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The smallest bimolecular mass-action system with
a vertical Andronov–Hopf bifurcation

Murad Banajia, Balázs Boros1b, Josef Hofbauerb

aDepartment of Design Engineering and Mathematics, Middlesex University London, United Kingdom
bDepartment of Mathematics, University of Vienna, Austria

act

sent a three-dimensional differential equation, which robustly displays a degenerate Andronov–Ho
tion of infinite codimension, leading to a center, i.e., an invariant two-dimensional surface that
ith periodic orbits surrounding an equilibrium. The system arises from a three-species bimolecul
al reaction network consisting of four reactions. In fact, it is the only such mass-action system th
a center via an Andronov–Hopf bifurcation.

rds: center, center manifold, constant of motion
SC: 34A05, 34C25, 34C45

mary of the main results

rder to admit an Andronov–Hopf bifurcation, the underlying chemical reaction network of a bimole
ass-action system must have at least three species and at least four reactions. It has recently be
that there are exactly 138 nonisomorphic three-species four-reaction bimolecular reaction network
associated mass-action systems admit Andronov–Hopf bifurcation [1]. These networks fall into
ically nonequivalent classes. Of these classes, 86 admit nondegenerate Andronov–Hopf bifurcation f
all parameter values on the bifurcation set, leading to isolated limit cycles. In the remaining cla
r, the Andronov–Hopf bifurcation can only be degenerate. A representative of this exceptional cla

Z+ X 2X

X+ Y 2Y

Y + Z 0 2Z

κ1

κ2

κ3 κ4

(

rise to the mass-action differential equation

ẋ = x(κ1z − κ2y),

ẏ = y(κ2x− κ3z),

ż = z(−κ3y − κ1x) + 2κ4

(

ate space R3
≥0, where κ1, κ2, κ3, κ4 are positive parameters, called the reaction rate constants. (T

ember of the exceptional class is obtained from (1) by replacing the reaction 0 → 2Z by 0 → Z
estion left open in [1] concerns the behaviour of system (2). In Section 3, we prove that whenev
cobian matrix at the unique positive equilibrium has a pair of purely imaginary eigenvalues, t

s work was supported by the Austrian Science Fund (FWF), project P32532.
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rium is a center, i.e., there is a one parameter family of periodic orbits that fill the two-dimension
manifold. In particular, Andronov–Hopf bifurcations in system (2) are always vertical, i.e., all t
c orbits occur simultaneously at the critical value of the bifurcation parameter. Additionally,
hat every positive solution converges either to one of these periodic orbits or to the unique positi
rium. Further, we show that the global center manifold is analytic and discuss how its closu
cts the boundary of the state space R3

≥0.

tical Andronov–Hopf bifurcations in mass–action systems

re are two well-known small reaction networks that exhibit oscillations. The Lotka reactions [9] (le
Ivanova reactions [12, page 630] (right) along with their associated mass-action differential equatio

X 2X

X+ Y 2Y

Y 0

κ1

κ2

κ3

ẋ = x(κ1 − κ2y)

ẏ = y(κ2x− κ3)

Z+ X 2X

X+ Y 2Y

Y + Z 2Z

κ1

κ2

κ3

ẋ = x(κ1z − κ2y)

ẏ = y(κ2x− κ3z)

ż = z(κ3y − κ1x)

he Lotka and the Ivanova networks are bimolecular (i.e., the molecularity of every reactant a
t is at most two) and have rank two (i.e., the span of the vectors of the net changes of the species
ensional). For the Lotka system, the unique positive equilibrium is surrounded by periodic orbi

el sets of xκ3yκ1e−κ2(x+y). For the Ivanova system, the triangle ∆c = {(x, y, z) ∈ R3
+ : x+ y + z =

iant for any c > 0, and the unique positive equilibrium in ∆c is surrounded by periodic orbits, t
ts of xκ3yκ1zκ2 . For both the Lotka and the Ivanova systems, the described behaviour holds for
κ3 > 0, and hence, these systems admit no bifurcation.
[2, Theorem 4.1], the Lotka and the Ivanova systems are the only rank-two bimolecular mass-acti
s with periodic orbits. Thus, for an Andronov–Hopf bifurcation to occur in a bimolecular mass-acti
, its rank must be at least three, and hence, it must have at least three species. Moreover, by
2.3], it must have at least four reactions.
turn to the question of when mass-action systems admit vertical Andronov–Hopf bifurcations.
not require bimolecularity then these can occur in rank-two networks. For example, as a sho
tion shows, by adding the reactions X

κ5←− 2X
κ4−→ 3X to the Lotka network above, the resulting ma

system exhibits a vertical Andronov–Hopf bifurcation: for κ4 slightly smaller than κ5 the positi
rium is asymptotically stable, for κ4 slightly larger than κ5 it is repelling, while for κ4 = κ5 it is

ussing on bimolecular networks, we can construct rank-three networks with vertical Andronov–Ho
tion. For instance, by inserting some intermediate steps into the Ivanova network and choosing t
nstants appropriately, we obtain the following rank-three bimolecular mass-action system with cyc
try:

Z+ X X 2X

X+ Y Y 2Y

Y + Z Z 2Z

α γ

β
α γ

β
α γ

β

ẋ = x(γ − βx− αy)

ẏ = y(γ − βy − αz)

ż = z(γ − βz − αx)
(

stem exhibits vertical Andronov–Hopf bifurcation: the unique positive equilibrium is asymptotica
for α < 2β, it is unstable for α > 2β, while it is a center for α = 2β. More precisely, for α = 2β t

e ∆ = {(x, y, z) ∈ R3
+ : x+y+z = γ

β } is invariant, and on ∆ the equilibrium (x∗, y∗, z∗) =
(

γ
3β ,

γ
3β ,

γ
3β

2
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unded by periodic orbits. On these curves, the function xyz is constant, as in the Ivanova syste
ual rate constants. In fact, the function xyz

(x+y+z)3 is a constant of motion in R3
+, the stable manifo

y∗, z∗) is the line x = y = z in R3
+, while the ω-limit set of any positive initial point outside this li

of the periodic orbits in ∆, see [10] or [6, Section 5.5].
he next section, we prove that the mass-action system (2) (which is obtained from the Ivanova netwo
ing a single intermediate step, and has only four reactions) also admits a vertical Andronov–Ho
tion, even though it has no obvious symmetries. By [1, Theorems 5.2 and 7.1], up to renaming t
, it is the only three-species four-reaction bimolecular mass-action system that exhibits a vertic
ov–Hopf bifurcation.

alysis

his section we analyse the mass-action system (2). In particular, we show that it undergoes a vertic
ov–Hopf bifurcation at κ1 = κ2 + κ3. A description of the dynamics in the critical case is provid
orem 1, while some information on the shape of the global center manifold is revealed in Theorem
a short calculation, system (2) has a unique positive equilibrium, given by

(x∗, y∗, z∗) =

(√
κ3κ4

κ1κ2
,

√
κ1κ4

κ2κ3
,

√
κ2κ4

κ1κ3

)
.

ng by J the Jacobian matrix at (x∗, y∗, z∗), one finds that the characteristic polynomial of J equa
λ2 + a1λ+ a0 with

a2 = 2

√
κ1κ3κ4

κ2
, a1 = (κ1 + κ2 − κ3)κ4, a0 = 4

√
κ1κ2κ3κ3

4.

0 > 0, one eigenvalue is a negative real number, and the real parts of the other two eigenvalues ha
e sign. Since a2 > 0 this sign equals sgn(a0 − a2a1) = sgn(−κ1 + κ2 + κ3) by the Routh–Hurw
n. Hence,

1 > κ2+κ3 then all three eigenvalues of J have negative real parts (and thus, the positive equilibriu
symptotically stable),

1 = κ2 + κ3 then J has a pair of purely imaginary eigenvalues,

1 < κ2 + κ3 then J has eigenvalues with positive real parts (and thus, the positive equilibrium
stable).

n the bifurcation set (given by κ1 = κ2+κ3), apart from the negative real eigenvalue, there is a pa
inary eigenvalues (±ωi with ω =

√
2κ2κ4). It was shown by direct calculation in [1] that the fir

e second focal values (also known as Poincaré–Lyapunov coefficients [4], or Lyapunov coefficients [8
anish. In the sequel, we show by providing a constant of motion that the system (2) has a cent
er κ1 = κ2+κ3. Therefore, by a theorem of Lyapunov (see [4, page 143 and Theorem 7.2.1]), in fa
focal value vanishes for all k ≥ 1, and system (2) exhibits a vertical Andronov–Hopf bifurcation

es through κ2 + κ3.

em 1. For the mass-action system (2) with κ1 = κ2 + κ3, the following hold.

he function

V (x, y, z) =
κ2

2
(x− y + z)2 + 2κ2xy − 2κ4 log(xy)

a constant of motion.

he stable manifold of (x∗, y∗, z∗) is {(x, y, z) ∈ R3
≥0 : x− y + z = 0, xy = κ4

κ2
}.

3
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here exists an analytic two-dimensional invariant surfaceM in R3
+, composed of periodic orbits a

e positive equilibrium. The ω-limit set of any positive initial condition outside the stable manifold
e positive equilibrium is one of the periodic orbits inM.

We perform a change of coordinates which reveals the global orbit structure of (2). The map

Ψ:



x
y
z


 7→




x− y + z
log x+ log y − log κ4

κ2

− log x+ log
√

κ3κ4

κ1κ2


 (

nalytic diffeomorphism between {(x, y, z) ∈ R3 : x > 0, y > 0} and R3. Its inverse is given by

Ψ−1 :



p
q
r


 7→




α
κ1
e−r

α
κ3
eq+r

p− α
κ1
e−r + α

κ3
eq+r


 ,

α =
√

κ1κ3κ4

κ2
. When κ1 = κ2 + κ3, the new coordinates (p, q, r) = Ψ(x, y, z) evolve according to t

tial equation

ṗ = −2κ4(e
q − 1),

q̇ = κ2p,

ṙ = −κ1p+ α(e−r − eq+r).

(

ice that p and q evolve independently of r. In fact, the (p, q)-system is Newtonian (i.e., q̈+F (q) = 0
us, it is also Hamiltonian. Its Hamiltonian function is

H(p, q) =
κ2

2
p2 + 2κ4(e

q − q − 1).

◦ (Ψ1,Ψ2) differs from the function V in (i) only by an additive constant, V is indeed a constant
in the original coordinates, proving (i). Observe furthermore that the r-axis is invariant for (5), a
there converges to the origin. Thus, the r-axis is the stable manifold, and in turn, this shows (ii
level sets of H are closed, bounded curves which foliate the (p, q)-plane. Thus, in the (p, q)-syste

gin is a global center, i.e., each nonconstant solution is a periodic one whose orbit surrounds t
see Figure 1 for a phase portrait.
function H also provides an analytic constant of motion for system (5). Thus, the Lyapunov Cent
m (see e.g., [7], [3, Theorem 3], or [11, Theorem 5.1.1]) shows that the local center manifold at t
rium (0, 0, 0) is unique, analytic, and filled with periodic orbits. In the following we show that th
manifold extends globally and attracts every solution.
any L > 0, the cylinder CL = {(p, q, r) ∈ R3 : H(p, q) = L} is invariant for the differential equati
d there exist r < 0 < r such that

ṙ < 0 in {(p, q, r) ∈ CL : r > r} and ṙ > 0 in {(p, q, r) ∈ CL : r < r}

herefore, the bounded cylinder {(p, q, r) ∈ CL : r ≤ r ≤ r} is forward invariant, and attracts all orb
This shows, in particular, that all solutions of the differential equation (5) exist for all positive tim
the differential equation (5) defines a semiflow Φt on R3. On the other hand, the (p, q) subsystem

ted with a flow Φ̂t on the (p, q)-plane since all orbits are bounded and thus exist for all time. Bo

Φ̂t are analytic (by the analytic dependence of solutions on initial conditions).
t, we show that any two solutions starting above each other on a cylinder CL approach each oth
denote the r.h.s. of (5) as f(p, q, r), and accordingly, f3(p, q, r) equals −κ1p + α(e−r − eq+r). No

∂f3
∂r

= −α(e−r + eq+r) ≤ −2αeq/2. (

4
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Figure 1: The phase portrait of ṗ = −2κ4(eq − 1),
q̇ = κ2p. All nonconstant solutions are periodic.

fixed L > 0, let (p, q, r1), (p, q, r2) ∈ CL with r1 < r2. Further, let ri(t) = Φt
3(p, q, ri), the thi

nent of the solution. Then r1(t) < r2(t) for all t > 0 and, by the Mean Value Theorem,

ṙ2(t)− ṙ1(t) = f3(p(t), q(t), r2(t))− f3(p(t), q(t), r1(t)) =

= (r2(t)− r1(t))
∂f3
∂r

(p(t), q(t), r̃(t))

(t) ≤ r̃(t) ≤ r2(t). By (6), it follows that

ṙ2(t)− ṙ1(t) ≤ −K(r2(t)− r1(t))

ith K = 2αeq/2, where q is the negative solution of H(0, q) = L. Thus, by the Gronwall Lemma,

|r2(t)− r1(t)| ≤ e−Kt|r2 − r1|. (

t, we define the Poincaré section

Σ = {(p, q, r) ∈ R3 : p = 0, q > 0},

Poincaré map P : Σ → Σ as follows. For any q > 0, let ℓq be the line {0} × {q} × R. Then (ℓq)q
iation of Σ. Associated with each q > 0 is a minimal positive period τq such that Φ̂τq (0, q) = (0, q
q (ℓq) ⊆ ℓq. By the analytic Implicit Function Theorem, τq is an analytic function of q. We can th
the first return map P by P (0, q, r) = Φτq (0, q, r), and since Φ and τq are analytic, P is analytic

define the analytic function R : (0,∞) × R → R by P (0, q, r) = (0, q, R(q, r)). For any fixed q >
stituting t = τq into (7), we obtain

|R(q, r2)−R(q, r1)| ≤ e−Kτq |r2 − r1|, (

g that R(q, ·) is a contraction. Hence, for each q > 0 the function R(q, ·) : R→ R has a unique fix
(q). Every orbit of P starting on the line ℓq converges to (0, q, h(q)) which corresponds to a period
f (5) with period τq. Additionally, since

∣∣∂R
∂r

∣∣ ≤ e−Kτq < 1 follows from (8), the analytic Impli
n Theorem applies to R(q, h(q)) = h(q), and thus, h is analytic for q > 0.
ally, applying Φt to the graph of h, we obtain the invariant surface C = {Φt(0, q, h(q)) : q > 0, t
(0, 0, 0)}, consisting entirely of periodic orbits of the flow (together with the equilibrium). Ne
gin, C coincides with the local center manifold, hence, C is analytic there by the Lyapunov Cent

5
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m. That C is analytic away from the origin follows by a straightforward argument that uses t
city of Φ, Φ̂, and h.
tingM = Ψ−1(C) and recalling that Ψ is an analytic diffeomorphism complete the proof of stateme

the next theorem, we describe how the closure of the surface M intersects the boundary of t
ative orthant R3

≥0. We call a solution t 7→ (x(t), y(t), z(t)) complete if it is defined for all t ∈ R.

em 2. For the invariant surface M, obtained in Theorem 1, the intersection M ∩ ∂R3
≥0 is t

tric curve

√
2κ4

κ3

(
0,

φ(τ)

Φ(τ)
,
φ(τ)

Φ(τ)
+ τ

)
for τ ∈ R,

(τ) = 1√
2π

e−
τ2

2 and Φ(τ) =
∫ τ

−∞ φ(s)ds. Up to the rescaling τ =
√
2κ3κ4t of time, this curve is t

mplete solution of (2) on the boundary of R3
≥0.

First, observe that d
dt (yz) < 0 whenever yz ≥ 2κ4

κ3
. Indeed,

d

dt
log(yz) =

ẏ

y
+

ż

z
= κ2x− κ3z − κ3y − κ1x+

2κ4

z
=

= −κ3(x+ z) +
2κ4 − κ3yz

z
< 0,

we used κ1 = κ2+κ3 and yz ≥ 2κ4

κ3
. As a consequence, for any point (x, y, z) ∈M we have yz ≤ 2κ

κ

t, we show thatM intersects the facet F = {(x, y, z) ∈ R3
≥0 : x = 0}. To this end, take a sequen

ts (pn, qn, rn)n≥0 ⊆ C such that pn = −1 and limn→∞ qn = −∞, where C is the invariant surface
erential equation (5), constructed in the proof of Theorem 1, foliated by periodic orbits. Then defi
, zn) = Ψ−1(pn, qn, rn) ∈M, where Ψ is given by (4). Since pn = −1, it follows that yn = xn+zn+
nsequently, yn ≥ 1. Since limn→∞ qn = −∞, we obtain that limn→∞ xnyn = 0. Hence, limn→∞ xn

limn→∞(yn − zn) = 1. Taking also into account that (x, y, z) ∈ M implies yz ≤ 2κ4

κ3
, the sequen

, zn)n≥0 has an accumulation point on the line segment {(0, y, z) ∈ R3
≥0 : y − z = 1 and yz ≤ 2κ4

κ3
}

ceM consists of orbits of complete solutions, so does the closure ofM. Therefore, sinceM⊆ R3
≥

a complete solution in R3
≥0 through the accumulation point that we found in the previous paragrap

he set G1 = {(x, y, z) ∈ R3 : x = 0, y ≥ 0} is invariant, this complete solution lies in G1 ∩ R3
≥0, i.e.,

t, we investigate the dynamics on G1. To ease the notation, we divide both y and z by
√

2κ4

κ3
. Aft

scaling time (τ =
√
2κ3κ4t), the differential equation (2) on G1 becomes

ẏ = −yz,
ż = −yz + 1.

(

neral solution to (9), up to time shift, is

y(τ) =
φ(τ)

Φ(τ) + C
,

z(τ) =
φ(τ)

Φ(τ) + C
+ τ,

(1

−1 < C ≤ ∞ (the limit case C =∞ gives the complete solution y(τ) = 0, z(τ) = τ along the z-axi
< C < 0 the solution (10) is defined only in the interval (τ0,∞), where τ0 is given by Φ(τ0)+C =
us, the solution is not complete. For C > 0, the solution (10) is defined for all τ ∈ R, howev

6
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mτ→−∞ z(τ) = −∞, it is a complete solution in G1, but not in F . Consequently, the only comple
n in F is (10) with C = 0. See Figure 2 for the orbits of the solutions (10) for different values of C
the invariant set G2 = {(x, y, z) ∈ R3 : x ≥ 0, y = 0}, the differential equation (2) takes the form

ẋ = κ1xz,

ż = −κ1xz + 2κ4.

(t)+ z(t) = 2κ4t+C (for some C ∈ R), for every solution with (x(0), z(0)) ∈ R2
≥0 there exists a tim

such that z(t∗) < 0. Thus, there is no complete solution in G2 ∩ R3
≥0.

ally, since ż > 0 for (2) whenever z = 0, the closure of M cannot intersect {(x, y, z) ∈ R3
≥0 : z

is concludes the proof of the theorem. (The shape of the global center manifold M is shown
3.)

y

z

-1<C<0

C=0

C>0

Figure 2: The phase portrait of the differential
equation (9), along with three highlighted trajec-
tories (for −1 < C < 0, C = 0, C > 0). The
trajectory shown in magenta is the only one that
corresponds to a complete solution that lies entirely
in the boundary of the nonnegative orthant R3

≥0.

Figure 3: The periodic orbits of the differential
equation (2) (shown in blue), the stable manifold of
the unique positive equilibrium (shown in red), and
the intersection of the closure of the center manifold
with the boundary of the positive orthant (shown in
magenta).

cussion

have shown in Theorem 1 that the positive equilibrium of (2) is a center when κ1 = κ2+κ3. In fa
vided a constant of motion V , and proved the existence of a global center manifoldM that attrac
itive solutions, albeit we have no explicit formula for M. The periodic orbits are obtained as t
ction of the level sets of V withM. On the other hand, a frequent situation in the literature is wh
ter manifold M is known explicitly, but the function V is not (although its restriction to M m
wn). In some cases (e.g. for system (3)), both V andM are known explicitly. For some examples
on center manifolds, see e.g. [3], [5], or [11, Section 5.2].
was discussed in Section 1, there are 86 dynamically nonequivalent three-species four-reaction b
lar mass-action systems that admit a nondegenerate Andronov–Hopf bifurcation. Of those, 31 al
degenerate Andronov–Hopf bifurcation (i.e., a vanishing first focal value) on an exceptional subset
rcation set, see [1]. However, in all 31 cases, the second focal value is nonzero on this exceptional s
us, degenerate Andronov–Hopf bifurcations of codimension greater than two are impossible. Thu
(2) stands out in two ways: the Andronov–Hopf bifurcation is degenerate everywhere on the b

on set; and additionally all focal values vanish, leading to a center through a bifurcation of infin
nsion.

7
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conclude with two open questions about system (2):

r κ1 > κ2 + κ3, is the positive equilibrium globally asymptotically stable?

r κ1 < κ2 + κ3, are all solutions outside the stable manifold of the positive equilibrium unbounded
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