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Abstract—Intelligent Transportation Systems (ITS) are sophis-
ticated systems that leverage various technologies to increase the
safety, efficiency, and sustainability of transportation. By relying
on wireless communication and data collected from diverse
sensors, ITS is vulnerable to cybersecurity threats. With the
increasing number of attacks on ITS worldwide, detecting and
addressing cybersecurity threats has become critically important.
This need will only intensify with the impending arrival of
autonomous vehicles. One of the primary challenges is identifying
critical ITS assets that require protection and understanding
the vulnerabilities that cyber attackers can exploit. Additionally,
creating a standard profile for ITS is challenging due to the
dynamic traffic pattern, which exhibits changes in the movement
of vehicles over time. To address these challenges, this paper
proposes an information fusion-based cybersecurity threat de-
tection method. Specifically, we employ the Kalman filter for
noise reduction, Dempster-Shafer decision theory and Shannon’s
entropy for assessing the probabilities of traffic conditions being
normal, intruded, and uncertain. We utilised Simulation of Urban
Mobility (SUMO) to simulate the Melbourne CBD map and
historical traffic data from the Victorian transport authority. Our
simulation results reveal that information fusion with three sensor
data is more effective in detecting normal traffic conditions. On
the other hand, for detecting anomalies, information fusion with
two sensor data is more efficient.

Index Terms—Information fusion, Cybersecurity, Intelligent
Transport Systems, Threat Detection

I. INTRODUCTION

The widescale adoption of Intelligent transportation systems
(ITS) globally has resulted in enhanced traffic and safety
conditions, reduced traffic congestion, and rapid dissemination
of critical traffic updates. ITS uses a variety of technology,
including sensors, communication systems, and data analytics
tools, to monitor and optimise traffic flow, route planning,
and other elements of transportation management in real-time.
Anomalies in Intelligent Transportation Systems (ITS) refer to
any behaviour or activity that deviates from normal or expected
patterns of behaviour, which can indicate that the ITS system
is under cyberattack. Anomalies can significantly impact the

performance of ITS and may lead to service disruption, traffic
congestion, financial loss, and loss of lives [1]. Perrine et
al. [2] demonstrated that disabling as few as seven signals
during peak time periods for a few hours using the maximum
vehicle affected model can cost around US$0.93 million,
and the maximum vehicle flow targeting method can cause
damage of around US$0.98 million if 26 signals are impacted.
Therefore, relevant research communities are actively working
on anomaly detection techniques in ITS.

Detecting anomalies in Intelligent Transportation Systems
(ITS) is crucial as they can significantly impact the identifi-
cation of potential cyberattacks, prevent accidents and other
incidents, and improve transportation efficiency and safety.
Anomaly detection can be used in intelligent traffic manage-
ment systems to monitor and respond to traffic incidents in
real-time, improving traffic flow and reducing congestion. In
[3], the authors utilised a dynamic traffic system model to
illustrate the impact of traffic signal attacks. With compu-
tational efficiency, they were able to simulate the network-
wide effects of intersection failures. They also performed
green traffic signal phase time analysis, which provided insight
into detecting intrusions. However, a theoretical model for
intrusion detection and its evaluation and validation have not
been specifically performed. A visual analytics technique was
suggested by Turner et al. [3] to identify unusual signal pat-
terns that could indicate intrusions into the system. The work
focuses on data signal attacks, DoS and DDoS attacks, and
light control attacks. The authors provide a detailed analysis
of these attacks and describe their impact on ITS. In recent
work, Xiang et al. [4] proposes a novel approach for predicting
congestion attacks. The authors focus on variable spoofing
frequency attacks, which is a type of GPS spoofing attack, and
developed a machine learning-based approach for predicting
these attacks in traffic signal systems. To advance the research
in this area, [5] introduced an approach for identifying traffic
signal intrusion. However, the main problems with these



approaches are that important traffic signal parameters, such as
vehicle speed are not considered. Besides, while creating the
baseline traffic scenarios, the noise of the traffic characteristic
while collecting traffic data was not considered. By addressing
these research issues we introduce an Information fusion-based
anomaly detection system for ITS with the following important
contributions:

• A theoretical model was developed to generate a baseline
traffic flow model for ITS. This model utilises real-time
and historical traffic data to detect anomalies using an
information fusion technique. The proposed information
fusion-based anomaly detection process involves data
preprocessing (noise detection using Kalman filter), prob-
ability calculation, and decision-making to improve the
accuracy of anomaly detection by combining data from
multiple sensors and sources.

• For the first time in ITS anomaly detection, we addressed
the issue of reducing noise in observed traffic conditions
for different contexts (e.g., peak, off-peak, public holi-
day). To achieve this, we utilised the Kalman filter to
develop a predictive traffic model as a baseline model.
This approach significantly improves the accuracy and
efficiency of our system.

• A dynamic statistical anomaly detection model was de-
veloped to represent the distribution of data at different
intersections for different time windows. The proposed
statistical model is used to identify data points that
fall outside the expected range of values by setting a
threshold based on the probability distribution and using
information fusion.

II. RELATED WORKS

ITS face a multitude of attack vectors, such as cyberattacks
targeting autonomous and cooperative automated vehicles,
Distributed Denial of Service (DDoS) attacks, and assaults
on traffic signals and routing systems. Petit and Shladover [6]
investigated potential cyberattacks on autonomous and cooper-
ative automated vehicles. The authors identify several types of
attacks, including spoofing, jamming, malware injection, DoS,
and fake message injection, that can be performed on different
attack surfaces of autonomous and cooperative automated
vehicles. In addition, the work highlights the vulnerabilities of
communication devices such as navigators, sensors, cameras,
and connections like GPS, USB, Bluetooth, Wi-Fi, and Zigbee
in these systems. Sun et al. [7] reviewed the security and
privacy issues in the Internet of Vehicles (IoV). The authors
classify five broad types of attacks, including attacks on Au-
thentication, availability, secrecy, routing, and data authenticity
attacks., and explore the relevant solutions. Specific attacks
mentioned in the paper include Sybil, GPS deception, mas-
querading, wormhole, eavesdropping, and Denial of Service
(DoS) attacks, as well as route modification and replay attacks,
among others. Using complex network theory, Han and Lin
[8] analysed the features of public transportation systems by
constructing a complex network of transportation systems.
They investigated the robustness of these systems under fixed

and random attacks and found better resilience under random
attacks. A multivariate stream analysis approach proposed to
identify and mitigate DDoS attacks in VANETs was proposed
by Kolandaisamy et al. [9]. The authors emphasise the impor-
tance of Identifying and preventing DDoS attacks in VANETs
to ensure the reliability and safety of vehicular networks.

Huq el al. [10] presented some real-world ITS attacks.
Alnbulsi and Islam [11] investigate to protect against code
injection attacks. In a code injection attack, the attacker injects
malicious code into a vulnerable application in order to exe-
cute unauthorised commands. The attacker typically exploits
a vulnerability in an application’s code or input validation
routines to inject and execute their code. The injected code
can be used to modify or delete data, install malware, steal
sensitive information, or carry out other malicious activities.
Code injection attacks can manifest in various forms, including
SQL injection, command injection, and buffer overflow attacks
[12]. These attacks can be very damaging, leading to system
crashes, data loss, or even full system compromise.

In [9], authors developed a sophisticated multivariate stream
analysis approach for detecting and mitigating Distributed
Denial of Service (DDoS) attacks in VANETs. Their method
relied on vehicle-to-vehicle communication via Road Side
Units (RSUs), and they evaluated its performance using an
NS2 simulator. The findings of their study indicate that the
approach is highly effective in identifying DDoS attacks and
minimising their effects on VANET communication. Turner
et al. [3] proposed a visual analytics framework for detect-
ing potential attacks on traffic control systems. The authors
preprocess the traffic light data to correct errors and detect
missing entries. They then generate an overview of the data
using calculations such as the decomposition of traffic light
cycles and statistical computation. This overview helps in
detecting abnormal patterns in traffic light data and can aid
in detecting DoS attacks, data signal attacks, and light control
attacks. Xiang et al. [4] proposed a machine learning approach
to predict congestion attacks. To accomplish this, the authors
created a spoofing attack scenario and collected traffic flow
data with various spoofing frequencies. The authors identified
the potential congestion attacks by extracting vital features
from traffic flow data and utilising ensemble learning tech-
niques to detect the correlation between these features and the
occurrence of abnormal congestion and attacks. With the aid of
supervised learning using past data, their system can analyse
the current attack frequency and forecast potential congestion
attacks.

Although the above approaches shed some light on anomaly
detection in ITS, they did not take into account crucial traffic
signal parameters, such as vehicle speed is not considered. In
addition, they did not properly construct a mass value function
for flow rate and speed. Furthermore, they did not properly
address the noise characteristics of traffic patterns.

III. PROPOSED ANOMALY DETECTION SYSTEM

The proposed approach uses an information fusion tech-
nique to detect anomalies in ITS. The information fusion



(for multi-sensor data) technique combines information from
multiple sensors to obtain a more accurate and complete
representation of the monitored ITS. In the case of using
evidence from three different types of sensors in ITS, the
process involves combining data from all three sensors to
obtain a more reliable and robust estimate of the measured
quantity.

Fig. 1. The operational flow chart of the proposed anomaly detection system.

A. Overview of the Proposed Anomaly Detection System.

The flow chart of our proposed model is shown in Figure 1.
The steps to perform information data fusion using evidence
from three sensors are:

1) Collect data from three sensors: Collect data (flow rate,
Average vehicle speed, and phase time) from three
sensors that measure the same quantity or parameter.
The data collection method is described in Section III-B

2) Pre-process the data: Pre-process the data from each
sensor to remove any noise, outliers, or errors. This
may involve filtering, smoothing, or interpolation. In
this step, baseline traffic characteristics for the observed
intersection are created (refer to Section III-D).

3) Combine the data: Combine the data from all three
sensors using a fusion algorithm. Two fusion algorithms,
including Kalman filtering and the Bayesian method
(Dempster-Shafer decision theory), are used to calculate
the probability of normal observations for individual and
multiple sensors. The fusion algorithm should consider
the sensors’ characteristics, such as their accuracy, pre-
cision, reliability, and correlation between the measure-
ments.

4) Evaluate the results: Evaluate the sensor data fusion
results to determine the estimate’s accuracy and relia-
bility. This involves comparing the fused estimate with
the measurements from each individual sensor or with
a reference measurement obtained from another source
to detect anomalies.

5) Refine the fusion algorithm: If the results of the sensor
data fusion are not satisfactory, refine the fusion algo-
rithm by adjusting the parameters or using a different
fusion method. By using evidence from three sensors
and performing sensor data fusion, obtaining a more
accurate and reliable estimate (detecting anomaly) of the
measured quantity is possible than from any individual
sensor alone.

B. Traffic data monitoring

For the simulation setup, we used Simulation of Urban
Mobility (SUMO) [13]. The historical hourly traffic data
was collected from VicRoads [14]. Vicroads uses Sydney
Coordinated Adaptive Traffic Systems and different in-road
sensors to collect these data. The flow rate, average vehicle
speed, and phase time for three intersections of Melbourne
CBD were taken from Victoria’s (Australia)Department of
transport Open hub data [15].

Phase time refers to the duration of time that a specific
signal phase is active. A signal phase is a specific combination
of traffic movements that are allowed to proceed at a traffic
signal, such as vehicles travelling through an intersection in
a particular direction or pedestrians crossing the street. The
duration of the phase time is typically set based on factors
such as traffic volume, pedestrian demand, and the length of
the crossing distance. In SCATS, phase time can be adjusted
dynamically in response to real-time traffic conditions.

Cycle time, on the other hand, refers to the total time
required for all signal phases to be completed and for the
traffic signal to return to the first phase. It includes the time for
each individual phase as well as any necessary delay between
phases. Cycle time is typically determined based on factors
such as the number of phases, the amount of time needed
to clear traffic from each phase, and the amount of time
required for pedestrian crossings. In SCATS, cycle time can
also be adjusted dynamically to respond to changes in traffic
demand. Average vehicle speed refers to the average speed of
vehicles travelling through a given section of roadway over a
specific period of time. It is typically measured using sensors
placed along the roadway that detect the passage of individual
vehicles and record their speed. Average vehicle speed is a



key indicator of traffic congestion, as slower speeds are often
associated with higher levels of congestion.

Flow rate, on the other hand, refers to the number of
vehicles passing through a given section of roadway per unit
time. It is typically measured using sensors that detect the
passage of individual vehicles and record the time at which
each vehicle passes the sensor. Flow rate is a key indicator
of traffic volume, as higher flow rates are typically associated
with higher levels of traffic.

In ITS using SCATS, average vehicle speed and flow rate are
used to optimise traffic signal timing by adjusting the duration
of signal phases and cycle times in response to real-time traffic
conditions. For example, if average vehicle speeds are lower
than normal or flow rates are higher than normal, SCATS may
adjust signal timing to give priority to the direction of traffic
with the highest demand in order to reduce congestion and
improve traffic flow.

C. Baseline model

Developing a traffic predictive model involves using histor-
ical traffic data and traffic volume estimates from the Kalman
filter to forecast future traffic volumes.

D. Kalman filter for noise reduction

By using historical traffic data and the traffic volume
estimates from the Kalman filter to develop a traffic predictive
model, it is possible to obtain more accurate and reliable traffic
flow data. This can be used to optimise traffic flow and manage
congestion during peak periods, resulting in a more efficient
and safe transportation system.

We consider the ITS as a stochastic system that is linear
and varies discretely over time with k sensors as:

x(Υ + 1) = α(Υ)x(Υ) + β(Υ)i(Υ) + γ(Υ)ξ(Υ), (1)

yi(Υ) = Gi(Υ)x(Υ) + ψi(Υ), i = 1, 2, ..., k. (2)

In the above equations, x(Υ) ∈ Rn represents different
states while yi(Υ) ∈ Rmi shows the measurement of different
sensors. Here, i(Υ) ∈ Rp represents a known control input,
white noises are represented by ξ(Υ) ∈ Rr and ψ(Υ) ∈ Rmi ,
and α(Υ), β(Υ), γ(Υ), and Gi(Υ) indicates matrices with
time-varying properties and compatible dimensions. Consid-
ering the above representations, similar to the work proposed
in [16], the following assumptions can be made:

A1. white noises ξ(Υ) and ψi(Υ) are correlated with zero
mean and following properties:

E

{[
ξ(Υ)
ψ(Υ)

] [
ξT (l) ψT (l)

]}
=

[
Q(Υ) Si(Υ)
ST
i (Υ) Ri(Υ)

]
δΥl,

E
[
ψi(Υ)ψT

j (l)
]
= Sij(Υ)δΥl, i ̸= j. (3)

Here, the mathematical expectation is represented with E
while the transpose matrix is represented with superscript T .
The Kronecher delta function is denoted with δΥl

A2. The initial state x(0) does not depend on white noises
ξ(Υ) and ψi(Υ), where i = 1, 2, ..., k, and the maintains the
following:

Ex(0) = µ0,

E
[
(x(0)− µ0)(x(0)− µ0)

T
]
= P0 (4)

Considering the measurements at state x(Υ) from different
sensors, i.e., yi(1), yi(2), ..., yi(Υ), the Kalman filter for the
optimal information fusion x̂0(Υ|Υ) that can meet the follow-
ing requirements:

requirement 1 there are no biases, i.e., Ex̂0(Υ|Υ) =
Ex(Υ)

requirement 2 identification of the optimal values for
the matrix weights Āi(Υ), where i = 1, 2, .., k that can
minimise error variance for filtering with τ

[
H0(Υ|Υ)

]
=

min{τ
[
H(Υ|Υ)

]
}. Here, H(Υ|Υ) and H0(Υ|Υ) represent

the variance of an arbitrary and optimal fusion filter, respec-
tively, with the weights of matrix and τ shows the trace of
a matrix. Sun and Deng [16] considered the linear minimum
variance and established that the maximum likelihood fusion
criteria can be met even without considering a standard normal
distribution. Interested readers may refer to that study.

Under the assumptions specified in A1 and A2, the i-th local
sensor subsystem of system (1) and (2) (which incorporates
multiple sensors) can attain the most optimal Kalman filter
and leading to the following equations.

x̂i(Υ+1|Υ+1) = x̂i(Υ+1|Υ)+Di(Υ+1)χi(Υ+1), (5)

x̂i(Υ+1|Υ) = ᾱi(Υ)x̂i(Υ|Υ)+β(Υ)i(Υ)+Li(Υ)yi(Υ) (6)

χi(Υ + 1) = yi(Υ + 1)−Gi(Υ + 1)x̂i(Υ + 1|Υ), (7)

Di(Υ + 1) = Pi(Υ + 1|Υ)GT
i (Υ + 1)[Gi(Υ + 1)Pi(Υ + 1|Υ)

GT
i (Υ + 1) +Ri(Υ + 1)]−1,

(8)

Pi(Υ + 1|Υ) = ᾱi(Υ)Pi(Υ|Υ)ᾱi
T (Υ)+

γ(Υ)[Q(Υ)− Si(Υ)R−1
i (Υ)ST

i (Υ)]γT (Υ) (9)

Pi(Υ + 1|Υ+ 1) = [In −Di(Υ + 1)Gi(Υ + 1)]pi(Υ + 1|Υ),
(10)

X̂i(0|0) = µ0 Pi(0|0) = P0. (11)

ᾱi(Υ) = αi(Υ)− Li(Υ)Gi(Υ) (12)

Li(Υ) = γ(Υ)Si(Υ)R−1
i (Υ) (13)

The equations above feature Di(Υ) and χi(Υ), which
correspond to the filtering gain matrix and innovation process
(ith sensor) subsystem. Additionally, the matrices Pi(Υ|Υ)
and Pi(Υ + 1|Υ) represent the filtering and prediction error
variance for the first step, respectively.



The proposed model entails each sensor subsystem evaluat-
ing the states and conducting independent anomaly detection.
If a subsystem detects an anomaly, it is isolated and reported.
Otherwise, the estimations are transmitted to the initial fusion
layer. In this layer, the estimation error of all the pairs of
sensors is utilised to calculate the cross co-variance in each
time step. The estimations along with the variances are also
passed to the next fusion layer where these values from
faultless subsystems are used to determine the optimum values
for the weight matrix and attain the optimal fusion filter.

In our proposed scenario we can consider that it uses mul-
tiple sensors to measure different attributes, such as average
vehicle speed, signal phase time, and flow rates. In this case,
a system with three sensors can be denoted as:

x(t+ 1) =

1 T T 2/2
0 1 1
0 0 1

x(t) +
00
1

 ξ(t), (14)

yi(t) = Gix(t) + ψi(t), (15)

where ψi(t) = λiξ(t) + ηi(t), i = 1, 2, 3 and the sam-
pling period is presented with T . If ss(t), sf(t), and sp(t)
represent the vehicle speed, flow rate, and phase time, at
time t respectively, the state can be denoted as,x(t) =[
sf(t) ss(t) sp(t).

]
. The measurement signals and noises

at time t are depicted with yi(t) and ψt(t), respectively, for
i = 1, 2, 3. ξ(t) shows the Gaussian white noise that has a
mean of zero and a variance of σ2

ξ . Furthermore, λi shows
a constant scalar while ηi(t) shows a Gaussian white noise
independent of ξ(t) with zero mean and variance matrices σ2

ηi
.

The objective here is to determine the optimal Kalman Filter
(x̂0(t|t)) for information fusion.

Using the historical data from Vicroads, we simulated both
normal and intrusion scenarios in traffic signal systems. To
simulate normal traffic conditions, the flow rate, vehicle speed,
and phase time of a specific intersection were obtained from
our simulation model developed using SUMO, with traffic dis-
tributions initiated using normal historical traffic information
obtained from the VicRoads online data [14]. To replicate
real-world traffic conditions in our simulation, we selected
the density, vehicle speed, and phase time of incoming and
outgoing traffic for the intersection of interest from the range
of historical data collected from 2016-2018 available on the
VicRoads website.

For intrusion scenarios, the vehicle speed, flow rate, and/or
average phase time for a specific scenario were changed to
simulate an attack on the traffic signals. The intrusion was
simulated by inducing changes in either the flow rate, vehicle
speed, or phase time of the intersection. If the intrusion lasts
for a very short time (less than one cycle time), the data for
flow rate, vehicle speed, and phase time will remain within
the range of 68% to 95% confidence intervals. However, if
the intrusion lasts longer, the data will go outside the 95%
confidence interval. In order to address both short and long-
term intrusions, adjustments were made to the flow rate,
vehicle speed, or phase time to ensure they fell within the

68% to 95% confidence intervals in some instances (Scenario
2, Scenario 4, and Scenario 6), while exceeding the 95%
confidence intervals of the corresponding historical data in
other instances. The induced average vehicle speed of an
intersection was also inserted while the phase time and flow
rate were kept normal.

E. Probability Mass Function

We utilise an inference method based on DS decision theory
[17] to determine whether an ITS is functioning normally or
abnormally. To define the frame of discernment, our system
uses three propositions for an observation being: normal (N),
intruded (I), and uncertain (N ∨ I). We statistically measure
the belief function for each sensor for flow rate, vehicle speed,
and phase time. We utilise probability mass functions based
on historical data from the corresponding time window of that
day (15-minute intervals) to calculate the probability of any
specific observation being normal.

The lower limit of the probabilistic value of the jth inter-
section being normal for y events can be defined using the
belief function of the DS theory [18]:

belj(N) =
1

1− k
×

∑
∩Ew(t)=N̸=∅

;
∏

1≤w≤y

mj(Ew(t)) (16)

where k is defined as:

k =
∑

∩Ew(t)=∅

;
∏

1≤w≤y

mj(Ew(t)) (17)

As per Shannon information theory [19], the uncertainty
is the highest when mj(Ew(t)) = mjw(N)=0.5. Note, here,
mjw(N) denotes the probabilistic value of a mass function
for wth event (Ew(t)) having jth intersection being normal.
If the value of mjw(N) moves in either direction from 0.5,
the uncertainty decreases. The uncertainty associated with
mjw(N) i.e., the probability, mjw (N ∨ I) is defined as:

mjw(N ∨N) = −mjw(N)log2mjw(N)−
(1−mjw(N))log2(1−mjw(N))

(18)

Since, mjw(N ∧ I) denotes the null hypothesis i.e.,
mjw(N ∧ I)=0, mjw(¬N) is derived as,

mjw(¬N) = 1−mjw(N)−mjw(N ∨ I) (19)

The upper limit (plausibility) of jth intersection being
normal is defined as:

plj(N) = 1− belj(I) (20)

For obtaining the uncertainty value and then the belief
value using (18) and (16), respectively, we need to calculate
mj(Ew(t)) for the flow rate, vehicle speed and phase time.

One or more of the sensors used to collect data for the
TMS may be targeted by an attacker seeking to intrude. To
detect any such intrusions, we can compare the observed
values of a sensor with its corresponding original historical



TABLE I
THE OVERALL PROBABILITY FOR FLOW RATE, PHASE TIME, AND AVERAGE VEHICLE SPEED IN SIX DIFFERENT SCENARIOS (S1-S6)

F S P
P (N) P (I) P (N ∨ I) P (N) P (I) P (N ∨ I) P (N) P (I) P (N ∨ I)

S1 0.56 0.32 0.12 0.61 0.28 0.11 0.68 0.2 0.12
S3 0.65 0.27 0.08 0.46 0.48 0.06 0.71 0.21 0.08
S5 0.49 0.34 0.17 0.43 0.45 0.12 0.57 0.3 0.13
S2 0.38 0.53 0.09 0.18 0.75 0.07 0.17 0.73 0.1
S4 0.22 0.72 0.06 0.41 0.47 0.12 0.25 0.67 0.08
S6 0.42 0.43 0.15 0.32 0.59 0.09 0.31 0.62 0.07

(a) Anomaly detection for normal traffic condition (b) Anomaly detection for intruded traffic condition

Fig. 2. Probability for flow rate, average vehicle speed, and phase time for normal traffic condition and intruded traffic condition for Scenario 1 and 2.

values that have not been altered. To develop probability mass
functions, denoted as mj(), we employ a DS theory-based
fusion approach defined in (16) and (20). By comparing the
observed and historical values, our approach can identify any
abnormal or anomalous sensor behaviour, which may indicate
a security breach.

F. Results and Analysis

We used 1472 sample data points for the three intersections
for each piece of evidence (F, P, S), the combination of two
pieces of evidence (FP, PS, FS, FSP) and six different
scenarios. Therefore, the total number of observations we used
is 368× 3× 7× 6 = 185472. These 1472 sample data points
were distributed to 41, 39, and 42 observations (15-minute
intervals) for Intersections 1, 2, and 3, respectively. Table I
shows the probabilities of signals being normal (N ), Intruded
(I), and the uncertainty (N ∨ I) for Scenarios 1-6 having
various flow rates, average speeds, and phase times. Note,
Scenarios 1, 3, and 5 were created using the original data
collected from VicRoads to emulate normal traffic conditions
without intrusion. Whereas, Scenarios 2, 4, and 6 were created
to induce intrusions by using the same data but manipulating
a combination of flow rate, phase time, and average vehicle
speed.

Table I shows the probabilities of different traffic conditions
for six different traffic scenarios, each characterised by three
traffic variables: flow rate, vehicle speed, and phase time. The
traffic conditions are classified into three categories: normal

(N), not normal (I), and uncertain (N∨I). The abbreviations
used in the table are:

P(N): Probability of normal traffic condition
P(I): Probability of not normal traffic condition
P(N ∨ I): Probability of uncertain traffic condition
For each traffic scenario (S1 to S6), Table I shows the

probability values for each of the three traffic variables (flow
rate, vehicle speed, and phase time) for each of the three traffic
condition categories. For traffic scenario S1, the probability of
having a normal traffic condition (N) is 0.56 for flow rate, 0.61
for vehicle speed, and 0.68 for phase time. The probability of
having a not normal traffic condition (I) is 0.32 for flow rate,
0.28 for vehicle speed, and 0.2 for phase time. The probability
of having an uncertain traffic condition (N∨I) is 0.12 for flow
rate, 0.11 for vehicle speed, and 0.12 for phase time. It is hard
to determine whether the sensors were compromised by using
data from a single sensor.

Figures 2a - 3b display the anomaly detection results and
their uncertainty values produced by our system for Scenarios
1 to 4 for multiple sensors. We utilised four different com-
binations of two observations, including flow rate and phase
time (FP), flow rate and vehicle speed (FS), phase time and
vehicle speed (PS), and flow rate, phase time, and vehicle
speed (FPS).

For intersection 1 in Figure 2a, the probability of having
a normal traffic condition (N) is 0.52 for FS , 0.58 for FP,
0.64 for PS, and 0.71 for FPS. The probability of having a
not normal traffic condition (I) is 0.31, 0.34, 0.28, and 0.18



(a) Anomaly detection for normal traffic condition (b) Anomaly detection for intruded traffic condition

Fig. 3. Probability for flow rate, average vehicle speed, and phase time for normal traffic condition and intruded traffic condition for Scenario 3 and 4.

for FS, FP, PS, and FPS, respectively. The probability of
having an uncertain traffic condition is 0.17, 0.08, 0.08, and
0.11 for the same traffic variables. The combination of flow
rate, vehicle speed, and phase time in the FPS variable can
provide a more nuanced understanding of traffic conditions
than simply looking at the fused value of two sensors (e.g.,
FP, FS, PS). This is because FPS captures the proportion
of flow that is under the speed limit, which can be affected
by both vehicle speed and phase time. Therefore, using com-
binations of three traffic conditions may indeed provide better
results for analysing normal traffic conditions than using only
two conditions. However, this would depend on the specific
context (e.g., intruded traffic conditions) and it would require
further analysis and validation.

The results of anomaly detection and their corresponding
uncertainty values for Scenarios 1 to 4 across multiple sensors
are presented in Figures 2a - 3b. Three distinct combinations
of two observations were employed in the analysis, comprising
of flow rate and phase time (FP), flow rate and vehicle
speed (FS), phase time and vehicle speed (PS), and one
combination of three observations, flow rate, phase time, and
vehicle speed (FPS).

Figure 2a illustrates the outcomes of anomaly detection at
Intersections 1, 2, and 3. The probability of normal traffic
conditions (N) is 0.52 for flow rate and vehicle speed (FS),
0.58 for flow rate and phase time (FP), 0.64 for phase time
and vehicle speed (PS), and 0.71 for flow rate, phase time,
and vehicle speed (FPS) for Intersection 1. Conversely, the
probability of not normal traffic conditions (I) is 0.31, 0.34,
0.28, and 0.18 for FS, FP, PS, and FPS, respectively.
For uncertain traffic conditions, the respective probabilities
are 0.17, 0.08, 0.08, and 0.11. The results indicate that the
combination of three traffic conditions in FPS can provide
a more comprehensive analysis of traffic conditions compared
to the fused value of two sensors, such as FP, FS, or PS.
This is because FPS captures the proportion of flow under
the speed limit, which can be affected by both vehicle speed
and phase time. However, this conclusion is dependent on

contextual factors, such as intruded traffic conditions, and
necessitates further investigation and verification.

Figure 2b presents the results of anomaly detection at
Intersections 1, 2, and 3. For Intersection 1, the probability
of normal traffic conditions (N) is 0.41, 0.38, 0.24, and 0.41
for flow rate and vehicle speed (FS), flow rate and phase time
(FP), phase time and vehicle speed (PS), and flow rate, phase
time, and vehicle speed (FPS), respectively. In contrast, the
probability of not normal traffic conditions (I) is 0.51, 0.53,
0.64, and 0.5 for the same variables. Our analysis suggests that
fusing all three sensors can result in better results if the traffic
condition is normal (no sensors are intruded). However, if
there is an intruded scenario, combining data from two sensors
provides better results. Additional tests performed on normal
and intruded traffic conditions are displayed in Figure 3a and
Figure 3b, which support our findings.

Figure 3a presents the probabilities for normal traffic con-
ditions at Intersection 1, where the values for flow rate and
vehicle speed (FS), flow rate and phase time (FP), phase time
and vehicle speed (PS), and flow rate, phase time, and vehicle
speed (FPS) are 0.68, 0.61, 0.59, and 0.74, respectively. The
probabilities for not normal traffic conditions for the same
variables are 0.27, 0.33, 0.35, and 0.20, respectively. In Figure
3b, it is apparent that for all intersections, the probability of
traffic conditions being not normal exceeds 0.5.

In this study, we evaluate the performance of our proposed
model for detecting both intruded and nonintruded traffic
scenarios through the use of four performance metrics -
sensitivity, specificity, accuracy, and F1 score. The accuracy
values range from 0.59 to 0.76 for no fusion, while the range
increases to 0.65 to 0.83 for two-sensor fusion. Notably, our
proposed system demonstrates overall superior performance
with accuracy ranging from 0.72 to 0.85 across all three
sensors. While our system is capable of detecting most normal
and intruded traffic conditions accurately in our simulation,
it should be noted that the dynamic nature of traffic condi-
tions can result in false positives and false negatives. Table
II demonstrates that none of the evidence pieces achieves



superior performance in terms of all metrics, as there may be
certain situations where our system may not accurately detect
normal traffic conditions.

TABLE II
PERFORMANCE

Fusion Scenario Accuracy Precision Recall F1-Score
1 0.74 0.87 0.75 0.80
2 0.63 0.80 0.63 0.71
3 0.76 0.87 0.77 0.82
4 0.60 0.79 0.60 0.68
5 0.69 0.85 0.69 0.76

None

6 0.59 0.76 0.60 0.67
1 0.83 0.92 0.83 0.87
2 0.68 0.85 0.67 0.75
3 0.83 0.91 0.84 0.88
4 0.72 0.89 0.70 0.78
5 0.72 0.83 0.76 0.79

Two

6 0.65 0.85 0.62 0.72
1 0.84 0.92 0.84 0.88
2 0.72 0.87 0.71 0.78
3 0.83 0.95 0.80 0.87
4 0.74 0.85 0.77 0.81
5 0.85 0.95 0.83 0.88

Three

6 0.73 0.89 0.70 0.78

IV. CONCLUSION

Our proposed anomaly detection system for ITS relies on
real-time and historical observations of traffic parameters such
as traffic flow, average vehicle speed, and phase time. We
created simulation scenarios on the SUMO platform with
real road networks in Melbourne CBD and actual data from
transportation authorities. Due to the dynamic characteristics
of traffic data, there are lots of outliers and noise in the
data. We used Kalman filer, Dempter-Shafer decision theory,
and Shannon entropy for information fusion and handling
uncertainty. We assessed our system’s ability to detect traffic
signal intrusion using standard performance metrics, including
accuracy, sensitivity, specificity, and F1-score. The accurate
detection of both normal and intruded traffic conditions is
critical for effective traffic management and road safety. Our
proposed model presents a promising solution for achieving
this goal by leveraging data from multiple sensors using
information fusion to provide a more comprehensive un-
derstanding of traffic conditions. While our results indicate
overall superior performance for our proposed system, there
are certain limitations that should be taken into consideration.
For instance, our simulations may not fully capture the com-
plexity of real-world traffic conditions, which may impact the
accuracy of our results. Additionally, our study only considers
a limited number of performance metrics, and further research
is needed to explore the effectiveness of our model from other
perspectives, such as computational efficiency and scalability.
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[19] A. Rényi, “On measures of entropy and information,” in Proceedings of
the Fourth Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Contributions to the Theory of Statistics. University
of California Press, 1961, pp. 547–561.


