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ABSTRACT
Let G be a linear algebraic group acting linearly on a vector space
(or more generally, an affine variety) V , and let k[V]G be the corre-
sponding algebra of invariant polynomial functions. A separating set
S ⊆ k[V]G is a set of polynomials with the property that for all v,w ∈
V , if there exists f ∈ k[V]G separating $v$ and $w$, then there exists
f ∈ S separating $v$ and $w$. In this article, we consider the action of
G = GL2(C) on the C-vector spaceMn

2 of n-tuples of 2 × 2 matrices
by simultaneous conjugation. Minimal generating sets Sn ofC[Mn

2]
G

are well known and |Sn| = 1
6 (n3 + 11n). In recent work, Kaygorodov

et al. [Kaygorodov I, Lopatin A, Popov Y. Separating invariants for
2 × 2matrices. Linear Algebra Appl. 2018;559:114-124.] showed that
for all n ≥ 1, Sn is a minimal separating set by inclusion, i.e. that
no proper subset of Sn is a separating set. This does not necessarily
mean that Sn has minimum cardinality among all separating sets for
C[Mn

2]
G. Our main result shows that any separating set for C[Mn

2]
G

has cardinality ≥ 5n − 5. In particular, there is no separating set of
size dim(C[Mn

2]
G) = 4n − 3 for n ≥ 3. Further, S3 has indeed mini-

mum cardinality as a separating set, but for n ≥ 4 there may exist a
smaller separating set than Sn. We show that a smaller separating set
does in fact exist for all n ≥ 5. We also prove similar results for the
left–right action of SL2(C) × SL2(C) onMn

2.
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1. Introduction

1.1. Matrix invariants

Let k be an infinite field and let Md denote the space of d × d matrices with coefficients
in k. The linear algebraic group G := GLd(k) acts onMd by conjugation. More generally
we can consider the action of G onMn

d by simultaneous conjugation.
The elements ofMn

d can be viewed as n-tuplesA = (A1,A2, . . . ,An), or as d × dmatri-
ceswith entries inkn.We call thesen-matrices for short. For g ∈ Gwewrite the conjugation
action as

g · A := (gA1g−1, . . . , gAng−1).

The question of determining whether a pair of matrices lie in the same G-orbit is a staple
of undergraduate linear algebra. On the other hand, the question of determining whether
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a pair of n-matrices lie in the same G-orbit for n ≥ 2 is the archetypal ‘wild’ problem, see,
for example [1].

There is an action of GLn(k) on Mn
d which commutes with the conjugation action:

namely, for h ∈ GLn(k) and an n-matrix A = (aij) ∈ Md(k
n) we write h � A for the n-

matrix whose i, j entry is

(h � A)ij = h(aij) (1)

Now for 1 ≤ i, j ≤ d and 1 ≤ k ≤ n, let x(k)
ij denote the linear functionalMn

d → k which
picks out the i, jth entry of Ak, and introduce generic matrices

Xk :=

⎛⎜⎜⎜⎜⎝
x(k)
11 x(k)

12 . . . x(k)
1d

x(k)
21 x(k)

22 . . . x(k)
2d

...
...

...
x(k)
d1 x(k)

d2 . . . x(k)
dd

⎞⎟⎟⎟⎟⎠ .

Then we have

k[Mn
d] = k[x(k)

ij : i, j = 1, . . . , d, k = 1, . . . , n].

The action of G onMn
d induces an action of G on k[Mn

d] by algebra automorphisms: we
define

(g · f )(A) = f (g−1 · A)

for all g ∈ G, f ∈ k[Mn
d] andA ∈ Mn

d. The setk[Mn
d]

G of fixed points of this action forms
a k-subalgebra. Elements of k[Mn

d]
G are called matrix invariants. The algebra C[Mn

d]
G

has been intensely studied over the years. A minimal generating set is known for arbitrary
n only in the case d ≤ 2. We ignore d = 1 as in this caseG acts trivially. For d = 2 we have
the following result [2]:

Proposition 1.1 (LeBruyn–Procesi): The following set Sn of invariantsminimally generates
C[Mn

2]
G as an algebra:

• Tr(Xi), i = 1, . . . , n.
• det(Xi), i = 1, . . . n.
• Tr(XiXj), 1 ≤ i < j ≤ n.
• Tr(XiXjXk), 1 ≤ i < j < k ≤ n.

1.2. Separating invariants

Now consider a more general situation in which a linear algebraic group G defined over k

acts linearly on an affine k-variety V . Let k[V] denote the algebra of polynomial functions
on V . Then G acts on k[V]G according to the formula

(g · f )(v) = f (g−1v). (2)

We denote by k[V]G the subalgebra of k[V] fixed by this action. For v,w ∈ V and any
f ∈ k[V]G we have f (v) = f (w) if v ∈ Gw, but the converse is not true in general.
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Example 1.2: Let G = GL2(C) as in Section 1.1. It’s well known that

C[M1
2]
G = C[Tr(X1), det(X1)].

However, the matrices

A =
(
0 1
0 0

)
,A′ =

(
0 0
0 0

)
do not lie in the same orbit (G fixes A′) and we have Tr(A) = Tr(A′) = 0 and det(A) =
det(A′) = 0.

If f ∈ k[V]G and f (v) �= f (w), we say that f separates v and w. We say that v and w are
separated by invariants if there exists an invariant separating v and w. In case G is reduc-
tive, we have that f (v) = f (w) for all f ∈ k[V]G if and only if Gv ∩ Gw �= ∅ where the bar
denotes closure in the Zariski topology, see [3, Corollary 6.1] (note that in Example 1.2 we
have A′ ∈ GA and G is reductive). In particular, the invariants separate the orbits if G is a
finite group.

One can in principle separate orbits whenever one can find an explicit generating set for
k[V]G, but this is an extremely difficult problem in general. For this reason, Derksen and
Kemper introduced the following in 2002 [4, Definition 2.3.8]:

Definition 1.3: Let S ⊆ k[V]G. We say S is a separating set for k[V]G if the following holds
for all v,w ∈ V :

s(v) = s(w) for all s ∈ S ⇔ f (v) = f (w) for all f ∈ k[V]G.

Separating sets of invariants have been an area of much recent interest. In general they
have nicer properties and are easier to construct than generating sets. For example, if G is
a finite group acting on a vector spaceV, then the set of invariants of degree≤ |G| is a sep-
arating set [4, Theorem 3.9.14]. This is also true for generating invariants if char(k) = 0
[5], [6] but fails for generating invariants in the modular case. Separating sets for the rings
of invariants k[V]Cp , where k is a field of characteristic p andCp the cyclic group of order p
andV is indecomposable were constructed in [7]. Corresponding sets of generating invari-
ants are known only when dim(V) ≤ 10 [8]. For the (non-reductive) linear algebraic group
Ga of a field of characteristic zero, separating sets for k[V]Ga for arbitary indecomposable
linear representationsV were constructed in [9]. These resultswere extended to decompos-
able representations in [10]. Even for indecomposable representations, generating sets are
known only where dim(V) ≤ 8 [11]. Finally, for an arbitrary (i.e. non-linear) Ga-variety
V , the algebra of invariants k[V]Ga may not be finitely generated, but it is known that there
must exist a finite separating set [12] and finite separating sets have been constructed for
many examples where k[V]Ga is infinitely generated [13, 14].

Let S be a separating set for k[V]G consisting of homogeneous polynomials. The subal-
gebra k[S] of k[V]G generated by S is called a separating algebra. By [15, Proposition 3.2.3],
the quotient fields of k[S] and k[V]G have the same transcendence degree over k. Then
by [16, Proposition 2.3(b)], we get that dim(k[S]) = dim(k[V]G). Consequently, the size
of a separating set is bounded below by the dimension of k[V]G. A separating set whose
size equals the dimension of k[V]G is sometimes called a polynomial separating set,
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n dim(C[Mn
2]
G) |S′n| |Sn| Lower bound Upper bound

2 5 5 5 5 11
3 9 10 10 10 19
4 13 18 18 15 27
5 17 27 30 20 35
6 21 37 47 25 43
7 25 48 70 30 51
8 29 60 100 35 59

because it necessarily generates a polynomial subalgebra of k[V]G. On the other hand,
there always exists a separating set of size ≤ 2 dim(k[V]G) + 1, albeit such a separating
set may necessarily contain non-homogeneous polynomials; see [17, Theorem 5.3] for a
proof.

1.3. Statement of results

We return to the notation of Section 1.1. Recently, Kaygorodov et al. [18] showed that
Sn is a minimal separating set for C[Mn

2]
G by inclusion , i.e. no proper subset of Sn is a

separating set. (The authors also considered the problem over fields of finite characteristic,
but we will not). Note that this does not necessarily mean that Sn has minimal cardinality
as a separating set. Our main results are as follows:

Theorem 1.4: Let n ≥ 2 and suppose that S ⊆ C[Mn
2]

G is a separating set. Then |S| ≥
5n − 5.

We will see in Section 2 that dim(C[Mn
2]

G) = 4n − 3 for n ≥ 2, and that
dim(C[M2]G = 1). Thus the previous theorem implies

Corollary 1.5: Let n ≥ 3. Then there does not exist a polynomial separating set forC[Mn
2]

G.

The cardinality of Sn is 1
6 (n

3 + 11n). For n ≥ 7 this exceeds the upper bound
2 dim(C[Mn

2]
G) + 1 = 8n − 5. So Sn does not have minimal cardinality for n ≥ 7. We

also prove

Theorem 1.6: Let n ≥ 3. Then there exists a separating set, S′
n forC[Mn

2]
G with cardinality

1
2 (n

2 + 9n − 16). S′
n consists of homogeneous polynomials.

The following table compares our lower bound 5n−5 with the dimension of C[Mn
2]

G

and the sizes of S′
n and Sn and the known upper bound 8n−5 for small values of n:

In particular, our results imply that S3 is indeed a separating set of minimal cardinality,
but that S4 may not be so, and Sn for n ≥ 5 is not. Note, however, that our separating set S′

n
may not have minimum cardinality for n ≥ 4 either and certainly does not have minimum
cardinality for n ≥ 8.

1.4. Structure of the paper

This paper is organized as follows. In Section 2, we define the separating variety for the
action of a linear algebraic group on an affine variety. We explain how the geometry of the
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separating variety places obstructions on the existence of small separating sets, using ideas
found primarily in the work of Dufresne and others [14, 19, 20]. In Section 3, we gather the
resultswe need onmatrix invariants and compute a decomposition of the separating variety
for 2 × 2 matrix invariants into irreducible components. We then compute the dimension
of these components and prove our main results on lower bounds. In Section 4, we show
how to construct the smaller separating sets S′

n. In Section 5, we prove similar results for
the algebra of matrix semi-invariants.

2. Invariants of algebraic groups and the separating variety

In this section, we return to the situation and notation of Section 1.2. We note that G also
acts (by the same formula (2)) on the field k(V) of rational functions V → k. We denote
the field of rational functions invariant under this action by k(V)G.

The following is a well-known consequence of a theorem of Rosenlicht: see [21,
Corollary of Lemma 2.4] for a modern proof.

Proposition 2.1: In the above setting, we have

trdeg
k
(k(V)G) = dim(V) − dim(G) + min

v∈V
dim(Gv),

where Gv denotes the stabilizer of a point v ∈ V .

The following is also well known. For lack of a reference, we provide a proof:

Proposition 2.2: Suppose there exists no non-trivial character G → k∗. Then

Quot(k[V]G) = k(V)G.

Proof: It is clear that the right-hand side contains the left. So let f1
f2 ∈ k(V)G. We may

assume f1 and f2 are coprime in k[V]. Now for any g ∈ G we have

f1
f2

= g · f1
g · f2 .

Then since f1 and f2 are coprime and the action of G preserves degree, we must have

g · f1 = λg f1, g · f2 = λg f2

for some constant λg ∈ k. Moreover, one sees easily that the assignment g → λg is a
homomorphism G → k∗. Since there exists no non-trivial character G → k∗ we get that
f1, f2 ∈ k[V]G as required. �

Corollary 2.3: Suppose there exists no non-trivial character G → k∗. Then

dim(k[V]G) = dim(V) − dim(G) + min
v∈V

dim(Gv).

We note that this applies in particular when G = SL2(C).
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The main tool in our proofs will be the separating variety. This was introduced by
Kemper in [22]:

Definition 2.4:

SG,V = {(v,w) ∈ V2 : f (v) = f (w) for all f ∈ k[V]G}.

In other words, the separating variety is the subvariety ofV2 consisting of pairs of points
which are not separated by any invariant.

We define IG,V to be the ideal of k[V2] consisting of the polynomial functions which
vanish on SG,V . Clearly this is a radical ideal. Then a separating set can be characterized
as a subset S ⊆ k[V]G which cuts out the separating variety in V2, in other words (see [19,
Theorem 2.1])

Proposition 2.5: S ⊆ k[V]G is a separating set if and only if

VV2(δ(S)) = SG,V .

where δ : k[V] → k[V2] = k[V] ⊗ k[V] is defined by

δ(f ) = 1 ⊗ f − f ⊗ 1.

Equivalently, via the Nullstellensatz, S is a separating set if and only if√
(δ(f ) : f ∈ S) = IG,V .

Consequently the size of a separating set forV is bounded below by the minimum number
of generators of IG,V up to radical, that is, the minimum number of elements generating
any ideal whose radical is IG,V (this is sometimes called the arithmetic rank of IG,V ). We
then find, using Krull’s height theorem (see, e.g. [23, Theorem 10.2]) that :

Proposition 2.6: Let S ⊆ k[V]G by a separating set. Then |S| ≥ codimV2(C) for all
irreducible components C of SG,V .

Therefore, to use Proposition 2.6 to find lower bounds for separating sets, we must
decomposeSG,V into irreducible components. As a first step, we observe that the separating
variety contains the following subvariety, which we call the graph of the action:

Definition 2.7:

�G,V = {(v, gv) : v ∈ V , g ∈ G}.

If G is connected and reductive, then �G,V is an irreducible component of SG,V . Its
dimension is easily seen to equal dim(V) + dim(G) − min{dim(Gv) : v ∈ V}, and we note
that in case there is no nontrivial character G → C∗ that

dim (�G,V) = 2 dim(V) − dim(k[V]G). (3)

However, the separating variety may have extra components and some of these may
have smaller dimension. These components are an obstruction to the existence of small
separating sets.
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Stronger obstructions may be obtained by taking a closer look at the geometry of SG,V .
Recall that aNoetherian topological spaceV is said to be connected in dimension k if the fol-
lowing holds: for each closed subvarietyZ ⊆ V with dimension< k, the complementV \ Z
is connected. If the same holds for all Z ⊆ V with codimV(Z) > k, we say that V is con-
nected in codimension k. Note that if V is equidimensional, or all irreducible components
of V intersect nontrivially then we have dim(Z) = dim(V) − codimV(Z); consequently V
is connected in dimension k if and only if it is connected in codimension dim(V) − k.

Now we recall Grothendieck’s connectedness theorem (see [24, Exposé XIII,
Theorem 2.1]): suppose (R,m) is a complete local ring of dimension n such that Spec(R)

is connected in dimension k<n, and let f1, f2, . . . , fr ∈ m. Then Spec(R/(f1, f2, . . . , fr)) is
connected in dimension k−r.

The idea is to apply this to V2 = Spec(k[V2]). Of course, k[V2] is graded-local but not
a complete ring, but we can bring the connectedness back from that of the completion
Spec(k̂[V2]) using some ideas of Reimers [25] to obtain the following:

Proposition 2.8: Suppose SG,V is not connected in codimension k, and let S ⊆ k[V]G be a
separating set. Suppose further that all irreducible components of SG,V intersect nontrivially,
and that there does not exist a non-trivial character G → k∗. Then |S| ≥ dim(k[V]G) + k.

Proof: Set R = k[V2]. Let S ⊂ k[V]G be a separating set of size r and let J = (δ(f ) : f ∈
S)R. By Proposition 2.5, SG,V = Spec(R/J).

Now let m be the maximal ideal of R and let R̂ denote the m-adic completion of R. As
V2 is normal, we have that Spec(̂R) is irreducible, and hence connected in dimension d for
all d ≤ dim(Spec(̂R)) = 2n. Applying the connectedness theorem with d = 2n−1 shows
that Spec(̂R/JR̂) is connected in dimension 2n−1−r.

Since R̂/JR̂ is also the completion of R/J at the maximal ideal m/J, it follows from the
proof of [25, Lemma 4.3] that Spec((R/J)m/J) is connected in dimension 2n−1−r, and
from [25, Proposition 4.4] that Spec(R/J) = SG,V is connected in dimension 2n−1−r too.
Further since

dim(SG,V) ≥ dim(�G,V) = 2n − dim(k[V]G)

and all irreducible components intersect nontrivially we get thatSG,V is connected in codi-
mension 1 + r − dim(k[V]G). SinceSG,V is not connected in codimension kwemust have
that

k < 1 + r − dim(k[V]G),

i.e. that r ≥ dim(k[V]G) + k as required. �

3. Invariants of 2 × 2matrices

We begin this section by fixing some notation and simplifying our problem as much as
possible. As we will be considering only 2 × 2 matrices, we drop some subscripts, writing
M = M2, etc. Observe that the action of GL2(C) on Mn is not faithful – the kernel is
the subgroup of scalar matrices. Therefore we have a faithful action of SL2(C) on Mn

and C[Mn]GL2(C) = C[Mn]SL2(C). Since it is enough to study this action, we write G :=
SL2(C) from now on.



8 J. ELMER

We fix the notation for some subgroups of G: the torus

T :=
{(

t 0
0 t−1

)
: t ∈ C∗

}
,

the unipotent subgroup

U :=
{(

1 u
0 1

)
: u ∈ C

}
,

and the Borel subgroup

B :=
{(

t u
0 t−1

)
: t ∈ C∗, u ∈ C

}
.

Next observe thatM is not an indecomposable representation of G, we have

M ∼= V ⊕ CI

whereV denotes the set of trace-zeromatrices inM, I the 2 × 2 identity matrix andG acts
trivially on CI. It is now easy to see that

C[Mn]G = C[Vn]G ⊗ C[Tr(Xi) : i = 1, . . . , n].

Note also that V is fixed by the commuting action of GLn onM as defined in (1).
A generic element A ∈ Vn will be written as (A1,A2, . . . ,An) where

Ai =
(
bi ci
ai −bi

)
.

A generic element (A,A′) ∈ Vn × Vn will be written with A as above and A′ =
(A′

1,A
′
2, . . . ,A

′
n) where

A′
i =

(
b′
i c′i
a′
i −b′

i

)
.

Throughout we write g · A for the conjugation action of g ∈ SL2 on A ∈ M. We use the
notation h � A for the commuting action of h ∈ GLn.

From this point onwards, Xi etc. represent generic trace-zero matrices of coordinate
functions on V . It is now easy to see that Tr(X2

i ) = −2 det(Xi). Consequently, Proposi-
tion 1.1 implies:

Proposition 3.1: The following set En of invariants minimally generates C[Vn]G as an
algebra:

• tij := Tr(XiXj), 1 ≤ i ≤ j ≤ n.
• tijk := Tr(XiXjXk), 1 ≤ i < j < k ≤ n.

We note for future reference that

tijk =
∣∣∣∣∣∣
ci cj ck
bi bj bk
ai aj ak

∣∣∣∣∣∣ . (4)

This implies that tijk = sgn(σ )tσ(i)σ (j)σ (k) for any permutation σ of i, j, k, and that tiij = 0
for all i, j, etc.
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Thedimension ofC[Vn]G is 3n−3 forn ≥ 2. To see this note that there exists a trace-free
n-matrix A whose stabilizer is the finite group ±I: take

A1 =
(
1 0
0 −1

)
,Ai =

(
0 1
0 0

)
for i ≥ 2. The result now follows from Corollary 2.3. Note that this also implies that
dim(C[Mn]G) = 4n − 3 for n ≥ 2 as stated in the introduction.

The discussion above shows that our main results for C[Mn]G are equivalent to the
following:

Proposition 3.2: Let n ≥ 2 and suppose that S ⊆ C[Vn]G is a separating set. Then |S| ≥
4n − 5.

Proposition 3.3: Let n ≥ 3. Then there exists a separating set S′ ⊆ C[Vn]G with cardinality
1
2 (n

2 + 7n − 16).

We will need to consider certain subspaces of V : letW denote the B-subspace of upper
triangular matrices in V . Further, define

C := {(A,A′) ∈ Wn × Wn : bi = b′
i for all i = 1, . . . , n},

C′ := {(A,A′) ∈ Wn × Wn : bi = −b′
i for all i = 1, . . . , n},

C0 := {(A,A′) ∈ Wn × Wn : bi = b′
i = 0 for all i = 1, . . . , n}.

The above are subspaces of Vn × Vn, which are fixed under the diagonal action of GLn.
Since the action commutes with the conjugation action of G, the same is true of the orbit
subsets (G × G) · C, (G × G) · C′ and (G × G) · C0.

Note that U ∼= Ga(C), the additive group of C. The linear representation theory of this
group is well known: each indecomposable module is isomorphic to Sn(V), where V is
the restriction of the natural two-dimensional CG-module, and Sn represents symmetric
powers. One usually studies the so-called ‘basic’Ga-actions: these are theGa(C)-modules

Vi := 〈v0, v1, . . . , vi〉 : i ∈ N

on which u ∈ C acts via the formula

u • vi =
i∑

j=0

uj

j!
vi−j

and it can be shown that Vi ∼= Si(V). In our case, a direct calculation shows that V ∼= V2
as a U-module.

The separating variety for arbitrary linear representations of Ga(C) was considered by
Dufresne and Kraft: in our case we have Vn ∼= V⊕n

2 as U-modules, and from a careful
reading of [26, Theorem 7.5, Lemma 7.6] we obtain:

Proposition 3.4: (i) We have SU,Vn = �U,Vn ∪ C.
(ii) �U,Vn = �U,Vn ∪ C′.
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In particular, C0 ⊂ �U,Vn .

Note also that T ∼= Gm(C), the multiplicative group of C. The representation theory of
this group is very straightforward; the indecomposable modules are all one-dimensional,
isomorphic toWz for some z ∈ Z whereWz = 〈v〉 and the action of t ∈ T is given by

t • v = tzv.

Now it’s easy to see that V ∼= V0 ⊕ V0 ⊕ V2 ⊕ V−2. Moreover,W is a direct summand of
V isomorphic to V0 ⊕ V0 ⊕ V2.

The separating variety for arbitary linear actions of algebraic tori Gk
m was considered

by Dufresne and Jeffries. In our case, the action is particularly simple, and from careful
reading of [27, Lemma 3.5], we obtain:

Proposition 3.5: (i) We have ST,Wn = C.
(ii) (A,A′) ∈ �T,Wn if and only if (A,A′) ∈ C and in addition cic′j = cjc′i for all 1 ≤ i, j ≤ n.

Our goal in this section is to describe the separating variety SG,Vn . As observed in the
previous section, one irreducible component is given by the Zariski closure of the graph

�G,Vn = {(A, g · A) : A ∈ Vn, g ∈ G}
but there may be more. The description of SG,Vn as the set of pairs of n-matrices whose
orbit closures intersect makes it clear that the separating variety is fixed by the action of
G × G. It is also clear that �G,Vn is fixed by the action of G × G. The commuting action
of GLn on Vn induces a diagonal action on Vn × Vn which commutes with the action of
G × G. The following simple observations are crucial:

Lemma 3.6: Suppose (A,A′) ∈ �G,Vn . Then (h � A, h � A′) ∈ �Vn for all h ∈ GLn.

Proof: Let (A,A′) ∈ �G,Vn . Then there exist morphisms A : C∗ → Vn, g : C∗ → G such
that

A = lim
t→0

A(t),A′ = lim
t→0

g(t) · A(t).

Let h ∈ GLn, then

h � A = lim
t→0

(h � A(t)), h � A′ = lim
t→0

h � (g(t) · A(t)) = . lim
t→0

g(t) · (h � A(t))).

�

Lemma 3.7: Let (A,A′) ∈ SG,Vn and let h ∈ GLn. Then (h � A, h � A′) ∈ SG,Vn .

Proof: The action of GLn on Vn induces an action on C[Vn]: we define

(h � f )(A) = f (h−1 � A)

for h ∈ GLn, f ∈ C[Vn] and A ∈ Vn. If f ∈ C[Vn]G, then so is h � f for all h ∈ GLn. Now
suppose (A,A′) ∈ SG,Vn . Let h ∈ GLn and f ∈ C[Vn]G. Then we have

f (h � A) = (h−1 � f )(A) = (h−1 � f )(A′) = f (h � A′)

which shows that (h � A, h � A′) ∈ SG,Vn as required. �
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These observations allow us to apply a sort of simultaneous column-reduction to
elements of C and C′. In more detail, to every pair (A,A′) ∈ C or C′ we assign a 3 × n
matrix

mA,A′ :=
⎛⎝b1 b2 · · · bn
c1 c2 · · · cn
c′1 c′2 · · · c′n

⎞⎠ . (5)

Denote the minor of mA,A′ obtained by taking only the ith, jth and kth columns by
�ijk(A,A′). Finally we define

Ĉ := {(A,A′) ∈ C : rk(mA,A′) ≤ 2}
and

Ĉ′ := {(A,A′) ∈ C′ : rk(mA,A′) ≤ 2}.
Then we have:

Lemma 3.8: The following are equivalent:

(i) rk(mA,A′) ≤ 2;
(ii) �ijk(A,A′) = 0 for all 1 ≤ i < j < k ≤ n;
(iii) There exists h ∈ GLn such that (h � Ai) = (h � A′

i) = 0 for all i ≥ 3.

Proof: The equivalence of (i) and (ii) is well known. Let Eij(λ) denote the elementary
matrix with λ in position i, j, 1’s on the diagonal and 0’s elsewhere. The action of Eij(λ) on
(A,A′) is to replace Ai and A′

i by Ai + λAj and A′
i + λA′

j respectively. The effect on mA,A′
is to replace the ith column with the ith column plus λ times the jth column. The sequence
of column operations which place mA,A′ in column echelon form produce (h � A, h � A′)
of the form claimed. �

Now we consider the G-orbit structure of V . The following result is key to obtaining a
decomposition of the separating variety SG,Vn :

Lemma 3.9: Suppose A ∈ Vn \ G · Wn. Then G · A is closed

Proof: We use the Hilbert–Mumford criterion [28]. Let λ : C∗ → G be a one-parameter
subgroup. The Hilbert–Mumford weight of A with respect to λ is the unique smallest
integer μ(A, λ) such that

lim
t→0

tμ(A,λ)(λ(t) · A)

exists.A is stable (i.e. has closed orbit and finite stabilizer) if and only ifμ(A, λ) > 0 for all
one-parameter subgroups λ of G. Now each one-parameter subgroup of G is of the form

λg(t) = g ·
(
t 0
0 t−1

)
for some g ∈ G. Letting e ∈ G denote the identity, it follows that A is stable if and only if
μ(g · A, λe) > 0 for all g ∈ G.
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Let g ∈ G and suppose g · A �∈ Wn. Writing g · A = A′, we see that a′
i �= 0 for some

i = 1, . . . , n. Therefore μ(g · A, λe) = 2 > 0. Since g was arbitrary we conclude that A is
stable, and in particular G · A is closed. �

Remark 3.10: One can complete the analysis of orbit closures inVn: it turns out thatG · A
is not closed if and only if A ∈ G · Wn \ {0} where 0 represents the n-matrix consisting
entirely of zero matrices. See [29, Proposition 8.9] for a proof in a more general case.

An n-matrix with all traces equal to zero belongs toG · Wn if and only if there exists g ∈
G such that g · Ai is upper triangular for all i. Such matrices may be called simultaneously
(upper) -triangularizable. Since an matrix is upper triangularizable if and only if it is lower
triangularizable via the action of (

0 1
−1 0

)
we usually speak simply of simultaneously triangularizable matrices.

Simultaneous triangularization of 2 × 2 matrices was studied by Florentino [30]. He
showed that arbitrary (i.e. not trace-free) n-matrices are upper triangularizable if and only
if

Tr(AiAjAk) = Tr(AkAjAi)

for all i< j< k and

det(AiAj − AjAi) = 0

for all i< j. But for tracefree matrices, Equation (4) implies that

Tr(AiAjAk) = −Tr(AkAjAi).

Further, for tracefree matrices we can show

det(AiAj − AjAi) = 4 det(Ai) det(Aj) − Tr(AiAj)
2.

It follows that G · Wn is the subvariety of Vn cut out by the set of polynomials

{tijk : 1 ≤ i < j < k ≤ n} ∪ {tiitjj − t2ij : 1 ≤ i < j ≤ n}.
In particular, this shows that G · Wn is closed. It is also irreducible, being the orbit of a
connected algebraic group on a vector space. As a first step towards a decomposition of
SG,Vn we have the following.

Lemma 3.11: SG,V = �G,V ∪ ((G · Wn × G · Wn) ∩ SG,Vn). Moreover, �G,Vn and (G ·
Wn × G · Wn) ∩ SG,Vn are closed and �G,Vn is irreducible.

Proof: Let (A,A′) ∈ SG,Vn . Then G · A ∩ G · A′ �= ∅. Unless A ∈ G · Wn and A′ ∈ G ·
Wn, then by Lemma 3.9, the orbit of either A or A′ is closed and (A,A′) ∈ �G,Vn (if
both orbits are closed, (A,A′) ∈ �G,Vn). This shows that SG,Vn ⊆ �G,Vn ∪ ((G · Wn ×
G · Wn) ∩ SG,Vn). Clearly �G,Vn is closed and irreducible. (G · Wn × G · Wn) ∩ SG,Vn is
closed as it is the intersection of two closed sets. �
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The following Lemma describes (G · Wn × G · Wn) ∩ SG,Vn as a union of sets. Note
that at this stage we do not know whether (G · Wn × G · Wn) ∩ SG,Vn is irreducible, as
the sets on the right hand side may not themselves be closed.

Lemma 3.12: We have

(G · Wn × G · Wn) ∩ SG,Vn = (G × G) · C ∪ (G × G) · C′.

Proof: Suppose (A,A′) ∈ (Wn × Wn). Then since det(Ai) = det(A′
i) for all i we get bi =

±b′
i. Further, since for each i �= j

2bibj = Tr(AiAj) = Tr(A′
iA

′
j) = 2b′

ib
′
j (6)

we have that bi = b′
i for each i or bi = −b′

i for each i. This shows that (A,A′) ∈ C ∪ C′.
Since (A,A′) ∈ SG,Vn if and only (g · A, g′ · A′) ∈ SG,Vn for all g, g′ ∈ G we get that

(G · Wn × G · Wn) ∩ SG,V = (G × G) · C ∪ (G × G) · C′

as required. �

Lemma 3.13: For all n ≥ 2 we have (G × G) · C′ ⊆ �G,Vn .

Proof: As �G,Vn is stabilized by the action of G × G, it is enough to show that C ′ ⊆ �G,Vn ,
and this follows from Proposition 3.4 (ii): we have

C′ ⊆ �U,Vn ⊆ �G,Vn

as required. �

Combining Lemmas 3.11–3.13 we obtain a decomposition

SG,Vn = �G,Vn ∪ (G × G) · C. (7)

Note that the stabilizer of the action of G × G on C is B × B, so the dimension of
(G × G) · C is

dim(C) + 2 dim(G) − 2 dim(B) = 3n + 2.

By Equation (3), the dimension of �G,Vn is

dim(Vn) + dim(G) = 3n + 3.

So there are two possibilities: either(G × G) · C ⊆ �G,Vn and hence SG,Vn has a sin-
gle irreducible component, or else SG,Vn has two irreducible components of different
dimensions.

The following result is key in our proof of Proposition 3.2.

Proposition 3.14: For n ≥ 2 we have (G × G) · C ∩ �G,Vn = (G × G) · Ĉ.

Note that for n = 2 this implies that (G × G) · C ⊆ �G,Vn and hence (G × G) · C ⊆
�G,Vn , since Ĉ = C. Therefore it follows that SG,V2 is irreducible.
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Proof: We begin by showing that (G × G) · Ĉ ⊆ (G × G) · C ∩ �G,Vn . It is clear that (G ×
G) · Ĉ ⊆ (G × G) · C and since �G,Vn is fixed by the action of G × G it is enough to show
that Ĉ ⊆ �G,Vn .

Let (A,A′) ∈ Ĉ. By Lemma 3.6, it is enough to show that there exists h ∈ GLn with
(h � A, h � A′) ∈ �G,Vn . Therefore by Lemma 3.8 we may assume Ai = A′

i = 0 for i ≥ 3.
Suppose that there exists i such that bi = b′

i �= 0, without loss of generality i = 1. Set

g :=
(
1 −c1

2b1
0 1

)
, g′ :=

(
1 −c′1

2b1
0 1

)
. (8)

Then

g · A1 = g′ · A′
1 =

(
b1 0
0 −b1

)
,

and (g · A2, g′ · A′
2) are upper triangular with equal diagonal entries. By Proposition 3.5,

(g · A, g · A′) ∈ �T,Wn ⊆ �G,Vn .

Therefore (A,A′) ∈ �G,Vn as required.
Hence we may assume bi = b′

i = 0 for i = 1, 2. But in that case

(A,A′) ∈ C0 ⊆ �U,Vn ⊆ �G,Vn

where the first inclusion comes from Proposition 3.4.
To prove the converse it is enough to show that C ∩ �G,Vn ⊆ Ĉ. So, let (A,A′) ∈ C ∩

�G,Vn . Thus there exist morphisms g : C∗ → G, and A : C∗ → Vn such that

lim
t→0

A(t) = A, lim
t→0

(g(t) · A(t)) = A′,

where we abuse notation by using A for a function and its limit. Also let A′(t) := (g(t) ·
A(t)) for all t ∈ C∗. Note that although ai = a′

i = 0 for all i and bi = b′
i we do not have

ai(t) = a′
i(t) = 0 or bi(t) = b′

i(t) for all t in general. Write

g(t) =
(
w(t) x(t)
y(t) z(t)

)
.

Let 1 ≤ i < j < k ≤ n. Write a(t), b(t), c(t) and c′(t) for the row vectors (ai(t), aj(t),
ak(t)),(bi(t), bj(t), bk(t)), (ci(t), cj(t), ck(t)) and (c′i(t), c′j(t), c′k(t)) respectively with anal-
ogous notation for their limits, and consider

�ijk(A,A′) =
∣∣∣∣∣∣
b
c
c′

∣∣∣∣∣∣ .
On the one hand this is

lim
t→0

∣∣∣∣∣∣
b(t)
c(t)
c′(t)

∣∣∣∣∣∣
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= lim
t→0

∣∣∣∣∣∣
b(t)
c(t)

2x(t)z(t)b(t) − x(t)2a(t) + z(t)2c(t)

∣∣∣∣∣∣
= − lim

t→0
x(t)2

∣∣∣∣∣∣
b(t)
c(t)
a(t)

∣∣∣∣∣∣ .
using row operations and the facts that b(t) → b, c(t) → c, c′(t) → c′ as t → 0. But we
also have b′(t) → b, so that

�ijk(A,A′) = lim
t→0

∣∣∣∣∣∣
b′(t)
c(t)
c′(t)

∣∣∣∣∣∣
= lim

t→0

∣∣∣∣∣∣
2x(t)y(t)b(t) − w(t)x(t)a(t) + y(t)z(t)c(t)

c(t)
2x(t)z(t)b(t) − x(t)2a(t) + z(t)2c(t)

∣∣∣∣∣∣
= lim

t→0

∣∣∣∣∣∣
2x(t)y(t)b(t) − w(t)x(t)a(t)

c(t)
2z(t)b(t)x(t) − x(t)2a(t)

∣∣∣∣∣∣ .
Noting that w(t)z(t) − x(t)y(t) = 1 for all t ∈ C∗, this is equal to

lim
t→0

∣∣∣∣∣∣
2(w(t)z(t) − 1)b(t) − w(t)x(t)a(t)

c(t)
2z(t)b(t)x(t) − x(t)2a(t)

∣∣∣∣∣∣
= lim

t→0
x(t)

∣∣∣∣∣∣
2(w(t)z(t) − 1)b(t) − w(t)x(t)a(t)

c(t)
2z(t)b(t) − x(t)a(t)

∣∣∣∣∣∣
= lim

t→0
x(t)

∣∣∣∣∣∣
w(t)(2z(t)b(t) − x(t)a(t)) − 2b(t)

c(t)
2z(t)b(t) − x(t)a(t)

∣∣∣∣∣∣
= lim

t→0
x(t)

∣∣∣∣∣∣
−2b(t)
c(t)

2z(t)b(t) − x(t)a(t)

∣∣∣∣∣∣
= lim

t→0
2x(t)2

∣∣∣∣∣∣
b(t)
c(t)
a(t)

∣∣∣∣∣∣
This shows that �ijk(A,A′) = 0 as required, and therefore (A,A′) ∈ Ĉ. �

Example 3.15: Let n ≥ 3 and define a pair of n-matrices:

A1 =
(
1 0
0 −1

)
,A2 =

(
1 1
0 −1

)
,A3 =

(
1 1
0 −1

)
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and

A′
1 =

(
1 0
0 −1

)
,A′

2 =
(
1 0
0 −1

)
,A′

3 =
(
1 1
0 −1

)
with Ai = A′

i = 0 for all i>3. Then rk(mA,A′) = 3, and so Proposition 3.14 above shows
that (A,A′) ∈ (G × G) · C \ �G,Vn . Thus, for n ≥ 3, SG,Vn has two irreducible compo-
nents.

We obtain the following immediate Corollary, from which Corollary 1.5 also follows:

Corollary 3.16: Let n ≥ 3 and suppose S ⊆ C[Vn]G is a separating set. Then |S| ≥ 3n − 2.

Proof: For n ≥ 3 we have shown that SG,Vn has two irreducible components. The compo-
nent�G,Vn has dimension 3n+ 3, i.e. codimension 3n−3 inVn × Vn, while (G · Wn × G ·
Wn) ∩ SG,Vn has dimension 3n+ 2, i.e. codimension 3n−2 in Vn × Vn. The result now
follows from Proposition 2.6. �

To obtain the stronger bound in Proposition 3.2, we need to compute the dimension of
(G × G) · C ∩ �G,Vn . We are not able to find a complete description of (G × G) · C; but for
our purposes the following is enough.

Lemma 3.17:

(G × G) · C ⊆ (G × G) · C ∪ (G × G) · Ĉ′.

Proof: Suppose (A,A′) ∈ (G × G) · C \ (G × G) · C. As (G × G) · C ⊆ (G · Wn × G ·
Wn) ∩ SG,Vn and the latter is closed, we have

(A,A′) ∈ (G × G) · C ⊆ (G · Wn × G · Wn) ∩ SG,Vn = (G × G) · C ∪ (G × G) · C′,

with the final equality coming from Lemma 3.12. Therefore (A,A′) ∈ (G × G) · C′. Since
(G × G) · C, (G × G) · C and (G × G) · C′ are all fixed by the action of (G × G), it is enough
to show that

C′ ∩ (G × G) · C ⊆ Ĉ′.

So, suppose (A,A′) ∈ (G × G) · C ∩ C′; we aim to show that rk(mA,A′) ≤ 2.
Let 1 ≤ i < j < k ≤ n, and write b, c and c′ for the row vectors (bi, bj, bk), (ci, cj, ck) and

(c′i, c′j, c′k) respectively. Since (A,A′) ∈ (G × G) · C, there exist morphisms g, g′ : C∗ → G,
and Z,Z′ : C∗ → C such that

lim
t→0

g(t) · Z(t) = A, lim
t→0

g′(t) · Z′(t) = A′.

Write

g(t) =
(
w(t) x(t)
y(t) z(t)

)
, g′(t) =

(
w′(t) x′(t)
y′(t) z′(t)

)
,

and

Zl(t) =
(

βl(t) γl(t)
0 −βl(t)

)
,Z′

l(t) =
(

βl(t) γ ′
l (t)

0 −βl(t)

)
for l = 1, . . . , n, where Z = (Z1,Z2, . . . ,Zn) and Z′ is similar.
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Now writing β , γ and γ ′ for the row vectors (βi,βj,βk), (γi, γj, γk) and (γ ′
i , γ

′
j , γ

′
k)

respectively and evaluating g(t) · Z(t) shows that

b = lim
t→0

(w(t)z(t)β(t) − w(t)y(t)γ (t) + x(t)y(t)β(t)) (9)

and

c = lim
t→0

(−2x(t)w(t)β(t) + w(t)2γ (t)). (10)

Meanwhile, evaluating g′(t) · Z′(t) shows that

b = lim
t→0

(−w′(t)z′(t)β(t) + w′(t)y′(t)γ ′(t) − x(t)y(t)β(t)) (11)

and

c′ = lim
t→0

(−2x′(t)w′(t)β(t) + w′(t)2γ ′(t)). (12)

Now using (9), (10) and (12) we have

�ijk(A,A′) = lim
t→0

∣∣∣∣∣∣
w(t)z(t)β(t) − w(t)y(t)γ (t) + x(t)y(t)β(t)

−2w(t)x(t)β(t) + w(t)2γ (t)
−2w′(t)x′(t)β(t) + w′(t)2γ (t)

∣∣∣∣∣∣
= lim

t→0
w(t)w′(t)

∣∣∣∣∣∣
β(t) + 2x(t)y(t)β(t) − w(t)y(t)γ (t)

−2x(t)β(t) + w(t)γ (t)
−2x′(t)β(t) + w′(t)γ (t)

∣∣∣∣∣∣
where we use the fact thatw(t)z(t) − x(t)y(t) = 1 for all t ∈ C∗ in the first row. Now using
row operations to simplify the determinant we get

�ijk(A,A′) = lim
t→0

w(t)w′(t)

∣∣∣∣∣∣
β(t)

−2x(t)β(t) + w(t)γ (t)
−2x′(t)β(t) + w′(t)γ ′(t)

∣∣∣∣∣∣
= lim

t→0
w(t)2w′(t)2

∣∣∣∣∣∣
β(t)
γ (t)
γ ′(t)

∣∣∣∣∣∣ .
On the other hand, using (10)–(12) gives us

�ijk(A,A′) = lim
t→0

∣∣∣∣∣∣
−w′(t)z′(t)β(t) + w′(t)y′(t)γ ′(t) − x′(t)y′(t)β(t)

−2w(t)x(t)β(t) + w(t)2γ (t)
−2w′(t)x′(t)β(t) + w′(t)2γ (t)

∣∣∣∣∣∣
= lim

t→0
w(t)w′(t)

∣∣∣∣∣∣
−β(t) − 2x′(t)y′(t)β(t) + w′(t)y′(t)γ ′(t)

−2x(t)β(t) + w(t)γ (t)
−2x′(t)β(t) + w′(t)γ (t)

∣∣∣∣∣∣
where we use the fact that w′(t)z′(t) − x′(t)y′(t) = 1 for all t ∈ C∗ in the first row. Now
using row operations to simplify the determinant we get

�ijk(A,A′) = lim
t→0

w(t)w′(t)

∣∣∣∣∣∣
−β(t)

−2x(t)β(t) + w(t)γ (t)
−2x′(t)β(t) + w′(t)γ ′(t)

∣∣∣∣∣∣
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= lim
t→0

w(t)2w′(t)2
∣∣∣∣∣∣
−β(t)
γ (t)
γ ′(t)

∣∣∣∣∣∣ .
This shows that �ijk(A,A′) = 0. Since this applies to all 1 ≤ i < j < k ≤ n we get
rk(mA,A′) ≤ 2 as required, i.e. (A,A′) ∈ Ĉ′. �

Corollary 3.18: We have

(G × G) · Ĉ ⊆ (G × G) · C ∩ �G,Vn ⊆ (G × G) · Ĉ ∪ (G × G) · Ĉ′.

Proof: The first inclusion follows from Proposition 3.14 and the fact that the middle term
is closed. For the second we have

(G × G) · C ∩ �G,Vn ⊆ ((G × G) · C ∪ (G × G) · Ĉ′) ∩ �G,Vn

by Lemma 3.17,

= (G × G) · Ĉ ∪ (�G,Vn ∩ (G × G) · Ĉ′)

by Proposition 3.14,

= (G × G) · Ĉ ∪ (G × G) · Ĉ′

since

(G × G) · Ĉ′ ⊆ (G × G) · C′ ⊆ �G,Vn

by Lemma 3.13. �

Notice that Ĉ and Ĉ′ are both fixed by B × B, since �ijk is B × B semi-invariant for all i,
j, k on both C and C′, and both C and C′ are B × B-modules. Therefore we have

dim((G × G) · Ĉ) = dim(Ĉ) + 2 dim(G) − 2 dim(B) = dim(Ĉ) + 2.

Now it’s easy to see that Ĉ is isomorphic to the variety of 3 × n matrices with
rank at most 2, which is well known to have dimension 2n+ 2. Therefore we have
dim((G × G) · Ĉ) = 2n + 4. Exactly the same argument also shows dim((G × G) · Ĉ′) =
2n + 4. Now Corollary 3.18 above shows that

dim((G × G) · C ∩ �G,Vn) = 2n + 4.

Consequently, since dim(SG,Vn) = 6n − (3n − 3) = 3n + 3, we get that SG,Vn is con-
nected in codimension n−1 but not in codimension n−2.We also note thatSG,Vn contains
just two components and these have non-trivial intersection. By Proposition 2.8, for any
separating set S ⊆ C[Vn]G we have

|S| ≥ dim(C[Vn])G + n − 2 = 3n − 3 + n − 2 = 4n − 5.

This completes the proof of Proposition 3.2 and Theorem 1.4 follows immediately.
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4. Smaller separating sets

In this section, we will show that for n ≥ 5 there exist smaller separating sets for C[Vn]G
than Sn. The aim is to prove Proposition 3.3; Theorem 1.6 will follow immediately.

Webegin by noting that, forn ≥ 4,C[Vn]G is not a polynomial ring; forn ≥ 2 its dimen-
sion is 4n−3 and the minimum number of algebra generators is 1

6 (n
3 + 5n). Relations

between the generators ofC[Mn]G were completely described by Drensky [31], but we do
not need a complete description here. The following is a translation of one kind of relation
from [31] to the trace-zero setting:

tijktpqr = −1
8

∣∣∣∣∣∣
tip tiq tir
tjp tjq tjr
tkp tkq tkr

∣∣∣∣∣∣ (13)

for 1 ≤ i < j < k ≤ n, 1 ≤ p < q < r ≤ n, n ≥ 4. This can also be showndirectly using (4)
and standard properties of determinants.

For the rest of this section, assume n ≥ 3. Now suppose that A,A′ are trace-zero
n-matrices and that Tr(AiAj) = Tr(A′

iA
′
j) for all 1 ≤ i ≤ j ≤ n. The relation (13) above

with i = p, j = q, r = k tells us immediately that Tr(AiAjAk) = ±Tr(A′
iA

′
jA

′
k) for all 1 ≤

i < j < k ≤ n. Applying the same relation with arbitrary i, j, k, p, q, r shows that either
Tr(AiAjAk) = Tr(A′

iA
′
jA

′
k) for all 1 ≤ i < j < k ≤ n or Tr(AiAjAk) = −Tr(A′

iA
′
jA

′
k) for all

1 ≤ i < j < k ≤ n.
Further, suppose f ∈ ⊕1≤i<j<k≤n Ctijk. Then f (A) = ±f (A′). If f (A) = f (A′) �= 0

then for 1 ≤ i < j < k ≤ n we have

tijk(A) = tijkf (A)

f (A)
= tijkf (A′)

f (A′)
= tijk(A′)

since tijkf ∈ C[tij : 1 ≤ i ≤ j ≤ n].
From the above discussion we deduce:

Lemma 4.1: Let S′ = {tij : 1 ≤ i ≤ j ≤ n} ∪ F where F ⊂ ⊕
1≤i<j<k≤n Ctijk. Then S′ is a

separating set for C[Vn]G if and only if for all A ∈ Vn we have

f (A) = 0 for all f ∈ F ⇒ tijk(A) = 0 for all 1 ≤ i < j < k ≤ n.

Given A ∈ Vn we may form a 3 × nmatrixMA as follows:

MA =
⎛⎝c1 c2 · · · cn
b1 b2 · · · bn
a1 a2 · · · an

⎞⎠
The values of tijk(A) are the maximal minors of this matrix. Let Y be a generic 3 × n
matrix and let I be the ideal of C[Y] generated by its 3 × 3 minors. Choosing a set F as
in Lemma 4.1 is equivalent to choosing a set of linear combinations of 3 × 3 minors gen-
erating an ideal of C[Y] whose radical is the same as the radical of I (in fact, I is a radical
ideal). [32, Lemma 5.9] describes how to do this, and Proposition 5.20, Corollary 5.21 and
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Proposition 5.22 [loc. cit.] show that 3n−8 linear combinations suffice. Concretely, let [ijk]
denote the minor corresponding to columns i, j, k in Y ; choose e1, . . . , er, r = 3n−8 where

el =
∑

1≤i<j<k≤n

λijk[ijk]

for l = 1, . . . , r. Set

fl =
∑

1≤i<j<k≤n

λijktijk

for l = 1, . . . , r. Then

S′ = {tij : 1 ≤ i ≤ j ≤ n} ∪ {fl : l = 1, . . . , r}

is a separating set for C[Vn]G. The cardinality of this set is

n +
(
n
2

)
+ 3n − 8 = 1

2
(n2 + 7n − 16).

This completes the proof of Proposition 3.3; Theorem 1.6 now follows immediately from
the remarks at the beginning of Section 3.

5. Matrix semi-invariants

In this section, we consider the action of a different but related group on Mn
2: let H :=

SL2 × SL2. This acts on an n-matrix A according to the formula

(h1, h2) · A = (h1A1h−1
2 , h1A2h−1

2 , . . . , h1Anh−1
2 ).

Generating sets for the algebras of invariants C[Mn
2]

H are known, see [33]. More recently,
Domokos [34] showed that the following set Sn of invariants are a separating set for
C[Mn

2]
H which is minimal by inclusion (we retain the notation of Section 1):

• det(Xi) : 1 ≤ i ≤ n;
• 〈Xi|Xj〉 := Tr(Xi)Tr(Xj) − Tr(XiXj) : 1 ≤ i < j ≤ n;
• ξ(XiXjXkXl) : 1 ≤ i < j < k < l ≤ n.

Here ξ(XiXjXkXl) is the coefficient of aiajakal in the determinant∣∣∣∣ aiXi ajXj
akXk alXl

∣∣∣∣ ∈ C[Mn
2][ai, aj, ak, al].

The size of this separating set is n +
(
n
2

)
+
(
n
4

)
. We note once again that the fact that this

separating set is minimal by inclusion does not mean that it has minimal cardinality.
In this section, we prove the following:

Theorem 5.1: Let S ⊆ C[Mn
2]

H be a separating set. Then |S| ≥ 5n − 10.
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n dim(C[Mn
2]
H) |Sn| Lower bound

2 3 3 3
3 6 6 6
4 10 11 10
5 14 20 15
6 18 36 20

The dimension of C[Mn
2]

H for n ≥ 3 is dim(Mn
2) − dim(H) = 4n − 6. This follows

fromProposition 2.3 because there exist 3-matrices whose stabilizer inH is the finite group
{(±I,±I)}. Contrastingly, dim(C[Mn

2]
H) = 8 − 6 + 1 = 3, since every 2-matrix has at

least a one-dimensional stabilizer, and dim(C[M2]H) = 4 − 6 + 3 = 1 since the stabilizer
of any matrix has dimension at least 3. So, our result implies that for n ≥ 5 there does not
exist a polynomial separating set for the action of H onMn

2.
The proof is a straightforward application of a result of Domokos: for n ≥ 1 consider

the morphism σ : Mn
2 → Mn+1

2 given by

σ(A1,A2, . . . ,An) = (A1,A2, . . . ,An, I)

where I is the 2 × 2 identity matrix. By [35, Proposition 4.1], the induced morphism

σ ∗ : C[Mn+1
2 ]H → C[Mn

2]
G

is surjective (the reference has G = GL2 but the algebras of invariants are the same). This
can be used to show that for any separating set S ⊆ C[Mn+1

2 ]H , σ ∗(S) ⊆ C[Mn
2]

G is a
separating set, see [34, Corollary 6.3]. Now Theorem 5.1 follows immediately from this
observation and Theorem 1.4.

The table below compares this lower bound with the size of the separating set given in
this section.

Note that in the case n = 4 we cannot rule out the existence of a polynomial separating
set with these methods. In a forthcoming paper, we plan to compute the separating variety
for this action directly and thereby sharpen these lower bounds.
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