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Abstract—The central pattern generators network (CPGs)
plays an important role in motion control which enables creatures
to interact with the world. A novel neuromorphic circuit model
presented in this work can be used as the simple building
blocks for prescribing more complex, coordinated motor patterns.
The circuit demonstrates its capability in generating the activity
frequency and duty cycle, independently adjustable by a small
set of model parameters. The simulation outcomes also show that
the circuit can implement the parallel and distributed algorithms
for building the artificial CPGs to drive motors.

Index Terms—central pattern generation, neuromorphic cir-
cuit, parallel algorithms, locomotion, simulation

I. INTRODUCTION

There are evidences showing that walking with adaptive gait
patterns is the outcome of interaction between the innate neural
mechanisms and postnatal maturation and development [1] [2].
A neonatal vertebrate, including even the precocial animals,
experiences an inept process of learning walking before be-
coming fully adaptive to a complex terrain [3]. This learning
process starts with reflexes reflecting involuntary responses to
stimuli. It may involve a complex sequence of activities for
sensorimotor integration, synchronization and coordination of
cortical neuron populations and muscles. After the relevant
cortical regions are well acquainted with the external world,
the animals are considered as trained and represent the most
capable walking machine in nature.

Many theoretical and experimental approaches have been
proposed intending to decipher the mechanisms underlying the
control of locomotion while presenting its artificial intelligence
counterpart [4] [5]. The central pattern generators network
(CPGs), a neural circuit located at the lower thoracic and lum-
bar areas of the spinal cord [6], has been identified responsible
for generating biological rhythmic patterns without involve-
ment of higher nervous systems as well as sensory inputs [7].
CPGs have been studied extensively in its neurophysiological
and anatomical rationale (referring to [8] for a review), its
neuromorphic realization [9]–[11], and applications in robotics
[12]. Two research frameworks, i.e., the closed- and open-loop
schemes, are commonly used. In the closed-loop scheme, as a
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part of the sensorimotor system, CPGs are the actuators driven
either directly by sensors or indirectly via the nervous systems
like the brainstem or basal ganglia. However, in the open-loop
scheme, the CPGs behaviors are explored by using neuronal
receptor agonists and antagonists or mechanical operations to
cut the links of the CPGs from other neural mechanisms and
sensory inputs [13]. Thereby, the endogenous neural activities
can be investigated without interference of outliers external to
CPGs property.

Based on the parallel and distributed algorithms, namely,
the scheduling by edge reversal (SER) and scheduling by
multiple edges reversal (SMER) [14], a generalized artificial
CPGs architecture which is able to generate arbitrary rhythmic
gait patterns for legged locomotion is proposed [15] [16].
The architecture is based on a set of oscillatory building
blocks (OBBs) which can be used to build an instance of
CPGs of arbitrary topology for a specific, tailor-designed
rhythmic pattern. A set of these CPGs instances can then
be connected to achieve a set of different patterns and tran-
sitions between these patterns [13]. The OBBs-based CPGs
instance has been implemented in mixed-signal very large-
scale integrated circuit (VLSI) in 0.35um CMOS process
[11]. Despite the advantages of using VLSI chip technology,
e.g., small power consumption and light footprint, the costs
of time and resources are not easily affordable, and the
required expertise in design is remarkable. Considering that
an invertebrate animal may only have few legs with a limited
number of degrees of freedom (DoFs) for each leg, a more
worthwhile and flexible approach might be to use the discrete
electronic components for building a CPGs architecture for
arbitrary rhythmic generation and transition. In recognition of
the viability of the new implementation of the OBBs-based
CPGs, in this work we propose two neuromorphic circuit plans
for realizing SER- and SMER-based OBBs, respectively. The
circuits are then simulated, and their features briefly discussed.

The description of the work is organized as follows. Section
II is a brief introduction to the SER and SMER algorithms,
and the creation of instances of OBBs modules corresponding
to the algorithm. Section III illustrates the design of the
neuromorphic OBBs modules by using out-of-the-shelf tools.
Section IV displays the simulation outcomes of the circuits.
Finally, Section V concludes the work and suggests the future



directions.

II. SER AND OBBS MODULES

A. SER Algorithm

Suppose a node is coupled with other nodes in a mutually
exclusive way, i.e., at any time instant only one node in this
group of nodes is active because it occupies the resources
shared between the other nodes and itself, while the others are
idle. When the active node stops firing it releases the resources
so that the coupled nodes occupy the resources. Some of these
nodes become active if they occupy the shared resources from
all of their coupled nodes. This process will repeat indefinitely
to form a fixed excitatory-inhibitory periodic cycle, which has
potential to be used to mimic the rhythmic patterns of muscle-
driven system like the coupled extensor and flexor. A simple,
directed graph of the SER dynamics is shown in Fig. 1. The
formal theoretic description of the algorithm can be found in
[14] [15].

Fig. 1. The graph dynamics of the SER algorithm. The black node represents
an active node. The edges with arrows between nodes represent the attachment
of the shared resources. After an initial stage a 3-stage periodic cycle is formed
in which a node will fire once (reproduced from [16]).

In a more generalized SMER algorithm, unlike the SER
algorithm in which any two coupled nodes share only one unit
of resources represented by an arrow, any two coupled nodes
may share a different number of resources. This sharing of
resources is now represented by multiple arrows between two
coupled nodes, as shown in Fig. 2.

Fig. 2. The graph dynamics of the SMER algorithm. The gray color represents
an active node. The nodes i and j have their reversibility ri=3, rj=1, respectively
(reproduced from [16].

In SMER, a node has an attribute, namely reversibility. The
reversibility indicates the number of resources a node must
have in order to be active, and after its activity, the same
number of resources that the node will release to its coupled
counterpart. In the example shown in Fig. 2, the reversibility
of node i and j, i.e., ri and rj , is 3 and 1, respectively. The

graph dynamics shows that node i fires once which node j
fires three times, in a period of 4 stages, due to their different
reversibility.

B. Analog OBB Modules

In order to implement the SER/SMER algorithms in analog
circuit, the algorithms parallel and distributed characteristics
have been converted to the neural network building blocks
represented by the discrete mathematics formulae as shown
below. Here the node is converted to a neuron, and the node’s
reversibility is converted to a set of neuronal parameters in-
cluding the neuron membrane potential, neuron output voltage,
threshold and coupling weights [15].

V i
M (n+ 1) = V i

M (n) + wjivj(n) + wiivi(n) (1)

V j
M (n+ 1) = V j

M (n) + wijvi(n) + wjjvj(n) (2)

Vi(n) = max(0, sgn(V i
M (n)− θi)) (3)

Vj(n) = max(0, sgn(V j
M (n)− θj)) (4)

where in Eqn.1, V i
M (n+1) is neuron i membrane potential

at time instant n + 1. wji is the synaptic weight of neuron
j connecting neuron i. wii is the internal negative feedback
coupling strength of neuron i for maintaining its stability. θi
and θj are the thresholds of neuron i and j, respectively. vi(n)
and vj(n) are the neuron i and j outputs, respectively. sgn(∗)
takes the sign of the operation, max(∗) takes the maximum
value of the operation.

The relation between the neuronal threshold, weights and
the node reversibility is shown below.


θi = max(ri, rj)/(ri + rj − gcd(ri, rj))

wij = max(ri, rj)/r
′

θj = (min(ri, rj)− 1)/(ri + rj − gcd(ri, rj))

wji = min(ri, rj)/r
′

(5)

where gcd(∗) takes the greatest common divisor. r
′
= h(r)

where h(∗) is a function of the highest integer level and
multiplying it by 10, e.g., h(256) = 1000, r

′
is used for

normalisation. In addition, we have wii = −wij , wjj = −wji.
The neural model has been simulated for mimicking the

behavior of CPGs mechanism [15] [16]. In this work, we
show a simple neuromorphic circuit design to implement the
model with similar operational performance compared to the
expensive VLSI circuit realisation.

III. NEUROMORPHIC OBBS MODULES

As described in section II, the design of the SMER-based
OBBs modules takes the SER-based OBBs module as its basis.
In this section, we start with designing the SER-based OBBs
module. The SMER-based OBBs modules can be realized by
adjusting the bias voltages of the SER-based modules. Similar
to the work in [17], an OBBs module only outputs a high or
a low level voltage representing the envelope of the neuronal
population bursting activity. The outputs can be used to drive



the robot joint motor for one DoF. The dynamical detail of
the neuronal spikes are not considered for simplicity. The
free circuit simulator LTSpice XVII running on a Windows
10 laptop with Intel core i5 is used as the circuit simulator.

A. SER-based OBBs Module

Fig. 3. The block diagram of a SER/SMER-based OBBs module.

Here a simple SER-based OBBs module consisting of two
coupled neurons is considered. Fig. 3 shows the block diagram
of two neurons connected in such a mutual exclusive way
that only one neuron can be active at any time while the
other neuron must be idle. The neuron circuit is composed
of analog and digital parts, hence a mixed-signal circuit. Four
bias voltage sources are used for the OBBs module, apart from
the power supply and a system preset signal. A neuron is
connected with its coupled counterpart via the signal bvout,
which, when the neuron stops firing, kicks off the activity of
its coupled neuron.

B. Analog Part

As shown in Fig. 4, a capacitor C1 of 330nF works
as the membrane capacitor of the neuron. There are 6 P-
channel and 5 N-channel Metal Oxide Semiconductor Field
Effect Transistors (PMOS and NMOS). M1 to M4 constitute
a current mirror with M4 controlling the current strength
via its gate voltage vw to charge the capacitor C1. Three
analog stages follow the current mirror taking the capacitor
C1 voltage as the input. The capacitor voltage is obtained
using Eqn. 6 (for a detailed derivation see [17]). The process
of charging C1 represents the active period of the neuron. The
PMOS M6 serves as a potentiometer with its source-drain
resistance adjustable by the bias voltage vb.

VC1 = IDO · W
L

e
vw

nUT · t

C1
(6)

Where IDO is a process dependant parameter, n the sub-
threshold slope factor, UT the thermal voltage, W and L are
the width and length of M1 transistor, respectively. When the
voltage on C1 is less than the voltage at the source of M7
then M7 is switched off, and M6 is resistive so that the drain

of M7 has the high level (here 5V ). This is used as the input
to the inverter composed of M8 and M9, whose switching
threshold is Vth = rvdd

1+r , where vdd is the supply voltage
of 5V , r is a factor comparing the driving strength of the
PMOS and NMOS transistors, related to their channel width
and length ratio, in our case r = 2.1. The switching voltage in
our design is Vth = 1.75V . When C1 voltage becomes greater
than M7 source voltage, which is set lower than the next
stage inverter switching threshold Vth, then M7 is switched
on. The inverter output becomes high which represents the end
of activity of this neuron by driving the digital part to output a
high level. This high level signal connects to the gates of M3
and M5, switching off M3 which stops charging the capacitor
C1, and switching on M5 which discharges the capacitor C1.
Meanwhile, the inverter output drives the couple neuron to be
active.

C. Digital Part

The digital part of the OBBs module is composed of two
functional components. One, the X1 component in Fig. 5, is
a RS flip-flop to form the neuron output based on the ramp-
shaped capacitor voltage. The other, X2 and X3, is also a RS
flip-flop and peripheral combinational circuit as the selector
of the active neuron in the pair which starts the mutually
inhibited oscillation. In addition, this circuit is also responsible
for stopping the neuron activity and kicking off the activity of
the other coupled neuron, depending on the system parameters.
These two tasks are fulfilled by using the output signal Y to
control the gate voltage of PMOS M3 as a switch for charging
the capacitor C1, and the gate voltage of NMOS M5 for
discharging the capacitor.

IV. SIMULATION OUTCOMES

The circuit has been simulated using LTSpice XVII.
Different from the previous mixed-signal VLSI circuit de-
sign for neuromorphic stepping pattern generation [17],
where a coupled OBBs module has a set of 7 bias volt-
ages, this design has only a set of 4 bias voltages, i.e.,
{vw, vb, vth right, vth left}. vw is the synaptic weight for
charging the capacitor, which is able to control the periodic
activity duty cycle and frequency. vb is a fixed voltage for in-
troducing a pull-up resistance by using PMOS M6. vth right
and vth left are the threshold voltage for the right and the
left neuron, respectively.

We consider the CPGs is controlled by the descending sig-
nals from the cortex system without the ascending signals from
the sensors. However, it is possible to add extra control signals
to include the sensor feedback. We show here the OBBs
module is able to display outputs of different frequencies and
duty cycles by adjusting the model parameters.

A. Control of Frequency

When animals walk with different gait patterns and speeds,
their leg joints are driven by CPGs with variable activity
frequencies. By adjusting one of the model parameters, vw
alone, the speed of charging the capacitor C1 is changed (see



Fig. 4. The exemplary schematic diagram of the right neuromorphic neuron.

Fig. 5. The digital component X1 is a typical RS flip-flop.

Fig. 6. The digital component X1 is a typical RS flip-flop.

Fig. 7). As the capacitor voltage is compared with M7 source
voltage which is fixed, the bigger the vw value is, the faster the
capacitor voltage becomes larger than the M7 source voltage.
When this happens, M7 is switched on. Then the input to the
inverter composed of M8 and M9 jumps to the low level from
the high level as the M7 source voltage is set to a value smaller
than the inverter’s threshold voltage. Hence, the inverter output
becomes high to reset the RS flip-flop X1, indicating the end
of its activity. Meanwhile, it shuts down the current mirror,
discharge the capacitor via the digital circuits X2 and X3, as
shown in Fig. 6.

The simulation in Fig. 7 shows that the coupled neu-
rons activity frequency depends on the synaptic weight like
bias voltage vw. When vw is changed within the range

Fig. 7. Relation between the neuron firing frequency and the capacitor
charging strength controlled by vw.

of [0.3, 0.45], different frequencies of CPGs driving signal
can be achieved while the duty cycles of the signal keeps
unchanged. The range of the signal frequency, in the range of
[0.125Hz, 3Hz], is biologically plausible [10].

B. Control of Duty Cycle

The duty cycle is another target for a coupled neuron to
be controlled. Terrestrial animals alter locomotion speed by
preferentially decreasing the stance phase of leg movements.
Consequently, the duty cycles of swing and stance change with
locomotion period [2]. The synaptic weight vw is the only
variable which needs to be adjusted if adapting the activity
frequency while keeping the duty cycle unchanged. However,
two variables, i.e., the threshold of one neuron and the synaptic
weight that two neurons couple with each other, need to be
tuned to change the duty cycles while keeping the frequency
unchanged.

Table I presents the outcomes of 10 simulations. It is
apparent that the right neuron pulse width decreases while the
left neuron pulse width increases with the monotonic increase



Fig. 8. Two coupled neurons activity. The dark-colored square waves are the outputs of the neurons; The grey-colored ramp waves are the capacitors voltage
of the neurons. Model parameters: vthl1 (left neuron threshold) = 0V , vthr1 (right neuron threshold) = 1.7V , vb (bias voltage) = 2.4V , vw (synaptic
weight/gate voltage) = 0.379V . Right cycle equals to left cycle 1.62S, right pulse 1.22S, left pulse 0.4S.

of two model parameters, here the left neuron threshold and
the synaptic weight. Two other model parameters, i.e., the right
neuron threshold and the bias voltage vb are not changed. The
activity frequency of two neurons remains the same within a
tolerable range of measurement errors and circuit mismatch.
Fig. 8 shows one case (the fourth instance in Table I) in
which two neurons are firing with different duty cycles. It is
interesting to see that this instance approximates one SMER
instance which has two nodes of different reversibility values
3 and 1, respectively. Thereby in one cycle the node with its
reversibility value of 3 will fire for only the one-third time as
its coupled node.

V. CONCLUDING REMARKS

In this work, a novel neuromorphic circuit design is pro-
posed by using the off-the-shelf discrete electronic compo-
nents. The circuit is shown capable of implementing the paral-
lel and distributed algorithms for generating rhythmic patterns
for legged locomotion. A set of model parameters are used to
achieve the independent adaptation of the neuron activity fre-
quency and duty cycle, which are important considerations for
CPGs measurement. The future works include the construction
of the complete locomotion CPGs network including a range

of coordinated gait patterns and transitions between different
patterns, based on the proposed OBBs modules.
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