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Abstract Chest X-rays are playing an important role in the testing and di-
agnosis of COVID-19 disease in the recent pandemic. However, due to the
limited amount of labelled medical images, automated classification of these
images for positive and negative cases remains the biggest challenge in their
reliable use in diagnosis and disease progression. We applied and implemented
a transfer learning pipeline for classifying COVID-19 chest X-ray images from
two publicly available chest X-ray datasets ''2. The classifier effectively dis-
tinguishes inflammation in lungs due to COVID-19 and pneumonia (viral and
bacterial) from the ones with no infection (normal). We have used multiple pre-
trained convolutional backbones as the feature extractor and achieved an over-
all detection accuracy of 91.2% , 95.3%, 96.7% for the VGG16, ResNet50 and
EfficientNetB0 backbones respectively. Additionally, we trained a generative
adversarial framework (a cycleGAN) to generate and augment the minority
COVID-19 class in our approach. For visual explanations and interpretation
purposes, we visualized the regions of input that are important for predictions
and a gradient class activation mapping (Grad-CAM) technique is used in the
pipeline to produce a coarse localization map of the highlighted regions in
the image. This activation map can be used to monitor affected lung regions
during disease progression and severity stages.
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1 Introduction

The 2019 novel coronavirus (COVID-19) has become a serious public health
problem across the world and is approaching approximately 4.597 million cases
worldwide according to the statistics of European Centre for Disease Preven-
tion and Control on May 17th, 2020. The COVID-19 infection may manifest
itself as a flu-like illness potentially progressing to an acute respiratory distress
syndrome. Despite the worldwide research efforts over the past few months,
early detection of COVID-19 remains a challenging problem due to limited
resources and the amount of data available for research. The gold standard
screening method in COVID-19 is the reverse-transcription polymerase chain
reaction (RT-PCR). Chest radiography imaging is being used as an alternative
screening method and done in parallel to PCR viral testing [20]. Additionally,
false negatives have been reported in PCR results due to insufficient cellu-
lar content in the sample or time-consuming nature and inadequate detection
when there were positive radiological findings [2]. The accuracy of Chest X-ray
(CXR) diagnosis of COVID-19 infection strongly relies on radiological exper-
tise due to the complex morphological patterns of lung involvement which
can change in extent and appearance over time. If these patterns are detected
with high accuracy, it can enable rapid triaging for screening, diagnosis, and
management of patients with suspected or known COVID-19 infection [14].

However, the limited number of trained thoracic radiologists limits the re-
liable interpretation of complex chest examinations, especially in developing
countries. Deep learning techniques, in particular convolutional neural net-
works (CNNs), have been beating humans in various tasks of computer vision
and other video processing tasks in recent years. Deep learning algorithms have
already been applied for the detection and classification of pneumonia [15,22]
and other diseases on radiography. Hence, it has become the natural candidate
for the analysis of CXR images to address the automated COVID-19 Screening.
Some recent transfer learning approaches presented in [3,5,7, 14, 20] applied
to CXR’s of patients has been showing promising results in the identification
of COVID-19.

In this paper, as an effort to improve the current COVID-19 detection using
a limited number of publicly available CXR dataset, we devise and implement
a CXR based COVID-19 disease detection and classification pipeline using a
modified VGG-16, ResNet50 [9] and a recent EfficientNetB0 [19] architecture.
Following the trend from the literature, for our research, we have assembled
a three-class labelled dataset with x-ray images from 'normal’,’COVID-19’,
‘pneumonia’ classes. “COVID-19 Image Data Collection” [6] is currently serv-
ing as the main source of COVID-19 CXR’s at this stage. To enhance the
under-represented COVID-19 class, we train a generative adversarial frame-
work to generate synthetic COVID-19 images during our experiments. Our
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choice for the convolutional backbone for this research is mostly driven by
their lightweight nature and their performance measures in terms of accuracy,
precision and recall performances to accurately detect COVID-19.

The remaining sections of this paper are organized as follows. In Section 2,
we review current literature on COVID-19 CXR image analysis using deep
learning methods. Design insights are derived from the review of the related
work and we provide a description of the dataset for the implemented net-
work in this section. Section 3 gives details on the proposed transfer learning
architecture and discusses the necessary settings, pre-trained backbones and
procedural stages. The influence of model backbones on the training time,
loss and model accuracy are also discussed in this section. The model perfor-
mance is evaluated in Section 4 where classification results in terms of recall,
precision and overall accuracy are compared and contrasted with concurrent
methods reported in the literature. We also present a gradient class activation
mapping (Grad-CAM) technique to monitor affected lung regions during dis-
ease progression for visual explanations and interpretation purposes. Finally,
conclusions are drawn in Section 5.

2 Related work
2.1 Deep learning for Chest X-ray and COVID-19 Diagnosis

All the related work found so far addressing the COVID-19 chest X-rays are
arxiv pre-prints and are still not peer-reviewed. We provide a summary of the
recent literature on coronavirus X-ray classification based on deep learning
techniques in this subsection.

In [5], a database of 190 COVID-19, 1345 viral pneumonia, and 1341
normal chest x-ray images was introduced. Training and validation on four
different pre-trained networks, namely, Resnet18, DenseNet201, AlexNet and
SqueezeNet for the classification of two different schemes (normal and COVID-
19 pneumonia; normal, viral and COVID-19 pneumonia). The classification
accuracy for both the schemes were 98.3%, 96.7% respectively. The sensitiv-
ity, specificity and precision value were also reported. In [10], a comparison
among seven different well-known deep learning neural networks architectures
was presented. In the experiments, they use a small data set with only 50
images in which 25 samples are from healthy patients and 25 from COVID-19
positive patients. In their experiments, the VGG19 and the DenseNet201 were
the best performing architectures. In [20], an architecture called COVID-net
is created to classify X-ray images into normal, pneumonia, and COVID-19.
Differently from the previous work, they use a much larger dataset consisting
of 16,756 chest radiography images across 13,645 patient cases. The authors
report an accuracy of 92.4% overall and sensitivity of 80% for COVID-19.

In [7], a pre-trained ResNet50 model is fine-tuned for the problem of clas-
sifying X-ray images into normal, COVID-19, bacterial-pneumonia and vi-
ral pneumonia. The authors report better results when compared with the
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Fig. 1: COVID-19 Image Data Collection: Image distribution as per diagnosis
(69% COVID)

COVID-net, 96.23% accuracy overall, and 100% sensitivity for COVID-19.
Nevertheless, it is important to highlight that the difference in [7] that it has
an extra class than [20] and the dataset consists of 68 COVID-19 radiographs
from 45 COVID-19 patients, 1,203 healthy patients, 931 patients with bacte-
rial pneumonia and 660 patients with nonCOVID-19 viral pneumonia. Addi-
tionally, the test set has only 8 COVID-19 instances for the claim of 100%
sensitivity to be generalized for a larger cohort.

In a very recent paper [14], the authors aimed towards a light-weight imple-
mentation of a COVID-19 classifier and with an accuracy of 93.9%, COVID-19
Sensitivity of 96.8% and positive predictive value of 100% using a flat version of
EfficientNet backbone. A hierarchical version of EfficientNet was also reported
with 93.5% accuracy and COVID-19 sensitivity of 80.6%.
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Table 1: Dataset and other settings

Settings Description
Original Chest X-ray (CXR) COVID-19: 142; Normal: 300; Pneumonia: 300
Pre-processing Intensity normalization, class-label encoding
Training set division (80%)  COVID-19: 113; Normal: 240; Pneumonia: 240
Test set division(20%) COVID-19: 29; Normal: 60; Pneumonia: 60
Augmentation versionl (v1): Random rotation, width shift, height

shift, horizontal flip
version2 (v2): 100 CycleGAN synthesized image for
COVID-19, followed by augmentation steps in v1

Validation set 5-fold cross-validation on the augmented training
set
Pre-trained base models
VGG16 Fixed-size kernel; parameter: 138M, Input shape:
224, 2243
Resnet50 [9] Residual connections; 26M, Input shape: 224, 224,3
EfficientNetBO0 [19] Mobile inverted bottleneck Convolution with depth,

width, and resolution; parameter: 5.3M, Input
shape: 224, 2243

2.2 Dataset Description

Following the trend of possible classes found in the literature, we have assem-
bled a three-class dataset with labels, normal - for healthy patients; COVID-
19 - for patients with COVID-19; and pneumonia- for patients with viral and
bacterial pneumonia. Learning with an unbalanced dataset could produce a
biased prediction model towards the classes with more samples. Hence, we
have separated all the 142 Antero-posterior (AP) view of COVID-19 positive
x-ray images from the “COVID-19 Image Data Collection” [6]. This dataset
is a collection of anonymized COVID-19 images, acquired from websites of
medical and scientific associations and COVID related research papers. This
is a constantly growing dataset and at the time of writing this paper, the
dataset had in total 354 X-ray and CT images of patients who were affected
by COVID-19 and other diseases, such as MERS, SARS, and ARDS [2]. Fig. 1
shows the percentage of image distribution as per the diagnosis, where 69% of
the images had some form of COVID-19 findings. The age distribution of the
COVID-19 positive cases. So far, the age group that concentrates most cases
is from 50 to 80 years old and for 30 individuals age metadata is not recorded
in the dataset.

Chest radiography is widely used for the detection and classification of
pneumonia and other pulmonary diseases, so there are several large pub-
licly available datasets of CXR images for normal, viral and bacterial pneu-
monia datasets such as the NIH Chest X-ray Dataset [11], RSNA Pneumo-
nia Detection Challenge dataset available at https://www.kaggle.com/c/rsna-
pneumonia-detection-challenge/ and a more recent COVIDx dataset from [20].
For assembling the normal and pneumonia classes for our research, we ran-
domly chose 300 images for each of the normal and pneumonia classes from
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the Chest-xray-pneumonia dataset (available at the link of footnote 2). We
opted for a small number of images for these classes to avoid drastic class
imbalance for the model training scenario. This made our original dataset to
be consisting of 742 CXR images. 80% of the data is then separated as the
training set, the remaining 20% of the dataset contributing as the test data.
A detailed division of the dataset can be found in Table 1.

2.3 Image Augmentation

To achieve robust and generalized deep learning models large amounts of data
are needed, however, medical imaging data is scarce and labelling the dataset is
expensive. We applied two different versions of the augmentation technique on
the dataset. In the first version, we applied image augmentation techniques [17]
such as random rotation, width shift, height shift, horizontal and vertical flip
operations using the ImageDataGenerator functionality from the TensorFlow
Keras framework [4, 8].

Generative adversarial networks (GAN) offer a novel method for data aug-
mentation used nowadays. Hence, we have used a CycleGAN [23] architec-
ture for increasing the under-represented COVID-19 class images (described
as version 2 for augmentation in Table 1). Utilizing the normal class from our
dataset, we trained the CycleGAN to transform Normal images into COVID-
19 images. As a proof-of-concept at this stage, we have generated 100 syn-
thetic COVID-19 images to add to our original training dataset. Fig. 2 shows
a few examples of the original and generated images side-by-side. After 5000
iterations of the generator and discriminator training, we have achieved near
realistic generated CXR images, though there are shape deformations seen in
some cases. To be noted, the dataset after augmentation is still quite small, so
we employed five-fold cross-validation during training to avoid the over-fitting
of the model and the validation set served as a checkpoint for us to the trained
model’s performance to unseen data.

3 Model Architecture

We implemented the COVID-19 disease detection pipeline using an adapted
Convolutional Neural Network architecture and trained it in the feature-representation
transfer learning mode. We effectively used a pre-trained VGG-16, ResNet50,
and EfficientNet-B0 as our feature extractor. As all these backbones were
pre-trained on huge ImageNet dataset, it has learned a good representation
of low-level features like spatial, edges, rotation, lighting, shapes and these
features can be shared across to enable the knowledge transfer and act as a
feature extractor for new images in different computer vision problems. As in
our case, the new images have different categories from the source dataset, the
pre-trained model is used to extract relevant features from these images based
on the principles of transfer learning. We used TensorFlow, Keras, PyTorch,



Title Suppressed Due to Excessive Length 7

Fig. 2: Generated images from cycleGAN for the underrepresented COVID-19
class

scikit-learn and OpenCV libraries in python for generating various function-
alities of the pipeline. Fig. 3 shows an illustration of our proposed pipeline for
COVID-19 chest X-ray classification.

3.1 Pre-trained model backbone and network head removal

We removed the network head or the final layers of the pre-trained model (
e.g. VGG-16, ResNet50, and EfficientNetBO backbone in our case) that was
initially trained on the ImageNet dataset. This stage is crucial as the pre-
trained model was trained for a different classification task. The removal of
network head removed weights and bias associated with the class score at
the predictor layers. It is then replaced with new untrained layers with the
desired number of classes for the new data. We adjusted a three-class network
head for the COVID-19 dataset for three possible labels, namely, normal - for
healthy patients, COVID-19 - for patients with COVID-19 and pneumonia -
for patients with non-COVID-19 pneumonia.

3.2 Transfer learning stages

At the initial stage, we froze the weights of the earlier layers of the pre-trained
backbone to help us extract the generic low-level descriptors or patterns from
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Fig. 3: Transfer learning architecture with pre-trained convolutional backbone
for COVID-19 chest X-ray classification

the chest X-ray image data. Later layers of the CNN become progressively
more specific to the details of the output classes of the new data-set. Then a
newly added network head is trained for adapting the weights according to the
patterns and distribution of the new dataset. The network head is updated
and fine-tuned during model training. The training of the model has been done
offline on an Ubuntu machine with Intel(R) Core i9-9900X CPU @ 3.50GHz,
62GB memory and a GeForce RTX 2060 GPU. The final model was fine-tuned
with an Adam optimizer with a learning rate of 0.0001 and a categorical cross-
entropy. To be noted, five-fold cross-validation is used during training to avoid
the over-fitting of the model.

3.3 Training Loss

Fig. 4 shows the change in loss function for the three convolutional models
we experimented during this research. We trained each model for 50 epochs.
When the model was trained with the originally assembled three-class dataset,
after traditional augmentation the model with VGG16(v1) took the longest
during training to reach the stopping loss criteria with a categorical cross-
entropy to reach a training dataset accuracy of 0.93. The VGG16(v2) is the
same model trained with an enhanced version of the original dataset, where
the under-represented COVID-19 class is enhanced by 100 more synthetic
images generated with a CycleGAN. The training loss seemingly reached the
threshold loss value within 10 epochs in this case. The realistic augmentation
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Fig. 4: Comparative loss function on the training dataset

Table 2: Class-wise precision performance comparison with other deep learning
techniques in literature with our findings for COVID-19 detection

Backbone Accuracy ‘ COVID-19 Normal Pneumonia
Our results:
VGG16 (vl Augmentation) 0.88 0.82 0.84 0.98
VGG16 (v2 GAN Augmentation) 0.912 0.93 0.87 0.96
Resnet50 0.953 0.96 0.96 0.93
EfficientNetBO 0.967 0.950 1 0.96
Concurrent proposed approach:
COVIDNet-CXR Large [20] 0.943 0.909 0.917 0.989
COVIDNet-CXR Small [20] - 0.964 0.898 0.947
VGG16 [14] 0.77 0.636 - -
Flat - EfficientNetBO [14] 0.90 1 - -
Flat - EfficientNetB3 [14] 0.939 1 - -

in the COVID-19 class definitely has increased the model’s accuracy by almost
3%. A further improvement is achieved when the backbone was replaced with
ResNet50 and EfficientNetB0, with the EffiecientNetB0 being the fastest. To
be noted, each epoch for the given training dataset and computational setup
took about 18 seconds with 232 ms/step for a batch size of 8 and learning
rate of 0.0001. The EfficientNetB0 also achieved the best accuracy with the
squeeze-and-excitation(SE) optimization stage included in its architecture.

4 Results and Evaluation
4.1 Model evaluation matrices
If True Positive (Tp) is the number of COVID-19 classified rightly as COVID;

True Negative (T) is the number of normal CXR’s rightly classified normal;
False Positive (Fp) is the number of normal events misclassified as COVID-19
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Fig. 5: Confusion matrix and overall accuracy of three backbone models used
in this research

and noCovid pneumonia and False Negative (Fi) is the number of COVID-
19’s misclassified as normal or pneumonia, we can define accuracy, recall and
precision of a model can be defined using the following equations [18].

— Accuracy: It is an indicator of the total number of correct predictions

provided by the model and defined as follows:

Tp + TN
Tp+Ty+ Fp+ Fy'

(1)

Accuracy =

— Recall and precision: Two of the most commonly used performance mea-
sures, recall and precision measures are defined as follows:

Tp
Recall or Sensitivity = ———. 2
Y= Tt (2)
Precisi it dicti | Tp 3)
recision or positive predictive value = ————.
1% p Tp + Fp

Our results show reasonably accurate performance with an overall detection
accuracy of 91.2%, 95.3%, 96.7% for our exemplar VGG16, ResNet50 and
EfficientBO backbones respectively on the fixed test set of 29 COVID-19, 60
Normal and 60 CXR images for the Pneumonia class. We presented the confu-
sion matrix plot for the three backbone models under consideration in Fig. 5.
The rows correspond to the predicted class (Output Class) and the columns
correspond to the true class (Target Class). The diagonal cells in the confusion
matrix correspond to observations that are correctly classified (Tp and Tn’s).
The off-diagonal cells correspond to incorrectly classified observations (Fp and
Fx’s). The number of observations is shown in each cell.
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4.2 Comparison with other approaches

We have summarized a class-wise precision and recall performances from var-
ious experiments in Table 2. Additionally, we compared our experimental re-
sults with some concurrent proposed approach. As can be seen from the results
presented in Table 2, for the base VGG16 model, when the under-represented
COVID-19 class is enhanced by 100 more synthetic images generated with
a CycleGAN, referred on the Table 1 as version 2 augmentation, there was
a 3.2% improvement in overall accuracy from the model, and the precision
performance for the COVID-19 class has been improved from 0.88 to 0.93
through the addition of these realistically augmented COVID-19 data. When
comparing this to the VGG16 model performance with a COVID-19 class
precision value of 0.636 presented in Luz et al. [14], this showed a clear im-
provement, though the dataset used for training are not directly comparable.
The VGG16 model, when saved for the inference stage, has a memory foot-
print of 57 megabytes with 14.7 million parameters. For the ResNet50 base
model, the overall accuracy has improved to 95.3% due to a larger number
of features extracted by the model, leading to a better distinction between
class. This model, when serialized and saved, has a memory footprint of 97
megabytes with 23.7 million parameters. In the approach presented in [7] with
ResNet50, the accuracy achieved is 96.23%, which is slightly higher than the
value we achieved. However, in their test dataset, there were only 8 instances
for the COVID-19 class in a four-class classification scenario, the value may
not be robust and generalized for different class distribution.

Our experimentation with the EfficientNetBO base model has achieved a
96.7% overall accuracy, with a COVID-19 class precision and recall value of
0.95 and 0.965 respectively. When compared to the COVIDNet-CXR, model
proposed by Wang et al [20], the values were 0.909 and 0.968 respectively.
Our version of EfficientNetB0 has higher precision, which is critical as the
goal is to be able to detect as many positive COVID-19 cases to reduce the
community spread. Using the same backbone, the EffcientNetB3 proposed by
Luz et al [14] has shown a precision of 100% for the COVID-19 class, while
the overall accuracy is lower than the version we have. To be noted, the Eff-
cientNetB3 model has 12.3 million parameters whereas EffcientNetB0 has 5.3
million parameters, contributing a lighter memory footprint (21 megabytes)
than its scaled version. Additionally, the depth, width and resolution scaling
in the EfficientNet architecture with squeeze-and-excitation(SE) optimization
seemingly outperformed both VGG and ResNet architecture in our experi-
ments.

4.3 Coarse region localization map with gradient class activation

For visual explanations and interpretation purposes, we visualized the regions
of input that are important for predictions and a gradient class activation
mapping (Grad-CAM) technique [16] is used in the pipeline to produce a
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Fig. 6: Activation map visualization for the three classes under consideration.
The First column presents a healthy chest x-ray sample, the second, from a
patient with pneumonia, and the third one, from a patient with COVID-19,
visualizing affected regions in lungs.

coarse localization map of the highlighted regions in the image. In Fig. 6,
activation map visualization for the three classes under consideration. The
first row represents the original images, and the second, the activation maps.
The first column presents a healthy chest x-ray sample, the second, from a
patient with pneumonia, and the third one, from a patient with COVID-19.
The rightmost CXR taken on the patient shows bilateral patchy ground-glass
opacities. These activation maps can be used to monitor affected lung regions
during disease progression and severity stages. In Fig. 7, for a patient’s x-ray
in ICU-care at day 3, 7 and 9, the coarse localization map showed increased
inflammation indicating disease severity. There are multi-focal patch/nodular
consolidations and ground-glass opacities around the right mid to lower lung
zone observed on day 9.

Though clinical symptoms such as consolidations and ground-glass opac-
ities [13] are more accurately recognizable in Computed Tomography (CT)
scans, CXR’s could still provide a coarse and cheap bed-side indication of such
symptoms if these visualizations are enhanced by labels and clinical notes from
radiologists and domain experts.
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Fig. 7: Activation map visualization for a patient’s x-ray in ICU-care at day
3, 7 and 9, visualising increased inflammation indicating disease severity.

5 conclusion

Deep learning applied to chest X-rays of patients has been showing promising
results in the identification of COVID-19. In this research, we experimented on
lightweight convolutional network architecture with three backbones (VGG-16,
ResNet50, and EfficientNetB0 pre-trained on ImageNet dataset) for detecting
COVID-19 and associated infection from chest X-ray images. Experiments
were conducted to evaluate the convolutional neural networks performance on
the generally augmented dataset and on an extended version of the dataset
that utilized application of generative adversarial network-based augmentation
using CycleGAN. Even with a limited number of images in the COVID-19
class, promising results achieved by the network on the test dataset with a
recall value over 90% and a precision value over 93% for all the three models.
We would like to emphasize on the fact that, with more images and new data
collected for the COVID-19 class, it will be possible to improve the training
and to improve sensitivity and detection rate. Our results also indicated the
application of generative adversarial network-based augmentation techniques
can contribute to accuracy improvement and can produce a more generalized
and robust model.

In future, provided the clinical notes and metadata related to survival, need
for intubation, need for supplemental oxygen, it is possible to train mixed
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image and metadata models aiming to provide prognostic and severity pre-
dictions [6, 20]. These models could be highly useful for risk stratification,
patient management, and personalized care planning in this critical resource-
constrained pandemic scenario.

All models developed in this work have a memory footprint below 100
megabytes. Hence, another future direction from this research will be to ex-
tend the trained models implementation on conventional smartphone processor
to do fast and cheap on-device inference to provide a proof of concept of trans-
ferring the capability of deep learning models on mobile devices [12]. We would
like to build on our previous experience in transferring such models using the
TensorFlow lite (TFlite) library [1,21].
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Figure 1

COVID-19 Image Data Collection: Image distribution as per diagnosis (69% COVID)



Figure 2

Generated images from cycleGAN for the underrepresented COVID-19 class
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Figure 3

Transfer learning architecture with pre-trained convolutional backbone for COVID-19 chest X-ray
classification
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Comparative loss function on the training dataset
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Confusion matrix and overall accuracy of three backbone models used in this research
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Figure 6

Activation map visualization for the three classes under consideration. The First column presents a
healthy chest x-ray sample, the second, from a patient with pneumonia, and the third one, from a patient
with COVID-19, visualizing affected regions in lungs.
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Figure 7

Activation map visualization for a patient’s x-ray in ICU-care at day 3, 7 and 9, visualising increased
inflammation indicating disease severity.



