquitous and pervasive paradigm
ecosystem [1]. Moreover, the current digital transforma-
tion has seen a tremendous increase in the demand for
multimedia-rich applications like Augmented Reality (AR)
and Virtual Reality (VR). According to Cisco [2] the primary
contributors to the global mobile traffic g rowth a re the
different mix of wireless devices, including smartphones,
machine to machine, tablets, Personal Computers, etc.
Moreover, the popularity of Internet of Things (IoT), VR,
AR, and ML paves the way for future applications, such
as: self driving vehicle diagnostics, Ultra High Definition



routing algorithm to be enforced on the background traffic
so that the QoS provisioning is maintained for the QoS-
based traffic without a significant disruption on the rest of
the traffic. Thus, LearnSDN seeks to maximize the return
reward of the SDN and maintain the resource reservation
of QoS-based traffic, by dynamically selecting a suitable
routing algorithm for the background traffic and avoiding
interruptions in the QoS-based traffic.

II. LEARNSDN FRAMEWORK

The proposed LearnSDN framework is shown in Figure
1. At user side there are various traffic flows belonging to
different 5G service classes, such as: URLLC, eMBB, and
mMTC. The 5G-SDN network side consists of the Radio
Access Network (RAN) and the transport and core network.
The LearnSDN is built on top of the transport/core 5G-
SDN and consists of three layers: data, control and appli-
cation layers. The proposed solution is integrated within the
application layer and consists of: (1) LearnSDN module -
includes the main RL-based solution that decides from a set
of centralized routing algorithms like: Minimum Hop Algo-
rithm (MHA) [11], Widest Shortest Path (WSP) [11], Shortest
Widest Path (SWP) [11], and Minimum Interference Routing
Algorithm (MIRA) [12], the most appropriate routing algo-
rithm to be enforced on the background traffic within SDN;
(2) Routing Manager module - is triggered by the LearnSDN
module to reroute the active background traffic; (3) SLO
Repository module - maintains the Service Level Objectives
(SLO) that describe the service performance in measurable
terms (i.e., packet loss, throughput, etc.); (4) Admission
Control module - decides on accepting or rejecting the
incoming traffic requests; (5) Topology Monitor module
- continuously monitors the SDN state and records any
changes in topology for a global view of the network; (6)
Flow Tracker module - tracks all the flows within SDN,
updates the flow states and maintains statistics; and (7)
Active Flows Monitor module - continuously monitors all
the active and inactive flows within SDN.

Fig. 1. LearnSDN Framework

III. SYSTEM MODEL

A. Problem Formulation

In general, the topology of any SDN environment in the
data plane is modeled by a graph G(N ,L). Where N is the
set of nodes, with each node representing an SDN switch
and L is the set of links that connect any two nodes. Thus,
the absolute number of nodes and links within our SDN is
equal to |N | and |L|. Each link l ∈ L can be described by
a finite capacity Cl and a remaining available bandwidth
B wl . For the purpose of our problem, we define two types
of traffic flow classes, namely FQoS representing the class of
QoS-based traffic flows and FBkg representing the class of
background flows. Thus, each traffic flow f in SDN, belongs
to a set of flows F = (

FQoS ∪FBkg
)
. Additionally, each flow

f is further described by the specific traffic type ν (i.e.,
video, HTTP, FTP) and denoted by fν. Consequently, the
remaining available bandwidth B wl of link l is determined
by B wl = Cl −

∑
ρ f , where ρ f represents the total bit rate

of flow f . In this context, a feasible path P connecting
a source and a destination node, and consisting of a set
of links P = {l1, ..., ln} needs to be found by a routing
algorithm. Thus, the main objective is to enforce the right
routing algorithm on the background traffic flows, that
maximizes the flows within SDN that satisfy the Service
Level Agreement (SLA) requirements in terms of through-
put, packet loss and rejection rate. Consequently, the overall
optimization problem is formulated below subject to the
identified constraints:

maximize
∑
f ∈F

∑
p∈P

Υp, f (α f ·β f ·γ f ) (1a)

subject to
∑
f ∈F

δl , f ·ρ f ≤Cl , ∀l ∈ L, (1b)∑
p∈P

Υp, f = 1, ∀ f ∈ F, (1c)∑
α f = 0, ∀ f ∈ F, (1d)∑
β f = 0, ∀ f ∈ F, (1e)∑
γ f = 0, ∀ f ∈ F, (1f)

α f ∈ {0,1} , ∀ f ∈ F, (1g)

β f ∈ {0,1} , ∀ f ∈ F, (1h)

γ f ∈ {0,1} , ∀ f ∈ F, (1i)

δl , f ∈ {0,1} , ∀ f ∈ F,∀l ∈ L, (1j)

Υp, f ∈ {0,1} , ∀ f ∈ F,∀p ∈ P (1k)

where Υp, f ∈ {0,1} represents a decision variable that
is 0 if flow f does not pass through path p, and 1,
otherwise; δl , f ∈ {0,1} represents a decision variable with
value 1 indicating that the flow f travels along link l ,
and 0 otherwise. Constraint (1b) indicates that the sum of
all the flows’ throughput travelling along link l must not
exceed its capacity Cl . Constraint (1c) restricts any flow
in SDN to be routed on one path only. The rest of the
constraints (1d)-(1k) stipulate that a flow f must satisfy the
SLA. Where α f , β f , and γ f representing decision variables



of value 0 if flow f satisfies the SLA in terms of throughout
Θ f ,thr , packet loss Θ f ,loss , and rejection rate Θ f ,r e j , and
1 otherwise. The defined optimization problem would be
similar to our previous work, REDO in [9]. However, the
difference appears at the definition of the action space.

B. RL-Based Solution

Q-learning is used to learn the suitable action to be
employed at every network state. By employing RL there are
three essential elements to be considered, namely the en-
vironment, the agent and the action set. The environment
is the dynamic network state monitored at discrete times,
t = 0,1,2, . . . and St represents the network state obtained
at time t . The agent is the learning entity that will take an
action at to maximize a defined network reward function,
Rt . The action is represented by the routing algorithm to be
enforced on the background traffic of the current network
state. Based on the reward value Rt that represents the score
of applying action at in St , as SDN move into the next state
St+1 the learning entity will tune its action in order to obtain
higher rewards under the further states.

1) state space: Our main objective is to maintain accept-
able QoS levels for the active QoS-based traffic flows fQoS

that have stringent QoS requirements. Thus, we define the
system state S as follows:

S = [
ψ, τQoS , µQoS , φQoS

]
(2)

where ψ ∈ {
low, medi um, hi g h

}
is the traffic load of

SDN. τQoS and µQoS are given by eq. (3) and eq. (4),
respectively and indicate if the throughput and packet loss
rate requirements are met for QoS-based traffic. While φQoS

given in eq. (5) indicates if a specific threshold is satisfied
by the rejection ratio.

τQoS =
{

1 if
∑
α fQoS = 0,

0 if
∑
α fQoS > 0

(3)

µQoS =
{

1 if
∑
β fQoS = 0,

0 if
∑
β fQoS > 0

(4)

φQoS =
{

1 if
∑
γ fQoS = 0,

0 if
∑
γ fQoS > 0

(5)

2) action space: LearnSDN defines a set of routing al-
gorithms OBkg = {M H A, W SP, SW P, M I R A}. The action
will enforce the choice of routing algorithm on the active
background traffic flows within the SDN environment. The
routing algorithm for the QoS-based traffic flows is fixed
and the QoS-based traffic flows are routed using MIRA.

3) reward function: As the system is moving from one
state to another, an action is executed on each state and a
reward is sent back as feedback for each action taken. Thus,
the reward is represented by a function that would map
the system performance on a certain action taken during a
given state into a scalar value. This scalar value will indicate
how good was the action applied on that particular state.

We define the total reward as a weighted sum of the overall
reward Rν of each traffic class ν as follows:

Rν =ωthr ∗
∑

fν∈Fν Rthr, fν

N
+ωloss∗

∑
fν∈Fν Rloss, fν

N
+ωr e j∗Rr e j ,ν

(6)
where ωthr , ωloss and ωr e j represent the throughout,

packet loss and rejection rate weights, respectively. For the
purpose of this work, ωthr = ωl oss = ωr e j = 1/3. It is also
noted that the overall reward Rν for traffic class ν consists
of three sub-rewards, such that:

(1) Rthr, fν given by eq. (7) describes the variation of the
measured throughput ρ̃ fν of flow f from the corresponding
SLA, θν,thr ∈ Θ f representing the minimum throughput
requirement for flow f in class ν. The maximum possible
reward of 1 is achieved if the requirements are met.

Rthr, fν =


1−

[
θν,thr −ρ̃ fν
θν,thr

]
i f ρ̃ fν ≤ θν,thr

1 i f ρ̃ fν > θν,thr

(7)

(2) Rl oss, fν given by eq. (8) describes the variation of
the measured packet loss rate µ̃ fν of flow f from the
corresponding SLA, θν,l oss ∈Θ f representing the maximum
packet loss requirement.

Rloss, fν =


1−

[
µ̃ fν−θν,l oss

µ̃ fν

]
i f µ̃ fν ≥ θν,l oss

1 i f µ̃ fν < θν,l oss

(8)

(3) Rr e j ,ν given by eq. (9) describes the variation of the
rejection rate φ̃ν of a traffic class ν from the corresponding
SLA, θν,r e j ∈Θ f representing the rejection rate requirement.

Rr e j ,ν =


1−

[
φ̃ν−θν,r e j

φ̃ν

]
i f φ̃ν ≥ θν,r e j

1 i f φ̃ν < θν,r e j

(9)

In the scope of this work, HD video traffic is used to
represent the QoS-based traffic class and SD video, HTTP,
and FTP traffic are used to represent the background traffic
class. In this context, the total reward R is formulated as:

R =ωHD_V i deo ∗RHD_V i deo︸ ︷︷ ︸
QoS−based tr a f f i c cl ass

+ωSD_V i deo ∗RSD_V i deo +ω f t p ∗RF T P +ωht t p ∗RHT T P︸ ︷︷ ︸
B ackg r ound tr a f f i c cl ass

(10)

where the values for each traffic weights are set to
ωHD_V i deo = 0.63, ωSD_V i deo = 0.19, ω f t p = 0.09, and ωht t p =
0.09, so that ωHD_V i deo +ωSD_V i deo +ω f t p +ωht t p = 1. The
weights are set based on the predictions forecasted by Cisco
in [13]. A total of 60 individual trials where conducted
to train the proposed LearnSDN solution where each trial
had a total of 1500 seconds run time. In order to ensure



convergence to the optimal policy the discount factor was
set to 0.9 while the learning rate was set to 0.01.

IV. EXPERIMENTAL SETUP

LearnSDN was implemented and tested through an ex-
perimental setup consisting of: (1) Mininet1 is used to
emulate the SDN data plane; (2) the external OpenFlow
controller used is Floodlight2 that provides RESTful API and
network services; and (3) the application layer consisting
of the network management functions for performance
evaluation. OpenStack is used to host the experimental
setup, where one virtual server is used for the Floodlight
controller and the application layer and another virtual
server is used to run the Mininet test-bench. Additionally,
Open vSwitch3 is used as an SDN software switch.

Fig. 2. Implemented Sprint Network Topology

In order to create a more realistic multimedia-based SDN
environment we have used the Sprint network topology
available from Internet Topology Zoo [14] as depicted in Fig.
2. SDN Openflow switches were used to replace the network
nodes, and one host is directly connected to each SDN
switch to generate data traffic into the network. In this work,
as proof-of-concept, we have used two types of service
classes. However, this can be scaled up or down as required.
The two service classes are defined as: (1) QoS-based traffic
class represented by live HD video streaming with the
following characteristics: 1280x720 pixels resolutions, 24
frames per second, average bit rate of 665Kbps, and a total
duration of 5 minutes; and (2) the background traffic class
represented by buffered SD video streaming, web browsing
and file transfer traffic. The characteristics of the SD video
traffic are as follows: 640x360 pixels resolution, 24 frames
per second, average bit rate of 285kbps, and a total duration
of 5 min. The web browsing and file transfer are modeled as
HTTP and FTP traffic, respectively [15]. The VLC player tool
employed with a Constant Bit Rate (CBR) encoder was used
to generate live HD and buffered SD video streaming traffic.
FFMPEG video and audio converter4 is used to create the
video source. The FFMPEG tool, an open-source library, is
used to convert between arbitrary sample rates and re-size
the audio and video data separately. While Ostinato5 traffic

1Mininet - http://mininet.org
2Floodlight - http://www.projectfloodlight.org
3ovsswitch - http://openvswitch.org
4FFMPEG tool - https://ffmpeg.org
5Ostinato - https://ostinato.org/

generator tool was used to generate HTTP and FTP traffic.
This enabled us to evaluate different traffic mix with 63%
live HD video, 19% buffered SD video, 9% HTTP and 9% FTP
as per [13] and three different load levels on the network.
The load levels were set to 0.5 representing low load, 0.75
representing medium load, and 1.0 representing high load.
The network load N L is calculated using (11) based on the
link load LL, link capacity Cl and the absolute number of
links within the network |L|.

N L =
∑|L|

i
LLi
Cl i

|L| (11)

The performance of LearnSDN is compared against other
state-of-the-art routing algorithms from the literature, such
as: MHA, WSP, SWP, MIRA and our previous work, REDO [9].
The comparison is done in terms of throughput, packet loss
rate, rejection rate, PSNR and Mean Opinion Score (MOS).
The PSNR to MOS mapping is done as per [16] and Table
I lists the QoS requirements for each traffic class.

TABLE I
QOS REQUIREMENTS

QoS-based Traffic Class θQoS,thr θQoS,loss θQoS,r e j

Live HD video 658 Kb/s 1% 25%

Background Traffic Class θBkg ,thr θBkg ,l oss θBkg ,r e j

Buffered SD video 279 Kb/s 2% 35%

Web browsing 14 Kb/s 0% 35%

File transfer 180 Kb/s 0% 35%

V. RESULTS AND DISCUSSIONS

The results were averaged over five simulation runs per
scenario, with each scenario having a duration of 1500
seconds. The same experiment conditions were kept for
each scenario when comparing the different solutions.

Figures 3 and 4 illustrate the throughput and packet loss
results for each traffic type under different loads and for
each scheme. It can be noted that LearnSDN outperforms
the other conventional routing algorithms like MHA, WSP,
SWP and MIRA. When compared to REDO, we can notice
that LearnSDN will prioritise the HD Video with an increase
in throughput. For example, under medium load LearnSDN
achieves up to 1.3% increase in throughput for the HD
video as compared to REDO. Moreover, the results show
that both LearnSDN and REDO exhibit similar lower packet
loss under various network loads as compared to the
conventional routing algorithms. For example, under high
load, LearnSDN decreases the packet loss down to 0.38%
for the HD video, REDO goes down to 0.5% packet loss
rate, while the conventional routing algorithms exhibit a
packet loss rate of more than 5%. Table II illustrates the
estimated PSNR and MOS. It can be noticed that REDO and
LearnSDN achieve an Excellent user perceived quality level
for both HD and SD video traffic under low, medium and
high traffic loads without penalizing the other traffic types.
For example, in case of LearnSDN and REDO, when there is
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an increase in the network load from low to high, the user
perceived QoE stays Excellent. While the user perceived QoE
for the conventional routing algorithms, MHA, WSP, SWP,
and MIRA decreases from Excellent to Poor. Consequently,
it can be seen that the classical routing algorithms will
sacrifice the users’ perceived QoE level for the QoS-based
traffic class along with penalizing the performance of the
other traffic classes in the network, just to accommodate
more QoS-based flows.

As explained previously, LearnSDN prioritizes the HD
video traffic by using a fixed routing algorithm like MIRA
while the background traffic is re-routed using the RL
approach based on the dynamic network conditions. In
contrast, REDO would re-route the HD video traffic while
maintaining a fixed routing for the background traffic using
MIRA. However, re-routing of the HD video traffic flows
creates interruptions in the video flow that could lead to
re-buffering periods. Tan et al. [17] studied the impact of
the re-buffering periods on the user perceived QoE and
concluded that the MOS will decrease with the increase in
buffering percentage level. Even though the buffering has a
significant impact on the quality degradation as perceived
by the user, this effect is not integrated into the video
quality assessment solutions, like PSNR. Consequently, even
though LearnSDN and REDO might exhibit similar results

in terms of MOS, the re-buffering effect might decrease the
MOS further in case of REDO.

Moreover, Figure 5 illustrates the number of rejected
flows under different traffic types as a function of the
network traffic load. It can be seen that under highly
loaded network, the rejection rate of all solutions increases
considerably. However, under medium traffic load, it can
be noted that LearnSDN rejects a less number of traffic
flows overall, as compared to REDO. Even if under high
traffic load, LearnSDN will reject more flows overall, we
can notice that it is rejecting less HD video traffic flows as
compared to REDO. Consequently, LearnSDN outperforms
the other state-of-the-art conventional routing algorithms
while offering a better prioritization for HD video flows as
compared to REDO.

VI. CONCLUSIONS

With QoE gaining strong momentum due to the ever
increasing users’ QoE expectations of rich multimedia ap-
plications, the focus is now on proposing innovative solu-
tions that leverage the ML capabilities to enable QoE when
delivering video content over 5G networks and beyond.
In this context, the integration of SDN is seen as an
enabling solution for QoE provisioning over 5G-SDN envi-
ronments especially as QoE is seen to become the biggest
differentiator between network operators. In this paper,



TABLE II
AVERAGED ESTIMATED PSNR AND MOS CONSIDERING DIFFERENT TRAFFIC LOADS AND FOR EACH SCHEME

MHA WSP SWP MIRA

low medium high low medium high low medium high low medium high

HD PSNR [dB] 50.5 26.6 23.4 51.4 26.8 25.2 57.7 27.8 25 52 28.3 24.9

MOS Exc. Poor Poor Exc. Poor Poor Exc. Fair Poor Exc. Fair Poor

SD PSNR [dB] 52.7 47.9 47.3 53.5 49.8 44 59.1 44 46.1 53.1 51.7 48.6

MOS Exc Exc. Exc. Exc. Exc. Good Exc. Good Exc. Exc. Exc. Exc.

REDO LearnSDN

low medium high low medium high

HD PSNR [dB] 52 49.6 46 58 45.7 48.4

MOS Exc. Exc. Exc. Exc. Exc. Exc.

SD PSNR [dB] 52.3 49.1 49.8 55.3 52 46.5

MOS Exc. Exc. Exc. Exc. Exc. Exc.
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Fig. 5. Number of rejected flows and the total number of flows

we propose LearnSDN, an innovative ML-based solution
that would learn the most suitable routing algorithm to
be employed on the background traffic, considering the
dynamic networking conditions in order to ensure QoS
provisioning for QoS-based traffic. LearnSDN was evaluated
under a realistic SDN-based experimental setup consisting
of Mininet, Floodlight controller and Open vSwitch switches
and under dynamic network conditions. The results show
that, on average LearnSDN performs better when compared
to other state-of-the-art conventional routing algorithms,
and finds the most appropriate trade-off between through-
put, packet loss rate and rejection rate for the QoS-based
traffic class without a significant impact on the other traffic.
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