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Abstract—The recent global pandemic has transformed the
way education is delivered, increasing the importance of video-
based online learning. However, this puts a significant pressure
on the underlying communication networks and the limited
available bandwidth needs to be intelligently allocated to sup-
port a much higher transmission load, including video-based
services. In this context, this paper proposes a Machine Learning
(ML)-based solution that dynamically prioritizes content viewers
with heterogeneous video services to increase their Quality of
Service (QoS) and perceived Quality of Experience (QoE). The
proposed approach makes use of the novel Prioritized Multi-
Agent Reinforcement Learning solution (PriMARL) to decide
the prioritization order of the video-based services based on
networking conditions. However, the performance in terms of
QoS and QoE provisioning to learners with different profiles and
networking conditions depends on the type of scheduler employed
in the frequency domain to conduct the scheduling and the radio
resource allocation. To decide the best approach to be followed,
we employ the proposed PriMARL solution with different types
of scheduling rules and compare them with other state-of-the-
art solutions in terms of throughput, delay, packet loss, Peak
Signal-to-Noise Ratio (PSNR), and Mean Opinion Score (MOS)
for different traffic loads and characteristics. We show that the
proposed solution achieves the best user QoE results.
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learning, video traffic prioritization, QoE, online education.
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I. INTRODUCTION

BROADBAND connectivity plays a central role in mitigat-
ing the economic aftermath of the pandemic and boosting

the digital access and inclusiveness of different sectors [1].
One such sector of utmost importance is remote education and
eLearning, which all regions of the world must have access
to [2]. COVID-19 containment measures forced actors of the
educational sector to remotely deliver large amounts of media
content across the existing broadband infrastructure. Prior
to the global pandemic, educational institutions were slowly
moving towards a blended learning approach which combines
the traditional physical classroom teaching with the adop-
tion of various Information and Communication Technology
(ICT)-based tools and solutions to improve the educational
experience [3]. However, the global pandemic has accelerated
the digital transformation of educational institutions by forc-
ing the teaching-learning process to move to ‘online only’.
In this context, instructors rely on any form of video content
(e.g., live video streaming, video on demand, etc.) as well as
text and graphics, to improve the teaching-learning process
within the online learning environment. Previous studies [4]
have shown that the integration of instructional videos within
the educational content can increase the effectiveness of online
learning. However, moving from the optional adoption of ICT-
based tools within the educational domain to a compulsory
one, including video-based learning, does not come without
challenges.

One of the existing challenges that was worsened by the
pandemic is the issue of digital inequalities. The factors
that contribute to these inequalities are [5]: (1) digital lit-
eracy; (2) access to hardware and/or software; (3) usage
autonomy; and (4) social factors, such as peer interac-
tions. Additionally, when it comes to video-based learning,
there are several factors that impact learners’ Quality of
Experience (QoE), including the type of device (e.g., smart-
phone, laptop, desktop, etc.) and the quality of the Internet
connectivity. To be able to accommodate an appropriate level
of eLearning content for mobile learners, stable broadband
connections are strongly demanded. To this end, network
operators are pressured to ensure high levels of Quality of
Service (QoS) and QoE while exchanging larger amounts
of educational media content among an increasing number
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of mobile/online learners over the existing radio access
networks.

Enabling good QoS provisioning over the wireless interface
is challenging. A limited frequency spectrum must be allo-
cated by a scheduling entity to increase the number of users
requesting different traffic types and experiencing a variety of
network conditions [6]. In remote education, this aspect is even
more of a challenge since a proper prioritization of the deliv-
ered services is needed to deal with different learner profiles,
dynamic wireless conditions, device types, and content charac-
teristics with heterogeneous QoS requirements [7]. Therefore,
the focus of this paper is on packet scheduler and intelligent
prioritization of eLearning content for mobile learners. To pro-
vide high QoS, we employ a solution based on Prioritized
Multi-Agent Reinforcement Learning (PriMARL) [8] to allo-
cate the limited frequency spectrum over an increased number
of mobile learners accessing the radio interface. However,
enabling high QoS provisioning does not guarantee acceptable
QoE when scheduling video services with different degrees of
heterogeneity in terms of data rates and QoS requirements.
Therefore, the focus of PriMARL would be to maximise
both QoS and QoE provisioning for learners experiencing
heterogeneous video services in eLearning.

In the literature, multi-agent reinforcement learning is used
to deal with user association and resource allocation in het-
erogeneous cellular and millimeter wave networks [9], [10].
In our previous work [7], we considered the prioritization
and scheduling aspects of educational content over the broad-
band networks and proposed a Hierarchical MARL (HiMARL)
model based on a source-sync approach, where the source con-
troller prioritizes video classes in the time domain and the
sync controller performs the scheduling and resource alloca-
tion in the frequency domain. This method is highly efficient to
deliver the requested heterogeneous video services in terms of
QoS compared to other state-of-the-art approaches. However,
there is no evaluation of the proposed scheduling technique in
terms of QoE.

A. Addressed Use Case Scenario

According to a study conducted by Campbell [11], one of
the most important issues in enabling eLearning over mobile
technology (mobile learning) is the network speed and reliabil-
ity. In this context, the use case scenario illustrated in Figure 1
is considered. Four types of mobile users access educational
video services from a cloud mobile learning server via a 5G
gNodeB base station. The mobile users are located in dif-
ferent geographical locations, use diverse device types (e.g.,
smartphones, laptops, tablets, VR gear, etc.), and have vari-
ous network connectivity characteristics (e.g., poor, medium,
or good connectivity). In this scenario, the network sched-
uler located at the level of the 5G gNodeB base station is
responsible for allocation of the available radio resources to
all users and maximizing the QoS parameters for each deliv-
ered video service, given the channel conditions, traffic types
and characteristics, device resolutions, and prioritization poli-
cies. However, as noted in [7], the quality of user experience
is important for the learning performance. Therefore, in this

Fig. 1. Use Case Scenario.

paper, we propose PriMARL, an ML-based decision-making
framework that aims to increase the time and number of
users (learners, instructors) experiencing high QoE levels when
delivering a range of four video services.

B. Paper Contributions

The proposed PriMARL framework for downlink schedul-
ing systems eliminates the need for a source-sync approach
as employed in the previous work (HiMARL) and improves
learner QoE when delivering heterogeneous educational video
in different traffic load conditions. In contrast to [7], the
contributions of this paper are as follows.

a) Prioritization-Driven Scheduler: The proposed approach
focuses on service prioritization. It provides a low complexity
solution to the proposed optimization problem that decides in
each Transmission Time Interval (TTI) the prioritization order
of video classes with different QoS profiles in the time domain
and considers particular scheduling rules in the frequency
domain, i.e., Barrier Function (BF), Exponential (EXP) and
Opportunistic Packet Loss Fair (OPLF) [6].

b) PriMARL-based Decision-Making: Three different
PriMARL solutions which employ various scheduling rules,
i.e., PriMARL-BF, PriMARL-EXP and PriMARL-OPLF to
maximise QoS and QoE are designed, trained, and tested. The
functional framework allows training and testing of PriMARL
policies under the same network and traffic conditions, ensur-
ing high accuracy of comparison and conclusions. Compared
to HiMARL [7], the proposed solutions provide improved user
perceived QoE when delivering video services with different
traffic loads (low, medium, and high).

c) Higher Number of Learners Experiencing Video Content
at Excellent QoE Level: Unlike previous work, this research
focuses on improving user QoE, estimated in terms of
Peak Signal-to-Noise Ratio (PSNR) and Mean Opinion Score
(MOS). For instance, the proposed PriMARL-EXP solution
increases the number of learners experiencing excellent QoE
levels for the considered video classes at different traffic load
settings.

The remainder of this paper is organized as follows: In
Section II, we discuss the related work carried out in this area.
Section III introduces the system model, and in Section IV, we
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describe the proposed PriMARL-based solution. In Section V,
we present an analysis of obtained results and Section VI
serves as the conclusion of our paper.

II. RELATED WORKS

Recently, an increasing number of solutions that make use of
Machine Learning (ML) and other Artificial Intelligence (AI)
techniques have started gaining momentum in various fields,
mainly due to the global pandemic that accelerated the digital
transformation. Different ML-based approaches are proposed
in the literature to build intelligent systems that identify pat-
terns and behaviour in historical data and learn from it without
relying on rules-based systems.

The concept of Multimedia Intelligence is introduced by
Zhu et al. [12], representing the convergence of multimedia
and AI. A bidirectional link is formed between multimedia and
AI, that enables them to enhance each other. Consequently, on
one side, multimedia enriches the varieties of applications for
AI through explainability. On the other side, AI boosts the
inferrability of multimedia through reasoning.

Deep Reinforcement Learning (DRL) has been used by
Cui et al. [13] to propose TCLiVi, a transmission control
in live video streaming solutions. TCLivi jointly adjusts the
streaming parameters (e.g., video bitrate, target buffer size)
in order to improve the QoE for live video streaming. The
performance evaluation results show that TCLiVi outperforms
other solutions from the literature in terms of QoE score
with an increase of 40.84%. DRL has also been used by
Mao et al. [14] to propose Pensieve, an intelligent system
that generates adaptive bitrate (ABR) algorithms for Video on
Demand (VoD) scenarios. Pensieve will automatically learn
the adaptive bitrate algorithms that adapt to a wide range of
dynamic network conditions and QoE metrics.

Tan et al. [15] investigate the use of game theory to enable
dynamic adaptive bitrate streaming in multi-client over Named
Data Networking (NDN). A client-side game theory-based dis-
tributed ABR algorithm for NDN is proposed to optimize the
overall QoE of multiple clients and guarantee fairness. The
performance evaluation results demonstrate the effectiveness
of the proposed solution in terms of overall QoE, fairness, and
bandwidth resource utilization. Looking at maximizing user
capacity for an auto-scaling VoD system, Chang and Chan [16]
propose AVARDO, an auto-scaling Video Allocation and
Request Distribution Optimization solution. The proposed
solution seeks to maximize the user capacity at each auto-
scaling level and formulate the optimization problem as a
multi-objective mixed-integer linear programming problem.
The performance evaluation results show that the proposed
AVARDO solution is close to the optimum.

Random Forest (RF) classifier is used by
Chandrasekhar et al. [17] for real time video schedul-
ing over LTE networks. The proposed solution detects the
service type of different flows as well as the video player
status for users with HTTP Adaptive Streaming (HAS)
flows. The output of the RF classifier is used for prioritizing
scheduling of the HAS users. The proposed solution enhances
the video QoE with an acceptable impact on other non-video

best effort services. Similarly, an adaptive resource scheduling
solution named AdaptSch, based on neural network (NN) and
mobile traffic prediction, is proposed by Semov et al. [18].
AdaptSch makes use of an NN architecture with two building
blocks, where the first one predicts the future network state,
while the second one chooses the optimum scheduling policy
to be applied. The proposed solution improves the system
performance in terms of packet delay. However, this comes
at the cost of overall throughput degradation.

With a focus on radio resource scheduling in the 5G Radio
Access Network (RAN), Tseng et al. [19] designed a modular-
ized Deep Deterministic Policy Gradient (DDPG) architecture.
Here, DDPG is used to select a radio resource scheduling pol-
icy from a pool of 60 combinations of scheduling algorithms
as actions. DDPG has been widely adopted to solve optimal
control problems in wireless network environments, such as,
in case of network slicing for allocating resources among
different slices [20], or among different traffic classes [21].
However, Gu et al. [22] argue that due to the very slow con-
vergence of DDPG, it cannot be implemented in real-world
5G systems. Consequently, the authors propose a knowledge-
assisted DDPG that reduces its convergence time significantly
and achieves better QoS.

Motivated by the fact that reconfigurable wireless networks
open up new opportunities for advanced rich multimedia appli-
cations, such as online AR/VR gaming, high-quality video
streaming, and autonomous vehicles, Mollahasani et al. [23]
take a different approach and propose an Actor-Critic learning-
based QoS-aware scheduler to overcome the problem of
stringent QoS requirements of such applications. The authors
adopt two advantage actor-critic models, where the first tech-
nique schedules packets by prioritizing their scheduling delay
budget, while the second technique considers channel quality,
delay budget, and packet type. Performance evaluation results
validate the efficiency of the proposed approach.

In addition to the approaches described above, there are
also time-efficient schedulers that target multiple QoS objec-
tives at the same time. An example of such a scheduler is the
Frame Level Scheduler (FLS) [24] that divides the schedul-
ing problem in two stages: a) time-domain, where the users
are prioritized based on the approximated quota of data nec-
essary to meet the delay constraints; b) frequency-domain,
where the prioritized users get radio resources for data trans-
mission in a fair manner according to scheduling rules, such as
proportional-fair scheduling. Another efficient example is the
Required Activity Detection Scheduler (RADS) [25], where in
the time domain, users are prioritized based on a multi-target
criterion encompassing fairness, delay, and rate requirement,
while in the frequency domain, the pre-selected users are
served based on their channel quality. More recently, in [26]
the authors proposed the Minimal Delay Violation (MDV)
downlink scheduler that considers arrival rates in data queues
and the state of each flow in the network in terms of packet loss
and delay. When compared to FLS, MDV achieves a maximum
gain of about 25% in terms of average system throughput when
scheduling users requesting heterogeneous traffic in terms of
video, voice, and best effort. In a railway environment, the
authors in [27] proposed a New version of RADS (NRADS)
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Fig. 2. Proposed System Model.

that allocates the radio resources to mobile users based on the
number of correctly received bits at the level of physical layer,
channel conditions, and a static and standardized prioritiza-
tion sequence to be followed when scheduling multiple classes
of services. Compared to RADS, NRADS provides a gain of
nearly 10% when measuring the overall system throughput.

In summary, a variety of scheduling approaches exists in
the literature to deal with prioritization and scheduling of
multimedia services. However, most of these approaches are
mainly focusing on QoS optimization. Improving user QoE
of the provided services, assessed in terms of objective (e.g.,
PSNR) or subjective (e.g., MOS) metrics, remains uncov-
ered. Despite the amount of research done in these areas,
advancements therein would benefit from the performance
of our proposed PriMARL-based decision making solution,
which focuses on the maximization of PSNR performance
for heterogeneous video scheduling given the dynamic user
traffic and network conditions. The primary objective of the
PriMARL-based prioritization framework is to maximize the
QoS revenue for all video content viewers in terms of packet
delay, throughput, and packet loss rate (PLR). Then, the sec-
ond objective would be to carefully select the best rule for the
frequency domain-based scheduling that provides the highest
amount of viewers with excellent MOS scores.

III. SYSTEM MODEL AND PROBLEM STATEMENT

The proposed system model is presented in Fig. 2, where
mobile/online learners access different types of educational
video content from the mobile learner server through the
OFDMA interface and scheduling system. Let us define by
P = {1, 2, . . . , P} the set of video services that needs to be pri-
oritized at each TTI, where class 1 requests the highest priority

and class P is associated with the lowest priority. Furthermore,
we consider by U = {U1,U2, . . . ,UP} the set of active mobile
learners distributed over P video classes. Each learner u ∈ Up

receives on a mobile device (e.g., tablet, smartphone) educa-
tional videos with different QoS constraints or requirements
for each class p ∈ P . By Qp = {qp,n : n = 1, 2, . . . , N} we
define the set of QoS requirements associated to class p ∈ P ,
where n is a type of QoS indicator that can be throughput,
delay, or packet loss.

We define Key Performance Indicators (KPI) for the QoS
data (i.e., throughput, delay, packet loss) which are measured
in each TTI based on observations collected from each user.
In multi-class prioritization and scheduling, in a given class
p ∈ P , users’ KPIs are constrained by the same set of QoS
requirements Qp indicated by standards [28]. Therefore, for
each QoS type n, class p ∈ P , and learner u ∈ Up, we define
the KPI kp,u,n measured at each TTI and monitored to verify if
its QoS requirement qp,n is met. By enlarging the dimension of
data to the user level for all N QoS indicators, we can further
define the learner KPI vector as

kp,u =
[
kp,u,n

]
n=1,2,...,N

and the vector of QoS requirements as

qp =
[
qp,n

]
n=1,2,...,N .

Then, the aim is to maximize in each TTI the number of KPI
vectors kp,u respecting the corresponding QoS requirement
vector qp for as many learners u ∈ Up as possible.

The role of the scheduler from Fig. 2 is to prioritize learners
from different video classes p ∈ P and allocate the necessary
radio resources in the frequency domain at each TTI. Let us
suppose that the prioritization sequence, for example,
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[
p, 2, . . . , p− 1, p+ 2, . . . , 1

]

is decided at TTI t, where learners requesting video service
from class p ∈ P are scheduled first, followed by learners
from class 2, and so on. In the proposed system, the num-
ber of video classes from the prioritization sequence that are
scheduled in the frequency domain depends on the amount of
remaining radio resources. In OFDMA networks, the available
bandwidth is divided in B number of equal Resource Blocks
(RBs). Let B = {1, 2, . . . , B} be the set of RBs that are allo-
cated at each TTI, where RB b ∈ B is the smallest resource
unit. Learners u ∈ Up within video class p ∈ P from the prior-
itized sequence are competing in the frequency domain to get
the highest amount of RBs. Then, utility functions are used to
rank learners for each RB b ∈ B according to their QoS bud-
get [29]. In particular, for each RB b ∈ B and learner u ∈ Up,
an utility function targets specific types of QoS indicators in
terms of n and takes as input in each TTI t the measured KPI
kp,u,n; in most cases, as output, such a function provides a
measure of how far each KPI of each class p ∈ P is from the
QoS requirement qp,n ∈ Qp. At the level of each RB b ∈ B,
the learner with the highest utility value is allocated that par-
ticular RB. Learners u ∈ Up with higher utility values over
the entire bandwidth have higher chances to get more RBs.
Let �n(kp,u,n) : R→ R be such utility functions that can take
different forms depending on the target type of QoS indicator
(i.e., throughput, delay, PLR).

A. Optimization Problem

In the proposed optimization problem presented in (1.a),
the prioritization of video classes and resource allocation are
performed at each TTI t ∈ {1, 2, . . . , T}, subject to con-
straints (1.b)-(1.e), where T represents the number of TTIs
of a given scheduling session.

max
x,y

∑

p∈P

∑

u∈Up

∑

b∈B
xp,u(t) · yu,b(t) · �n

[
kp,u,n(t)

] · λu,b(t),

s.t. (1.a)∑

u

yu,b(t) ≤ 1, b = 1, . . . , B, (1.b)

∑

p

xp,u(t) = 1, u = u1, . . . , uUp , p = 1, . . . , P, (1.c)

∑

p∗

∑

u

xp∗,u(t) =
∑

p∗
Up∗ , p∗ ∈ P∗, (1.d)

∑

p⊗

∑

u

xp⊗,u(t) = 0, p⊗ ∈ P⊗. (1.e)

In such an optimization problem, the aim is to maximize
for each RB b ∈ B the sum of utility values over learners
u ∈ Up of class p ∈ P decided by the prioritization sequence
in each TTI t. However, the wireless environment must be
considered in the optimization problem to enable scheduling
and resource allocation for users with high utility values and
favorable channel conditions. Therefore, learner u ∈ Up gets
the RB b ∈ B if the metric

�n
[
kp,u,n(t)

] · λu,b(t)

is maximized relative to all other learners’ metrics, where
λu,b(t) is the achievable rate that could be obtained if RB
b ∈ B would be allocated to learner u ∈ Up at TTI t.

To solve such complex problems, two variables must be
determined each TTI t:

a) xp,u ∈ {0, 1} decides the learner u ∈ Up to be scheduled
in the frequency domain (i.e., if xp,u = 1, then video class
p ∈ P is prioritized and user ∀u ∈ Up passed in the frequency
domain; if xp,u = 0, then video class p ∈ P is not prioritized);

b) yu,b ∈ {0, 1} performs the scheduling and resource allo-
cation (i.e., if yu,b = 1, then RB b ∈ B is allocated to learner
u ∈ Up; if yu,b = 0, then user u ∈ Up does not receive
b ∈ B).

When obtaining the best combinations of users and RBs to
maximize (1.a) each TTI, a set of constraints must also be
considered. Therefore, constraints (1.b) indicate that each RB
b ∈ B is allocated to one learner at most. Also, as requested
by (1.c), once a video class p ∈ P is prioritized, all learners
u ∈ Up = {u1, u2, . . . , uUp} within that class are competing
to get the available resources allocated, where Up is the num-
ber of learners in class p ∈ P . In case of remaining resources
after scheduling the higher prioritized class, the optimization
problem is repeated for the next video class from the pri-
oritized sequence. However, due to unfavorable networking
conditions, some video classes can remain unscheduled at
certain TTIs. In this sense, let us define by P∗(t) the set
of video classes scheduled at TTI t, while by P⊗(t) we
define the set of video classes remained unscheduled, where
P∗ ∪ P⊗ = P and P∗ ∩ P⊗ = {∅}. Accordingly, the con-
straints (1.d) show that all learners in the scheduled classes
p∗ ∈ P∗ are passed in the frequency domain and compete
for radio resource allocation. Meanwhile, the other learners
in p⊗ ∈ P⊗ are deprived of receiving video packets in that
TTI t due to the fact that there are not enough radio resources
left after scheduling learners in p∗ ∈ P∗, as indicated by the
constraints (1.e).

B. Problem Solving

To find optimal solutions in (1.a) in each TTI t, the sched-
uler needs to identify the best type of utility function n to be
employed, and at the level of each resource block b ∈ B, the
most appropriate learner u ∈ Up and service class p ∈ P . This
decision-making should be done in such a way that the set of
constraints (1.b)-(1.e) are met in each TTI and the number of
KPIs kp,u,n that satisfy their associated requirements qp,n is
maximized in the subsequent TTI t + 1. This approach raises
two main problems:

a) the decision process becomes time-consuming, as each
possible combination n × b × u × p must be tested, and the
best one has to be selected to perform scheduling;

b) finding the optimal solution in each TTI is complex,
as the performance (meeting the QoS requirements) of each
possible decision in a) needs to be known in advance.

Therefore, we want to simplify the solution-search problem
at each TTI by finding sub-optimal solutions of the original
optimization problem in two stages:
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a) the prioritization sequence of video classes;
b) the scheduling of pre-selected learners and resource allo-

cation by respecting the prioritization of video classes decided
in a).

To solve the first sub-problem, this paper employs a
PriMARL-based solution to increase the QoS provisioning by
deciding at each TTI the best prioritization of video classes.
However, the type of scheduling rule used in resource allo-
cation has a major impact in QoS and QoE provisioning for
the pre-selected users. In this paper, we train our PriMARL
method by employing three different scheduling rules in the
frequency domain [30]: PriMARL-BF, PriMARL-EXP, and
PriMARL-OPLF with their main focus on a particular QoS
performance indicator, namely throughput (n = 1), delay
(n = 2), and packet loss (n = 3), respectively.

IV. PROPOSED PRIMARL SOLUTION

A controller is employed in Fig. 2 to interact with the sched-
uler entity and learn the best prioritization decision to be taken
at each TTI t. In a real system, this controller is deployed at
the MAC layer of the 5G gNodeB base station and is owned
by the network operator. The interaction between controller
and scheduler at the level of MAC layer is modeled according
to: state representing the observable data received from the
scheduler, action corresponding to the prioritization sequence,
and reward that measures in the current state how good the
prioritization decision taken in the previous state is. By experi-
encing a very large amount of interactions in terms of previous
state - action - reward - current state, the controller learns from
trials and errors to improve its decisions over time based on
reinforcement learning [31]. The controller considers P num-
ber of agents trained to compute the prioritization decision of
video classes at each TTI t. In particular, each agent p ∈ P
learns to claim at each TTI the priority of class p ∈ P to
be passed in the frequency domain. Then, the controller com-
putes a joint action by ordering the priority values given by
each particular agent. Since each agent learns based on its
own state to compute a joint action together with other agents,
the proposed approach works in a multi-agent reinforcement
learning mode [8]. We argue that combining the decisions of
multiple agents with various priorities is more efficient than
using a single agent that decides the prioritization sequence
once at each TTI.

A. States, Actions, and Rewards

An instantaneous state of agent p ∈ P observed at TTI t
is given by the data sample sp(t) ∈ Sp, where Sp is the state
space of class p ∈ P . This state is divided into two parts:

sp(t) =
[
cp(t), np(t)

]
,

where cp(t) are some controllable elements that can be
influenced by the prioritization decisions, while np(t) are
some non-controllable elements such as the Channel Quality
Indicator (CQI) that changes regardless of the applied decision.
The controllable sample is represented by

cp(t) =
[
kp, kp, dp

]
∈ Sc

p,

where

kp =
[
kp,u1 , kp,u2 , . . . , kp,uUp

]

is the KPI vector of all learners in class p ∈ P , kp is a vector
that computes the differences between each KPI kp,u,n from
vector kp and its associated QoS requirement qp,n ∈ Qp, and

dp =
[
dp,u1 , dp,u2 , . . . , dp,uUp

]

is the vector containing the amount of queued data for each
learner at the level of MAC layer. At each TTI t, the controller
state s(t) ∈ S is obtained by encompassing all agents’ states:

s(t) = [s1, s2, . . . , sP] ∈ S,

where S is the controller state space.
A joint action is denoted by

a(t) = [ai]i=1,2,...,P ∈ A,

where ai ∈ P is the video class with the ith priority to be
scheduled at TTI t, and A is the P dimensional and discrete
controller action space. As mentioned, a number of P∗ classes
can be used for scheduling, and consequently, the action

a(t) = [a1, . . . , aP∗ , . . . , aP]

is partially used, where 1 ≤ P∗ ≤ P.
The controllable state of each agent evolves to the next

states based on applied joint action:

c′ai
= fai

(
sai , a

)
, (2)

where

c′ai
= cai(t + 1)

is a controllable state at TTI t+1, and

fai : Sc
ai
× P → Sc

ai

is the transition function that moves the agent from the state
sai(t) ∈ Sai to the next state sai(t+ 1) ∈ Sai when scheduling
learners in class ∀ai ∈ P at TTI t.

The reward function of the controller depicted in Fig. 2 mea-
sures the impact of applying action a(t) ∈ A in state s(t) ∈ S ,
defined as [32]:

R(s, a)
(def)= E

[
Rt+1|s(t) = s, a(t) = a

]
, (3)

where R : S × A → R is the reward function, and E[·] is
the expectation operator, with a random state s(t) ∈ S so that,
P[s(t) = s] > 0 and P[a(t) = a] > 0 hold for all a ∈ A. For
our purpose, the reward function is computed as follows [7]:

R(s, a) =
P∑

i=1

χ(ai) · rai

(
sai , a

)
, (4)

where

rai : Sai × P → R

is the reward function that evaluates the QoS performance
when scheduling learners in video class ai ∈ P , and

χ : P → [0, 1], χ(ai) = (P+ 1− ai)

/ P∑

h=1

h
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is the weight function that sets the importance of each
reward rai given the sequence [1, 2, . . . , P] requested by
the prioritization standard. By using (2) and measuring the
QoS performance in each video class, the proposed reward
becomes:

rai

(
sai , a

) (2)= rp

(
c′p

)
= 1

Up
· 1

N

∑

u

∑

n

ru,n

(
c′p,u,n

)
, (5)

where we assume that action ai = p ∈ P , and ru,n is the
particular reward of user u ∈ Up and QoS requirement qn ∈ Q,
with the function argument given by the controlable sample

c′p,u,n =
[
k′p,u,n, k′p,u,n, d′n

]
.

As shown in [7], the computation of the learners’ rewards ru,n

depends on type n of QoS requirement for each traffic class.

B. Policy and Value Functions

The proposed solution considers the stochastic game with
the tuple

〈S1, . . . ,SP,A, f1, f2, . . . , fP, R〉,
meaning that each agent p ∈ P learns based on its own state
space Sp to cooperate with other agents to maximize the over-
all QoS provisioning in all video classes according to the
employed reward functions in (4) and (5).

Each agent keeps its own policy function

πp : Sp ×A→ [0, 1]

defined as the probability of selecting a given joint action a ∈
A in state sp ∈ Sp [32]. Similar to the joint action, we compute
the controller joint policy as the sequence of

π = [
πp

]
p=1,2,...,P.

Furthermore, each agent keeps track of an action-value func-
tion to calculate the expected cumulative future reward if agent
p ∈ P is in state sp, executes the joint action a ∈ A by obtain-
ing the ith priority to be scheduled, and the joint policy π is
subsequently followed. We define this function by [32]:

Qp : Sp ×A→ R,

Qp
(
sp, a

) = E

[ T→∞∑

t=0

γ tRt+1|sp(0) = sp, a(0) = a, π
]
, (6)

where 0 ≤ γ ≤ 1 is a discount factor that gives more impor-
tance to the immediate rewards than to the later ones, and
E[·] is the expectation operator with the same properties as
shown in (3). The action-value function of each agent p ∈ P
is trained separately to claim the priority of the corresponding
video class to be scheduled in the frequency domain. When
the controller is trained and the action-value functions are con-
sidered optimal or near-optimal, an action a ∈ A is selected
with a sequence of probabilities of π(a) = [1, 1, . . . , 1]:

a = solvep∈P
[
Q∗p

(
sp, ·

)]

p=1,2,...,P
, (7)

where Q∗p is the trained function, and solve gives the descend-
ing order of all action values and returns the agents’ indices.

In addition to the action-value functions of the individual
agents p ∈ P , we use the value function V(s) that considers
the initial controller state s(0) = s ∈ S and underlies the joint
policy π afterwards [32]:

V : S → R,

V(s) = E

[
T→∞∑

t=0

γ tRt+1|s(0) = s, π

]

. (8)

The role of V(s) is to coordinate agents in the training process
to learn the best prioritization decisions. In addition, the tran-
sition between two consecutive states can also be used based
on [31]:

V(s) = R(s, a)+ γ · V(
s′
)
, (9)

where s′ = s(t + 1) ∈ S represents the next state. With these
consecutive states {s, s′} ∈ S and reward function R(s, a), the
value of the previous state V(s) is updated based on (9).

C. Solution Employment

In order to use the proposed solution in real-time systems,
two major aspects need to be considered:

a) the dimension of all states {s1, s2, . . . , sP} depends on the
number of active learners {U1, U2, . . . , UP} that can change
over time;

b) because of the multi-dimensionality of the state space,
the action-value and value functions cannot be updated using
conventional look-up tables.

Therefore, we address these challenges through compression
and approximation methods, respectively.

The original state space Sp is compressed to avoid the
dependency on Up by applying the transformation:

S̄p = T
(
Sp

)
, (10)

where T is the transformation operator and S̄p is the com-
pressed state space of class p ∈ P of constant dimension
over a variable number of mobile learners. Depending on the
elements in sp ∈ Sp, the space transformation can have dif-
ferent computations. For example, descriptive statistics (mean
and standard deviation) are used for the vector of controllable
elements

[
kp,u,n, kp,u,n, du

]

for all p ∈ P , u ∈ Up and n ∈ {1, 2, . . . , N} [29]. In case
of non-controllable elements (e.g., CQI), unsupervised and
supervised learning techniques are used [29].

With the compression mechanism, the obtained states
s̄p ∈ S̄p are still multi-dimensional and function approximators
must be used to model the action-value and value functions. In
this paper, we adopt the use of feed-forward neural networks
as parameterizable functions to be learned over time to pro-
vide the best prioritization sequence on each state. Therefore,
each agent p ∈ P is represented by

Qp
(
s̄p, a;�p

) ≈ Qp
(
s̄p, a

)
,

where �p is the set of weights that must be updated during
the training stage. To increase the training efficiency of the
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proposed solution, we also employ the value function of the
controller state s̄ ∈ S̄ and approximated by the neural network

V(s̄;�) ≈ V(s̄).

Therefore, a number of P+1 neural networks must be trained
during the learning stage of the proposed PriMARL solution.

During training, a joint action a ∈ A is selected by each
agent on each state s̄p ∈ S̄p according to:

πp
(
a | s̄p

) =
{

1− ε a = solve
[
Qp

(·;�p
)]

p=1,...,P,

ε a = solve
[
randp

]
p=1,...,P,

(11)

where randp ∈ [0, 1] is a sequence of random numbers. In
some cases, parameter ε ∈ [0, 1] is set to higher values at
the beginning of the training stage (more exploration in terms
of the random action selections), and to lower values at the
end of the training (more exploitation based on the trained
functions). In some other cases, ε can have constant value for
the entire training period. Regardless of the strategy used, the
same value of ε is used by all agents at each TTI.

Once a joint action a ∈ A is applied at TTI t, the system
moves to the next state, and a reward R(s̄, a) is computed. We
denote by

E(t + 1) = {
s̄, a, R, s̄′, P∗(t)

}

the controller experience at TTI t+1, and P∗(t) is the number
of classes scheduled at TTI t. The experience of an agent
p ∈ P is given by

Ep(t + 1) =
{

s̄p, a, s̄′p
}
.

All these experiences e ∈ {E, E1, E2, . . . , ., EP} are used at
each TTI to reinforce the neural networks with the aim of
minimizing the following cost function:

C(θ) = Ee(t)

{
1

2
[η · δ(θ)]2

}
, (12)

where η ∈ [0, 1] is the learning rate,

θ ∈ {�,�1,�2, . . . , �P}
is the set of weights of the trained neural networks, and δ(θ) is
the Temporal Difference (TD) error computed as a difference
between the target and the actual estimate of the network:

δ(θ) = FT(·; θ)− F(·; θ). (13)

By F(·; θ) we mean both the functions V(·;�) and Qp(·;�p)

for all p ∈ P . The target FT(·; θ) is determined separately for
value and action-value functions. For example, the target of
value function takes the form of (9) and the TD error becomes

δ(�) = VT(s̄;�)− V(s̄;�).

We design the neural network that learns the value function as
a critic to determine whether the multi-agent system decision is
a good or bad option. If δ(�) ≥ 0, the prioritization sequence
a ∈ A has a positive effect and the cost values should be
reinforced in the networks with a relatively higher learning
rate η = α. If δ(�) < 0, such actions must be prevented in the
future by using a lower learning rate η = β and thus, β << α,
when choosing the parameters of the PriMARL controller.

Even when the TD error becomes positive, the prioritiza-
tion decision can infuse the over-provisioning effect and some
classes with met QoS requirements (rp = 1) are prioritized
at the expense of other classes with unmet QoS requirements
(rp′ < 1), ∀p �= p′ ∈ P . To address this problem, we employ

h : P∗ × [0, 1]P → {0, 1}
as a penalty function to improve the decision-making, so that:

a) if h(ai∗ , r1, . . . , rP) = 1, i∗ = 1, 2, . . . , P∗, then all video
classes ai∗ ∈ P∗ meet the QoS requirements but are prioritised
at the expense of other classes whose QoS requirements are
not met and whose rewards are lower than rp′ < 1;

b) if h(ai∗ , r1, . . . , rP) = 0, i∗ = 1, 2, . . . , P∗, then priori-
tising ai∗ ∈ P∗ among other classes is a fair choice. Then, the
proposed target of the action-value function becomes:

QT
ai∗ =

⎧
⎨

⎩

P
(P+1−i∗) , η = α if δ ≥ 0 and h(·) = 0,

−0.5 , η = α if δ ≥ 0 and h(·) = 1,

−1 , η = β if δ < 0,

(14)

where QT
ai∗ (s̄ai∗ , a;�p) is the target function of those classes

ai∗ = p∗ ∈ P∗ being scheduled at TTI t, while the rest of the
agents are not updated. As observed in (14), negative target
values are associated even when the value function error is
positive (δ(�) ≥ 0), but the penalty function shows inequity
between prioritized video classes (h(·) = 1). Therefore, the
error to be reinforced by the agent p∗ ∈ P∗ averaged with the
learning rate η = {α, β} becomes

δp∗
(
�p∗

) = QT
p∗

(·;�p∗
)− Qp∗

(·;�p∗
)
.

Finally, the weights of the critic neural network and all
agents are updated based on the Stochastic Gradient Descent
(SGD) algorithm, which is given by the following formula [7]:

θ ← θ + η
∂F

∂θ
(·; θ) · δ(θ). (15)

In Algorithm 1, we describe how PriMARL is trained to
prioritize traffic classes and allocate radio resources through a
specific scheduling rule based on utility function �n. As input
parameters, the algorithm considers two consecutive states
{s, s′} ∈ S , the action applied in the previous state a ∈ A,
and the number of video classes P∗(t) being scheduled in
the previous state. As an output, Algorithm 1 provides a new
action a′ ∈ A as a prioritization sequence and executes the
scheduling and allocation of radio resources. In the first step
(lines (4)-(8)), the controller’s reward is calculated, the states
are compressed for each agent, the error of the value function
(critic) is back-propagated, and the weights are updated based
on the SGD algorithm. We set different learning rates for the
agents if the critic error is positive or negative (line 10). In
the second step, we update the agents representing the traf-
fic classes that were scheduled in the previous TTI (lines
(11)-(15)). In the third step, the video classes are prioritized
according to the new joint action a′ ∈ A decided by all
agents (line 17). In the frequency domain, radio resources in
B are allocated to prioritized learners competing with each
other based on the type of utility function �n or scheduling
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Algorithm 1 PriMARL Training in Traffic Prioritization and
Scheduling With a Particular Utility Function �n

1: input: s ∈ S, a ∈ A, s′ ∈ S, P∗(t)
2: output: a′ ∈ A, scheduling and radio resource allocation
3: for each TTI t+1
4: calculate rewards based on (3)-(5)
5: compress states {sp, s′p}p=1,..,P and {s, s′}
6: recall experiences {E1, E2, ..., EP, E}
7: calculate the value function error δ(�) based on (13)
8: back-propagate δ(�) and update weights based on (15)
9: // criticize previous action a ∈ A

10: if δ(�) ≥ 0, then η = α, else η = β
11: for i∗ = 1, 2, . . . , P∗
12: determine target function QT

ai∗ based on (14)
13: calculate error δai∗ (�ai∗ ) based on (13)
14: back-propagate and update �ai∗ based on (15)
15: end for
16: // act based on the joint policy
17: determine new action a′ ∈ A based on policy (11)
18: while B �= ∅

19: pick video class a′i = p, ∀p ∈ P
20: perform scheduling based on (1.a)-(1.e)
21: add a′i = p in the set of scheduled video classes P∗
22: i = i+ 1
23: P∗ = P∗ + 1
24: end while
25: end for

Algorithm 2 PriMARL Testing in Traffic Prioritization and
Scheduling With a Particular Utility Function �n

1: input: states s ∈ S
2: output: a ∈ A, scheduling and radio resource allocation
3: for each TTI t
4: compress states {sp}p=1,...,P and s
5: for p = 1, 2, . . . , P
6: determine output Qp(·;�p) of agent p ∈ P
7: end for
8: // prioritize based on the joint action
9: determine new action a = solve[Qp(·;�p)]p=1,...,P

10: while B �= ∅

11: pick video class ai = p, ∀p ∈ P
12: perform scheduling based on (1.a)-(1.e)
13: i = i+ 1
14: end while
15: end for

rule used (i.e., BF, OPLF, EXP). Learners from the prioritized
list

a′(t) = [
a′i

]
i=1,2,...,P ∈ A

have access to radio resources within the limits of the available
stock (lines (18)-(24)). For example, learners in class a′2 ∈ P
compete for radio resources if there are enough resources
left after scheduling the higher-priority class a′1 ∈ P in the
sequence.

In Algorithm 2, each PriMARL algorithm is tested and
implemented in real-time scheduling. Here, the process is sim-
plified, since only the current states s ∈ S are needed as input
parameters, and the algorithm will provide a new prioritization
sequence given by the trained agents. The neural networks are
no longer updated, but the algorithm still needs to compress the
states (line 4) of each agent p ∈ P . The joint action is decided
at each TTI by ordering the agents’ outputs (lines (5)-(9)),

and the scheduling process is performed based on (1.a)-(1.e),
depending on the type of scheduling rule �n and the available
stock of radio resources (lines (11)-(14)).

V. SIMULATION RESULTS

The proposed PriMARL framework is developed in a
C/C++ software environment using intelligent OFDMA
scheduling in both the time and frequency domains, data com-
pression mechanisms, and neural networks to approximate
agents’ decisions for each video class. The proposed tool
inherits the LTE-Sim functionality [33]. As explained above,
the proposed PriMARL-based solution considers three types
of utility functions as scheduling rules [6]: PriMARL-BF,
PriMARL-OPLF, and PriMARL-EXP. Since most of the state-
of-the-art works presented in Section II do not provide the
level of detail necessary to enable their implementation, we
provide a comprehensive comparison of the proposed solutions
with the following approaches: HiMARL [7], FLS [24], and
RADS [25]. We evaluate the performance of these schedulers
from the perspective of:

a) QoS provisioning, where throughput, delay, and packet
loss indicators are monitored in each TTI. To quantify the level
of QoS provisioning in the time domain, three types of QoS
requirements are considered for each video class: Guaranteed
Bit Rate (GBR, n = 1), packet delay (n = 2), and Packet Loss
Rate (PLR, n = 3).

b) QoE provisioning by calculating the perceived PSNR
based on throughput and arrival rates. As a result of PSNR
assessment, MOS is calculated on five different levels: excel-
lent (5), good (4), fair (3), poor (2), and bad (1).

The purpose of this section is to demonstrate that set-
ting a multi-objective target (n = {1, 2, 3}) to maximize the
QoS provisioning does not guarantee the same effect in terms
of perceived PSNR and MOS levels. In particular, we show
that the proposed PriMARL solution is able to outperform
HiMARL, RADS, and FLS when monitoring the number of
learners achieving excellent MOS levels while viewing differ-
ent types of educational video content. Therefore, we organise
this section as follows: a) first, we present the traffic character-
istics, network, scheduler and controller settings; b) then, we
present the QoS analysis in terms of throughput, delay, packet
loss, and the number of TTIs when all three QoS objectives
are met. c) In the third part, QoE analysis is performed for
PSNR and MOS levels for all approaches which are involved
in this comparison framework. d) Finally, we provide addi-
tional results and insights to better highlight the importance of
using PriMARL approaches with static scheduling rules from
the perspective of QoE performance.

A. Video Traffic Settings

As shown in Fig. 1, learners access the heterogeneous video
contents from mobile devices. To cope with the different
financial situations of learners, in this study we consider two
resolutions of mobile devices, 240p and 480p, linked to lower
and higher prices, respectively. According to [34], for each res-
olution, maximum thresholds for low and high bit rate values
are recommended: a) for 240p, 150kbps and 250kbps; while
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Fig. 3. Example of Educational Content Video Classes.

for 480p, maximum rates of 0.6Mbps and 1Mbps are recom-
mended. Based on the subjective surveys conducted in [7],
learners were asked to rate video quality using mean opinion
scores for seven categories of educational videos with low and
high quality levels. All content categories with low quality lev-
els were perceived as good by all viewers, with the exception
of slideshow content, which was perceived as fair. Similarly
to [7], we consider the same classes of video services, i.e.,
low and high quality slideshows with a resolution of 240p, as
well as animations and screencasts for devices with a resolu-
tion higher than 480p. By modeling animation as video traffic
with a variable bit rate and screencast video with a constant bit
rate, as well as by standardizing the QoS requirements [28], we
obtain P = 4 video classes with the following characteristics:
• p = 1: video_1 (slideshow, high quality), q1,1 =

242kpbs, q1,2 = 150ms, and q1,3 = 10−3, ∀u ∈ U1;
• p = 2: video_2 (slideshow, low quality), q2,1 =

138kpbs, q2,2 = 300ms, and q2,3 = 10−6, ∀u ∈ U2;
• p = 3: video_3 (animation, low quality), q3,1 =

512 − 1024kpbs, q3,2 = 300ms, and q3,3 = 10−6,
∀u ∈ U3;

• p = 4: video_4 (screencast, low quality), q4,1 =
640kpbs, q4,2 = 300ms, and q4,3 = 10−6, ∀u ∈ U4.

Figure 3 illustrates an example of a video frame from each
educational video class considered.

In such environments, the role of PriMARL is to increase
the QoS provisioning in all classes by learning the best pri-
oritization sequence to apply at each TTI according to the
actual traffic and networking conditions. We then study the
impact of this dynamic prioritization and different scheduling
rules (BF, OPLF, EXP) on the QoE metrics, namely PSNR
and MOS. During the training and testing stages, the aggre-
gate traffic load of all classes is varied in an interval of
u ∈ [6.60], while respecting the following ratios between video
classes: video_1 (16.53%), video_2 (16.53%), video_3
(33.3%), and video_4 (33.3%). Then, the QoS and QoE
performance is evaluated based on three traffic load set-
tings: low (U ∈ [6, 20]), medium (U ∈ [21, 40]), and high
(U ∈ [41.60]). All scheduling approaches are tested for each
configuration of U, and then, the results are averaged over the
number of possible configurations in each traffic setting.

B. Network Settings

From the network perspective, we consider downlink
scheduling sessions over the OFDMA interface with a system
bandwidth of 20MHz and a number of B = 100 RBs. The
radio channel model uses fast fading based on Jakes’ model
due to the high diversity provided in the CQI reports necessary
to employ unsupervised learning techniques to find patterns
and supervised learning methods to automate the CQI com-
pression process [29]. The most widely used 7-cell cluster
inter-cell interference model is considered. Each cell follows
a macro-urban model with a radius of 1 km, since a wide
range of CQI reports should be captured. When training the
PriMARL controller, we consider a generic speed of 30km/h
to teach the neural networks how to behave under different
channel conditions, while when testing its performance, we
consider static positions of the learners over several trials, as
explained in more detail later in this section. We neglect intra-
cell interference between mobile devices and other electronic
devices, as this aspect is not relevant to our study. When
training the machines, all ML-based approaches (HiMARL,
PriMARL-BF, PriMARL-OPLF, PriMARL-EXP) are trained
separately with different networking conditions. In the test
phase, all candidates use the same network conditions.

C. Packet Scheduler Settings

At the level of the packet scheduler, the modulation and
coding scheme is adapted at three levels (QPSK, 16-QAM,
and 64-QAM) and the scheduling is done at each TTI in the
time and frequency domain. In the radio link protocol layer,
video packets are transmitted in acknowledged mode, with a
maximum of five re-transmissions allowed for each lost packet.
Once the scheduling process is complete and the system moves
to the next TTI, the QoS indicators obtained are compared with
the QoS requirements for each video traffic to verify the level
of QoS provisioning. The delay of learner u requesting one of
the video services is measured as the head-of-line packet delay
and should not be greater than the requirement. The packet
loss and the throughput performance are measured by averag-
ing all instantaneous lost packets and throughput, respectively,
in a sliding time window of 1000 TTIs. Depending on the
method used, scheduling in the time and frequency domains
is performed based on different metrics:

a) Time-domain scheduling: On one hand, the PriMARL and
HiMARL approaches prioritize learners from the same class
by deciding the sequence of classes to schedule at each TTI.
On the other hand, FLS and RADS prioritize learners from
different video classes based on different metrics. For exam-
ple, as explained in Section II, in time-domain scheduling, the
FLS scheduler estimates the amount of real-time data to be
transmitted in the next frame of 10 TTIs based on discrete lin-
ear control theory arguments. Then, the learners from different
classes are prioritized based on the approximated quota of data
needed to meet the delay requirements. In the case of RADS,
learners requesting different video services are ranked based
on a metric that considers fairness, delay, and throughput.

b) Frequency-domain scheduling: The proposed PriMARL
approach uses different scheduling strategies to allocate data
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Fig. 4. PriMARL Training: Errors and Parameter Settings.

in the frequency domain, namely BF, OPLF, and EXP rules.
HiMARL uses reinforcement learning solutions at the level
of each video class to learn the best rule to apply each time
that class is selected in the prioritization sequence. As the
results will show, this scheme is able to balance the QoS
provisioning between the PriMARL with separate scheduling
rules, by affecting the QoE performance in terms of perceived
video quality. In case of FLS, the proportional-fair sched-
uler is used in the frequency domain to improve the fairness
between the pre-selected learners, while RADS uses OPLF to
improve the PLR performance since this QoS indicator is not
part of the metric used in the time domain.

The scheduling performance is assessed by comparing the
six candidates based on different metrics. As performances
can vary depending on the network and channel conditions,
different trials are conducted, with all schedulers using the
same conditions (number of learners, mobility, channel and
traffic characteristics) in each trial to allow a fair comparison.
Subsequently, the performance metrics are averaged using the
following formula:

μp
(
mp

) = 1/G ·
G∑

g=1

mp,g, (16)

where G is the number of trials in the test stage and mp,g is
the metric that evaluates the performance of a given indicator
(QoS or QoE) for each video class p ∈ P in one trial g. In
this study, we consider a number of G = 10 trials, where each
trial has a duration of the scheduling process of about 50s.

D. PriMARL Controller Settings

The PriMARL controller is trained for a duration of 107

TTIs and the number of learners switched randomly from
IDLE to ACTIVE and vice-versa every 1000 TTIs, taking into
account the traffic load ratio between classes. To improve the
generalization in decision-making, the speed of each mobile
learner is set to 30kmph. Several configurations of neural

networks were tested, and only the best ones are considered in
this paper. For example, each neural network used to approx-
imate an agent’s ranking decision uses a hidden layer with
80 hidden nodes. When covering the entire state of all video
classes, the value function uses a neural network with one hid-
den layer and 200 hidden nodes. In our settings, we choose a
discount factor of γ = 0.99, which gives more importance to
the value of the next-state when calculating the target value
based on (9). Throughout training, we also consider equal
chances of selection between exploration (random actions) and
exploitation (actions based on trained functions) by setting
ε = 0.5. The learning rates for the critic and all agents are var-
ied according to the minimum errors found during the training
period.

Figure 4 shows the convergence analysis of the PriMARL
algorithm in terms of mean and minimum errors and learning
rates. By EV mean we denote the TD error of the critic neu-
ral network δ(�) averaged over 1000 TTIs, and by EV min
the minimum value reached during training. By EQ mean,
we denote the error averaged over all agents and 1000 TTIs
(1/4000

∑P
p=1 δ(�p)), while EQ min denotes the minimum

value. It is worth noting that each time a new minimum is
found in the mean error of each agent p ∈ P , the set of weights
�p is stored. When evaluating the PriMARL approaches, the
most recently stored set of weights is used. As can be seen
in Fig. 4, the error of critic neural network drops below the
value of 0.1 and remains relatively constant for the rest of the
training period. In contrast, the mean error of all four agents
converges to a value of 10−3 by the end of the training period.
The learning rates associated with the critic (LRV) and agent
(LRQ) neural networks are set to an initial value of 0.02 at
the beginning of the training period, and gradually decrease
with a step of 10−7 each time a new minimum error is found
for each type of neural network.

E. QoS Analysis

To analyse the performance of QoS indicators in all video
classes, we measure the levels of throughput, delay, and PLR
for low, medium, and high traffic loads when employing the
proposed PriMARL and state-of-the-art scheduling solutions.
When quantifying the QoS provisioning, we are particularly
interested in counting the number of TTIs when all QoS
requirements are met in each video class.

1) Throughput, Delay, and Packet Loss: are collected for
each scheduling scheme, traffic class, and mobile learner
during the entire period of each trial. In particular, we are
interested in calculating the percentiles for each collection
of QoS indicators and identifying the worst indicators that
could help us distinguish between the PriMARL solutions and
other scheduling techniques. In this sense, we measure the per-
centiles of 5th throughput, 95th delay, and 95th packet loss in
each video class and average them over G = 10 trials.

Figure 5 (first row) shows the performance of scheduling
candidates when monitoring the 5th throughput percentile.
For video_1 and video_2, similar throughput is achieved
by all solutions at low traffic load. However, for video_3
and video_4, HiMARL, PriMARL-BF, PriMARL-OPLF,
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Fig. 5. The QoS performance evaluation averaged over G = 10 trials when measuring: the 5th throughput percentile; the 95th delay percentile; and the 95th

PLR percentile, each for low, medium, and high traffic load.

and PriMARL-EXP improve the level of the 5th throughput
percentile by about 30kbps compared to the non-ML candi-
dates RADS and FLS. At medium traffic load, PriMARL-EXP
is the best option in the video_3 class, while in the
video_4 class PriMARL-OPLF outperforms PriMARL-
EXP by more than 20kbps. By increasing the traffic load
to ‘high’, in the first two prioritized video classes the
throughput level remains nearly similar in both cases. A
larger discrepancy in performance between ML and non-ML
approaches could be observed in the case of video_3, where
PriMARL-OPLF outperforms the FLS scheduler by more than
100kbps. The impact of dynamic prioritization of PriMARL
schemes can be observed when comparing the throughput
performance of the classes video_3 and video_4. In this
case, it can be observed that PriMARL-BF, PriMARL-OPLF,
PriMARL-EXP, and HiMARL allocate a higher amount of
resources to learners in the video_3 class, while RADS
and FLS are not able to prioritize video_3 over video_4,
achieving nearly the same throughput for both video classes.
Except in the case of video_3 with medium traffic
load, the PriMARL-OPLF solution remains the best option
when measuring the 5th throughput percentile in all traffic
classes.

Considering the high traffic load and summing up the
5th throughput percentiles across all four traffic classes and
for each scheduler, we obtain gains higher than 55% and
36% when comparing PriMARL-EXP with RADS and FLS,
respectively. As we discussed in Section II, MDV [26] and
NRADS [27] achieve throughput gains of about 25% and 10%
when compared to FLS and RADS, respectively. Therefore,
we can estimate the throughput gains of about 45% and 10%
when comparing the PriMARL-EXP approach with the recent
state-of-the-art schedulers NRADS and MCV, respectively.

The delay performance in terms of 95th percentile is evalu-
ated in Fig. 5 (middle row) for low, medium, and high traffic
loads. In the first case, it can be observed that ML-based
approaches perform better than RADS and FLS, especially
for the video_3 and video_4 classes. Among all options,
PriMARL-BF has the lowest delay in all video classes. When
the traffic load is increased to medium and high, the delay
increases, especially in video_3 and video_4. At medium
traffic load, PriMARL-BF and PriMARL-OPLF minimize the
delay in video_1, FLS in video_2, PriMARL-EXP in
video_3 and RADS in video_4. For high traffic load,
PriMARL-BF, FLS, PriMARL-EXP, and PriMARL-OPLF are
the best solutions in the video_1, video_2, video_3 and
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Fig. 6. The mean normalized number of TTIs when all QoS requirements (throughput, delay, PLR) are met in each video class for low, medium, and high
traffic loads.

video_4 classes, respectively. However, when correlating the
delay and throughput performance (Fig. 5 first and second
rows), it is generally observed that lower delay percentiles
are associated with higher throughput levels.

As shown in Fig. 5 (third row), the PLR performance is
measured by the 95th percentile of packet losses, averaged
over the number of G = 10 trials. In case of low traffic
load, the MARL approaches outperform RADS and FLS in
video_1, while almost the same performance is obtained in
video_2. In other traffic classes (video_3 and video_4),
PriMARL-OPLF generally remains the best option among all
candidates when scheduling low traffic load. For medium traf-
fic load, PriMARL-OPLF gets the minimum PLR in video_1
and video_4, FLS in video_2, and PriMARL-EXP in
video_3. When increasing the traffic load to high, the lowest
PLR level is obtained by PriMARL-OPLF in all video classes.
Similar to delay and throughput, when correlating the packet
loss and user throughput, we observe that lower PLR involves
higher throughput in terms of 5th percentile and vice versa.

Looking at the performance of the QoS indicators in Fig. 5,
we notice that PriMARL-OPLF generally performs better
when measuring the 5th throughput and the 95th PLR per-
centiles, with a few exceptions. These exceptions relate to the
PriMARL-EXP solution, which performs better in video_3
and video_4 when scheduling medium and low traffic loads,
respectively. By using the reward as a multi-objective func-
tion of throughput, delay, and PLR, the HiMARL approach
achieves a better balance of QoS performance in all video
classes compared to the PriMARL approach with static rules.
However, it remains to be verified whether this method is the
best option for measuring duration when all QoS requirements
are met in each video class.

2) Duration of QoS Provisioning: Figure 6 shows the nor-
malized number of TTIs when all QoS requirements are met
in each video class, averaged over G = 10 scheduling tri-
als. In low traffic load settings, PriMARL and HiMARL
approaches perform better compared to FLS and RADS
schedulers. Since the video_1 and video_2 classes have
a higher variability in arrival rates (242kbps and 138kbps,
respectively) compared to animation and screencast videos
(video_3 and video_4), it is very difficult to maintain cer-
tain levels of average throughput for these classes (video_1

and video_2) at the imposed GBR requirements over a
very long period of time. This explains the longer dura-
tion of QoS provisioning in classes video_3 and video_4
compared to video_1 and video_2 when a low traf-
fic load is scheduled. When the traffic load increases to
medium and high, it is observed that the duration of QoS
provisioning in video_1 and video_2 is similar to the
previous case for all scheduling approaches, except for RADS
where a higher performance degradation is obtained. However,
in higher rate classes such as video_3 and video_4,
PriMARL-EXP, PriMARL-OPLF, and HiMARL maintain the
duration of providing high QoS significantly longer com-
pared to FLS and RADS. In both settings of medium and
high traffic loads, PriMARL-EXP is the best option, followed
by HiMARL and PriMARL-BF in video_3 and PriMARL-
OPLF in video_4. Therefore, the best strategy to maximise
the duration of QoS provisioning is to schedule learners with
the highest delay in each video class given the prioritization
sequence decided for each TTI.

F. QoE Analysis

When we analyse the quality of experience of each learner
being scheduled in each video class, we calculate the perceived
PSNR at each TTI by employing the following formula [35]:

PSNR[dB] = 20 · log10 · Rp,u

|Rp,u − Tp,u| , (17)

where Rp,u is the arrival rate in the data queue and Tp,u is the
throughput of learner u receiving video services from class
p ∈ P . The PSNR levels are collected during each trial from
each learner and at each TTI. In each trial, we compute the
associated percentiles from the collected PSNR values. We
then calculate the number of percentiles associated with each
MOS level, starting with the worst PSNR percentile. Based on
the calculated PSNR values, the MOS levels are determined
as follows [36]: Excellent if PSNR[dB] ≥ 36; Good if 29 ≤
PSNR[dB] < 36; Fair if 24 ≤ PSNR[dB] < 29; Poor if 20 ≤
PSNR[dB] < 24; and Bad if PSNR[dB] < 20. We average the
percentage of MOS levels over G = 10 trials and present the
results for low, medium, and high traffic loads.

1) Perceived PSNR: Since we could not differentiate
between the MARL-based scheduling candidates in the
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Fig. 7. Worst PSNR (1st percentiles) levels averaged over the ten data sets for low, medium, and high traffic load.

TABLE I
MOS LEVELS FOR LOW TRAFFIC

video_1 and video_2 classes at the 5th PSNR percentiles,
we decided to plot the worst percentiles. Depicted in Fig. 7
are the 1st PSNR percentiles averaged over 10 trials for each
traffic load. In case of low traffic, the ML-based approaches
outperform RADS and FLS in all video classes, except for
video_2 where RADS performs slightly better. By assigning
MOS levels to the calculated PSNR percentiles, an excellent
MOS is ensured to all learners by all scheduling approaches
in the first two prioritized classes; good and fair MOS lev-
els are obtained by the ML-based approaches in video_3
and video_4, while fair to bad levels are obtained through
RADS and FLS approaches. In medium traffic load, the
best 1st percentiles are obtained by using PriMARL-OPLF
in video_2 and video_4 and PriMARL-EXP for the
remaining classes. HiMARL provides a balance in PSNR
performance within classes, without being the best option
in any of them. Correlating to MOS, PriMARL-OPLF can
get a good level in the video_1 and video_2 classes.
However, in the remaining classes, a bad MOS level is expe-
rienced by all scheduling approaches. When increasing the
traffic load to high, good MOS levels are obtained only in

video_2 class by all ML-based approaches. When looking at
the performance of 1st PSNR percentiles for all traffic settings
and video classes, the best values are obtained by PriMARL-
OPLF and PriMARL-EXP solutions. We can conclude at this
point that aiming to maximize the multi-objective function in
terms of throughput, delay, and PLR will not guarantee the
best performance in terms of worst PSNR percentiles, as we
have seen in the case of the HiMARL approach.

2) MOS Analysis: This analysis counts the number of
PSNR percentiles which falls in the five MOS levels averaged
over ten trials in downlink scheduling. Highlighted in green,
we represent the best performance in terms of the highest and
lowest number of PSNR percentiles with excellent and bad
MOS, respectively. In Tables I, II, and III we present the MOS
analysis in the form of numerical results for each of the sched-
uler type in low, medium, and high traffic load. The results
are averaged over G = 10 trials and the Standard Deviation
(SD) values are reported in brackets.

When scheduling low traffic load of video_1 (Table I),
the PriMARL-OPLF provides the highest number of per-
centiles in excellent MOS and the lowest in bad MOS. In
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TABLE II
MOS LEVELS FOR MEDIUM TRAFFIC

TABLE III
MOS LEVELS FOR HIGH TRAFFIC

the second prioritized class, more than 99% of the PSNR
percentiles are in excellent MOS level for all approaches.
The same performance is obtained in video_3 by MARL-
based approaches only, while a degradation of more than 2%
in excellent MOS level is obtained by the other approaches
(RADS and FLS). When scheduling learners in video_4,
PriMARL-EXP, PriMARL-OPLF and HiMARL achieve a
percentage higher than 98% of the PSNR percentiles with
excellent MOS, while the lowest amount of percentiles in
bad MOS is obtained when using PriMARL-OPLF. In case
of RADS and FLS, more than 3% degradation of excel-
lent MOS services can be observed. When looking at the
overall performance in low traffic setting, PriMARL-EXP,

PriMARL-OPLF, and HiMARL could be identified as the best
options.

In medium traffic load (Table II), all candidates except
for RADS obtained nearly the same performance of 98%
PSNR percentiles with excellent MOS when scheduling learn-
ers from the video_1 and video_2 classes. For video_3,
the PriMARL-EXP solution achieves the highest and low-
est amount of percentile with excellent and bad MOS levels,
respectively, placing it as the best option among the can-
didates. HiMARL follows the PriMARL-OPLF policy by
degrading the performance uniformly over the MOS lev-
els. RADS achieves a similar performance in terms of the
percentage of PSNR percentiles with excellent MOS, but it
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substantially increases the amount of percentiles located at
the bad MOS level. However, being unable to respect the
imposed prioritization scheme, RADS provides the highest and
lowest number of PSNR percentiles with excellent and bad
MOS respectively, when scheduling learners in the video_4
class. Looking at the overall MOS performance within the
video classes with medium traffic load, it can be concluded
that PriMARL-OPLF is the best option for video_1 and
video_2, while PriMARL-EXP can achieve a much higher
percentage of excellent PSNR percentiles when scheduling the
video_3 and video_4 classes.

By increasing the traffic load from medium to high
(Table III), it can be observed that RADS allocates more
resources to video_4 with the lowest priority requirements
and degrades the MOS levels in the first prioritized service
classes, video_1 and video_2. In these cases, all other
scheduling options provide more than 98% of the PSNR
percentiles with excellent MOS level, of which PriMARL-
OPLF is the best option. In video_3, PriMARL-EXP
outperforms other scheduling candidates by achieving more
than 60% of the percentiles in excellent MOS and around
27% of the percentiles with bad MOS level. The second
best option in this case is the PriMARL-BF approach with
55% percentiles in excellent MOS and with 41% in bad
MOS. As previously observed in lower traffic settings, the
PriMARL-OPLF scheduling technique aims to minimize the
packet loss for all learners without any specific control on
PSNR performance. The HiMARL approach follows the OPLF
scheduling rule for the resource allocation in video_3 and
increases consistently the percentage of PSNR percentiles
in fair, poor and bad MOS levels. When scheduling learn-
ers in video_4, FLS obtains the same performance as for
the video_3 class, which means that only the group of
video_1 and video_2 services is prioritized over the
video_3 and video_4 classes. Looking at the performance
among ML-based approaches, PriMARL-BF can get the high-
est amount of PSNR percentiles with excellent MOS of about
32%, while PriMARL-EXP gets the lowest percentage of
percentiles with bad MOS of about 56%.

Summarizing the results from Tables I, II and III, the fol-
lowing conclusions can be drawn from the perspective of MOS
levels over the calculated PSNR percentiles:

a) RADS does not respect the imposed prioritization scheme
and provides higher number of PSNR percentiles with excel-
lent MOS in the video_2 and video_4 classes than in
video_1 and video_3 respectively, especially for medium
and high traffic loads;

b) FLS prioritizes between the group of video_1 and
video_2 classes and the rest, but it cannot prioritize
video_3 over video_4 and provides nearly the same
distribution of MOS levels in both classes for all traffic
settings;

c) HiMARL aims at maximizing the multi-objective reward
function in terms of QoS requirements for all learners in
all video classes, and thus, degrading the amount of learners
experiencing excellent MOS levels of video content;

d) PriMARL-BF and PriMARL-OPLF are fair options to
learners from all classes regardless of the wireless channel

conditions, which is why the higher amount of PSNR per-
centiles with bad MOS is obtained, especially when providing
video_3 and video_4 services at medium and high traffic
loads;

e) being able to properly prioritize and schedule learners
based on the highest packet delay, PriMARL-EXP provides the
best results by substantially improving over other candidates in
terms of percentage of results in the excellent MOS category.

G. Additional Results

As we observed, the MARL-based approaches are able
to prioritize learners from the considered video classes
much better when compared to more conventional scheduling
approaches, such as RADS and FLS. When evaluating the QoS
performance in Fig. 5, we observe that PriMARL-OPLF and
PriMARL-EXP obtain the highest throughput levels (5th per-
centiles) and lowest rates in packet loss (95th percentiles) in
different video classes and traffic settings. The HiMARL meta-
scheduler provides the best trade-off between PriMARL-OPLF
and PriMARL-EXP in terms of delay, PLR, and through-
put because a different scheduling rule is selected to perform
the radio resource allocation based on the networking con-
ditions in each class. However, only focusing on improving
the QoS performance and ensuring a good trade-off between
throughput, delay, and PLR does not guarantee an enhanced
performance when measuring the perceived QoE.

When evaluating the PSNR and MOS, we considered three
levels in traffic load. For our discussion, we would like to
find an approximate average number of learners that can be
supported in excellent MOS in all video classes with different
scheduling approaches. So far, in Tables I–III, we averaged
the MOS levels over the number of learners in the intervals of
[6, 20], [21, 40], and [41, 60], in low, medium, and high traf-
fic load settings, respectively. Then, we can average over the
intervals to get the number of learners supported by each traffic
setting and we obtain, 12, 30 and 50 for low, medium, and high
traffic load, respectively. With the ratios between video classes
introduced in Section V-A, the following averaged numbers of
learners in each video class are obtained: a) in low traffic load,
U1 = 2, U2 = 2, U3 = 4, U4 = 4; b) in medium traffic load,
U1 = 5, U2 = 5, U3 = 10, U4 = 10; c) in high traffic
load, U1 = 8, U2 = 8, U3 = 17, U4 = 17. Based on the MOS
statistics exposed in Tables I, II, and III, we would like to find
next an approximate number of learners experiencing excellent
MOS of video content in each class when employing the best
PriMARL scheduling schemes compared to other approaches.

In low traffic settings (Table I), the thresholds of drop-
ping MOS from excellent to lower levels is about 50% for
slideshow content with high and low quality (video_1 and
video_2), and 75% for animation and screencast contents
with low quality (video_3 and video_4). All scheduling
approaches analysed in Table I achieve more than 94% of
PSNRs in excellent MOS, and therefore, all 12 learners from
different video classes experience an excellent MOS level of
the viewed content most of the time.

When scheduling medium traffic load (Table II), we approx-
imate the number of learners to five with excellent MOS for
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all scheduling approaches when watching slideshow content at
high and low quality (video_1 and video_2). In case of
video_3, PriMARL-EXP and PriMARL-BF provide excel-
lent MOS to nine learners when watching animation, while
RADS and HiMARL handle eight, and FLS and PriMARL-
OPLF seven learners. When scheduling learners with screen-
cast content, eight of them can get excellent MOS with RADS,
seven with PriMARL-EXP, FLS and PriMARL-BF, and six
with HiMARL and PriMARL-OPLF. By summing the number
of learners experiencing excellent MOS in all video classes, we
observe that both RADS and PriMARL-EXP support the same
number of learners with this quality, which is 26. However,
PriMARL-EXP prioritizes the viewers with animation content
(video_3) much better compared to the ones with screen-
cast (video_4) content (U3 : U4 = 9 : 7 for PriMARL-EXP
compared to U3 : U4 = 8 : 8 for RADS).

In high traffic load settings (Table III), all eight learners can
receive slideshow content at high quality with excellent MOS
when employing the analysed scheduling approaches, except
for RADS which supports only six viewers. At a lower quality
of video_2, RADS provides nearly the same performance
as other candidates supporting the same number of learners
with excellent MOS level. When delivering animation content
(video_3), PriMARL-EXP is the best option by supporting
ten viewers, followed by PriMARL-BF with nine, RADS and
FLS with seven, HiMARL with three, and PriMARL-OLPF
with two learners. In case of screencast video streaming and
scheduling, eight, seven, five, and five viewers are supported
by RADS, FLS, PriMARL-BF and PriMARL-EXP approaches
respectively. By summing the number of viewers with excel-
lent MOS in all video classes, PriMARL-EXP remains the
best option with 31 learners, PriMARL-BF and FLS support
30 learners with the same QoE. However, PriMARL-BF pri-
oritizes animation better compared to screencasts. The list
continues with the RADS, HiMARL and PriMARL-OPLF
schedulers that can obtain excellent MOS for 29, 20, and 18
learners, respectively.

H. Summary

The QoS analysis (Section V-E) shows that, with few
exceptions, PriMARL-OPLF achieves the best results when
measuring the 5th throughput and 95th PLR percentiles, while
PriMARL-EXP performs slightly better when measuring the
95th delay percentile. When monitoring the time when all QoS
requirements are met for each video class, PriMARL-EXP per-
forms better than all other candidates, especially in case of
medium and higher traffic load when lower prioritized video
services are delivered. From the QoE analysis (Section V-F),
PriMARL-OPLF gets the highest level of 1st PSNR percentiles
in almost all cases. However, when considering the QoE levels
for all traffic loads, the PriMARL-EXP obtains the high-
est number of PSNR percentiles with excellent MOS while
maintaining the required prioritization between video classes.
Further analysis (Section V-G) shows that PriMARL-EXP out-
performs other candidates in terms of the number of learners
experiencing excellent MOS values of video content in each
class and traffic load. Compared to the previous work [7],

in which HiMARL is proposed to decide at each TTI the
prioritization among classes as well as the selection of the
scheduling rule for each class, in this paper we show that,
from a QoE perspective, maintaining the static scheduling rule
in the frequency domain is more efficient.

VI. CONCLUSION

This paper proposes a PriMARL-based decision-making
solution to improve the QoS and QoE provisioning when
delivering heterogeneous educational video content in the
context of remote education. The proposed PriMARL frame-
work employs an intelligent agent for each class of service
that learns to claim its own priority to be scheduled in the
frequency domain through a neural network. All agents are
cooperating under the form of a joint action to be applied to
maximize the overall QoS provision in all classes. Simulation
results show that ensuring a good QoS performance does not
guarantee excellent QoE levels in different prioritized video
classes. We also observed that the scheduling rule which is
employed to conduct the scheduling and radio resource allo-
cation plays a crucial role in obtaining high QoE. Among all
options analysed in this paper, the proposed PriMARL-based
prioritization scheme with exponential scheduling rule works
best in terms of perceived QoE. The proposed approach sup-
ports 100%, 86%, and 62% of learners with excellent MOS
in low, medium, and high traffic settings, respectively.

ACKNOWLEDGMENT

G.-M. Muntean and I. Tal would like to acknowledge the
Science Foundation Ireland grant 13/RC/2094_P2 to Lero.

REFERENCES

[1] “Special emergency session of the broadband commission pushes for
action to extend Internet access and boost capacity to fight Covid-19.”
ITU. 2020. [Online]. Available: https://www.itu.int/en/mediacentre/
Pages/PR05-2020-Broadband-Commission-emergency-session-internet-
COVID-19.aspx

[2] A. Sepúlveda, “The digital transformation of education: Connecting
schools, empowering learners,” Broadband Comm. Sustain. Develop.
Working Group School Connectivity, Int. Telecommun. Union, Geneva,
Switzerland, 2020.

[3] D. Garrison and H. Kanuka, “Blended learning: Uncovering its trans-
formative potential in higher education,” Internet High. Educ., vol. 7,
no. 2, pp. 95–105, 2004.

[4] D. Prestiadi et al., “The effectiveness of online learning at SIPEJAR
using video-based learning media,” in Proc. 1st Int. Conf. Inf. Technol.
Educ. (ICITE), 2020, pp. 535–540.

[5] E. Beaunoyer, S. Dupéré, and M. J. Guitton, “COVID-19 and digi-
tal inequalities: Reciprocal impacts and mitigation strategies,” Comput.
Human Behav., vol. 111, Oct. 2020, Art. no. 106424.

[6] I.-S. Comsa, A. De-Domenico, and D. Ktenas, “QoS-driven scheduling
in 5G radio access networks—A reinforcement learning approach,” in
Proc. IEEE Global Commun. Conf., Dec. 2017, pp. 1–7.

[7] I.-S. Comsa et al., “A machine learning resource allocation solution to
improve video quality in remote education,” IEEE Trans. Broadcast.,
vol. 67, no. 3, pp. 664–684, Apr. 2021.

[8] L. Busoniu, R. Babuska, and B. D. Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[9] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, and Y. Jiang, “Deep reinforce-
ment learning for user association and resource allocation in heteroge-
neous networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
2018, pp. 1–6.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



18 IEEE TRANSACTIONS ON BROADCASTING

[10] M. Sana, A. D. Domenico, W. Yu, Y. Lostanlen, and E. C. Strinati,
“Multi-agent reinforcement learning for adaptive user association in
dynamic mmWave networks,” IEEE Trans. Wireless Commun., vol. 19,
no. 10, pp. 6520–6534, Oct. 2020.

[11] C. Campbell, “Mobile technologies and mobile learning,” in Technology
and the Curriculum: Summer. Sydney, NS, Canada: Power Learn. Solut.,
ch. 21, 2018.

[12] W. Zhu, X. Wang, and W. Gao, “Multimedia intelligence: When
multimedia meets artificial intelligence,” IEEE Trans. Multimedia,
vol. 22, no. 7, pp. 1823–1835, Jul. 2020.

[13] L. Cui, D. Su, S. Yang, Z. Wang, and Z. Ming, “TCLiVi: Transmission
control in live video streaming based on deep reinforcement learning,”
IEEE Trans. Multimedia, vol. 23, pp. 651–663, Jan. 2021.

[14] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 197–210.

[15] X. Tan, L. Xu, J. Ni, S. Li, X. Jiang, and Q. Zheng, “Game theory
based dynamic adaptive video streaming for multi-client over NDN,”
IEEE Trans. Multimedia, vol. 24, pp. 3491–3505, Jul. 2022.

[16] Z. Chang and S.-H. G. Chan, “An approximation algorithm to maximize
user capacity for an auto-scaling VoD system,” IEEE Trans. Multimedia,
vol. 23, pp. 3714–3725, Oct. 2021.

[17] V. Chandrasekhar, Y. Heng, J. Cho, J. Lee, J. Zhang, and J. G. Andrews,
“Experience-centric mobile video scheduling through machine learning,”
IEEE Access, vol. 7, pp. 113017–113030, 2019.

[18] P. Semov, P. Koleva, and V. Poulkov, “Adaptive resource scheduling
based on neural network and mobile traffic prediction,” in Proc. 42nd
Int. Conf. Telecommun. Signal Process. (TSP), 2019, pp. 585–588.

[19] S.-C. Tseng, Z.-W. Liu, Y.-C. Chou, and C.-W. Huang, “Radio resource
scheduling for 5G NR via deep deterministic policy gradient,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2019, pp. 1–6.

[20] C. Qi, Y. Hua, R. Li, Z. Zhao, and H. Zhang, “Deep reinforcement
learning with discrete normalized advantage functions for resource man-
agement in network slicing,” IEEE Commun. Lett., vol. 23, no. 8,
pp. 1337–1341, Aug. 2019.

[21] J. Li and X. Zhang, “Deep reinforcement learning-based joint scheduling
of eMBB and URLLC in 5G networks,” IEEE Wireless Commun. Lett.,
vol. 9, no. 9, pp. 1543–1546, Sep. 2020.

[22] Z. Gu et al., “Knowledge-assisted deep reinforcement learning in 5G
scheduler design: From theoretical framework to implementation,” IEEE
J. Sel. Areas Commun., vol. 39, no. 7, pp. 2014–2028, Jul. 2021.

[23] S. Mollahasani, M. Erol-Kantarci, M. Hirab, H. Dehghan, and R. Wilson,
“Actor-critic learning based QoS-aware scheduler for reconfigurable
wireless networks,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 45–54,
Jan./Feb. 2022.

[24] G. Piro, L. Grieco, G. Boggia, R. Fortuna, and P. Camarda, “Two-
level downlink scheduling for real-time multimedia services in LTE
networks,” IEEE Trans. Multimedia, vol. 13, no. 5, pp. 1052–1065,
Oct. 2011.

[25] G. Monghal, D. Laselva, P.-H. Michaelsen, and J. Wigard, “Dynamic
packet scheduling for traffic mixes of best effort and VoIP users in
E-UTRAN downlink,” in Proc. IEEE Veh. Technol. Conf. (VTC-Spring),
May 2010, pp. 1–5.

[26] J. V. Den Eynde and C. Blondia, “A minimal delay violation downlink
LTE scheduler,” in Proc. IEEE 46th Conf. Local Comput. Netw. (LCN),
2021, pp. 387–390.

[27] Y. Xing, G. Chuai, W. Gao, and Q. Liu, “A resource scheduling algo-
rithm based on service buffer for LTE-R network,” in Proc. Int. Conf.
Commun., Signal Process., Syst., 2019, pp. 646–654.

[28] “Technical specification group services and system aspects; pol-
icy and charging control architecture release 12, v.12.2.0,” 3GPP,
Sophia Antipolis, France, Rep. TS 23.203, 2013.

[29] I.-S. Comsa, “Sustainable scheduling policies for radio access networks
based On LTE technology,” Ph.D. dissertation, School Comput. Sci.
Technol., Univ. Bedfordshire, Luton, U.K., 2014.

[30] I.-S. Comsa, G.-M. Muntean, and R. Trestian, “An innovative machine-
learning-based scheduling solution for improving live UHD video
streaming quality in highly dynamic network environments,” IEEE
Trans. Broadcast., vol. 67, no. 1, pp. 212–224, Mar. 2021.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[32] C. Szepesvari, Algorithms for Reinforcement Learning (Synthesis
Lectures on Artificial Intelligence and Machine Learning). San Rafael,
CA, USA: Morgan Claypool Publ., 2010.

[33] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda,
“Simulating LTE cellular systems: An open-source framework,” IEEE
Trans. Veh. Netw., vol. 60, no. 2, pp. 498–513, Feb. 2011.

[34] A. Molnar and C. H. Muntean, “Assessing learning achievements when
reducing mobile video quality,” J. Univers. Comput. Sci., vol. 21, no. 7,
pp. 959–975, 2015.

[35] S.-B. Lee, G.-M. Muntean, and A. F. Smeaton, “Performance-aware
replication of distributed pre-recorded IPTV content,” IEEE Trans.
Broadcas., vol. 55, no. 2, pp. 516–526, Jun. 2009.

[36] A. Moldovan, I. Ghergulescu, and C. H. Muntean, “VQAMap: A novel
mechanism for mapping objective video quality metrics to subjective
MOS scale,” IEEE Trans. Broadcast., vol. 62, no. 3, pp. 610–627,
Sep. 2016.

Ioan-Sorin Coms,a received the Ph.D. degree from
the Institute for Research in Applicable Computing,
University of Bedfordshire, U.K., in June 2015.
He is a Data Scientist with the Swiss Distance
University of Applied Sciences. He was also a
Ph.D. Researcher with the Institute of Complex
Systems, University of Applied Sciences of Western
Switzerland. He worked as a Research Engineer with
CEA-LETI, Grenoble, France. Since 2017, he has
been a Research Assistant with Brunel University
London. His research interests include intelligent

radio resource and QoS management, reinforcement learning, data mining,
distributed and parallel computing, adaptive multimedia/mulsemedia delivery,
and eLearning.

Andreea Molnar received the Ph.D. degree in tech-
nology enhanced learning from the National College
of Ireland. She is an Associate Professor with
Swinburne University of Technology, Melbourne,
Australia, and an Anna Boyksen Fellow with the
Technical University of Munich, Germany. Her
research interest includes video-based learning, seri-
ous games, and virtual reality. She is a Senior
Editor of Information Technology & People and on
the Editorial Board of the International Journal of
Game-Based Learning.

Irina Tal received the Ph.D. degree from the School
of Electronic Engineering, Dublin City University,
Ireland, where she is an Assistant Professor with
the School of Computing, an Academic Lead of
the M.Sc. in Blockchain, and a member of LERO.
She is the Lead Principal Investigator on the
SFI funded project PRIVATT. She published in
prestigious international conferences and journals.
Her research interests include technology-enhanced
learning, vehicular ad-hoc networks, smart cities,
and cyber security.

Christof Imhof received the degree in psychology
and the Ph.D. degree in 2022 from the University
of Bern. He has been with the Institute for Research
in Open, Distance, and elearning since 2016. His
research focus lies primarily on procrastination and
other types of dilatory behavior in the context of
adaptive learning, which also served as the topic of
his doctoral thesis. Other research interests include
the detection of emotions with objective measures
such as eye-tracking combined with emotional word
lists.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



COMS, A et al.: IMPROVED QUALITY OF ONLINE EDUCATION USING PriMARL FOR VIDEO TRAFFIC SCHEDULING 19

Per Bergamin is a Professor of Didactics in
Distance Education and E-Learning with the Swiss
Distance University of Applied Sciences. Since
2006, he acts as the Director of the Institute for
Research in Open-, Distance-, and eLearning. In
2020, he was also appointed as an Extraordinary
Professor with the Faculty of Education, North-
West University, South Africa. From 2016, he holds
the UNESCO Chair on personalized and adaptive
distance education. His research activities focus
on self-regulated and technology-based personalized

and adaptive learning. Central aspects are instructional design, usability, and
application implementation.

Gabriel-Miro Muntean (Fellow, IEEE) is a
Professor with the School of Electronic Engineering,
Dublin City University (DCU), Ireland, and the
Co-Director of the DCU Performance Engineering
Lab. He has published over 450 papers in top
international journals and conferences, authored
four books and 28 book chapters, and edited 9
other books. His research interests include qual-
ity, performance, and energy issues related to
rich media delivery, technology-enhanced learning,
and other data communications over heterogeneous

networks. He is an Associate Editor of the IEEE TRANSACTIONS ON

BROADCASTING, the Multimedia Communications Area Editor of the IEEE
COMMUNICATIONS SURVEYS AND TUTORIALS, and a reviewer for top
international journals, conferences, and funding agencies.

Cristina Hava Muntean (Member, IEEE) received
the Ph.D. degree from Dublin City University,
Ireland, in 2005. She is an Associate Professor
with the School of Computing, National College of
Ireland. She performed various research activities in
the past 18 years fostering and promoting research,
leading research projects, supervising Ph.D. and
M.Sc. students, and publishing over 120 publications
in international peer-reviewed books, journals, and
conferences. Her main research areas are adaptive
multimedia, adaptive and personalized learning, and

user quality of experience.

Ramona Trestian received the Ph.D. degree from
Dublin City University, Ireland, in 2012. She is
a Senior Lecturer with the Design Engineering
and Mathematics Department, Middlesex University,
London, U.K. She published in prestigious inter-
national conferences and journals and has one
authored and five edited books. Her research
interests include mobile and wireless communica-
tions, quality of experience, multimedia streaming,
handover and network selection strategies, and digi-
tal twin modeling. She is an Associate Editor of the

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


