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RIS-aided Smart Manufacturing: Information
Transmission and Machine Health Monitoring

Tiep M. Hoang, Son Dinh-Van, Balbir Barn, Ramona Trestian and Huan X. Nguyen

Abstract—This paper proposes a novel industrial Internet-of-
Things framework to monitor the machine health conditions
(MHCs) in a smart factory. The framework utilises reconfigurable
intelligent surface (RIS) to address propagation blockages while
employing a novel power mapping scheme and an autoencoder
to facilitate the transmission and classification of the MHCs. An-
alytical and numerical analyses are then performed to study the
ergodic capacity (primary information) and the MHC accuracy
(secondary information) in terms of the RIS size (K) and the
transmit power (P ). We observe that the accuracy of detecting
MHCs does not change significantly with K and P , implying that
the MHC alerts can be efficiently conveyed in parallel with the
primary information. By contrast, a careful choice of different
power mapping levels is necessary in order to achieve the two
main goals: i) reasonably high data rate for primary transmission
and ii) high accuracy for secondary MHC information.

Index terms—Industrial IoT, Industry 4.0, Digital Twin,
Machine Health, Autoencoder, RIS, 5G/6G.

I. INTRODUCTION

It is expected that the manufacturing process will become
more and more automated and productive due to the ap-
plication of advances in machine learning and/or 5G-and-
beyond techniques [1]–[4]. Towards Industry 4.0, a smart
factory will need to be capable of data analysis and data-driven
decision-making. Accordingly, the information of machine
health conditions (MHCs) can be discovered and the predictive
maintenance can be performed in timely fashion, which helps
reduce the downtime and related cost [1], [5]. It is noted that
Internet-of-Things (IoT) will be one pillar not only in Industry
4.0 (see [1], [6]) but also in 5G/6G networks (see [7], [8])
and the emerging Digital Twin technology (see [9]), because
IoT devices can be easily connected to exchange information
at large scale. According to [6], the use of IoT devices for
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the predictive maintenance in Industry 4.0-oriented factories
remains an open issue.

On the other hand, IoT devices are normally associated with
the deployment of IoT-enabled 5G/6G networks, which bene-
fits Industry 4.0 settings with increased data rate [10]–[12]. In
fact, the rapid growth of IoT devices can boost the capacity
of a wireless communication system [7], [8]. Additionally,
5G/6G networks are not limited to the use of IoT devices
only, but they will require the integration of a diverse range
of network entities to achieve the desired data rate. Among
the recent advances in the field of wireless communications,
reconfigurable intelligent surfaces (RISs) are emerging as new
network entities that help connect remote devices, especially
in an indoor environment with many blockages (e.g., walls,
equipment and tables) [13]. An RIS contains multiple recon-
figurable reflecting elements that can control the diffusion of
an incident wave and create artificial communication channels
between a pair of transceivers [14], [15]. Due to the novelty
of RISs, their role in supporting Industry 4.0 remains an open
question.

A. Related Works

Recently, machine learning has been used for fault detection
and predictive maintenance [16]–[20]. The authors of [16]
present an approach to machine monitoring and fault diagno-
sis/detection. Meanwhile, the authors of [17] use support vec-
tor machines and k-nearest neighbors for building multi-class
classification models, which will then differ faulty situations
from non-faulty ones in the manufacturing process. In [18], the
so-called sparse filtering technique is used for learning features
from motor/locomotive bearing datasets. While [16]–[18] do
not discuss the role of IoT devices in building predictive
maintenance models, [19] presents an application program-
ming interface (API) oriented method to perform predictive
maintenance in IoT-enabled smart factories. However, the API-
oriented method in [19] does not give any insight into the
physical-layer communication protocols of IoT devices. By
contrast, we design an IoT communication protocol at the
physical layer to adjust the transmit power of wireless sig-
nals, thereby being able to convey the secondary information
about MHCs in parallel with the primary information. More
noticeably, none of the works in [16]–[18] considers alert
transmission in the industrial IoT environment. To address the
alert reporting, [20] proposes software engines for IoT-based
health monitoring, albeit for human, not machines. Moreover,
the work in [20] does not analyze the propagation mechanism
of wireless signals and might be dedicated to the application
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layer. Apparently, [16]–[20] have not yet investigated the alert
reporting in smart factories, concerning the landscape of both
IoT-enabled Industry 4.0 and IoT-enabled 5G/6G networks,
where IoT devices can be wirelessly connected for information
exchange.

From a communication perspective, 5G/6G systems can em-
ploy RISs to connect IoT devices instead of using traditional
relays [21]–[25]. Due to different types of blockages in the
factory environment, the line-of-sight path is likely blocked
and there may exist the non-line-of-sight (NLoS) paths only
[24], [25]. Thus, it is promising to integrate RISs into the
5G/6G wireless systems of smart factories so that remote IoT
devices can communicate more easily and efficiently. In [7],
[8], the IoT-enabled 5G-and-beyond networks are surveyed.
Meanwhile, [21] employs RISs as intermediate relays for
improving the propagation environment with NLoS paths,
thereby enhancing the data rate of IoT-enabled networks.
In [22], the authors propose an RIS-aided IoT system with
the ability to harvest energy from radio frequency signals.
In [23], a blockage-aware model is built with the purpose
of reducing the handover overhead in RIS-aided networks;
however, the deployment of IoT devices is not discussed.
Applying the theory of stochastic geometry, the work in [24]
models the distribution of RISs, while the work in [25] models
the distribution of blockages. Recall that the research topic of
[21]–[25] is solely dedicated to the wireless communication
aspect but does not relate to the diagnosis of machine health
or the predictive maintenance.

Based on what has been discussed above, we can see that
there are two major distinct-but-related topics that have not
yet been fully investigated. These are the following:
• Topic 1: Health machine monitoring/diagnosis in IoT-

enabled Industry 4.0.
• Topic 2: Alert transmission in RIS-aided IoT-enabled

5G/6G networks.
We jointly consider the two topics in this paper. Moreover,
we exploit the power of machine learning for achieving the
goal in Topic 1. In fact, different from [16]–[19] that only
focus on machine health monitoring, we additionally consider
the aspect of alert transmission via wirelessly connected IoT
devices. Also, different from [21]–[25] that only focus on
wireless propagation, we additionally investigate how machine
health can be remotely monitored through controlling the
transmission mechanism of IoT devices at the physical layer.
In other words, we do not only perform the diagnosis of ma-
chine health through deep learning, but also study the wireless
transmission of alert notifications through IoT devices. As
mentioned earlier, the joint topic of Topic 1 and Topic 2 has
not been investigated to the best of our knowledge. Thus, we
are motivated to carry out this work to bridge the gap between
these two distinct topics.

B. Main Contributions

Our main contributions can be summarized as follows:
• In parallel with the primary information that is normally

transmitted from IoT devices to a data center, we utilize
the power domain to transmit another type of information,

i.e. the secondary information about the health condition
of each and every machine in a production line. Through
different transmit power levels that are controlled by
power coefficients, we are able to monitor a wide range
of MHC-related events. In order to classify these events,
we train a deep autoencoder (AE), which is a special type
of deep neural network, for learning the most significant
characteristics of time series data. Based on the classifi-
cation of different MHCs, a production supervisor will be
able to appropriately respond to the current condition of a
certain machine, such as an instant maintenance decision
at the right time.

• In parallel with the secondary information about the
MHC, we utilize RISs for supporting the primary infor-
mation transmission between IoT devices and a data cen-
ter, thereby overcoming the disadvantages of the indoor
propagation environment, e.g., the lack of line-of-sight
path due to undesired blockages. Moreover, we propose
a simple-but-effective algorithm, which adjusts the RIS
parameters, so that the capacity can approach its upper
bound. Based on applying this RIS-control algorithm, we
show that the increase in the RIS size can improve the
capacity.

• From a trade-off perspective, we observe that when a
machine is in bad condition, the transmit power shift at
the associated IoT devices will allow us to perform an
alert transmission about the MHC; however, the power
reduction will also cause the primary information to be
conveyed at a lower data rate. To evaluate the overall
impact of the transmit power reduction, we quantify the
channel capacity w.r.t the primary information and the
accuracy w.r.t the MHC monitoring. It is shown that a
careful choice of the power coefficients will make both
the capacity and the accuracy reasonably high. On the
other hand, the increase of the RIS size can only improve
the capacity, but does not affect the classification accuracy
of the AEs significantly. Thus, we can raise the transmit
power and RIS size to attain a desired channel capacity
regarding the primary information transmission, without
affecting the classification accuracy of MHCs.

In short, this work implies the feasibility of achieving two
goals at the same time at a smart factory setting: i) transmitting
primary information at a high data rate and ii) conveying the
MHC at a high accuracy.

Notations: Rm×n denotes the real field that includes all
real-valued matrices of size m × n; Cm×n denotes the com-
plex field that includes all complex-valued matrices of size
m × n; The operation diag ([z1, . . . , zK ]) diagonalizes a row
vector [z1, . . . , zK ] into a diagonal matrix; Bold lowercase
letters and bold uppercase letters denote vectors and matrices,
respectively; In denotes the identity matrix of size n × n;
The upperscripts (·)>, (·)∗, and (·)† represent the transpose,
conjugate, and Hermitian operators, respectively; ‖·‖2 denotes
the Euclidean norm; z ∼ CN (0,Σ) denotes a complex-
valued Gaussian random vector with the zero-mean and the
covariance matrix Σ.

The rest of this paper is organized as follows: Section II
introduces a manufacturing process of multiple stages. Section
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Fig. 1: An IoT network where IoT devices from different in-factory areas connect wirelessly to a CPU via RISs. The factory
is divided into L areas, each performing a specific stage of the cyclic-manufacturing process. In each area, there are M` IoT
devices and an RIS. The role of the `-th RIS is to support M` IoT devices inside the `-th area to connect to the CPU. To
obtain a finished product, the factory will perform a process of L stages. After finishing a product, the manufacturing process
will repeatedly carry out a process of L stages to make a new product.

III presents an RIS-aided IoT-enabled network and explains the
mechanism of transmitting two different types of information.
Section IV analyzes the achievable capacity of the proposed
network. In Section V, we first present the formulation of
faulty and non-faulty situations associated with the MHC, and
then apply autoencoders for autonomously classifying machine
health statuses. In Section VI, the achievable capacity and the
detection accuracy are validated, respectively. Finally, Section
VII concludes the paper.

II. PRODUCTION LINE MODEL

We consider an IoT network that consists of a central
processing unit (CPU) connected to L in-factory areas via
L reconfigurable intelligent surfaces (RISs). Each area is
supposed to have only one RIS, i.e., the `-th RIS is placed
inside the `-th area. We also assume that inside the `-th
area, there are M` IoT devices. These IoT devices wirelessly
connect to the CPU through the `-th RIS to transmit primary
information. Moreover, the `-th RIS in the `-th area will not
connect with IoT devices in another area `′ 6= `.

Let us divide the transmission into W equal (time) windows.
Within each time window, there are L equal (time) frames, and
the `-th frame is composed of T` equal (time) slots. Thus, the
length of a window is equal to

∑L
`=1 T` , Ttot (slots), which is

a constant. Herein, we assume that a production line makes a
product within a time window, and the production line consists
of L consecutive stages. As such, the division of a window
into L frames implies that each stage of the production line
is carried out within a time frame.

Additionally, given that there are L in-factory areas, we can
arrange the factory so that the `-th stage of the manufacturing
process occurs in the `-th area of the factory. Thus, we will
simply use “the `-th frame” as the shorthand for “the `-th stage

of the manufacturing process” or “ the manufacturing process
in the `-th area”. For simplicity, let us assume that there are
3 stages (and or 3 in-factory areas), i.e. L = 3. For example,
the roles of these stages can be summarized as follows:

• Stage ` = 1 is to prepare materials.
• Stage ` = 2 is to process the materials with technologies.
• Stage ` = 3 is to inspect product quality & pack products.

Furthermore, we suppose that during the `-th time frame, with
` ∈ L , {1, 2, 3}, only the `-th area is permitted to transmit its
signals to the data center, where the CPU is put in place. Thus,
during the `-th frame, any signal received at the data center is
supposed to come from the `-th area. Finally, local IoT devices
are not capable of transmitting their signals beyond the area to
which they belong. Figure 1 depicts our manufacturing process
performed through 3 stages, each happening in a different area.

Denote I , {1, 2, . . . , Ttot} as the set of time indices of
the w-th window. A certain element i ∈ I will imply the i-th
index of the w-th window.1 Depending on the value of `, we
will have different ranges for the index i as described below:

• ` = 1 (i.e., Stage 1) for i ≤ T1;
• ` = 2 (i.e., Stage 2) for T1 < i ≤ T1 + T2;
• ` = 3 (i.e., Stage 3) for T1 + T2 < i ≤ T1 + T2 + T3.

As such, given an index i, we can specify the value of ` and
t based on the following relationship:

index i = T1 + T2 + . . .+ T`−1︸ ︷︷ ︸
total duration of previous frames

+ slot t of frame `, (1)

1For example, if we have T1 = 10, T2 = 20 and T3 = 30, then the
15-th element in I, i.e. the index i = 15, implies the 5-th slot of the 2-
th frame of the w-th window, because T1 < t = 15 < T1 + T2. For
notational simplicity, we will mention the 15-th index of the w-th window
without needing to mention frames.
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Fig. 2: A manufacturing cycle is the time needed to convert materials into products. A manufacturing cycle corresponds to a
window, and each window involves L = 3 stages: i) prepare materials, ii) process the materials, and iii) inspect the product
quality and pack products. The `-th stage corresponds to the `-th frame. Moreover, the `-th frame has T` slots. Thus each
manufacturing cycle has Ttot = T1 + . . .+ TL slots. The relationship (1) between slot t and index i is also illustrated.

where t ∈ {1, . . . , T`} indicates the position of a slot in the
considered frame `. Please see the illustration of the time
division in Figure 2. Moreover, for notational clarity, let us
define the set of time indices

I` =

{
1 +

`−1∑
`′=0

T`′ , 2 +

`−1∑
`′=0

T`′ , . . . , T` +

`−1∑
`′=0

T`′

}
,

where T`′=0 = 0. We observe that the `-th frame has T` slots,
and the t-th slot of the `-th frame is equivalent to the index
i = t +

∑`−1
`′=0 T`′ . Hence, from now on, the `-th frame also

implies all time indices in the set I`, i.e.

the `-th frame⇔ ∀i ∈ I`.

Note that I1, I2 . . . , IL are disjoint sets, yet they form the
universal set I =

⋃L
`=1 I`.

In the rest of this paper, the upper-script {·}[i,w] will be used
to stand for “the i-th index of the w-th window”. As just afore-
mentioned, the index i enables us to indicate the t-th slot of
the `-th frame. Additionally, the lower-script {·}m→` implies
the link between the m-th IoT device of the `-th area and the
associated RIS (i.e., the `-th RIS). Likewise, the lower-script
{·}`→C implies the link between the `-th RIS and the CPU.

III. INFORMATION TRANSMISSION MODEL

In this section, we first present how wireless signals are
transmitted in a conventional manner in Sub-section III-A, and
then present how to employ the power domain for additionally
performing an alert transmission in Sub-section III-B. Notice-
ably, that the conventional information transmission model in
Sub-section III-A relates to the case of perfect production line,
while our proposed model of transmitting two different types
of information relates to a more practical case of imperfect
production line.

A. Perfect Production Line: No Alert Transmission

The main purpose of the IoT devices is to send primary
information to the data center, e.g., reporting the manufac-
turing process to the data center regularly so that the center
can capture the information about the product quality. The
reported information might enable us to know whether the
manufactured goods satisfy a pre-determined requirement or
not. Under the ideal assumption that the production line works

perfectly, we do not need to monitor the health condition of
machines in the production line. In this case, the transmitted
signals will be designed so that they contain only one type
of information, e.g. the primary information about the product
quality.

Denote s
[i,w]
m as the signal transmitted by the m-th IoT

device.2 Denote r
[i,w]
IDEAL as the aggregated signal received at

the CPU. We have

r
[i,w]
IDEAL = r

[i,w]
1 + r

[i,w]
2 + . . .+ r

[i,w]
M + n[i,w] (2)

where r
[i,w]
m is contributed by the transmitted signal s[i,w]

m ,
and n[i,w] ∈ C1×1 is the additional white Gaussian noise
(AWGN). As for s

[i,w]
m , we assume E

{
s
[i,w]
m

}
= 0 and

E
{
|s[i,w]
m |2

}
= E

{
|s[i,w]
m|ideal|

2
}
= P . As for the AWGN, we

assume E
{
n[i,w]

}
= 0 and E

{
|n[i,w]|2

}
= N0 is the noise

variance. Concerning an element r[i,w]
m in (2), we have

r[i,w]
m =

√
10−

%m`
10 g

[i,w]
`→C Φ` h

[i,w]
m→` s

[i,w]
m , for ∀i ∈ I, (3)

where %m` is the effective path loss between the m-th IoT
device inside the `-th area and the CPU; h

[i,w]
m→` ∈ CK`×1 is

the channel from the m-th IoT device inside the `-th area to
the `-th RIS; Φ` ∈ CK`×K` is the phase shift matrix of the
`-th RIS; and g

[i,w]
`→C ∈ C1×K` is the channel from the `-th

RIS to the CPU. A manufacturing cycle is associated with a
time window. Thus, each manufacturing cycle starts with the
1-st stage and ends with the L-th stage.3 Please see Figure 1
for illustration.

Substituting (3) into (2), we can rewrite (2) as follows:

r
[i,w]
IDEAL =

M∑
m=1

χ
[i,w]
m` s[i,w]

m + n[i,w], for i ∈ I, (4)

where

χ
[i,w]
m` ,

√
10−

%m`
10 g

[i,w]
`→CΦ`h

[i,w]
m→` (5)

2Recall that the upper-script {·}[i,w] has been already defined, thus s[i,w]
m

can be implicitly interpreted as the signal transmitted by the m-th IoT device
inside area ` during the t-th slot of the `-th frame of the w-th window. Herein,
` and t can be easily inferred from (1).

3A manufacturing cycle is referred to as the time interval needed to convert
materials into finished products. In our case, the length of a manufacturing
cycle is equal to the number of slots, i.e.

∑L
`=1 T`.
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is a random variable. Note that Φ` = diag (φ`) is the diagonal
matrix of the `-th RIS, where φ` = [θ`,1, θ`,2, . . . , θ`,K`

] is a
row vector that contains K` complex-valued coefficients and
satisfies ‖φ`‖2 =

∑K
k=1 |θ`,k|2 = K.

B. Imperfect Production Line: With Alert Transmission

Different from Subsection III-A, we will consider a more
practical scenario in which the components of a machine are
not always in good condition and will lead to some potential
risks in the future. Thus, it is also important to report the MHC
information (i.e., the secondary information).

If each stage of the manufacturing process is carried out by a
distinct machine, then there will be L distinct machines. Each
machine is placed inside an area to run a stage of the manufac-
turing process. This means that the `-th machine inside the `-th
area is used for processing the `-th stage of the manufacturing
process. Now, considering the `-th machine’s health condition
at the i-th index of the w-th window, we denote (G

[i,w]
` ) as the

event that the machine is in good condition. Similarly, denote
(B

[i,w]
` ) as the event that the machine is in bad condition.

Denote (B[i,w]
`|AMBER) as the conditional event that the machine is

still able to work properly given that MHC is in bad condition.
And finally, denote (B

[i,w]
`|RED) as the conditional event that the

machine requires immediate repair/maintenance given that the
MHC is in bad condition. Mathematically speaking, we have

(B
[i,w]
` ) = (B

[i,w]
`|AMBER) ∪ (B

[i,w]
`|RED) (6)

Obviously, both (B
[i,w]
`|AMBER) and (B

[i,w]
`|RED) reflect the degrada-

tion status of the `-th machine. However, we differ (B[i,w]
`|AMBER)

from (B
[i,w]
`|RED) based on the severity. In the case of (B[i,w]

`|AMBER),
the `-th machine is assumed to become overloaded after
running a while, but it does not affect the product quality
significantly and thus it is not necessarily replaced to save
equipment cost. In the case of (B

[i,w]
`|RED), that machine will

need to be repaired to guarantee a seamless manufacturing
operation.

In order to transmit two different types of information, we
will employ the power domain for additionally transmitting
the information about the MHC. Our transmission goals are
as follows:

• i) The transmitted s[i,w]
m signal itself conveys the messages

about the primary information.
• ii) In the power domain, the transmit power
E
{
|s[i,w]
m |2

}
= E

{
|s[i,w]
m|drop|

2
}

conveys the messages
about the MHC. Different levels of the transmit power
will enable us to know if a machine is in good or bad
condition. Furthermore, in the bad condition, we can
realize how bad the machine is.

To be more specific, the average power of s[i,w]
m in Subsection

III-A has only one power level, i.e. E
{
|s[i,w]
m|ideal|

2
}
= P . By

contrast, the average power of s[i,w]
m in this subsection will

have the following three levels:

E
{
|s[i,w]
m|drop|

2
}
=


P, if (G[i,w]

` ) occurs;
α1P, if (B[i,w]

`|AMBER) occurs;

α2P, if (B[i,w]
`|RED) occurs,

(7)

where α1 and α2 are scaling factors satisfying the condition:

either 0 < α2 < α1 < 1, (8a)
or 1 < α1 < α2. (8b)

For simplicity, we will only consider one of the two cases and
select the first case, corresponding to (8a), in this paper. As
seen from (7), a transmission with three levels of power will
enable the data center to know about the MHC and perform
condition-based maintenance.

The occurrence of transitioning the transmit power from P
to α1P (or α2P ) will be called a power drop event, i.e.

power drop⇔ (B
[i,w]
` ).

Furthermore, provided that a power drop event occurs at cer-
tain time index i, then (B

[i,w]
`|AMBER) occurs with the conditional

probability of p1, while (B
[i,w]
`|RED) occurs with the conditional

probability of p2 = 1 − p1. The following probability tree-
diagram summarizes all the related events:

Condition

(B
[i,w]
` )

(B
[i,w]
`|RED)

p
2severe degradation

(B
[i,w]
`|AMBER)

still
able to work

p1

pdroppower drop

(G
[i,w]
` )

no power drop

1−
pdrop

Note that (7) presents the transmit power of an IoT device.
Taking into account all M` IoT devices inside the `-th area,
we set up the following rules:

• If the event (G[i,w]
` ) occurs, then all IoT devices of the

`-th area will transmit with the average power of P .
• If the event (B[i,w]

`|AMBER) occurs, all IoT devices of the `-th
area will transmit with the average power of α1P .

• If the event (B[i,w]
`|RED) occurs, all IoT devices of the `-th

area will transmit with the average power of α2P .

By contrast, if the `-th machine only works properly during the
first TG

` slots and degrades during the last (T`−TG
` ) slots, then

the M`-th IoT devices will transmit with the average power
of α1P or α2P , depending on the severity of the machine
degradation. Note that 1 ≤ TG

` ≤ T`. Apparently, we do not
know when a power drop event occurs, thus we will consider
TG
` as a uniformly distributed random variable. Moreover, once

the power drop event has occurred at the TG
` -th slot, we will

need to divide the `-th frame into 2 smaller durations, each
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. . .. . .
Previous

frame

Next

frame

Current frame

Voltage

Time

1 0 1 1 0 1 0 1 . . .. . .

(A)

2 levels of voltages

Time

Voltage 1 0 1 1 0 1 0 1 . . .. . .

(B)

Fig. 3: An illustration of two scenarios. The detailed explanation of this figure is presented in Example 1.

corresponding to a different transmit power. For simplicity, we
will consider 2 subsets of I`, they are the following:

IG
` =

{
1 +

`−1∑
`′=0

T`′ , . . . , T
G
` +

`−1∑
`′=0

T`′

}
, (9)

IB
` = I` \ IG

`

=

{
TG
` + 1 +

`−1∑
`′=0

T`′ , . . . , T` +
`−1∑
`′=0

T`′

}
. (10)

Example 1. To illustrate how to employ the power domain
for transmitting the information about the MHC, we provide
Figure 3 with specific parameters. Therein, we assume that the
number of slots in each frame is the same, i.e. T` = 8 for ∀` ≥
1. Herein, we set ` = 3. The set of indices associated with the
3-rd frame is I3 =

{
1 +

∑3−1
`′=0 T`′ , . . . , T3 +

∑3−1
`′=0 T`′

}
=

{17, 18, . . . , 24}. The sub-figure (A) illustrates a bitstream of
10110101 to be conveyed during T` = 8 slots of a certain
frame `. Noticeably, in the sub-figure (A), the bitstream is
the only type of information to be conveyed. By contrast, the
sub-figure (B) illustrates that two types of information can be
conveyed at the same time by changing the signal voltage to
notify us of the health condition of the 3-rd machine. During
the first TG

` slots, the 3-rd machine works well. However,
during the last (T`−TG

` ) remaining slots, this machine’s health
condition changes and it then alerts the data center to the new
situation. To notify us of the MHC, M3 IoT devices inside
the 3-rd area will lower their voltage and the new voltage
level depends on the severity. Consequently, apart from the
bitstream of 10110101, the 3-rd machine’s health condition
is also informed. In the sub-figure (B), we set TG

` = 5 and
have the sequence of the events (G[17,w]

` ), (G[18,w]
` ), (G[19,w]

` ),
(G

[20,w]
` ), (G[21,w]

` ), (B[22,w]
` ), (B[23,w]

` ), (B[24,w]
` ) transmit-

ted. Herein, (B
[·,w]
` ) can be either (B

[·,w]
`|AMBER) or (B

[·,w]
`|RED),

depending on the severity of the machine degradation.

Based on what has been discussed, we are now able to
formulate the received signal at any time index i of the w-th

time window as follows:

r
[i,w]
practical =

{
r
[i,w]
IDEAL, i ∈ IG;

r
[i,w]
AMBER or r[i,w]

RED , i ∈ IB,
(11)

where

r
[i,w]
AMBER =

M∑
m=1

χ
[i,w]
m` s[i,w]

m + n[i,w], (12)

with E
{
|s[i,w]
m|drop|

2
}
= α1P ;

r
[i,w]
RED =

M∑
m=1

χ
[i,w]
m` s[i,w]

m + n[i,w], (13)

with E
{
|s[i,w]
m|drop|

2
}
= α2P,

and

IG = IG
1 ∪ IG

2 ∪ . . . ∪ IG
L, (14)

IB = I \ IG = IB
1 ∪ IB

2 ∪ . . . ∪ IB
L (15)

Furthermore, our transmission scheme will be designed so that
if a power drop event occurs at the

(
TG
` + 1

)
-th slot with the

probability of pdrop, then the new level of power will remain
unchanged until the last slot of the `-th frame. For intuitive
understanding, please refer to Figure 4.

IV. ACHIEVABLE CAPACITY

Given that a power drop event occurs (with the probability
of pdrop) at the slot

(
TG
` + 1

)
-th slot of the `-th frame, we can

rely on (11)–(13) to calculate the SNR at the t-th slot of the
`-th frame as follows:

SNR[i,w]
` =

∑M
m=1 |χ

[i,w]
m` |2 E

{
|s[i,w]
m|drop|

2
}

E
{
|n[i,w]|2

} (16)

Depending on the value of the index i, we will obtain a specific
value of SNR[i,w]

`|drop. To be more specific,
• For i ∈ IG

` , we have

SNR[i,w]
` = (P/N0)γ

[i,w]
` ,with the prob. of 1, (17)
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TABLE I: A summary of critical symbols

Symbols Meanings

(G
[i,w]
` ) the `-th machine is in good condition at the i-th index of the w-th window

(B
[i,w]
` ) the `-th machine is in bad condition at the i-th index of the w-th window

(B
[i,w]
`|AMBER) (B

[i,w]
` ) occurs and the `-th machine is still able to work

(B
[i,w]
`|RED) (B

[i,w]
` ) occurs but the `-th machine cannot work properly

IG
` the set of time indices at which the `-th machine is still in good condition
IB
` the set of time indices at which the `-th machine is in bad condition
K the number of RIS elements
L the number of stages in the manufacturing process
T` the number of time slots dedicated to the `-th stage
M` the number of IoT devices inside the `-th in-factory area
P when the event (G[i,w]

` ) occurs, the average transmit power of each IoT device is P
α1 when the event (B[i,w]

`|AMBER) occurs, the average transmit power of each IoT device is α1P

α2 when the event (B[i,w]
`|RED) occurs, the average transmit power of each IoT device is α2P

Fig. 4: Received signal strength (RSS), i.e.
∣∣∣r[i,w]

practical

∣∣∣2, versus
the time index i. A manufacturing cycle (i.e., a time window)
consists of 3 time frames. Each frame has 100 time slots. The
1-st machine, which is located in the 1-st area, changes to
alerting mode from the TG

1 -th slot onwards. The 2-nd machine
still works properly. Finally, the 3-rd machine, which is located
in the 3-rd area, enters alerting mode from the TG

3 -th slot
onwards. Herein, we set TG

1 = TG
3 = 60.

where γ[i,w]
` =

∑M`

m=1 |χ
[i,w]
m` |2.

• For i ∈ IB
` , we have

SNR[i,w]
` =


P
N0
γ
[i,w]
` ,with the prob. of (1− pdrop);

α1P
N0

γ
[i,w]
` ,with the prob. of (pdropp1);

α2P
N0

γ
[i,w]
` ,with the prob. of (pdropp2).

(18)

As a result, given the realizations of channels, i ∈ I`, the
instantaneous capacity of the link from the `-th area to the
CPU will be formulated as C

[i,w]
` = log2

(
1 + SNR[i,w]

`

)
.

Obviously, the specific value of C [i,w]
` depends on the value

of the index i. As a result, we have
• For i ∈ IG

` :

C
[i,w]
` = log2

(
1 + (P/N0)γ

[i,w]
`

)
. (19)

• For i ∈ IB
` :

C
[i,w]
` =



log2

(
1 + (P/N0)γ

[i,w]
`

)
,

with the prob. of (1− pdrop);

log2

(
1 + (α1P/N0)γ

[i,w]
`

)
,

with the prob. of (pdropp1);

log2

(
1 + (α2P/N0)γ

[i,w]
`

)
,

with the prob. of (pdropp2).

(20)

The ergodic capacity of the link from the `-th area to the
CPU can be calculated as follows:
• For i ∈ IG

` :

C
[i]
` = E

{
log2

(
1 + (P/N0)γ

[i,w]
`

)}
. (21)

• For i ∈ IB
` :

C
[i]
` = (1− pdrop)E

{
log2

(
1 + (P/N0)γ

[i,w]
`

)}
+ (pdropp1)E

{
log2

(
1 + (α1P/N0)γ

[i,w]
`

)}
+ (pdropp2)E

{
log2

(
1 + (α2P/N0)γ

[i,w]
`

)}
.

(22)

Proposition 1. Given that χ
[i,w]
m` is defined as in (5)

and γ
[i,w]
` is defined as γ

[i,w]
` =

∑M`

m=1 |χ
[i,w]
m` |2, the er-

godic quantity E
{
log2

(
1 + aγ

[i,w]
`

)}
is upper-bounded by

log2

(
1 + aK2

∑M`

m=1 10
− %m`

10

)
, where a is a constant.

Proof. See Appendix A.

Denote C
[i]
`|upper as the upper bound for C [i]

` at the index

i ∈ I`. Note that C [i]
` ≤ C

[i]
`|upper. Using Proposition 1, we can

formulate C [i]
`|upper as follows:

• For i ∈ IG
` , we have

C
[i]
`|upper = log2 (1 +Ω`) , (23)

where Ω` = (P/N0)K
2
∑M`

m=1 10
− %m`

10 .
• For i ∈ IB

` , we have

C
[i]
`|upper = (1− pdrop) log2 (1 +Ω`)
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+ pdrop log2 [(1 + α1Ω`)
p1 (1 + α2Ω`)

p2 ] . (24)

Adding up C [i]
` over all |I| =

∑L
`=1 |I`| indices, we obtain

the total ergodic capacity of a window as follows:

C tot =
L∑
`=1

[ ∑
i∈IG

`

E

{
log2

(
1 +

P

N0
γ
[i,w]
`

)}

+ (1− pdrop)
∑
i∈IB

`

E

{
log2

(
1 +

P

N0
γ
[i,w]
`

)}

+ pdropp1
∑
i∈IB

`

E

{
log2

(
1 +

α1P

N0
γ
[i,w]
`

)}

+ pdropp2
∑
i∈IB

`

E

{
log2

(
1 +

α2P

N0
γ
[i,w]
`

)}]
.

(25)

Denote C tot
upper as the upper bound for C tot. Using Proposition

1, we can formulate C tot
upper as

C tot
upper =

L∑
`=1

[ ∑
i∈IG

`

log2 (1 +Ω`)

+ (1− pdrop)
∑
i∈IB

`

log2 (1 +Ω`)

+ pdrop

∑
i∈IB

`

log2 [(1 + α1Ω`)
p1 (1 + α2Ω`)

p2 ]

]
.

(26)

For the sake of readability, a summary of critical symbols
is presented in Table I.

V. MACHINE HEALTH MONITORING

A. Time-Series Data and Labels

Based on the received signal r[i,w], we will develop a
classification strategy using machine learning techniques. We
consider r[i,w] as the raw data that will be extracted and trans-
formed into a certain useful attribute for the training/learning
purposes.

Regarding the i-th index of the w-th window, let us define
a[i,w] , |r[i,w]|/M. After a product is made, i.e. after a time
window passes by, we obtain the following time series:

a[w]
raw =

[
a[1,w], a[2,w], . . . , a[Ttot,w]

]
. (27)

Herein, the time series a
[w]
raw is presented in the form of a

row vector. Based on a
[w]
raw, we can decode the secondary

information about machine health during all L phases. The
process of decoding the secondary information is actually
the classification into one of multiple classes, each indicating
the overall health status of all L machines. The classifi-
cation process will be performed by an AE later in this
section. In order to facilitate this process, we normalize
a
[w]
raw to the range (0, 1) by simply multiplying a scaling

factor 1/max
(
a[1,w], . . . , a[Ttot,w]

)
. Mathematically, we have

a[w] = 1

max(a[1,w],...,a[Ttot,w])
a
[w]
raw. Using the normalized time

series a[w] as the data, we can train the AE so that it can

classify a[w] into one of the predetermined classes, thereby
showing the health status of the `-th machine. For example, if
the class of a[w] shows that the `-th machine’s health condition
is in good condition, then the shape of the time series a[w]

indicates that there is no “drop” during i ∈ I`. By contrast, if
the class of a[w] shows that the `-th machine’s health condition
is in bad condition, then there is a drop at a certain index
i ∈ I`. Recall that the occurrence of a drop at the i-th time
index is associated with either (G[i,w]

` ) or (B[i,w]
` ), depending

on the severity of the machine damage.
Since (G

[i,w]
` ) and (B

[i,w]
` ) are the events that are associated

with the i-th index of the w-th window, thus they can only
enable us to know about the MHC at the index i. Due to the
fact that the `-th frame has T` slots, corresponding to the index
i from (T1 + . . .+ T`−1) + 1 to (T1 + . . .+ T`−1) + T`, it is
necessary to consider an event capturing the MHC over all T`
slots of the `-th frame. We thus define

0
[w]
` =

T1+...+T`−1+T`⋂
i=T1+...+T`−1+1

(G
[i,w]
` ) =

⋂
i∈I`

(G
[i,w]
` ) (28)

as the event that the `-th machine is in good condition
throughout the `-th frame. On the other hand, if there is a
power drop at the (TG

` + 1)-st slot of the `-th frame, then we
will denote

1
[w]
` =

 ⋂
i∈IG

`

(G
[i,w]
` )

⋂⋂
i∈IB

`

(B
[i,w]
`|AMBER)

 (29)

and 2
[w]
` =

 ⋂
i∈IG

`

(G
[i,w]
` )

⋂⋂
i∈IB

`

(B
[i,w]
`|RED)

 (30)

as the event that the `-th machine is in good condition during
the first TG

` slots, i.e. i ∈ IG
` , and in bad condition during the

remaining (T`−TG
` ) slots, i.e. i ∈ IB

` . Note that the occurrence
1
[w]
` or 2

[w]
` depends on the severity of the `-th machine. For

notational simplicity, we will drop the upper script (·)[w] and
write 0`, 1` and 2` hereafter.

Since there are L stages in a manufacturing cycle, we will
need to consider the combination of L events occurring in L
time frames. Denote z` ∈ {0`,1`,2`}. Then, we can define
the event

〈z1, . . . , zL〉 = z1 ∩ z2 ∩ . . . ∩ zL (31)

and rely on it to assess the health condition of all L machines.
For example, if we have 〈01,22,13〉, then we can conclude
that the 1-st machine works well, the 2-nd machine needs to
be repaired, and the 3-rd machine is not in good condition but
an urgent maintenance is not necessary.

From (31), we can see that there are multiple possibilities
related to the health condition of L machines. Each possibility
can be referred to as a combination of L events z

[w]
1 , . . . , z

[w]
L .

Table II illustrates 27 different possibilities of 〈z1, . . . , zL〉
with L = 3. Generally, we can easily calculate the number of
possibilities of 〈z1, . . . , zL〉 as follows:

V =

(
L

0

)
20 +

(
L

1

)
21 + . . .+

(
L

L

)
2L = 3L, (32)
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Fig. 5: The classification method that combines the AE architecture and softmax.

TABLE II: The description

The number of ways to choose After choosing k out of L The number of cases
k out of L = 3 positions so that positions, 〈z1, . . . , zL〉 when ẑ` is replaced Possibilities Classes

these positions contain ẑ` ∈ {1`,2`}. becomes the following: by either 1` or 2`.

With k = 0, we have
(L
0

)
ways 〈01,02,03〉 20 case 〈01,02,03〉 1

〈01,02, ẑ3〉 21 cases 〈01,02,13〉, 〈01,02,23〉 2, 3
With k = 1, we have

(L
1

)
ways 〈01, ẑ2,03〉 21 cases 〈01,12,03〉, 〈01,22,03〉 4, 5

〈ẑ1,02,03〉 21 cases 〈11,02,03〉, 〈21,02,03〉 6, 7
〈01, ẑ2, ẑ3〉 22 cases 〈01,12,13〉, 〈01,12,23〉, 8, 9,

〈01,22,13〉, 〈01,22,23〉, 10, 11
With k = 2, we have

(L
2

)
ways 〈ẑ1, ẑ2,03〉 22 cases 〈11,12,03〉, 〈11,22,03〉, 12, 13,

〈21,12,03〉, 〈21,22,03〉 14, 15
〈ẑ1,02, ẑ3〉 22 cases 〈11,02,13〉, 〈11,02,23〉, 16, 17,

〈21,02,13〉, 〈21,02,23〉 18, 19
〈11,12,13〉, 〈11,12,23〉, 20, 21,

With k = 3, we have
(L
3

)
ways 〈ẑ1, ẑ2, ẑ3〉 23 cases 〈11,22,13〉, 〈11,22,23〉, 22, 23,

〈21,12,13〉, 〈21,12,23〉, 24, 25,
〈21,22,13〉, 〈21,22,23〉 26, 27

where the second equality follows the binomial formula. With
V = 3L possibilities of 〈z1, . . . , zL〉, we will also have 3L

different labels/classes. By training an AE, we will be able to
automatically classify time series into 3L different classes.

B. Machine Health Monitoring based on Autoencoder

When a time series a[w] is fed to the input of the AE, we
will obtain the following output:

â[w] =
[
â[1,w], â[2,w], . . . , â[Ttot,w]

]
.

Applying the softmax function to the output of the AE, we
can classify the output time series â[w] into one of the V =
3L = 33 = 27 classes. To indicate that the class of the input
time series a[w] and the class of the output time series â[w]

belong to a certain class c, we introduce the lower script {·}c
to the notations a[w] and â[w], respectively. Thus, a

[w]
c implies

that the input time series a[w] belongs to the c-th class, c ∈
{1, . . . , 27}. Also, â

[w]
c implies that the output time series â[w]

belongs to the c-th class.
When it comes to the training process of the AE, the loss

function to be minimized can be defined as follows:

floss = (1/WV )
W∑
w=1

V∑
c=1

∥∥∥â[w]
c − a[w]

c

∥∥∥2 . (33)

The execution of the AE aims to minimize the loss function
floss so that the AE is capable of learning the representations
of the data. This goal is attained through training and the
weights of the AE will be optimized. After training, the middle
layer of the AE, at which the data is compressed into a low-
dimensional latent space, can represent the most significant

TABLE III: The Confusion Matrix

Predicted classes

Class 1 Class 2 . . . Class 27

Actual

Class 1 True False . . . False

classes

Class 2 False True . . . False
...

...
...

. . .
...

Class 27 False False . . . True

features of the data. For notational simplicity, we denote ω
as the number of neurons at the middle layer of the AE. In
general, the higher the value of ω, the higher the complexity
of the AE. Since the AE extracts the most characteristics of
data, ω should be chosen so that it is less than Ttot. Thus,
when the input time series a[w] traverses from the first layer
to the middle layer, we obtain the dimensionality reduction of
(Ttot − ω). The impact of ω will be experimentally evaluated
in the numerical section. Figure 5 depicts our classification
algorithm that is made up of the AE and the softmax layer.
Meanwhile, Table III illustrates the confusion matrix on which
the accuracy calculation is based. To be more specific, the
accuracy is the ratio of the sum of True events along the
diagonal to the total True and False events in the confusion
matrix.

VI. NUMERICAL RESULTS

In this section, we evaluate the ergodic capacity associated
with the primary information and the detection accuracy of
machine health associated with the secondary information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3187189
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Fig. 6: The ergodic capacity C [i]
` versus i is depicted for three

different values of K.

Fig. 7: C [i]
` and C [i]

`|upper are depicted with respect to K.

Unless otherwise specified, the system parameters are: L = 3,
M1 = M2 = M3 = 5, K1 = K2 = K3 = 20, T0 = 60,
α1 = 0.7 and α2 = 0.4. By setting T1 = T2 = T3 = 100,
the number of neurons in the first/last layer is equal to
Ttot = T1 + T2 + T3 = 300. The number of training samples
is equal to 3L × 103 = 27× 103.

A. Channel Capacity

Figure 6 shows the ergodic capacity C [i]
` at different values

of the index i ∈ I. When an incident occurs at the (TG
` +1)-st

slot of the `-th frame, M` IoT devices reduce their transmit
power from P to a lower power level (i.e., α1P or α2P ) and
keep the new power level until the last slot of frame `, thus
it can be seen that C [i]

` at i ∈ IB = IB
1 ∪ IB

2 ∪ IB
3 is lower

than C [i]
` at i ∈ IG. As illustrated in Fig. 6, there are L = 3

incidents in 3 areas/stages/frames:
• A power drop occurs at the 61-st slot of the 1-st frame,

corresponding to i = 61.
• A power drop occurs at the 81-st slot of the 2-nd frame,

corresponding to i = 181.
• A power drop occurs at the 71-st slot of the 3-rd frame,

corresponding to i = 271.

Fig. 8: C [i]
` and C [i]

`|upper are depicted with respect to P/N0.

Fig. 9: C [i]
` and C [i]

`|upper are depicted with respect to α1.

We also observe that the ergodic capacity is, in general,
improved with the increase of the RIS size K.

Figure 7 shows the exact ergodic capacity C [i]
` and its upper

bound C [i]
`|upper versus the RIS size K. There are two scenarios

depicted in Fig. 7, i.e. i ∈ IG
` and i ∈ IB

` . Naturally, in the
case of i ∈ IG

` , the capacity is higher than that of i ∈ IG
` .

At a specific value of K, the ergodic capacity at i ∈ IG
` is

higher than the ergodic capacity at i ∈ IB
` , because there

is no sacrifice in transmit power. Obviously, the IoT devices
of the `-th area have to reduce their transmit power in the
case of i ∈ IB

` in order to convey the message of the `-
th machine’ health, while they do not have to do so when
i ∈ IG

` . Furthermore, either i ∈ IG
` or i ∈ IB

` , the difference
between the exact ergodic capacity and its upper bound is
relatively small. Obviously, the control of RIS helps to raise
the capacity close to its upper limit. More importantly, the
ergodic capacity increases with the RIS size K, regardless
of the index i, indicating that increasing the number of RIS
elements improves the capacity.

Figure 8 shows the ergodic capacity C [i]
` and its upper bound

C
[i]
`|upper versus P/N0 under the condition of i ∈ IG

` and that
of i ∈ IB

` . Again, we observe that when i ∈ IG
` , we do not
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(a) Loss function over iterations, with ω = 80 and different M .

(b) Accuracy vs M at the 50-th iteration.

Fig. 10: The performance vs the number of IoT devices M .

have to reduce the transmit power to convey the secondary
information about the MHC, thus the capacity in the case of
i ∈ IG

` is higher than that of i ∈ IB
` . Regardless of the `-

th machine’s health condition at some time index i ∈ I` ,
the capacity increases with P/N0. Moreover, C [i]

` is tightly
upper-bounded by C [i]

`|upper.

Figure 9 shows the exact ergodic capacity C [i]
` and its upper

bound C [i]
`|upper at different values of α1. Note that α2 = 0.4 ≤

α1 ≤ 1. Depending on either i ∈ IG
` or i ∈ IB

` , two curves of
C

[i]
` , as well as two curves of C [i]

`|upper, are depicted. We observe
that the capacity is the same in the case of i ∈ IG

` , because
the average transmit power is not changed. By contrast, in the
case of i ∈ IB

` , the average transmit power depends on α1,
thus the capacity increases with α1, because of the increase
in transmit power. Since α1 ≤ 1, C [i]

` at i ∈ IG
` is larger

than C [i]
` at i ∈ IB

` due to the reduced power in the case that
the `-th machine is in bad condition. Noticeably, the upper
bound C

[i]
`|upper is quite close to the exact expression C

[i]
` , in

both cases of i ∈ IG
` and i ∈ IB

` .

B. Accuracy of MHC Classification

Figure 10 shows the loss function and the accuracy versus
the number of IoT devices. From Fig. 10a and Fig. 10b, we can
see that the accuracy seems not to be affected by the change
of M . For 1 ≤ M ≤ 10, the accuracy exceeds 0.9 when
ω ∈ {40, 80}. In the case of ω = 80 neurons, the accuracy is
little higher than that of ω = 40 neurons. This may imply that
the AE yields a higher accuracy when its architecture becomes
more sophisticated (i.e. having more neurons).

Figure 11 shows the loss function and the accuracy versus
the number of RIS elements. We can see from Fig. 11a that the
loss reduces over iterations. Moreover, the case of K = 50 is
the best while the case of K = 10 is the worst. This means that
the increase of the RIS size K helps the AEs to converge faster.

(a) Loss function over iterations, with ω = 80 and different K.

(b) Accuracy vs K at the 50-th iteration.

Fig. 11: The performance vs the number of RIS elements K.

(a) Loss function over iterations, with ω = 80 and different P/N0.

(b) Accuracy vs P/N0 at the 50-th iteration.

Fig. 12: The performance vs the ratio P/N0.

However, Fig. 11b shows that a higher value of K does not
always guarantee a higher accuracy. In general, the accuracy
is not significantly impacted by changing the RIS size. With
ω = 80 neurons, we can obtain an accuracy of over 0.95,
while the accuracy is below 0.9 with ω = 40 neurons.

In Fig. 12, the loss function and the accuracy versus P/N0

are respectively illustrated. In general, Fig. 12a and Fig. 12b
show that the accuracy is not much affected by P/N0. This
means that we can perform transmission with low-power IoT
devices, while still being able to keep a high value of accuracy.
On the other hand, we can reconfirm that the accuracy in the
case of ω = 80 is higher that of ω = 40.

Figure 13 depicts the loss function and accuracy versus the
power coefficient α1. As seen from Fig. 13a, the loss has the
lowest value in the case of α1 = 0.7. Meanwhile, Fig. 13b
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(a) Loss function over iterations, with ω = 80 and different α1.

(b) Accuracy vs α1 at the 50-th iteration.

Fig. 13: The performance vs the power coefficient α1.

shows that with ω ∈ {40, 80}, the accuracy attains its highest
value at α1 = 0.6. By contrast, the accuracy is the lowest at
α1 = 0.9, regardless of ω = 40 or ω = 80. Thus, we can say
that a careful choice of α1 is necessary to obtain the accuracy
as high as possible. Finally, we also confirm again that in the
case of ω = 80, the accuracy is higher than that of ω = 40,
because the AE can learn the data better.

Remark 1. The increase of the transmit power P (or the
increase of the RIS size K) helps improve the primary in-
formation transmission (i.e., the capacity C

[i]
` is improved),

while the accuracy of machine health assessment is not much
affected. Hence, we can perform the transmission of both
the primary and secondary information at any desired pair
of (P,K), while being able to maintain a high accuracy of
machine health assessment.

Remark 2. The transmission of the primary information is
improved when increasing α1, while the secondary information
of machine health is only transmitted with a high accuracy
when α1 is carefully chosen. Hence, there is a trade-off
between the data rate associated with the primary information
and the accuracy associated with the secondary information
about machine health. For example, Fig. 9 shows that C [i]

` at
α1 = 0.9 is higher than that at α1 = 0.7; however, Fig. 13
shows that the accuracy at α1 = 0.9 approximates to 0.81,
which is lower than the accuracy of 0.92 at α1 = 0.7. In this
case, we can accept reducing the data rate a little, i.e. reducing
α1 from 0.9 to 0.7, in order to gain a higher accuracy, from
0.81 to 0.92.

VII. CONCLUSIONS

In this paper, we have developed an AE-based framework
to facilitate the monitoring of MHCs in a smart factory using
industrial IoT and RIS devices. We have found that while
the increase of the IoT devices’ transmit power P or RIS
size K can improve the ergodic capacity, the accuracy of

machine health assessment is not really affected. Thus, it is the
discretion of the designers to select a reasonable pair of (P,K)
to achieve two goals: i) a high data rate and ii) a high accuracy
of fault detection. Additionally, we have observed that the
choice of coefficient α1 in our power mapping scheme has
a significant influence on both the capacity and the accuracy.
Given that the capacity is theoretically derived but the accuracy
is experimentally quantified, the optimal value of α1 can only
be found by a heuristic approach. As a result, the designers
will need to tune α1 to achieve a trade-off between the
capacity and the accuracy. In general, the proposed framework
allows us to assess the MHC with high accuracy by lowering
transmit power to a lower level but still being able to keep
a reasonable transmission rate with the help of RIS. The
proposed AE can attain a high accuracy of over 95% as long
as the number of neurons at the middle layer is sufficiently
large. The significance of our framework lies in that low-
power IoT-aided systems can sacrifice part of the data rate,
associated with the primary information, in order to transmit
a totally-different type of information about the MHCs (i.e.,
the secondary information). Nevertheless, the sacrificed data
rate can be compensated by integrating RISs into the system.
In future works, it may be necessary to extend this work to
a more general case, where more power levels are used for
delivering more alert levels.

APPENDIX

A. Proof of Proposition 1

Let us consider a function f(γ
[i,w]
` ) = log2(1 + aγ

[i,w]
` )

where γ[i,w]
` =

∑M`

m=1 |χ
[i,w]
m` |2. The expectation of f(γ[i,w]

` )
can be calculated as follows:

E
{
f(γ

[i,w]
` )

}
= E

{
log2

(
1 + a

M∑̀
m=1

10−
%m`
10 |g[i,w]

`→C diag (φ`)h
[i,w]
m→`|

2

)}

= E

{
log2

(
1 + a

M∑̀
m=1

10−
%m`
10

∣∣∣u[i,w]
m,` φ

>
`

∣∣∣2)} , (34)

where the row vector u
[i,w]
m,` = g

[i,w]
`→C �

(
h
[i,w]
m→`

)>
is an

element-wise product.
Using the Cauchy-Schwarz inequality, we have∣∣∣u[i,w]

m,` φ
>
`

∣∣∣2 ≤ ∥∥∥u[i,w]
m,`

∥∥∥2 ‖φ`‖2 , (35)

where the equality holds for

φ` =
u
[i,w]
m,` φ

>
`∥∥∥u[i,w]

m,`

∥∥∥2
(
u
[i,w]
m,`

)∗
. (36)

Adjusting the `-th RIS to obey (36) so that ‖φ`‖2 = K is
satisfied, we can arrive at the following:∣∣∣u[i,w]

m,` φ
>
`

∣∣∣2 = K
∥∥∥u[i,w]

m,`

∥∥∥2 = K

∥∥∥∥g[i,w]
`→C �

(
h
[i,w]
m→`

)>∥∥∥∥2
= K

K∑
k=1

∣∣∣g[i,w]
k|`→C

∣∣∣2 ∣∣∣h[i,w]
k|m→`

∣∣∣2 , (37)
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where g
[i,w]
k|`→C is the k-th entry in the vector g

[i,w]
`→C , and

h
[i,w]
k|m→` is the k-th entry in the vector h

[i,w]
m→`. Substituting

(37) into (34), we obtain

E
{
f(γ

[i,w]
` )

}
= E

{
log2

(
1 + a

M∑̀
m=1

10−
%m`
10 K

×
K∑
k=1

∣∣∣g[i,w]
k|`→C

∣∣∣2 ∣∣∣h[i,w]
k|m→`

∣∣∣2)}
(?)

≤ log2

(
1 + a

M∑̀
m=1

10−
%m`
10 K

× E

{
K∑
k=1

∣∣∣g[i,w]
k|`→C

∣∣∣2 ∣∣∣h[i,w]
k|m→`

∣∣∣2})
(??)
= log2

(
1 + a

M∑̀
m=1

10−
%m`
10 K

×
K∑
k=1

E

{∣∣∣g[i,w]
k|`→C

∣∣∣2}E{∣∣∣h[i,w]
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∣∣∣2})

= log2

(
1 + aK2

M∑̀
m=1

10−
%m`
10

)
, (38)

where (?) follows the Jensen’s inequality and (??) follows the
fact that g[i,w]

k|`→C is independent of h[i,w]
k|m→`.
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