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Abstract – Telecom vendors and operators deliver services with strict requirements on performance, over complex and
sometimes partly shared network infrastructures. A key enabler for network and service management in such environments
is knowledge sharing, and the use of data‑driven models for performance prediction, forecasting, and troubleshooting. In
this paper, we outline a multi‑operator service metrics prediction framework using federated learning that allows privacy‑
preserved knowledge‑sharing across operators for improved model performance, and also reduced requirements on data
transfer within an operator network. Federated learning is compared against local and central learning strategies formulti‑
operator performance prediction, and it is shown to balance the requirements on data privacy, model performance, and the
network overhead. Further, the paper provides insights on how data heterogeneity affects model performance, where the
conclusion is that standard federated learning has certain robustness to data heterogeneity. Finally, we discuss the chal‑
lenges related to training a federated learning model with a limited budget on the communication rounds. The evaluation
is performed using a set of realistic publicly available data traces, that are adapted speci ically for the purpose of studying
multi‑operator service performance prediction.
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1. INTRODUCTION

Achieving zero‑touch management of telecommunication 
networks is a challenging and demanding task. Tele‑ 
com operators and providers, who deliver their services 
under strict Service Level Agreements (SLAs), continu‑ 
ously observe the network infrastructure and the service 
Key Performance Indicators (KPIs). Further, they apply 
data‑driven techniques to learn performance models to 
be used for automation of management tasks such as ser‑ 
vice on‑boarding, network slice dimensioning and admis‑ 
sion, proactive service management, and root‑cause ana-
lysis.

Applying data‑driven and Machine Learning (ML)‑based 
techniques to predict the performance of services, re‑ 
quires extensive measurements and data collection from 
the telecom infrastructure. One approach for predic-
ting the performance of a service is to apply ML 
techniques on data observed from the network and 
infrastructure [1],[2]. It is typically assumed that the 
collected data can be transferred to a centralized 
location (cloud/data center) to be processed and used 
for training or ine‑ tuning ML models.

Measurements of the infrastructure and monitoring the 
service performance metrics generate large volumes of 
data [3]. Transferring such immense datasets over the 
network introduces a large overhead which can adversely

impact the performance of the network, the speci ic ser‑ 
vice, and potentially other colocated services. Addition‑ 
ally, transferring data can be prohibited by privacy regu‑ 
lations and guidelines. The data related to service KPIs 
are clearly sensitive and must remain private. The infras‑ 
tructure can be hosting services from different network 
slices sharing the common physical resources (radio, net‑ 
work, computer) which have to remain isolated from each 
other. Moreover, the different services can belong to dif‑ 
ferent domains as they are either managed by different 
network operators or are executed over geographically 
distributed domains managed by the same operator.

To address the above‑mentioned challenges with respect 
to data transfer, while aiming to achieve a high ML model 
performance using a large volume of data for training, dis‑ 
tributed approaches such as Federated Learning (FL) can 
be used. FL can be seen as a privacy‑preserving approach 
to distributed learning where agents participate in a fede‑ 
ration to collaboratively learn a global model. The global 
model is an aggregated model computed from the local 
models of the agents. Crucially, in learning of the global 
model, agents do not share their local data, and it is only 
the model parameters that are shared [4].

General challenges of FL have been extensively studied 
in the literature [5], such as data that is not independent 
and identically distributed (non‑i.i.d.), restrictions on the 
communication cost, privacy and security, compute 
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Fig. 1 – An illustration of a multi‑operator environment where three ser‑ 
vices are managed by two operators which are distributed across 

multiple locations. The operators can use FL to learn a global model 
for service performance prediction

resource allocation, and system heterogeneity. 
However, the bene its and challenges of applying FL 
techniques for predicting service performance using 
infrastructure data in multi‑operator environments 
have not received speci ic attention.

Fig. 1 illustrates a multi‑operator scenario where three 
services managed by two operators are supported by ser‑ 
vice components across geographically distributed loca‑ 
tions. Service performance prediction within one opera‑ 
tor is dependent on features from all service components 
used by the service across the infrastructure (e.g., local 
access, regional data center, and public data center for 
service 3 in the igure). In the scenario with multiple 
operators sharing the same prediction task, FL can be 
used to train a global ML model on data collected from 
three services by sharing only the local model weights 
rather than transferring private data from multiple 
geographical sites to a central entity.

In this paper, we evaluate FL for service‑level metrics pre‑ 
diction and compare it with traditional learning strate‑ 
gies, namely, local and central learning, using traces ob‑ 
tained from a realistic testbed at KTH university [6]. The 
data is split into 24 parts across different trace groups 
to emulate the multi‑operator environment described 
above.

The main contributions of this paper are as follows: (i) we 
introduce the scenario of service performance prediction 
in multi‑operator network environments and provide an 
evaluation based on traces from a realistic testbed1; (ii) 
we study the heterogeneity of the data and discuss how 
it can affect model performance; (iii) we compare diffe‑ 
rent learning strategies and provide guidelines to balance 
model performance and privacy; (iv) we provide initial 
results on challenges in optimizing FL models for a ixed 
and limited budget on the communication rounds.

1The FL‑prepared traces are available through [7].

The rest of this paper is organized as follows. Section 2de‑
scribes the FL background and the problem formulation.
The datasets and the experimental setup are presented in
Section 3. The results are described in Section 4. The dis‑
cussion is summarized in Section 5. Related work is re‑
viewed in Section 6. The paper ends with conclusions in
Section 7.

2. BACKGROUND AND PROBLEM FORMU‑
LATION

2.1 Background: FL via federated averaging
FL was proposed as an approach for leveraging dis‑ 
tributed datasets [4]. While providing a level of privacy, it 
can also give ef iciency gains by leveraging edge compute 
and reducing communication needs [8]. Let 𝐾 denote the 
number of agents indexed by 𝑘.  Further, let 𝑥𝑘 be the in‑ 
put data for the agent 𝑘 with data distribution denoted by 
𝑝𝑘.  The optimization problem in FL can then be 
described as

min
𝑤∈ℝ𝑑

1
𝐾

𝐾
∑
𝑘=1

𝔼𝑥∼𝑝𝑘
[ℓ𝑘(𝑤; 𝑥𝑘)] , (1)

where ℓ𝑘 is the loss function for agent 𝑘, and 𝑤 denotes 
the global model parameters that minimize the loss.

The most prevalent algorithm to solve the FL optimiza‑ 
tion problem is federated averaging (FEDAVG) [4]. When 
using FEDAVG, a copy of the global model is trained lo‑ 
cally for 𝑇 epochs on the data of each agent. The re‑ 
sulting local models are then communicated to a central 
server which aggregates the model parameters using the 
arithmetic mean. The new global model is then communi‑ 
cated back to the agents, which resume training. This pro‑ 
cess is repeated for a given number of global communica‑ 
tion rounds. McMahan et al. [4] showed that this works 
very well when data is independently and identically dis‑ 
tributed (i.i.d.). Meanwhile, the performance of FEDAVG 
deteriorates if the data distributions of the agents differ 
too much from each other. How to best learn a global 
model in this case is an open research question [9].

2.2 Problem formulation
The multi‑operator environment under consideration is 
illustrated in Fig. 1, where a set of clients are interac‑ 
ting, over a network, with services managed by 
multiple operators and are executing in multiple data 
centers. We consider each component of a service 
running in a data center to be an agent. In order to 
predict the service‑level metrics for each service, 
infrastructure metrics collected from each agent’s 
execution environment are used as input features.

We consider three learning strategies, namely, local lear‑ 
ning, central learning and federated learning, for the 
problem of service‑level metrics prediction. Fig. 2 
shows the learning strategies. Due to the nature of 
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Fig. 2 – Learning strategies for the multi‑operator environment illus‑ 
trated in Fig. 1: (a) local learning, (b) central learning, 

(c) federated learning

models using their local data before the global 
aggregation? In this work, we show that this is indeed 
a nontrivial problem, and depending on the data and 
the use case, our choice on the number of epochs per
round has consequential in luence on the outcome.

3. DATASET AND EXPERIMENTS
The evaluation in this paper is based on realistic traces 
[6] obtained from a testbed at the KTH university. A
brief overview of the scenarios and experimental
infrastructure are provided below, and additional details
are available in [11].

3.1 Dataset

The traces are generated by executing experiments with 
different con igurations of services and load patterns in a 
testbed environment consisting of a server cluster and a 
set of clients. The features are collected from the server 
cluster and the service‑level metrics are collected on the 
client machines.

There are two services running on these machines, 
namely Video‑on‑Demand (VoD) and Key‑Value (KV) 
store. The VoD service provides single‑representation 
streaming with a varying frame rate. The server cluster 
consists of six machines for VoD service: two networked‑ 
storage machines, three web server and transcoding 
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the environment, a given target component may not 
have the representative infrastructure metrics for 
effective prediction of the service‑level metrics. To be 
able to do that, it needs to have access to the 
infrastructure metrics from other components 
distributed across services. However, there are 
challenges with sharing data between the components 
due to the data privacy concerns and cost associated 
with transferring data. We can see that both local 
learning and central learning strategies are not well 
suited for the problem described here, in the case of local 
learning, the solution is inherently suboptimal and in the 
case of the central learning, the solution is impractical be‑ 
cause of data privacy and communication cost related to 
data transfer.

Having said that, in this multi‑operator setup, since the 
agents are located across geographically distributed data 
centers and are managed by different operators, the prob‑ 
lem of service‑level metrics prediction using FL is well 
motivated as it allows for structured exchange of know‑ 
ledge between the components without the need for 
sharing data. However, FL itself comes with 
communication overhead cost and there are challenges in 
ef icient training of the FL models. Hence, it is important 
to study how much improvement can be expected from 
FL compared to the local learning, and how the 
performance of FL compares to the central learning.

It is known that communication cost can be a bottleneck 
in training FL models particularly when the number of 
participating agents is high and the size of the model 
is large [5]. With a ixed number of agents and size of 
the model, it is a linear relation between the number 
of rounds and communication cost. Therefore, one ap‑ 
proach to reduce the communication cost in FL is to re‑ 
duce the number of rounds. In this paper we have 
focused on scenarios where there is a cost associated to 
the number of communication rounds. Knowing when 
and how often the local models of the agents need 
aggregation is crucial for model convergence, especially 
true in non‑i.i.d. settings. If the communication rounds 
are too infrequent and the agents train for too many local 
epochs, the resulting models may start to diverge in 
parameter space from the global model [10].

If there were no budget constraints on the number of 
communication rounds, a reliable training strategy would 
be to train for a few epochs per round (as few as a 
single epoch) and instead continue federation for many 
rounds. However, for real‑world problems, there is an 
overhead cost associated with the communication 
rounds. In practice, there could be a limited budget on 
the communication cost and consequently on the 
communication rounds.

In this work, we consider a ixed and limited budget on 
the communication rounds. Within a ixed budget, the 
question is which training strategy would be the best?
That is, for how many epochs the agents shall train their
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Table 1 – Trace con igurations and speci ications

Trace Name Measured
Service

Load
Pattern

Number
of Services

Number
of Tasks

KV‑BothApps‑FlashCrowd KV FlashCrowd 2 2
KV‑BothApps‑Periodic KV Periodic 2 2
KV‑SingleApp‑FlashCrowd KV FlashCrowd 1 2
KV‑SingleApp‑Periodic KV Periodic 1 2
VoD‑BothApps‑FlashCrowd VoD FlashCrowd 2 3
VoD‑BothApps‑Periodic VoD Periodic 2 3
VoD‑SingleApp‑FlashCrowd VoD FlashCrowd 1 3
VoD‑SingleApp‑Periodic VoD Periodic 1 3

Table 2 – Summary of the tasks for KV and VoD services

Acronym Service Description
ReadsAve KV Average read latency
WritesAve KV Average write latency
NetReadAvgDelay VoD Net value of read average delay
AvgInterDispDelay VoD Average display delay
AvgInterAudioPlayedDelay VoD Average audio play delay

machines, and one load‑balancer machine. The KV 
service is running on the same machines as the VoD 
service, and can execute in parallel. The six physical 
machines jointly provide the KV service. Two load 
generators are running in parallel in the testbed, one for 
the VoD application and another for the KV application. 
Both generators produce loads according to two distinct 
load patterns, namely periodic load and lash crowd load.

The traces used in the experiments are summarized in 
Table 1. The trace name is encoded according to service 
under investigation (KV or VoD services), number of con‑ 
current services (SingleApp or BothApps), and load pat‑ 
tern (Periodic or Flashcrowd load). As an example, VoD‑ 
BothApps‑Flashcrowd corresponds to a trace where both 
services, KV and VoD, are running under the lash crowd 
load, while the service‑level metrics of VoD are being mea‑ 
sured on the client side.

Features are collected from the Linux kernels that run on 
the server cluster machines. There are about 1700 fea‑ 
tures and some examples are CPU utilization per core, 
memory utilization, and disk I/O. Service‑level metrics 
serve as the target values in ML tasks. Table 2 summa‑ 
rizes the service‑level metrics that are considered in the 
experiments for KV and VoD services.

3.2 Emulation of multiple datasets for FL
agents

In this subsection, we present an approach for emulation
of the multi‑operator scenario, given the above described
traces. Further, we investigate the heterogeneity of the
data at each agent.

The data traces are used to emulate the multi‑operator
scenario shown in Fig. 1, where the traces correspond
to the services and the servers correspond to the service
components. The original data set is divided to it mul‑
tiple FL agents in the experiments across different trace
groups and server machines. Both KV and VoD services
have four trace groups with different execution types

(SingleApp or BothApps) and load patterns (periodic or
lash crowd load), which are illustrated in Table 1. Each

trace group contains features which are collected from six
server machines, as described in Section 3.1. Hence the
dataset could be divided into 24 FL agents as illustrated in
Table 3. The agents are named according to trace groups
(0‑3) and machines (0‑5). For example, agent ”1_3” con‑
tains features from trace group 1 with BothApps and Pe‑
riodicLoad and are collected from machine 3. Only the
same type of features across machines are kept. There are
197 features for agents of KV service, and 182 features for
agents of VoD service. The data splits used in this work
are available through [7].

In order to evaluate the degree of data heterogeneity
of agents, we modeled the underlying data distributions
across 24 agents for both input features 𝑋 and service‑
level metrics 𝑌 , which are described as follows.

3.2.1 Input feature analysis
Symmetrized Kullback‑Leibler (KL) divergence 𝐷𝑠𝑦𝑚
[12] is used to measure the similarity between underly‑
ing distributions of the input features across agents. It is
calculated as:

𝐷𝑠𝑦𝑚 (𝑃𝑖, 𝑃𝑗) = 1
2 (𝐷𝐾𝐿 (𝑃𝑖||𝑃𝑗) + 𝐷𝐾𝐿 (𝑃𝑗||𝑃𝑖)) ,(2)

where 𝑃𝑖 and 𝑃𝑗 correspond to the probability density
functions for features of agent 𝑖 and agent 𝑗, respectively,
and

𝐷𝐾𝐿 (𝑃𝑖||𝑃𝑗) = ∫ 𝑝𝑖(𝑥)log
𝑝𝑖(𝑥)
𝑝𝑗(𝑥) d𝑥. (3)

All agents’ data is standardized by removing the mean and
scaling to the unit variance. Dimension reduction was
done on normalized data by applying Principal Compo‑
nent Analysis (PCA)[12] on the input data features. The
number of principal components was chosen such that
their sum of explained variances is greater than the per‑
centage 85%. The resulting number of principal com‑
ponents for KV and VoD were 14 and 12, respectively.
The selected principal components were modeled by a
Gaussian Mixture Model (GMM). The initial number of
Gaussian components were set to 20. The optimal num‑
ber of Gaussian components were chosen automatically
through Bayesian model selection in variational inference
[12]. Here, we used Scikit‑Learn[13] implementation of
the Bayesian GMMs. As the result, the input distribution
of each agent is represented by a mixture of Gaussian dis‑
tributions.

Next, we computed the KL divergence between agents’
input distributions. Since there is no closed‑form solu‑
tion to the KL‑divergence between two GMMs, it was ap‑
proximated through Monte Carlo sampling (106 Monte
Carlo samples). Fig. 3 shows the heatmap of KL diver‑
gence scores among all 24 agents for KV and VoD services.
The large KL score between two agents suggests that the
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Table 3 – A diagram of the data division by trace groups and machines

Trace Execution type ‑ Load pattern
0 BothApps ‑ FlashcrowdLoad
1 BothApps ‑ PeriodicLoad
2 SingleApp ‑ FlashcrowdLoad
3 SingleApp ‑ PeriodicLoad

Machine 0 1 2 3 4 5

agents do not share similar underlying distributions. The 
main observation is that agents show various degrees of 
heterogeneity, and taking as a whole, the agents form a 
dataset that is largely heterogeneous.

The following other observations are notable. For both 
KV and VoD, the KL scores on the diagonal lines are 
relatively small. This implies that the data distributions 
of the same machines across execution types and load 
generation patterns are similar. In the testbed, machines 
0,1 and machines 2,3,4 are executing different 
functionalities, i.e., network storage and web server, 
respectively for VoD services. In Fig. 3(b), the KL scores 
between the agents of machines 0,1 are bounded with 
blue boxes, and the KL scores among agents of machines 
2,3,4 are bounded with green boxes. Relatively 
speaking, the KL scores within blue and green boxes 
are smaller. This implies that the features that are 
collected from machines with the same service function 
have similar distributions.

3.2.2 Service‑level metrics

Note that across six machines per trace group, not only 
the same class of service‑level metrics are measured but 
also the measured values of the service‑level metrics are 
the same. However, across trace groups for the same ma‑ 
chine, the same class of service‑level metrics are mea‑ 
sured but the measured values may be different. Fig. 4 
shows the histograms of the service‑level metrics 
used in experiments for both KV and VoD services. It 
can be seen that the service‑level metrics 
AvgInterDispDelay and AvgInterAudioPlayedDelay 
of VoD services have bi‑modal distributions while the 
other service‑level metrics have a uni‑modal distri-
bution. In the experiments, we show that the presence 
of multi‑modality can adversely affect the performance 
of FL.

3.3 Experiments setup

3.3.1 Evaluation framework
To facilitate evaluation of the learning strategies 
described in Section 2, we design an evaluation 
framework where the learning strategies can be 
compared against each other. The data of the agents are 
divided into a training set and a test set where the 
sizes of the training and the test sets are the 
same across all agents, respectively. Note that for a 
target agent, we assume the same training and test sets 
across all learning strategies to ensure a fair comparison. 
A conceptual illustration of these learning strategies are 
shown in Fig. 2.

Table 4 – Predictive net used in all experiments for KV and VoD traces

Net Number of
Units

Activation
Function

Batch
Normalization

Drop
Out

Input Layer 𝐷input Tanh True 0.2
Hidden Layer 1 50 ReLU True 0.2
Hidden Layer 2 50 ReLU True 0.2
Output Layer 𝐷output Linear False False
Loss Function SmoothL1Loss, 𝛽 = 1.0
Optimizer Adam, learning rate = 0.001

Table 5 – Scenarios considered in the experiments

Name KV Traces VoD Traces
𝑁training 𝑁test 𝑁training 𝑁test

Small Set 1211 23014 1457 27694
Tiny Set 242 23983 291 28860

Local learning For a target agent, data in the training 
set are normalized by the standard normalization, that is 
removing the mean and scaling to the unit variance. Data 
in the test set is normalized using the same normalizer 
learned on the training set. Next, the predictive local ML 
model is learned using the data in the training set. Finally, 
the performance of the learned local model is evaluated 
on the test set.

Central learning Here, it is assumed that the target 
agent has access to the data of all other agents. The target 
agent constructs a training set from the training data of 
all agents, named central learning set. Note that the test 
set here is the same test set used for local learning. Data 
is normalized using the same approach as in local 
learning. The predictive central model is learned using 
the data in the central learning set, and its performance is 
evaluated on the test set.

Federated learning For a target agent, there is no pos‑ 
sibility of accessing the data from other agents. Agents 
participate in a federation to collaboratively learn a joint 
model, named the global model. All agents are initialized 
using the same predictive model which they have all re‑ 
ceived from the server entity. Here, we consider fede‑ 
rated averaging as the choice of FL scheme, as discussed 
in Section 2.

For a target agent, data is normalized as in the case of 
local learning. The target agent participating in the 
federation learns collaboratively the global model. The 
performance of the global model is then evaluated on the 
test set. Note that the test set here is the same test set 
used for the local and the central learning.

3.3.2 Models

We compare the following models, (i) the local model,(ii) 
the central model, and (iii) the federated model, obtained 
from the evaluation framework. For the federated 
learning, we limit the number of rounds 𝑅 to 20,
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Fig. 3 – A heatmap of KL divergence scores of features among 24 agents for KV and VoD services

Fig. 4 – A histogram of the service‑level metrics of trace groups for KV and VoD services. The igure legends are introduced in Table 3

however, we vary the number of epochs 𝑇 per round 
according to 𝑇 ∈ {10, 50, 200}.  This is to study various 
FL learning strategies when there is a ixed and limited 
budget on the communication rounds, as motivated in 
Section 2.2. For the local and central models, the number 
of epochs is ixed and it is set to 200. Table 4 
summarizes the design choices used in construction of 
the predictive models for KV and VoD traces. All models 
are implemented in PyTorch [14].

3.3.3 Scenarios

We consider different scenarios by varying the size of the
training set 𝑁training and the test set 𝑁test. This is to study 
the performance of the models with respect to the avai‑ 
lability of data in the execution environments. Table 
5 summarizes these scenarios.

3.3.4 Performance evaluation
Model performance is evaluated using the normalized
Mean‑Absolute‑Error (nMeanAE) score between the true
and predicted performance metrics de ined as:

nMeanAE ∶= 1
̄𝑦
⎛⎜
⎝

1
𝑁test

𝑁test

∑
𝑛=1

|𝑦𝑛 − ̂𝑦𝑛|⎞⎟
⎠

, (4)

where 𝑦�̂� is the model prediction for the 𝑛‑th measured 
performance metric 𝑦𝑛, and 𝑦 ̄ is the average quantity 
across all samples in the test set.

4. RESULTS
In this section, we present the results of the experiments 
described in Section 3.3.

Fig. 5 summarizes the performance of the models for the 
prediction of KV and VoD service‑level metrics. The i‑ 
gure shows the nMeanAE error per agent averaged across
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(b) VoD Traces - Tiny Set (a) VoD Traces - Small Set 

(d) KV Traces - Tiny Set (c) KV Traces - Small Set 

Fig. 5 – Error in prediction of the VoD and KV service‑level metrics per agent averaged across all tasks. The error is measured in terms of nMeanAE
between measured and predicted service‑level metrics. The right‑most solid boxes in all the categories show the averaged nMeanAE scores across all 
agents. The empty boxes show the nMeanAE scores per agent. The igure shows the average result across 10 experiment trials. LL stands for local 

learning, CL stands for central learning, and FL stands for federated learning. As an example FL‑10 indicates the FL where agents perform 
10 epochs per round at the local learning phase

NetReadAvgDelay

AvgInterDispDelay

AvgInterAudioPlayedDelay

(b) VoD Traces - Tiny Set 
NetReadAvgDelay

AvgInterDispDelay

AvgInterAudioPlayedDelay

(a) VoD Traces - Small Set 

WritesAve

(a) KV Traces - Small Set 
ReadsAve

WritesAve

(b) KV Traces - Tiny Set 
ReadsAve

Fig. 7 – Error in prediction of the KV service‑level metrics per task ave‑ 
raged across all agents. The error is measured in terms of nMeanAE 
between measured and predicted service‑level metrics. The igure 

shows the average result across 10 experiment trials
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Fig. 6 – Error in prediction of the VoD service‑level metrics per task 
averaged across all agents. The error is measured in terms of nMeanAE 

between measured and predicted service‑level metrics. The igure 
shows the average result across 10 experiment trials.
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all tasks for Small Set and Tiny Set. The following obser‑ 
vations are notable. For the VoD traces, all FL models out‑ 
perform local learning. Among FL models, FL‑200 is the 
best performer while both FL‑200 and FL‑50 outperform 
FL‑10. Similar observations are made for both Small Set 
and Tiny Set. For the KV traces, there can be seen a rather 
considerable difference between the performance of the 
FL models. For Small Set shown in Fig. 5(c) and Tiny Set 
shown in Fig. 5(d), FL‑50 is the best performer and it out‑ 
performs the local learning. However, FL‑10 and FL‑200 
performance is inferior to the local learning.

Our observations for KV traces differ from the ones for 
VoD traces. This suggests that for a ixed and limited bud‑ 
get on the communication rounds, choosing a common 
strategy that works well for all scenarios is not straight‑ 
forward. As an example, while FL‑200 is the best per‑ 
former for the VoD traces, it is among the worst perfor-
mers for the KV traces. In other words, it is dif icult to 
make a general statement about the best approach for 
choosing the number of epochs per round in training FL 
models given a ixed budget on the communication 
rounds. Indeed this observation is one of the main 
results of the experiments. The considerable difference 
between the behavior of the FL models for KV and VoD 
traces can be explained partly by noting the difference 
between the degree of heterogeneity across input 
distributions of the agents. In Fig. 3, we measured the 
degree of heterogeneity across agents. While both KV and 
VoD traces were shown to be heterogeneous, a clear 
difference between their pro iles can be seen.

Fig. 6 and Fig. 7 show the performance of the models per 
task averaged across all agents for VoD and KV traces, re‑ 
spectively. For the case of VoD traces, between the FL 
models, FL‑200 is the best performer for NetReadAvgDe‑ 
lay while FL‑10 is the best performer for AvgInterDispDe‑ 
lay and AvgInterAudioPlayedDelay. This observation fur‑ 
ther highlights the dif iculty in choosing a reasonably op‑ 
timal training strategy for FL when there is a ixed and 
limited budget on the communication rounds.

It can be seen that for the KV traces, across tasks, FL mo‑ 
dels perform similarly, e.g., FL‑50 is the best 
performer for both ReadsAve and WritesAve. However, 
for the VoD traces, FL models perform differently. As an 
example, FL‑10 is the best performer for 
AvgInterAudioPlayedDelay while it is the worst 
performer for NetReadAvgDelay. The difference in 
behavior of the FL models can be explained by looking 
into the distribution of the tasks. As shown in Fig. 
4(a), ReadsAve and WritesAve have similar distri‑ 
butions while, as shown in Fig. 4(b), NetReadAvgDelay, 
AvgInterDispDelay and AvgInterAudioPlayedDelay 
have clearly different distributions.

For the task NetReadAvgDelay in VoD traces, the best per‑ 
forming FL model (FL‑200) achieves similar performance 
as the central learning model. The same observation can 
be made for the best performing FL model (FL‑50) for

ReadsAve and WritesAve tasks in KV traces. However, 
for AvgInterDispDelay and AvgInterAudioPlayedDelay in 
VoD traces, the difference between the performances 
of the best performing FL model and the central learning 
model is relatively large. This can be explained by 
taking into consideration the distribution of the tasks. 
The task distribution for NetReadAvgDelay, ReadsAve 
and WritesAve are uni‑modal while for 
AvgInterDispDelay and AvgInterAudioPlayedDelay, the 
task distributions are bi‑modal. This implies that FL can 
be expected to achieve similar performance igures as 
the central learning for uni‑modal task distributions. 
However, for bi‑modal task distributions, performance 
of the FL remains inferior to the central learning.

5. DISCUSSION
In this work, we studied the problem of service‑level met‑ 
rics prediction in multi‑operator environments. Due to 
the nature of the environment, we argued that local lear‑ 
ning and central learning are not well‑suited. In the case 
of the local learning, taking into consideration merely the 
infrastructure metrics collected from the individual 
components results in models that are inherently 
suboptimal as the local data will not be fully 
representative of the prediction task. For the case of 
the central learning, having access to all data allows for 
learning models that outperform models learned using 
only the local data. However, learning a central model 
may simply not be possible due to the data ownership 
rights, privacy concerns, and the cost of data transfer to 
a central location. Thus, studying FL is well positioned.

While FL can potentially outperform local learning and 
approach central learning, its success depends on many 
factors, among others, the budget on the communication 
cost. The communication cost budget is an important 
factor that needs to be taken into consideration for real‑ 
world applications of FL. For a ixed and limited budget 
on the communication rounds, we showed that training 
FL models that perform reasonably well is far from tri‑ 
vial. Importantly, performance of the FL model 
depends largely on the degree of model itness at the 
local training phase, determined by the number of 
training epochs. Prior to the global aggregation, if agents 
contribute with local models that are under‑ itted by 
training for too few epochs, the global model may not 
converge given the limited budget. On the lip side, if they 
contribute over‑ itted models by training for too many 
epochs, the global model may diverge in the parameter 
space. Knowing the right degree of model itness at the 
local training phase of the FL has consequential in luence 
on the quality of the global model and ultimately success 
of the federation.

Motivated by the discussion above, our experiments were 
designed to show the potential and limitations of the FL. 
We emulated a multi‑operator scenario and constructed 
a federation of 24 agents and described characteristics 
of the data. In particular, we measured the degree of
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resource usage. In [19] and [20], the authors point out 
the challenges of data‑sharing between network opera‑ 
tors for service QoE‑model development, and propose FL 
approaches to overcome these challenges.

In [21], a distributed network slicing framework based 
on a federated‑orchestrator (F‑orchestrator) is proposed 
to coordinate the computational resources without sha‑ 
ring base stations’ local data. In this framework, 
each base station trains a model on its local data to 
allocate the resources to its users for a set of IoT 
services. The F‑orchestrator then creates a global 
model based on the local models to optimally allocate 
the resources across all the base stations. Minimizing 
the raw monitoring data exchange among different 
domains, is a key enabler for both sustainability and 
scalability in 5G networks. Hence, the authors in [22] 
introduce statistical FL provisioning models that can 
learn over live network non‑i.i.d. datasets in an of line 
fashion while respecting SLA long-term statistical 
constraints. The results show that the FL technique 
dramatically reduces communication overhead compared 
to a centralized deep learning.

Another work [23], addresses the challenges of predicting 
the performance of network slices in 5G networks. The 
authors proposed an FL approach to predict a KPI 
(average duration of user attachment) of running 
network slices with respect to data isolation in each 
network slice. In [24], an FL approach is proposed for 
forecasting telecom KPI values in radio network cells. 
In this work, the goal of applying FL is to shorten the 
training time of new models, as well as minimizing the 
transferred data to a central server.

The authors in [25], developed a hierarchical FL ap‑ 
proach using multiaccess edge computing in order to 
tackle the data privacy and communication bottlenecks of 
IoT heterogeneous networks with imbalanced and non‑ 
i.i.d. data. User association to the edge nodes and re‑ 
source utilization are two KPIs that the trained FL mo‑ 
dels aim to optimize. In [26], an FL architecture 
named Blaster is proposed for routing network traf ic 
through distributed software de ined network‑enable 
edge networks with varying network conditions and 
high volume of generated traf ic, in order to improve 
the service performance of the applications while 
reducing the communication overhead caused by model 
training.

Similar to previous work, in this study, we investigate and 
evaluate the ef iciency of FL in telecom networks. The 
focus of this paper, in contrast to other related work is 
the comparison of different learning strategies (includ‑ 
ing FL) for service performance prediction using data ob‑ 
tained from a multi‑domain infrastructure where we in‑ 
vestigate the impact of data heterogeneity, limited bud‑ 
get on the communication rounds, and training data size 
on FL model performance.
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heterogeneity across agents showing considerable vari‑ 
ations across agents, and we visualized the complexity of 
the prediction tasks showing the presence of bi‑modality 
in the task space. Leveraged on the unique characte‑ 
ristics of data, we designed an evaluation framework 
for comparing the performance of different learning 
strategies, namely, local, central and federated learning. 
In this evaluation framework, we limited the budget on 
the communication cost (to 20 rounds), and evaluated 
the quality of the federated models under three different 
training strategies in terms of the number of epochs 
per round, namely, FL‑10, FL‑50 and FL‑200. We obser-
ved that the quality of the trained FL models varies 
largely depending on the degree of itness of the models 
before global aggregation. In other words, it was shown 
that it is not straight‑forward to decide on the optimal 
number of epochs per round when there is a ixed 
budget on the communication rounds. With that in 
mind, here, we call for future research in this direction. 
More speci ically, a data‑driven training strategy for FL 
where there is a ixed and limited budget on the 
communication rounds.

A unique aspect of the multi‑operator use case introduced 
here is that the components belonging to the same ser‑ 
vice have the same measured service‑level metrics. In our 
emulated data, this effectively means that the agents be‑ 
longing to the same server machines have the same mea‑ 
sured service‑level metrics for different infrastructure 
metrics. Although we considered FEDAVG as the choice 
of FL method, belonging to the class of horizontal fede‑ 
rated learning, a hybrid technique of vertical and 
horizontal federated learning [15, 16] its particularly 
well to this use case, where the agents belonging to the 
same trace group can form a vertical federation, as 
they share the same measured service‑level metrics, 
and agents across the trace groups can form horizontal 
federation. Future studies are needed to evaluate the 
effectiveness of such FL techniques.

6. RELATED WORK
FL is a privacy‑preserving distributed learning approach 
which enables training machine learning models collabo‑ 
ratively over remote data centers or devices without sha‑ 
ring local data. FL is a potential candidate to train 
predictive models for service‑level metrics in telecom-
munication networks where data privacy and 
communication overhead are two major challenges of 
performance prediction techniques [17].

In [18], the authors have proposed both centralized and 
federated approaches for Virtual Network Function (VNF) 
autoscaling in multi‑domain 5G networks. The proposed 
FL‑based solution is able to predict the future number of 
VNF instances according to the expected traf ic demand 
and service requirements in order to maximize the QoS 
while keeping data localized. The authors, then, have 
compared the performance of the centralized and fede‑ 
rated approaches based on the model accuracy and the
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7. CONCLUSION
In this paper, we introduced and discussed the challenges 
of service‑level performance prediction in multi‑operator 
network environments using federated learning, with the 
aim of reducing network overhead and preserving data 
privacy across operators. In an experimental study, we 
used traces collected from a testbed to emulate a multi‑ 
operator environment and designed an evaluation frame‑ 
work for comparing the performance of models trained 
using an FL approach against local learning and central 
learning. The evaluation framework was designed to il‑ 
lustrate potential bene its and limitations of FL. In parti‑ 
cular, we studied FL under limited budget on the 
communication rounds. The results showed that FL can 
potentially outperform local learning and approach the 
performance of central learning. However, the 
performance of FL can vary largely depending on the 
employed training strategy at the local training phase of 
FL. With this study, we call for further research on 
tackling challenges in the application of FL in 
multi‑operator network environments.
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