
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Quality Traceability for User-centric Context-
aware Systems  in Intelligent Environments 

Nawa Sakanga 
Dep. of Computer Science 

Middlesex University 
London, UK 

ns1314@live.mdx.ac.uk 

Juan C. Augusto 
Dep. of Computer Science 

Middlesex University  
London, UK 

J.Augusto@mdx.ac.uk 

Lindsey Brodie 
Dep. of Computer Science 

Middlesex University 
London, UK 

L.Brodie@mdx.ac.uk 

Lisa Marzano 
Dep. of Psychology 

Middlesex University 
London, UK 

L.Marzano@mdx.ac.uk  
 
 

Abstract—Context-awareness is an important component of 
modern software systems. For example, in Ambient Assisted 
Living (AAL), the concept of context-awareness empowers users 
by reducing their dependence on others. Due to this role in 
healthcare, such systems need to be reliable and usable by their 
intended users. Our research addresses the development, testing 
and validation of context-aware systems in an emerging field 
which currently lacks sufficient systems engineering processes 
and disciplines. One specific issue being that developers often 
focus on delivering a system that works at some level, rather 
than engineering a system that meets a specified set of system 
requirements and their corresponding qualities. Our research 
aims to contribute towards improving the delivery of system 
quality by tracing, developing and linking systems development 
data for requirements, contexts including sensors, test cases and 
their results, and user validation tests and their results. We refer 
to this approach as the “quality traceability of context-aware 
systems”. In order to support the developer, the quality 
traceability of context-aware systems introduces a systems 
development approach tailored to context-aware systems in 
intelligent environments, an automated system testing tool and 
system validation process. We have implemented a case study to 
inform the research. The case study is in healthcare and based 
on an AAL system used to remotely monitor and manage, in real 
time, an individual prone to depressive symptoms.   

Keywords—IoT; context-awareness; intelligent environment; 
testing; validation; quality traceability; smart home; user-centric 
systems 

I. INTRODUCTION 
In recent years, computing has seen a significant increase 

in the rise of context-aware systems stemming from 
technologies such as the Internet of Things (IoT) [1], 
Intelligent Environments (IE) [2], Ubiquitous Computing [3] 
and Ambient Intelligence, AmI, [4]. The concept of context-
awareness has enhanced user experience and enabled new 
directions such as Ambient Assisted Living, AAL, [5]. AAL 
provides systems comprising sensors, actuators, networks, 
computers and software applications for healthcare. They can 
be used for preventing or monitoring or improving wellness 
and managing health conditions in affected individuals [6]. 
Such systems empower users and reduce their dependence on 
others. However, this does imply a need for system quality: 
such systems have to provide usability and be reliable [7]. 
Appropriate system development and testing underpins the 
delivery of such systems. 

Due to the uniqueness of context-aware systems, we 
propose a system development approach tailored to context-
aware systems in intelligent environments (IEs), an automated 
testing tool and validation process. The proposed system 
development  approach  is a user-centred approach that guides 
the developer to the specification of requirements and contexts 
and definition of context testing tables. The automated testing 
support tool has the capability to generate test cases and  

enables adequate regression testing. The testing tool assists the 
developer to explore test cases more relevant to the context 
under consideration, thereby focusing more on the quality of 
the system under development rather than test coverage and 
has been seen to handle the issue of potential sensor  
combinatorial explosion. The proposed validation process is 
capable of identifying and tracking the quality of system 
responses to contexts from identification of requirements, 
through to the development, testing and validation phases. The 
system development approach, testing tool  and validation 
process link requirements with testing, testing with validation 
and validation with requirements. We refer to this as quality 
traceability of context-aware systems.  

The aims are to guide developers through the system 
development cycle, provide improved testing (increased test 
case generation productivity with focus on requirement and 
context pairs of interest and provide better test coverage) and 
validation process for better system quality. Consequently, 
this will have a bearing on the overall quality of the resulting 
system. 

To support this research, we have implemented a case 
study based on an AAL system that aims to remotely monitor 
and manage depressive symptoms, in real time for an 
individual living in a smart home. We call this system the 
Depression Monitoring and Management System (DMMS). 
The DMMS has been developed, tested and validated using 
our proposed system development approach, testing support 
tool and validation process respectively. 

A collaboration with the Middlesex University 
Department of Psychology has benefited the DMMS by 
allowing the selection of more meaningful evidence-based 
requirements and contexts of interest. The defined system 
requirements and contexts both have a bearing on the 
development, testing and validation of the context-aware 
system. The DMMS is used as a test bed in both simulation 
and real smart home environment. Results of the study show 
a sustainable approach that not only guides the development 
process for context-aware systems, but also brings about 
increased efficiency associated with developing, testing and 
validating context-aware systems.  

Note the definitions used in this current paper are that 
testing is conducted in simulation mode to inspect the 
correctness of the  system specification at programming level 
whereas validation happens in a real smart environment. 

II. PROBLEM STATEMENT 
This section highlights relevant work reported in the 

literature connected with our topic of research. 

A. System Development Approaches 
The IE community has commenced an ongoing discussion 

regarding the adoption of best practices that have evolved over 
the years from within the software engineering domain [8]. 
The movement is still in its infancy and the early focus has 

mailto:ns1314@live.mdx.ac.uk
mailto:J.Augusto@mdx.ac.uk
mailto:L.Brodie@mdx.ac.uk
mailto:L.Marzano@mdx.ac.uk


2 
 

been on application of formal methods and model checking in 
particular, in order to increase the reliability and robustness of 
software systems [9]. 

Context-aware systems use IoT devices that add additional 
complexity into their development and implementation. 
Current system development approaches do not adequately 
and explicitly address the uniqueness of context-aware 
systems in intelligent environments [10]. Our proposed 
approach is tailored to such context-aware systems, given that 
it considers the inclusion of context features, and provides a 
system development approach, an automated system testing 
tool and validation process to support the developer. 

B. Testing and Validation of Context-aware Systems 
Testing and validation of systems help developers to verify 

and validate that they have built the required system. It is 
expected that the implemented systems satisfy context-aware 
requirements taking into consideration system qualities such 
as ease of installation, reliability, performance, security, 
compatibility and recovery after a failure. The integration of 
context-awareness capabilities into applications allows them 
to leverage contextual information to provide additional 
services while maintaining an acceptable quality of service. 
Several approaches to achieve this are now being adopted. 

 Heng et al. [11] proposed a novel family of testing criteria 
to measure the comprehensiveness of context-aware tests. 
Almeida et al. [12] discuss the relationship between 
requirements and elements of a solution and call it 
‘requirements traceability’. This is used during acceptance 
testing to assess the extent to which a system adheres to its 
requirements.  

Wang et al. [13] introduced an approach to improve the 
test suite for context-aware applications that identifies key 
context-aware program points (capps) where context 
information can effectively affect the application’s behaviour. 

 Mirza and Khan  [14] proposed an approach for behaviour 
modelling of context-aware applications by extending Unified 
Modeling Language (UML) activity diagrams.  

Augusto et al. [15] reported on an attempt to define a new 
method of context-aware systems testing and validation. They 
made a first attempt at linking contexts with test through a 
table. 

From the reviewed literature, we identified the need to 
consider the uniqueness of context-aware systems concerning 
their development, testing and validation approaches. Current 
proposals in the literature are seen to aim to link contexts with 
testing but they do not go sufficiently far in helping developers 
and specifically do not support these concepts with tools, 
thereby not being practically useful. Our overall research aims 
at addressing both testing and validation and completing the 
full circle from requirements to contexts, contexts to tests, 
tests to validation and validation back to requirements. At this 
stage the research focuses on the first half of the loop with an 
emphasis on testing. 

C. Application of context-aware systems in healthcare 
There is a staffing crisis in healthcare today due to at least 

three major issues: doctor shortages worldwide, the aging and 
burnout of physicians and a higher demand for chronic care 
[16].With the increase of life expectancy, the population over 
65 years is expected to double by 2030, and the number of 
chronic illnesses, the demand towards the healthcare system is 
also constantly growing. As a result, the lack of access to care 
and the differing quality are general worldwide[17]. 
Therefore, we recognise the need to provide sustainable 
solutions to the health sector addressing system quality 

(usability, availability, accessibility and acceptability among 
others) as a priority. 

III. PROPOSED METHOD 

A. Proposed Quality Traceability 
In order to record the desired requirements and contexts of 

interest for a context-aware system, we adopted the User-
Centric Intelligent Environment development process 
(UCIEDP) approach [18] and propose  a quality traceability. 
The proposed process is user-centric and presents a complete 
cycle  that allows the system development process to be 
carried out in a loop until the desired outcome is 
accomplished. Figure 1 shows how the Quality Traceability 
(QT)  fits into the UCIEDP.  The approach complements the 
UCIEDP by providing a step by step approach to the 
development of context-aware systems. QT shows 
stakeholders at the centre of the development process and the 
three main development phases of the approach. The key 
stakeholders play a vital role in the successful definition of 
functional requirements and contexts of interest. Emphasis of 
the system development process is placed on the  interaction 
between the developer(s), and users and the other key 
stakeholders so as to specify a system that the users need. The 
first phase, initial scoping, starts with engaging key 
stakeholders to define and record requirements and contexts. 
The initial phase also includes prioritising requirements and 
contexts and thereafter creating requirement and context pairs. 
Successful specification of requirements  and contexts is 
achieved through several iterations. Once the requirements 
and contexts have been agreed upon, the system design is 
developed and the developer then writes the system 
pseudocode.  

The second phase is the main development phase when 
context testing tables (CTTs) are developed.  The CTTs form 
the basis on which test cases shall be generated. Thereafter, 
using an activity recognition application called MReasoner 
[19], the pseudocode is translated into a meaningful 
MReasoner specification. This is followed by system testing 
which starts with the automatic generation of test cases. These 
test cases are written to the MReasoner specification file and 
a copy kept in a text file. The third phase is the IE Installation 
phase where validation takes place. Validation is done in a real 
smart home environment. The approach is iterative in nature, 
thereby enabling requirements and contexts to be revisited as 
need arises.  

 

 
Fig. 1. Combined Quality Traceability (QT) in UCIEDP 



3 
 

Fig. 2. IE Quality Traceability System Overview 

B. Overview of IE Quality Traceability 
Figure 2 shows the overview of the IE Quality Traceability 

System (IEQTS). The IEQTS aims to develop, trace and link 
systems development data for requirements, contexts 
including sensors, test cases and their results, and user 
validation tests and their results, thereby improving the overall 
system quality. To achieve this, we developed the IE Quality 
Traceability Application as a testing tool to support the 
developer. The application facilitates automated testing in 
context-aware systems. Additionally, it contributes to the 
overall aim of linking  requirements to testing,  testing to 
validation and validation to requirements, thereby closing the 
circle as depicted. 

The IEQTS comprises of a smart home controller, IE 
Quality Application, Reasoner and a server. The server houses  
the IE Quality database and  reasoner database. The IE Quality 
database stores all tables related to the testing tool. The smart 
home controller records activities in the smart home as they 
are being generated. This information is stored in the Reasoner 
database. The two databases are linked. This configuration 
assists and assures the developer of the performance, stability 
and correctness of the developing system and contributes to 
improving the quality of the emerging system. 

The figure shows how the developer interacts with a smart 
home via the IE Quality application (testing tool) which 
integrates with the system under development.  The IEQTS 
allows the developer to develop, trace, link systems 
development data  and record the context-aware system 
information (that is, the requirements and the context 
information) and develop test and validation cases and their 
results. 

IV. CASE STUDY – DEPRESSION MONITORING  SYSTEM 
A. Depression Monitoring  and Management System 

AAL systems have the potential to ease staffing shortages 
in healthcare by facilitating diagnostics, decision making and 
administration whilst handling technological, ethical and legal 
obstacles [16]. To examine our proposed IEQTS method, we 
developed a test bed, the Depression Monitoring and 

 

 
 
Management System (DMMS), as a case study. DMMS is a 
user-centric context-aware system implemented in a smart 
home in our Smart Spaces laboratory.  It is used to detect, 
monitor and manage the behaviour of an individual at risk of 
depression and has the ability to send alert messages and 
notification to both the smart home user and the carer(s) as 
need arises. In consultations with the Department of 
Psychology, the following behaviours were selected for 
monitoring depressive symptoms: sleeping patterns; eating 
patterns and overall activity levels [20]. 

The case study as described in this paper focuses only on 
monitoring of sleep patterns and disturbances. In order to 
achieve this context monitoring, the three sensors considered 
are bed pressure pad, Passive Infrared Sensor (PIR) and light 
actuator. The bed pressure pad is a sensor pad that is placed 
on the bed and it is activated when it detects pressure on it. 
The PIR sensor detects motion in the bedroom. Finally, the 
light actuator is responsible for turning the light on/off.   The 
sensors that define eating and overall activity patterns are not 
included in this paper. 

B. Smart home technology 
For validation purposes, we use a real smart home. This 

smart home has several hardware elements installed  including 
the required sensors for this research, a server and smart home 
controller (Vera hub).  
The communication protocol used to manage the sensing 
environment is Zwave. Note additionally, the DMMS has a 
database that stores information (sensor states) recorded by 
the hub. The smart home infrastructure shown in figure 3. 

C. Activity Recognition Application - MReasoner 
The DMMS system was developed using an activity 

recognition application called MReasoner [19] which is 
developed in Java. MReasoner offers the mechanism to 
retrieve and gather data from a smart environment in real time, 
and then based on contextual reasoning instructions set up 
within it, to trigger appropriate actuation in the smart 
environment. The MReasoner specification is available on 
https://figshare.com/s/379ff6b786bcec324d98. Note that 
other applications could be used instead of MReasoner. 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffigshare.com%2Fs%2F379ff6b786bcec324d98&data=04%7C01%7CNS1314%40live.mdx.ac.uk%7C75f9fd7a298b4d31fb3108d9c178b32a%7C38e37b88a3a148cf9f056537427fed24%7C0%7C0%7C637753546403602899%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=V2XStwQFDHDEh3NlnXIRps96zCizhh5vb5wfMnTpNSk%3D&reserved=0


4 
 

Fig. 3. Smart home infrastructure 

D. Description of the IEQTS – Testing Tool and Validation 
Within context-aware systems, it was identified that there 
was a need to establish: the data required to specify 
requirements adequately; the data to link requirements to 
contexts; the data to link requirements to test cases and the 
data to help ensure test coverage. Tables were devised to 
record this information.  

E. Recording Requirements and Contexts 
The DMMS system requirements were specified, with 
particular attention being given to identifying the contextual 
information. To record these context-aware requirements, two 
tables were created. Table I, the requirements table records the 
requirements using requirements label (RL) to uniquely 
identify the requirement, requirements name, requirements 
description and priority. Table II, the contexts table records 
the contexts, using context label (CL) to uniquely identify a 
specific context situation, context name to identify the 
context, context description and context priority. The 
priorities for both the requirements and the contexts range 
from 1 to 4 and refer to mandatory, high, medium and low 
respectively. 

TABLE I.  REQUIREMENTS TABLE 

Once the requirements and contexts of interest have been 
recorded, the developer pairs them as shown in Table III, the 
requirement and context pairs table. This table links 
requirements to contexts and also includes the context feature 

(CF) being tested, the situational parameter (SP) which is the 
situation being monitored, and the corresponding sensor (S) 
responsible for tracking the context. 

TABLE II.   CONTEXT TABLE 

 

TABLE III.  REQUIREMENT AND CONTEXT PAIRS 

 

F.  Development of Test Cases and Recording of Their 
Result 
After requirement and context pairs have been recorded, 

once again, a table was devised to highlight interesting 
potential test cases, this table is called a context testing table 
(CTT).  

Context testing tables (CTT) are seen as an important part 
of the support for context-aware system testing and validation. 
CTTs are completed by developers. Each CTT has a unique 
context testing table identifier (CTT ID), that helps identify 
the table. The information recorded in the CTT is based on 
agreed system requirements and contexts. Rather than aiming 
only for test coverage, the CTT aims to record cases of interest 
and they also focus on more critical combinations.  

Table IV shows an example of a CTT. This CTT provides 
combinations of the sensors required to monitor a context and 
has valuable information about the context-aware system 
infrastructure.

CL Context Context description Priority 

CL1 sleep User has slept for prolonged period  1 
CL2 sleep User experienced interrupted sleep 1 

CL3 watchTV User sitting in living room watching 
TV for a prolonged period of time 2 

CL4 eat  User eating pattern 1 

RL Requirement Requirement description Priority 

FR1 

System shall 
monitor 
sleeping 
pattern 

The system saves “interrupted 
sleep” action in database 
The system saves “prolonged 
sleep” action in database 
The system saves “normal 
sleep” action in database 

1 

FR2 

System shall 
notify the user 
of prolonged 
inactivity 

The user could be sitting in 
the living room watching TV 
for a prolonged period 

2 

FR3 
System to 
monitor the 
eating pattern 

Notify user if meals are 
skipped 1 

RL CL CF SP S 
FR1 CL1 When  agreed pattern of 

prolonged sleep is 
observed, a message is 
sent to the caregiver  

User in 
Bedroom 
Lying on 
bed 

PIR  
BedPad 
Clock 
Light 

FR1 CL2 When  agreed pattern of 
interrupted sleep is 
observed, a message is 
sent to the caregiver 

User in 
Bedroom 
 

PIR 
BedPad 
Clock 



5 
 

TABLE IV.  CONTEXT TESTING TABLE 

 
 
Note: * refers to any boolean number (allowing for other possible combinations not shown in the table) 



6 
 

The CTT provide a major resource for test cases (which 
also cover validation tests) and for the MReasoner. 
MReasoner implements part of the DMMS  System 
prescribed in Table IV, in this case providing the rules that 
track the sleeping pattern. 

 
V. TESTING AND VALIDATION 

The development team is in charge of the testing and 
validation and always has an option to revisit the defined 
requirements and contexts. The output of testing and 
validation are test and validation reports, respectively. 

A. Testing Tool 
The testing tool has an interface that enables automatic 

generation of test cases. Test cases can be generated by the 
developer or the system. The developer generates test cases 
by highlighting, to the random test generator, focal points of 
interest.  We approach that from the position that not all 
values need to be explored and the developer will know 
which values are reasonable to consider for that specific 
context being investigated. Another option is to let the 
system generate test cases. In this case, possible sensor 
values are inputted and the system generates test cases based 
on the supplied information. See figure 4. 

 
Fig. 4. Menu for test case generation in IE Quality Traceability Software 

The general test cycle is depicted in figure 5. The test 
cycle shows that once requirements and contexts have been 
identified and implemented in the context-aware system,  
the IE Quality Traceability software generates test cases. 
Thereafter, these test cases are written to the MReasoner 
specification file and executed accordingly. Failed tests are 
identified and re-run  after taking the necessary corrective 
measures. 

  

Fig. 5. IEQT Test cycle 

B. Generating Test Cases 
 An important concept in our test generation strategy is 

the human machine cooperation where a developer 
identifies the required testing either by specifying test cases 

or by instructing a random test generator. Generally, the 
testing process always involves choices over the test cases 
executed. For context-aware system testing, such choice 
becomes even more necessary due to the nature of the 
sensors involved. Some sensors (e.g. PIRs, light switches, 
device operation sensor and pressure sensors) have boolean 
values whereas other sensors have a richer range of values. 
For example, temperature, luminosity, noise levels, and 
other non-boolean values, usually a set of real numbers. This 
last group presents  a potential challenge in terms of 
combinatorial explosion. We approach that from the point 
that not all values need to be explored and the developer will 
know which values are reasonable to consider for the 
specific context being investigated. For example,  while 
temperature sensors may have a range of values associated 
to them, developers can choose to test the system with 
values ‘8.0’, ‘16.0’ and ‘24.0’ as representatives of 
situations when users may perceive the environment to be 
cold, mild or hot respectively.  

The overall process of producing context-related tests is 
as follows: 
1) Developer generated test cases 

One option of generating the test cases is by the 
developer. Using the drop down menu from the Test Cases 
menu, the developer clicks on developer generated test 
cases. This menu allows the developer to define the values 
of interest to create the specific tests. These are first 
recorded in the CTT and later recorded into the testing tool 
using an interface. This is done for all the sensors associated 
with a test. The generated tests are then written to the 
MReasoner specification file and a copy is also written to a 
text file. This text file keeps a copy of the generated test 
cases in order that they can be reused. Figure 6 shows the 
interface used by the developer to generate test cases of 
interest. 

 

 
Fig. 6. Developer generated test cases 

2) System generated test cases – Simulation mode 
The second option of generating test cases is to set the 

system to randomly create them. This is depicted in figures 
7 and 8. This process is as follows: 

Step 1: Input test details:  the developer selects the CTT 
ID, context and sets initial sensor values. Then they specify 



7 
 

the test start time, end time and number of test sequences 
required. 
 Step 2: Set time frequency boundary: the developer sets 
the frequency boundary for test generation e.g. generate test 
cases within a frequency boundary of 30 seconds. 

Step 3: Randomly generate the test cases: the developer 
clicks the button for random test generation. The algorithm 
decides which states change and at what time they change.  

 
Fig. 7. Step 1: Setting up system generated test cases 

 
Fig. 8. Step 2: Time frequency boundary between test case generation 

 
Once the test cases are generated, they are written to the 

Reasoner specification file, a copy is written to the text file 
and the system displays test cases to the developer, figure 9. 
At this point, the developer is now ready to start testing. 

C. Example of Testing - Simulation 
To give a sample of testing that was carried out:  
Test 1: Using the simulation mode test cases were 

automatically generated and the MReasoner specification 
was executed. The result of the test showed a mismatch 
between the actual and predicted outcomes. This entailed 
the developer tracing the source of the defect via output 
from the IEQTS.  

Test 2: Once the error in the code was fixed by the 
developer, the test suite was run again. The system still did 
not give the desired output. However, this time around, the 

error pointed to a faulty motion sensor. The developer then 
fixed the faulty motion sensor and re-ran the test suite. 

Test 3: Using the same test suite, the system produced 
desired outcomes. Test results showed that predicted and 
expected outcomes matched, confirming the correctness of 
the specification file as intended by the developer. 
 

 
Fig. 9. Display of test cases to developer 

D. Test Results 
Test results are produced from the IE Quality 

application. A test result that has a mismatch between the 
predicted and actual outcome notifies the developer of a 
defect in the specification. When this happens, the 
developer traces back to the source of the defect. Once the 
defect is identified, the developer fixes the error and re-runs 
the test. This is done several times until a desired and 
expected test result is obtained thereby showing due 
diligence shown from tests conducted. Test results show a 
context-aware system that would benefit the healthcare 
sector in that it is at least accessible,  available, usable and 
acceptable.  

E. Validation Overview 
The scope of our validation considers the identified 

functional requirements and some quality attributes 
stipulated in the ISO25000 standard. Our approach does not 
see validation as independent but connected to testing. We 
therefore consider the system functionality, system qualities 
such as response time (speed) and assess user experience. 
All this is done in order to uncover and fix system lapses. 

F. Example of Validation in the smart environment 
System validation was carried out in a real smart 

environment accessible on https://ie.cs.mdx.ac.uk/smart-
spaces-lab/. During validation the minimum set of 
requirements were identified and ethical consideration taken 
into account by not using cameras. Later when the 
MReasoner specification was executed, the system provided 
services to the smart home user. For this case study we 
considered the sleep scenario. For this scenario, we 
considered the three sensors of interest: pressure pad, light 
actuator and PIR motion sensors. According to the 
requirement specification for monitoring the sleeping 
patterns, the user sleeps with the light off and when the user 

https://ie.cs.mdx.ac.uk/smart-spaces-lab/
https://ie.cs.mdx.ac.uk/smart-spaces-lab/


8 
 

gets up from the bed in the night, the light is supposed to 
turn on automatically. This is meant to allow the user to 
safely navigate their way out of the bedroom and back. Once 
the user is back in bed and no motion is sensed in the 
bedroom, the light is expected to turn back off. System 
validation scenarios 1, 2 and 3 have been shared on the 
figshare website and can be accessed using the following 
URLs: 
Scenario 1: https://figshare.com/s/61ee984dc5b280615ae4 
Scenario 2: https://figshare.com/s/2761acf5edc4542c3d74 
Scenario 3: https://figshare.com/s/aeaaf190f3ddff669411  

VI. CONCLUSIONS 
The uniqueness of context-aware systems entails 

tailored system development, testing and validation 
approaches. We have provided a systematic approach to 
develop context-aware systems, guiding the developer 
regarding specification of requirements and contexts, and 
providing a support testing tool that can automatically 
generate test cases.  

Testing context-aware systems is challenging. This is 
because such systems usually require a combination of 
sensors to track a context. The sensors with boolean values 
are easier to manage but it becomes challenging to manage 
sensors with a range of values that are not boolean (e.g. 
temperature, luminosity or noise). The latter group presents 
a challenge in terms of combinatorial explosion. This has 
resulted in inadequate testing of such systems. Such systems 
would benefit from our approach because the approach 
allows the developer to highlight valuable tests of interest 
and not necessarily focus on exhaustive testing. 
Consequently, we have brought about structure and 
efficiency which aids sustainability for developers.  

Contexts play a pivotal role in context-aware systems. 
Our traceability method allows developers to track context 
development through the system development phases. 

In the research undertaken so far, we have achieved a 
strategy and provided a testing tool that enables adequate 
regression testing. We have provided a testing support tool 
that assists the developer to explore test cases more relevant 
to the context under consideration, thereby focusing more 
on the quality of the system under development rather than 
test coverage. We offer developer generated test cases based 
on values of interest. This has been approached from the 
view that not all values need to be explored and the 
developer knows and understands which values are 
reasonable to consider for that specific context being 
investigated. We also offer random system generated test 
cases. All generated test cases contain time references to test 
real life scenarios. Our testing tool has lessened the 
developer effort during testing, thus bringing in efficiency. 
The overall research aims at addressing both testing and 
validation and completing the full circle from requirements 
to contexts, contexts to tests, tests to validation and 
validation to requirements.  

 The next part of our research will focus on the 
Validation to Requirements part of the loop. 

REFERENCES 
[1] L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A 

survey", Computer Networks 54 (15), 2010. 
[2] J. Augusto, V. Callaghan, D. Cook, A. Kameas and I. Satoh, 

"Intelligent Environments: a manifesto", Human-centric Computing 
and Information Sciences, vol. 3, no. 1, 2013. Available: 
10.1186/2192-1962-3-12. 

[3] M. Weiser, "The computer for the 21st Century," in IEEE Pervasive 
Computing, vol. 1, no. 1, pp. 19-25, Jan.-March 2002, doi: 
10.1109/MPRV.2002.993141.  

[4] E. Aarts and R. Roovers, "IC design challenges for ambient 
intelligence," 2003 Design, Automation and Test in Europe 
Conference and Exhibition, 2003, pp. 2-7, doi: 
10.1109/DATE.2003.1253578. 

[5] J. Augusto, M. Huch M., A. Kameas., J. Maitland, P. McCullagh, J. 
Roberts, A. Sixsmith and R. Wichert, Handbook of Ambient Assisted 
Living. Amsterdam: IOS Press, 2012.  

[6] P. Prociow, K. Wac and J. Crowe, "Mobile psychiatry: towards 
improving the care for bipolar disorder", International Journal of 
Mental Health Systems, vol. 6, no. 1, p. 5, 2012. Available: 
10.1186/1752-4458-6-5. 

[7]  J. Hoyos, "Quality parameters as modeling language abstractions 
for context-aware applications: an AAL case study | Research 
Portal", Researchportal.be, 2017. 

[8] D. Preuveneers and P. Novais, "A survey of software engineering 
best practices for the development of smart applications in Ambient 
Intelligence", Journal of Ambient Intelligence and Smart 
Environments, vol. 4, no. 3, pp. 149-162, 2012. Available: 
10.3233/ais-2012-0150. 

[9] J. Augusto and M. Hornos, "Software simulation and verification to 
increase the reliability of Intelligent Environments", Advances in 
Engineering Software, vol. 58, pp. 18-34, 2013. Available: 
10.1016/j.advengsoft.2012.12.004. 

[10] S. van Engelenburg, M. Janssen and B. Klievink, "Designing 
context-aware systems: A method for understanding and analysing 
context in practice", Journal of Logical and Algebraic Methods in 
Programming, vol. 103, pp. 79-104, 2019. Available: 
10.1016/j.jlamp.2018.11.003.  

[11] L Heng, W. Chan and T. Tse, “Testing Context-Aware Middleware-
Centric Programs: a Data Flow Approach and an RFID-Based 
Experimentation”, In Proceedings of the 14th ACM SIGSOFT 
international symposium on Foundations of software engineering 
(SIGSOFT '06/FSE-14). ACM, New York, USA, 242–252, 2006. 
DOI:https://doi.org/10.1145/1181775.1181805. 

[12] J. P. Almeida, P. van Eck and M. Iacob, "Requirements Traceability 
and Transformation Conformance in Model-Driven Development," 
2006 10th IEEE International Enterprise Distributed Object 
Computing Conference (EDOC'06), 2006, pp. 355-366, doi: 
10.1109/EDOC.2006.45. 

[13] Z. Wang, S. Elbaum and D. S. Rosenblum, "Automated Generation 
of Context-Aware Tests," 29th International Conference on 
Software Engineering (ICSE'07), 2007, pp. 406-415, doi: 
10.1109/ICSE.2007.18. 

[14] A. M. Mirza and M. N. A. Khan, "An Automated Functional Testing 
Framework for Context-Aware Applications," in IEEE Access, vol. 
6, pp. 46568-46583, 2018, doi: 10.1109/ACCESS.2018.2865213. 

[15] J. C. Augusto, M. Jose Quinde and C. L. Oguego, "Context-aware 
Systems Testing and Validation," 2019 10th International 
Conference on Dependable Systems, Services and Technologies 
(DESSERT), 2019, doi: 10.1109/DESSERT.2019.8770048. 

[16] B. Meskó, G. Hetenyi and Z Gyorffy, “Will artificial intelligence 
solve the human resource crisis in healthcare,” BMC Health Services 
Research, 2018, https://doi.org/10.1186/s12913-018-3359-4. 

[17] J. G. Meara, A. J. M. Leather and L. Hagander, “Global surgery 
2030: evidence and solutions for achieving health, welfare, and 
economicdevelopment. Vol.386. Lancet. 2015:569–62 

[18] J. Augusto, D. Kramer, U. Alegre, A. Covaci and A. Santokhee, 
"The user-centred intelligent environments development process as 
a guide to co-create smart technology for people with special needs", 
Universal Access in the Information Society, vol. 17, no. 1, pp. 115-
130, 2018. Available: 10.1007/s10209-016-0514-8. 

[19] U. A. Ibarra, J. C. Augusto and A. Aztiria Goenaga, "Temporal 
Reasoning for Intuitive Specification of Context-Awareness," 
International Conference on Intelligent Environments, 2014, pp. 
234-241, doi: 10.1109/IE.2014.44. 

[20] A. Lopresti, S. Hood and P. Drummond, "A review of lifestyle 
factors that contribute to important pathways associated with major 
depression: Diet, sleep and exercise", Journal of Affective Disorders, 
vol. 148, no. 1, pp. 12-27, 2013. Available: 
10.1016/j.jad.2013.01.014. 

https://figshare.com/s/2761acf5edc4542c3d74
https://figshare.com/s/aeaaf190f3ddff669411
https://doi.org/10.1186/s12913-018-3359-4

	I. Introduction
	II. Problem Statement
	A. System Development Approaches
	B. Testing and Validation of Context-aware Systems
	C. Application of context-aware systems in healthcare

	III. Proposed Method
	A. Proposed Quality Traceability
	B. Overview of IE Quality Traceability

	IV. Case Study – Depression Monitoring  System
	A. Depression Monitoring  and Management System
	B. Smart home technology
	C. Activity Recognition Application - MReasoner
	D. Description of the IEQTS – Testing Tool and Validation
	E. Recording Requirements and Contexts
	F.  Development of Test Cases and Recording of Their Result

	V. Testing And Validation
	A. Testing Tool
	B. Generating Test Cases
	1) Developer generated test cases
	2) System generated test cases – Simulation mode

	C. Example of Testing - Simulation
	D. Test Results
	E. Validation Overview
	F. Example of Validation in the smart environment

	VI. Conclusions
	REFERENCES


