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Abstract

The aim of this article is to show that the T -test can be misleading. We argue that normal
or Student’s approximation to the distribution L(tn) of Student’s statistic tn does not hold
uniformly over the class Pn of samples {X1, ..., Xn} from zero-mean unit-variance bounded
distributions. We present lower bounds to the corresponding error.

We suggest a generalisation of the T -test that allows for variability of possible approximating
distributions to L(tn).
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Given a sample X1, ..., Xn of independent and identically distributed (i.i.d.) observations over
a random variable (r.v.) X, denote

tn = (X̂−IEX)
√
n/σ̂ ,

where X̂ = Sn/n, Sn = X1+...+Xn , and σ̂ is an estimator of the standard deviation of X. In
hypothesis testing the test of the hypothesis H0 = {IEX = a} involving test statistic tn is called
the T -test; r.v. tn is Student’s statistic.

T -test is one of the most widely used statistical tests. Textbooks advocate using the T -test
when testing hypothesis H0 vs the alternative hypothesis HA = {IEX = b}, where a 6= b; when
testing hypothesis {IEX≤a} vs hypothesis {IEX≥b}, etc..

In view of the law of large numbers and the central limit theorem the T -test appears perfectly
justified if IEX2 < ∞ and the sample size is large: “the size of the one- and two-sample T -
tests is relatively insensitive to nonnormality (at least for large samples). Power values of the
T -tests obtained under normality are asymptotically valid also for all other distributions with
finite variance.” ([3], p. 207).

We show below that the T -test has problems even in the simplest situation where σ2 := varX
is known. We argue that the T -test is not automatically applicable, and requires prior checks.

The reason for that is that the test is effectively applied as a non-parametric one — textbooks
implicitly assume that the T -test “works” uniformly over the non-parametric class Pσ(a1, a2) of
distributions with mean IEX∈ [a1; a2] and standard deviation σ.

We show that weak convergence of (Sn − IESn)/
√
n to the normal law cannot hold uniformly

in the class of zero-mean unit-variance distributions (the issue with uniform convergence is known
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in the literature though not in the context of the T -test — see, e.g., [6] and references therein).
In particular, normal or Student’s approximation to the distribution of Student’s statistic is not
automatically applicable.

We suggest performing prior checks in order to find out if a particular (not necessarily normal
or Student’s) approximation to the distribution of the test statistic is applicable. This leads to
a generalisation of the T -test that allows for non-conventional approximating distributions. We
discuss implications for the choice of critical levels.

Section 1 addresses the question if the T -test is applicable uniformly over class Pn . Section 2
presents an example of non-normal approximation to L(tn) as well as an estimate of the accuracy
of such approximation in terms of the total variation distance. The approximating distribution
appears new in the literature on the topic. Section 3 suggests a generalisation of the T -test. Proofs
are postponed to section 4.

1 Problems with the T -test

The T -test has been criticized by a number of authors. For instance, Bahadur ([2], Example 8.1)
shows that the T -test is not Bahadur-efficient if H0 = {IEX=0} and X1, ..., Xn are i.i.d. normal
N (θ; 1) r.v., where θ≥ 0. Rukhin [12] shows that the T -test is not Bahadur-efficient in the case
of testing the null hypothesis H0 = {θ = 0} against HA = {θ = b} for the parametric family
{Fθ,c, θ∈ IR, c> 0}, where Fθ,c(x) = F ((x−θ)/c) (∀x), F is a distribution function (d.f.) with a
finite (in a neighbourhood of 0) moment generating function.

The T -test is usually applied in the assumption that the underlying distribution has a finite
variance. We show below that the use of the T -test is not justified even in the case of testing a
simple hypothesis H0 = {IEX=a} against a simple alternative HA = {IEX=b} in the assumption
that varX<∞. W.l.o.g. we may assume in the sequel that a=0, i.e., H0 = {IEX=0}.

Let Pn denote the class of distributions L(X1, ..., Xn) such that X,X1, ..., Xn are i.i.d. bounded
r.v.s, IEX = 0, IEX2 = 1. The use of normal or Student’s approximation in the T -test would be
justified if such approximation held uniformly in class Pn .

We show below that normal and Student’s approximation to L(tn) does not hold uniformly in
the class Pn. Namely, there exists an absolute constant c>0 such that for any n>12

inf
x≥0

sup
Pn

|IP(tn≥x)/Φc(x)− 1| ≥ c, (1)

where Φ denotes the standard normal distribution function, Φc = 1−Φ.
A similar result holds if standard normal d.f. Φ in (1) is replaced with Fn or Fn−k, where Fn

denotes the distribution function of Student’s statistic with n degrees of freedom, k ∈ IN. Thus,
the T -test is not applicable uniformly over Pn ; the outcome of the test can be misleading even for
large-size samples.

Note that Fn is close to Φ:

sup
x

|Fn(x)− Φ(x)| ≤ C/n (n→∞) (2)

(cf. Pinelis [10]). The table of Student’s distribution function shows little difference between Fn(·)
and Φ(·) if n≥60. Thus, preference to Fn over Φ appears questionable.
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Theorem 1 As n→∞,

inf
x≥0

sup
Pn

∣∣∣IP(t∗n≥x)/Φc(x)− 1
∣∣∣ ≥ 1/4 +O(1/n). (3)

If {xn} is a non-decreasing sequence of positive numbers such that 1�xn≤
√
n as n→∞, then

sup
Pn

∣∣∣IP(tn≥xn)/Φc(xn)− 1
∣∣∣ → ∞ (n→∞). (4)

A similar result holds if normal approximation to L(tn) has been replaced with Student’s
approximation. Denote F c

n = 1−Fn .

Theorem 2 As n→∞,

inf
x≥0

sup
Pn

∣∣∣IP(tn≥x)/F c
n(x)− 1

∣∣∣ ≥ 1/4+O(1/n). (5)

If {xn} is a non-decreasing sequence of positive numbers such that 1�xn≤
√
n as n→∞, then

sup
Pn

∣∣∣IP(tn≥xn)/F
c
n(xn)− 1

∣∣∣ → ∞ (n→∞). (5∗)

The result holds if Fn in (5) has been replaced with Fn−k , where k is a fixed natural number.

Note that critical values of the T -test are determined by the limiting distribution of tn , prob-
abilities of the type-II error are large deviations probabilities like IP(tn ≥ c

√
n ) (see, e.g., [8]).

Theorems 1, 2 show that the probabilities of type-I and type-II errors in the T -test can be very
different from those traditionally assumed.

2 An example of non-normal approximation

It may be counter-intuitive to expect that Poisson distribution may play any role in relation to the
T -test. However, Proposition 3 below states it may.

In this section we present an example of non-normal/non-Student’s approximation to the dis-
tribution of Student’s statistic tn and the self-normalised sum

t∗n = Sn/T
1/2
n ,

where Tn =
∑n

i=1X
2
i . We evaluate the accuracy of such approximation.

Self-normalised sum t∗n is closely related to Student’s statistic tn:

tn= t∗n/
√
1− t∗n

2/n , t∗n= tn/
√

1+ t2n/n . (6)

Therefore,

{tn≥x} =
{
t∗n ≥ x/

√
1+x2/n

}
, {t∗n≥y} =

{
tn ≥ y/

√
1−y2/n

}
(6∗)

if x≥0, 0≤y≤
√
n . Thus, the limiting distributions of tn and t∗n coincide.

The example below highlights the fact that L(tn) as well as the limiting distribution of Stu-
dent’s statistic may take on value ∞ with positive probability.
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Given r.v.s ξ and η, we denote by dTV(ξ; η) ≡ dTV(L(ξ);L(η)) the total variation distance
between L(ξ) and L(η). Let πλ denote a Poisson r.v. with parameter λ. Set

Yn = (np−πnp)
/√

πnp(1−πnp/n) , Y ∗
n = (np−πnp)

/√
np2+(1−2p)πnp , (7)

where p∈(0; 1/2]. Note that
IP(Yn=

√
n) = e−np .

Proposition 3 Let X,X1, ..., Xn be i.i.d.r.v.s with the distribution

IP
(
X=

√
p/q

)
= q, IP

(
X=−

√
q/p

)
= p, (8)

where p∈(0; 1/4], q = 1−p. Then

dTV (tn;Yn) ≤ 3p/4e+ 4(1−e−np)p2 . (9)

In the light of (6), inequality (9) can be reformulated as follows:

dTV (t
∗
n;Y

∗
n ) ≤ 3p/4e+ 4(1−e−np)p2 . (9+)

Given λ>0, denote
Y (λ) = (λ−πλ)/

√
πλ .

Clearly, Y (λ) is a defective random variable: Y (λ) takes on value ∞ with probability e−λ .
According to Proposition 3,

tn ⇒ Y (λ), t∗n ⇒ Y (λ) (n→∞) (10)

if p = p(n)∼λ/n as n→∞.

Weak convergence (10) may hold in more general situations, e.g., if Xi
d
=(ξi−IEξ)/IE1/2ξ and

ξ, ξ1, ξ2, ..., ξn are i.i.d. non-degenerate r.v.s taking values in Z+ = {0, 1, 2, ...}. For example, (10)

holds if Xi
d
= (p−ηi)/

√
p , where {ηi} are i.i.d. Poisson Π(p) r.v.s with p = p(n)∼λ/n as n→∞.

In situations where tn can be approximated by Yn or Zn the “asymptotic approach” suggests
the critical values c− ≡ c−(ε) and c+ ≡ c+(ε) of the two-sided T -test be chosen according to
equations

IP(Y (λ)>c+) = IP(Y (λ)<c−) = ε/2 (ε>0)

with λ= np replaced by its consistent estimator; the “sub-asymptotic approach” (cf. [5], ch. 9)
suggests incorporating estimate (9).

3 A generalised test

The T -test relies on the validity of normal (or Student’s) approximation to L(tn). The common
impression is that L(tn) is close to the standard normal distribution if the sample size n is large
(see, e.g., Lehman [3], p. 205). However, it is known that the limiting distribution of tn is not
always normal (the class LS of limiting distributions of Student’s statistic has been described by
Mason [4]).
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In this section we suggest a generalised T -test. The idea is to check first if a particular approxi-
mation (not necessarily normal or Student’s) is applicable. The latter can be done using estimates
of the accuracy of approximation.

Thus, the generalised T -test requires
(1) a list of possible limiting/approximating distributions;
(2) sharp estimates of the accuracy of approximation of L(tn) by a particular distribution;
(3) estimation of certain quantities involved in those estimates of the accuracy of approximation
(e.g., estimation of σ and IE|X3| in the case of normal approximation).

Traditionally, the obvious candidate for the approximating distribution is the standard normal
law N (0; 1). One can employ the following approximate bound to the uniform distance between
L(t∗n) and N (0; 1) (cf. [5], Corollary 12.22): for all large enough n

|IP (tn<x)− Φ(x)| ≤ (6.4µ̂3/σ̂
3 + 2µ̂1/σ̂)/

√
n , (11)

where µ̂k denotes a consistent estimator of µk := IE|X−IEX|k (k≥1); σ̂ is an estimator of the
standard deviation of X.

Bound (11) seems to be the sharpest available in the case of i.i.d. observations (cf. the discussion
in [11], Remarks 4.16–4.17).

The use of normal approximation can be justified if the right-hand side (r.h.s.) of (11) is less
than a certain small number (say, εo) specified by a statistician (e.g., εo=0.01).

Since the limiting distribution of tn may differ from N (0; 1), we suggest that one first checks
if a particular (not necessarily normal) approximation to L(tn) is applicable.

One may have a number of bounds of the type

sup
x

|IP(tn≤x)−Gk(x)| ≤ rn(k), (12)

where G1, G2, ... are d.f.s of certain candidate distributions. It is natural to choose k= k∗ such
that rn(k∗) = mink rn(k). Note that for most distributions from LS the task of deriving estimates
of the accuracy of approximation with explicit constants remains open.

Obviously, one needs a list of possible approximating distributions together with the correspond-
ing estimates of the accuracy of approximation (with explicit constants). Such a list will always be
finite (until recently only normal and Student’s distributions were on the list). Proposition 3 adds
another candidate to that list.

The problem of deriving estimates of the accuracy of normal approximation with explicit con-
stants to the distribution of a sum of r.v.s goes back to Tchebychef [14]. It led to a vast literature
with contributions from many renowned authors (see, e.g., references in [1, 5, 9, 13]). The task of
evaluating the accuracy of Poisson and compound Poisson approximation has been addressed by
many distinguished authors (see, e.g., references in [1, 7]).

Note that one can have a situation where neither distribution from the list has the estimate
rn(k) of the accuracy of approximation below the specified threshold level εo (i.e., mink rn(k)>εo).
That would mean the T -test is not applicable (either because of a small sample size or because of
the list being too short).

4 Proofs

Since tn and t∗n are scale-invariant, w.l.o.g. we may assume in the sequel that varX = 1. The
proofs of Theorems 1, 2 use the fact that L(tn) and L(t∗n) are not stochastically bounded uni-
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formly in Pn. Below the operation of multiplication is superior to the division.

Proof of Theorem 1. Taking into account (6∗), we shall show that

inf
x≥0

sup
Pn

∣∣∣IP(t∗n≥x)/Φc(x)− 1
∣∣∣ ≥ 1.25e−1/2(n−2) − 1 > 0 (13)

as n>12 .
Note that t∗n ≤

√
n . Thus, (13) trivially holds if x >

√
n . Therefore, we may assume in the

sequel that x∈ [0;
√
n ].

It suffices finding i.i.d. bounded r.v.s X,X1, ..., Xn such that IEX = 0, IEX2 = 1, and (13)
holds. We employ distribution (8) that seems to play the role of a testing stone when one deals
with self-normalised sums and Student’s statistic (cf. Example 12.3 in [5]).

Let X be a r.v. with distribution (8), where p∈(0; 1/4], q = 1−p. Then

Xi
d
= (p− ξi)/

√
pq (i≥1), (8∗)

where {ξi} are independent Bernoulli B(p) r.v.s. Note that

IEX = 0, IEX2 = 1, IE|X|3 = (p2+q2)/
√
pq .

Hence L(X1, ..., Xn) ∈ Pn .

Denote Sξ
n = ξ1 + ...+ ξn . Then

Sn = (np−Sξ
n)/

√
pq , Tn = np/q + (1−2p)Sξ

n/pq,

t∗n = (np− Sξ
n)/

√
np2+(q−p)Sξ

n . (14)

Set
g(k) = (np−k)/

√
np2+(q−p)k (k∈Z+). (15)

Note that t∗n = g(Sξ
n). Since function g(·) ↓ , we have

IP(t∗n ≥ g(k)) = IP(Sξ
n ≤ k). (16)

Clearly, t∗n takes on its largest possible value g(0) =
√
n when X1 = ... = Xn =

√
p/q , t∗n

takes on its second largest possible value g(1) = (np−1)/
√

np2+q−p when n−1 sample elements
equal

√
p/q and one sample element equals −

√
q/p , etc.. Hence

IP(t∗n=
√
n ) = qn, IP

(
t∗n=(np−1)/

√
np2+(q−p)

)
= npqn−1. (17)

We consider first the case where x∈ [0; 1]. According to (16), (17),

IP(t∗n ≥ g(1)) = (q+np)qn−1.

Note that
ln(1−x) ≥ −x−x2/2(1−x)2 (0≤x<1).

Hence
(1−p)n ≥ exp(−np(1+p/2q2)). (18)
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Denote
px =

(
1+ x

√
1−1/n

/√
1−x2/n

)/
n .

Set p = px . Then g(1) = x.
One can check that np/q ≥ 1+x. Hence

IP(t∗n ≥ x) ≥ (2+x)qn.

Taking into account (18), we derive

IP(t∗n ≥ x) ≥ (2+x) exp
(
−
(
1+x

√
1−1/n

/√
1−x2/n

)
(1+p/2q2)

)
≥ (2+x) exp

(
− (1+x)

(
1+(1+x)/2n(1−2/n)2

))
.

Denote
f(x) =

2

e
(2+x) exp(x2/2−x−2/n(1−2/n)2.

It is well-known that Φc(x)≤ 1
2e

−x2/2 . Hence

IP(t∗n ≥ x)/Φc(x) ≥ f(x) exp(−(1+x)2/2n(1−2/n)2) ≥ f(x)e−2/n(1−2/n)2 .

Note that function h(x) = x2/2−x+ ln(2+x) takes on its minimum in [0; 1] at x∗ = (
√
5−1)/2 ≈

0.618. Hence 2
e (2+x) exp(x2/2−x) > 1.256. Thus,

IP(t∗n ≥ x)/Φc(x) > 1.25e−2/n(1−2/n)2 . (13∗)

In particular, IP(t∗n ≥ x)/Φc(x) > 1.01 if n>12.

We consider now the case where x∈ [1;
√
n ]. It is well-known that

1

1+x
<

Φc(x)

ϕ(x)
<

1

x
(x>0), (19)

where ϕ = Φ′. Relations (17) – (19) yield

IP(t∗n≥x)/Φc(x) ≥ IP(t∗n≥
√
n)/Φc(x) ≥ (1−p)nx/ϕ(x).

Let p = 1/n. Then

IP(t∗n≥x)/Φc(x) ≥
√
2π
e

xex
2/2−1/2(n−2) . (20)

Since infx≥1 xe
x2/2 = e1/2 , we have

IP(t∗n≥x)/Φc(x) ≥
√
2π√
e
e−1/2(n−2) .

Note that
√

2π/e > 1.52. Thus, (1) and (3) hold. Relation (4) follows from (20). 2

Remark 1. The statement of Theorem 1 can be reformulated for negative x by switching from
{Xi} to {−Xi}: (3) holds with “ x ≥ 0 ” replaced with “ x ≤ 0”. Similarly one can reformulate
the statement of Theorem 2: as n→∞,

inf
x≤0

sup
Pn

∣∣∣IP(t∗n≤x)/Fn(x)− 1
∣∣∣ ≥ 1/4+o(1). (5∗)
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Remark 2. Distribution (8) is not the only one that can be used in order to establish (1). For
instance, let τ, ξ, η be independent r.v.s, L(τ) = B(c/n), where c ≥ 0, L(ξ) = B(p), IEη = 0,
IEη2=1. Set

X = τη + (1−τ)(p−ξ)/
√
pq ,

and let {Xi} be independent copies of X. Then IEX=0, IEX2=1.
Let, for example, x = 0. If p = 1/n, then

IP(t∗n ≥ 0)/Φc(0) ≥ (1−c/n)nqn−1(q+np) ∼ 2/e1+c

as n→∞. Therefore, IP(t∗n≥0)/Φc(0) ≥ 4/e1+c+o(1)>1 for all large enough n if c < ln(4/e).

Proof of Theorem 2 involves Lemma 4 and the argument from the proof of Theorem 1. In view of
(6∗) it suffices proving the corresponding relations with tn replaces with t∗n .

Since t∗n≤
√
n , (5) trivially holds if xn>

√
n . Therefore, we may assume below that x∈ [0;

√
n ].

Let X,X1, ..., Xn be defined as in the proof of Theorem 1. Recall that

F ′
n(x) = Cn(1+x2/n)−(n+1)/2 (x∈ IR),

where

Cn = Γ((n+1)/2)/
√
πnΓ(n/2), Γ(y)=

∫ ∞

0
ty−1e−tdt (y>0).

We consider first the case where x∈ [1;
√
n ]. Using (22), we derive

IP(t∗n≥x)/F c
n(x) ≥ IP(t∗n≥

√
n)/F c

n(x)

≥ (1−1/n)n+1x(1+x2/n)(n−1)/2/Cn (21)

if p = 1/n. It is known that Cn → 1/
√
2π as n → ∞. Since infx≥1 x(1+x2/n)(n−1)/2 = (1+

1/n)(n−1)/2 =
√
e+o(1) as n→∞, (21) yields

IP(t∗n≥x)/F c
n(x) ≥

√
2π/e+o(1) (n→∞)

uniformly in x∈ [1;
√
n ].

We consider now the case where x∈ [0; 1]. Let p = px . Then

IP(t∗n ≥ x) ≥ (2+x)e−1−x(1+o(1)) (n→∞)

uniformly in x∈ [0; 1]. Taking into account (2), we notice that F c
n(x)−Φc(x) = O(1/n) as n→∞

uniformly in x∈ [0; 1]. Therefore, (13∗) yields

IP(t∗n≥x)/F c
n(x) ≥ IP(t∗n≥x)/Φ(x)(1+O(1/n)) ≥ 1.25+O(1/n) (n→∞)

uniformly in x∈ [0; 1]. Thus, infx≥0 supPn

∣∣∣IP(t∗n≥x)/F c
n(x)−1

∣∣∣ ≥ 1/4+o(1) as n→∞.

If {xn} is a non-decreasing sequence of positive numbers such that 1� xn ≤
√
n as n→∞,

then (21) entails (5∗). The proof is complete. 2

Lemma 4 As n>1, x>0,
√
2π Cn√
1+1/n

Φc

(
x
√

1+1/n
)
≤ F c

n(x) ≤
Cn

(1−1/n)x
(1+x2/n)−(n−1)/2 . (22)
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Note that (22) means F c
n(x) decays rather fast when x∈(0;

√
n ]:

F c
n(x) ≤ Cne

− x2

4
(1−1/n)/x(1−1/n), (22′)

F c
n(x) ≥ Cne

− x2

2
(1+1/n)/(1+x)(1+1/n). (22′′)

Proof of Lemma 4. It is easy to see that

F c
n(x) = Cn

∫ ∞

x
(1+y2/n)−(n+1)/2 dy

≤ Cnx
−1

∫ ∞

x
(1+y2/n)−(n+1)/2 ydy

=
Cn

(1−1/n)
x−1(1+x2/n)−(n−1)/2 .

Using Taylor’s formula, one can check that

y ≥ ln(1+y) ≥ y − y2/2 (y≥0). (23)

Hence
ex

2 ≥ (1+x2/n)n ≥ exp(x2 − x4/2n) ≥ ex
2/2 (0≤x2≤n). (24)

Therefore,

F c
n(x) ≤

Cn

(1−1/n)
x−1e−x2(1−1/n)/4 .

Similarly,

F c
n(x) ≥ Cn

∫ ∞

x
exp(−y2(1+1/n)/2)dy

= Cn

√
2π/(1+1/n)Φc

(
x
√
1+1/n

)
≥ Cne

−x2(1+1/n)/2/(1+x)(1+1/n)

by (19). The proof is complete. 2

Proof of Proposition 3. Recall that r.v.s {Xi} obey (8∗) and

t∗n = (np− Sξ
n)/

√
np2+(q−p)Sξ

n ,

where Sξ
n =

∑n
i=1 ξi . Note that

t∗n = g(Sξ
n), Yn = g(πnp), (25)

where monotone function g is given by (15).
Theorem 4.12 in [5] states that

dTV(S
ξ
n;πnp) ≤ 3p/4e+ 2δ2 + 2δ∗εn, (26)

where εn=min
{
1; (2π[(n−1)p])−1/2+ 2(1−e−np)p/(1−1/n)

}
, δ = (1−e−np)p, δ∗ = (1−e−np)p2 .
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Given an arbitrary A⊂Z+, set B = g(A). Taking into account (25), we observe that

IP(t∗n∈A)− IP(Yn∈A) = IP(g(Sξ
n)∈B)− IP(g(πnp)∈B) ≤ dTV(S

ξ
n;πnp).

Thus, (9) follows from (26). The proof is complete. 2

Conclusion. We have shown that the T -test in its present form can be misleading even if the
sample size is arbitrarily large: normal or Student’s approximation to the distribution of Student’s
statistics tn is not automatically applicable if i.i.d.r.v.s X,X1, ..., Xn are bounded and varX=1.

The paper suggests a generalisation of the T -test that involves checking for the appropriate
approximating distribution, and requires estimates of the accuracy of approximation to L(tn) with
explicit constants. The list of possible approximating distributions may include, beyond normal,
functions of Poisson, compound Poisson, and possibly some other infinitely divisible laws.
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