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Abstract—This paper studies a non-convex power minimization
problem for reconfigurable-intelligent-surfaces-aided communi-
cation systems whose constraints are multivariate functions of
two independent optimization variables, i.e., active and passive
beamforming vectors. A widely adopted alternative optimization
(AO) approach approximates the originally non-convex problem
by two convex sub-optimization problems where each sub-
optimization problem deals with one variable considering the
other variable as a constant. The solution for the original
problem is obtained by iteratively solving these sub-optimization
problems. Although the AO approach converts the original NP-
hard optimization problem to two convex sub-problems, the
solutions attained by this method may not be the global optimal
solution due to the approximation process as well as the inherent
non-convexity of the original problem. To overcome the issue,
this paper adopts a nature-inspired optimization approach and
introduces a novel Firefly algorithm (FA) to simultaneously solve
for two independent optimization variables of the originally non-
convex optimization problem. Computational complexity analyses
are provided for the proposed FA and the AO approaches.
Simulation results reveal that the proposed FA approach pre-
vails its AO counterpart in obtaining a better solution for the
under-studied optimization problem with a similar computational
complexity.

Index Terms—Firefly algorithm, nature inspired optimization,
transmit beamforming, reconfigurable intelligent surfaces.

I. Introduction

In a reconfigurable-intelligent-surface-aided (RIS-aided)
communication system [1], [2], active beamforming vectors,
i.e., the beamforming vectors for the mobile users of a serving
base station (BS), and a passive beamforming vector, i.e.,
the vector comprising of the phase-shift coefficients of the
RIS’s elements, are jointly designed. The design problems
are normally posed as optimization problems. The objective
function and/or constraints of such problems are functions
of both active and passive beamforming vectors. They are
independent variables yet need to be jointly optimized making
their problems non-convex. The widely adopted approach
for tackling the issue approximates the original problem by
two convex sub-optimization problems [3]–[6], i.e., alterna-
tive optimization (AO) approach. In each of these two sub-
optimization problems, one variable, i.e., either active or
passive beamforming vector, is treated as a constant while
solving for the other. By iteratively solving two sub-problems,
the solution for the orignial problem is attained. Due to
the approximation process and the inherent non-convexity
character of the original problem, the resulting solutions for

the passive and active beamforming vectors may not be the
global solution.

Interior point methods (IPMs), a.k.a barrier methods, are
gradient based algorithms being good at exploitation,1 a.k.a.,
intensification, hence, they are regarded as effective methods
to solve convex optimization problems [8]. On the other hand,
solving non-convex optimization problems requires algorithms
having better exploration2 ability than that of the IPMs to avoid
getting trapped in a local mode. Firefly algorithm (FA), i.e.,
a nature inspired algorithm, possesses both exploitation and
exploration abilities. Consequently, FA is a good candidate
for solving non-convex downlink beamforming problems. FA
is a easy-to-implement, simple, and flexible algorithm based
on the flashing characters and behaviour of tropical fireflies
[7]. FA was first developed and published by Xin-She Yang,
respectively, in late 2007 and in 2008 [7], [9] for optimization
problems with objective and constrains being functions of a
single optimization variable. Although FA has been widely
applied to many applications [10], there has not been any
significant work investigating the application of FA in solving
transmit beamforming problems. To the best of the authors’
knowledge, there was only one attempt to adopt FA for a
throughput maximization problem in [11].

This paper considers a multivariate power minimization
problem for a RIS-aided communication system. Particularly,
passive and active beamforming vectors are, respectively,
jointly designed for the RIS and the BS so that the total
BS’s transmit power is minimized while ensuring the signal-
to-interference-plus-noise ratio (SINR) at each mobile user
above a required level. The optimization is non-convex due
to the fact that the SINR constraint is a function of two
independent optimization variables, i.e., passive and active
beamforming vectors. The paper proposes a novel FA method
to find optimal passive and active beamforming vectors for
the multivariate power minimization problem. Furthermore,
the paper analyzes and compares the complexities of the AO
and FA approaches. Finally, simulation results are obtained to
evaluate the performance of the proposed FA approach.

Notation: Lower or upper case letter a or A: a scalar; bold-
lower-case letter a: a column vector; bold-upper-case letter
A: a matrix; (·)T : the transpose operator; (·)H: the complex-

1Exploitation is the ability of using any information from the problem of
interest to form new solutions which are better than the current ones [7].

2Exploration is the ability of efficient exploring the search space to form
new solutions with sufficient diversity and far from the existing ones [7].



conjugate-transpose operator; ∥·∥: the Euclidean norm; Tr (·):
the trace operator; A ⪰ 0: A is positive semidefinite; Ix: an
x× x identity matrix; O: the big O notation; HMt×Mt : the set of
Mt×Mt Hermitian matrices; CMt×1: the set of Mt×1 complex-
element vectors; a ∼ CN(0, σ2): a is a zero-mean circularly
symmetric complex Gaussian random variable with variance
σ2; diag (a): a diagonal matrix whose diagonal elements are
the entries of vector a; and finally diag (A): a vector whose
entries are the diagonal elements of matrix A.

II. Problem Formulation

A. Problem Formulation

Consider a communication system comprising of an Mt-
antenna BS communicating with U single-antenna mobile
users in which the direct communication links between the
BS and its mobile users are blocked, e.g., because of high
building etc., [3]. To circumvent the problem, an Nt-reflective-
element RIS is utilized to support the communication. Let
H = [h1, . . . ,hNt ] ∈ C

Mt×Nt represent the channel coefficients
between the BS and the RIS and gi = [gi1, . . . , giNt ]

T ∈ CNt×1

be the channel coefficients between the RIS and the i-th user.
Let xi, i.e., E[|xi|

2] = 1, and wi ∈ C
Mt×1, respectively,

represent the data symbol and the active beamforming vector
for the i-th user. Each reflective element of the RIS generates
a phase shift to support the communication between the BS
and the mobile users. Let θk be the phase shift at the k-th
reflective element and let θθθ = [θ1, θ2, · · · , θNt ]

T denote the
phase-shift coefficients generated by the RIS with |θk | ≤ 1
and arg(θk) ∈ [−π, π),∀k = 1, . . . ,Nt. Vector θθθ is the passive
beamforming vector for the RIS. The signal arrived at the i-th
user is:

yi = gH
i diag(θθθ)HHHwixi + gH

i diag(θθθ)HHH
U∑

j=1, j,i

w jx j + ni,

= θθθHGH
i wixi + θθθ

HGH
i

U∑
j=1, j,i

w jx j + ni, (1)

where GH
i = diag(g∗i )HH ∈ CNt×Mt and ni ∼ CN(0, σ2)

represents the additive noise measured at the i-th user. Fur-
thermore, let {wi} = {w1,w2, · · · ,wU} denote the set of active
beamforming vectors, and SINRi({wi}, θθθ) be the SINR at the
i-th user. One can write:

SINRi ({wi}, θθθ) =
|θθθHGH

i wi|
2

U∑
j=1, j,i

|θθθHGiw j|
2 + σ2

i

. (2)

The optimization is posed as follows:

min
{wi}, θθθ

U∑
i=1

wH
i wi

s. t. SINRi ({wi}, θθθ) ≥ ηi,∀i,

|θk | ≤ 1,∀k,

(3)

where ηi is the required SINR level measured at the i-th user.
Since the SINR constraint is a function of two optimization
variables wi and θθθ, problem (3) is non-convex.

B. Alternative Optimization Approach

For the sake of completeness, the widely adopted AO
approach [3]–[6] is represented here as a baseline to solve (3).
Let Fi = wiwH

i and Θ = θθθθθθH , normalizing the SINR constraint
by σ2

i with some manipulations, one can equivalently rewrite
(3) as:

min
{Fi}, Θ

Tr

 U∑
i=1

Fi


s. t.

(
1 +

1
ηi

)
Tr

GiΘGH
i Fi

σ2
i


−

U∑
j=1

Tr
GiΘGH

i F j

σ2
i

 − 1 ≥ 0, ∀i ∈ {1, · · · ,U},

Fi ⪰ 0, rank(Fi) = 1,∀i ∈ {1, · · · ,U},
diag

(
diag (Θ)

)
⪯ INt , Θ ⪰ 0, rank(Θ) = 1.

(4)

Since the first constraint depends on of both Fi and Θ,
problem (4) is still non-convex. As Fi and Θ are two inde-
pendent variables, they can be alternatively solved [3]–[6]. To
that end, relaxing the rank-one constraint on Fi and beginning
with any initial value of the reflecting coefficient matrix Θ(0),
the following sub-problem will be solved at the p-th iteration:

min
{Fi}

Tr

 U∑
i=1

Fi


s. t.

(
1 +

1
ηi

)
Tr

GiΘ
(p−1)GH

i Fi

σ2
i


−

U∑
j=1

Tr
GiΘ

(p−1)GH
i F j

σ2
i

 − 1 ≥ 0, ∀i,

Fi ⪰ 0, ∀i ∈ {1, · · · ,U}.

(5)

The reflecting coefficients Θ(p) is then updated from the
optimal solution of (5) at p-th iteration, i.e., {F(p)

i }, by solving
the following sub-problem [3]:

min
Θ

Tr (Θ)

s. t.
(
1 +

1
ηi

)
Tr

ΘGH
i F(p)

i Gi

σ2
i


−

U∑
j=1

Tr

ΘGH
i F(p)

j Gi

σ2
i

 − 1 ≥ 0, ∀i,

diag
(
diag (Θ)

)
⪯ INt ,

Θ ⪰ 0.

(6)

The AO approach repetitively solves (5) and (6) in n0
iterations to obtain the solution for (3).

Remark 1: It is worth noticing that the AO approach ap-
proximates the originally non-convex optimization (3) by two
sub-problems (5) and (6). Although (5) and (6) are convex, the
solutions to these sub-problems can be regarded as the upper
bounds of the original problem (3) as these solutions may not
be the global solution. Furthermore, the AO approach adopts
the so-called semidefinite relaxation technique [12] in which



the rank-one constraints on Fi and Θ are relaxed. If solving
(5) and/or (6) does not return rank-one matrices Fi and/or
Θ, then a rank-one approximation or a Gaussian randomize
procedure [13] is required to extract approximated rank-
one solutions. Extracting the approximated solutions requires
further computational resources yet only results in sub-optimal
solutions.

Motivated by the above observations, we introduce a novel
FA approach to simultaneously solve wi and θθθ for the original
problem (3) in the following section.

III. Proposed FA Approach

The optimization (3) is equivalently expressed as follows:

min
{wi}, θθθ

U∑
i=1

wH
i wi

s. t. Φi ({wi}) ≤ 0,∀i,

φk (θk) ≤ 0,∀k,

(7)

where

Φi ({wi}) = ηi

∑U
j=1 wH

j Giθθθθθθ
HGH

i w j

σ2
i

+ ηi

− (1 + ηi)
wH

i Giθθθθθθ
HGH

i wi

σ2
i

, (8)

and
φk (θk) = |θk | − 1. (9)

Adopting a penalty method [7], (7) can be written as:

min
{wi}, θθθ

U∑
i=1

wH
i wi + P({wi} , θθθ) (10)

where P({wi} , θθθ) is the penalty term given as:

P({wi} , θθθ) =

U∑
i=1

λimax {0,Φi({wi})}2

+

Nt∑
k=1

ρkmax {0, φk(θk)}2 , (11)

with λi > 0 and ρk > 0 are penalty constants.
The FA was developed based on the following three ide-

alized rules [7], [9]. First, any firefly attracts other fireflies
regardless of its sex. Second, the attractiveness of any firefly
to the other one is proportional to its brightness. Both attrac-
tiveness and brightness decrease as the distance between these
two fireflies increases. Given two flashing fireflies, the darker
firefly will move towards the brighter one. If a firefly does
not find any brighter one, it will make a random move. Third,
the brightness of a firefly depends on the landscape of the
objective function.

The original FA approach [7], [9] was introduced for op-
timization problems with a single optimization variable only.
In this paper, we propose a FA approach for an optimization
problem for a RIS-aided communication system containing
two independent optimization variables wi and θθθ. To that end,
let {Wt, θθθt} be the firefly t where Wt =

[
wt

1,w
t
2, · · · ,w

t
U

]
. We

initialize a population of N fireflies {Wt, θθθt}, t ∈ {1, 2, · · · ,N}
and define the brightness, i.e., the light density, of the firefly
t {Wt, θθθt} as:

It (Wt, θθθt) =
1∑U

i=1 wH
i wi + P(wi, θθθ)

. (12)

For any fireflies t and l amongst the population, if
It (Wt, θθθt) > Il (Wl, θθθl) then the firefly l will move toward the
firefly t as:

W(n+1)
l = W(n)

l + β0e−γ
(
r(n)

w,tl

)2 (
W(n)

t −W(n)
l

)
+ α(n)V, (13)

θθθ(n+1)
l = θθθ(n)

l + β0e−γ
(
r(n)
θ,tl

)2 (
θθθ(n)

t − θθθ
(n)
l

)
+ α(n)v, (14)

where r(n)
w,tl = ||(W

(n)
t −W(n)

l || and r(n)
θ,tl = ||(θθθ

(n)
t − θθθ

(n)
l || are the

Cartesian distances, β0 is the attractiveness at r(n)
w,i j = 0 and

r(n)
θ,tl = 0, γ presents the variation of of the attractiveness. The

second terms of (13) and (14) capture the attractions while
the third terms of (13) and (14) are randomization comprised
of randomization factor α(n), V ∈ CMt×U and v ∈ CMt×1.
The factor α(n), the elements of V and v are drawn from
either an uniform or a Gaussian distribution. The proposed
FA for solving optimization problem (3) is summarized in
Algorithm 1 on the next page.

IV. Complexity analysis

In this section, we provide the computational complexity
analyses for the AO approach and the proposed FA approach,
i.e., Algorithm 1. We start by the following definition.

Definition 1: At a given ε > 0, Fεt is defined as the ε-
solution of problem (5), i.e., an acceptable solution with the
accuracy of ε, if:

U∑
t=1

Tr
(
Fεt

)
≤ min

Ft

U∑
t=1

Tr (Ft) + ε. (15)

Moreover, Θε is defined as the ε-solution of problem (6) if:

Tr (Θ) ≤ min
Θ

Tr (Θ) + ε. (16)

The complexity of the AO approach is described in the
following lemma.

Lemma 1: The computational complexity of AO approach
is on the order of:

no (τ1 + τ2) , (17)

where n0 is the number of iterations to obtain the ε-solution,

τ1 = ln
(
ε−1

) √
U(Mt + 1)

[
(M2

t + 1)U

+UM2
t (M2

t + Mt) + M4
t

]
M2

t , (18)

τ2 = ln
(
ε−1

) √
U + 2Nt

[
(N2

t + 1)(U + 2N2
t ) + N4

t

]
N2

t . (19)

Proof: The proof is similar to [14, Section V-A] and [15,
Section IV-C].

Next, the complexity of the proposed FA approach is stated
as follows.



Algorithm 1 Firefly Algorithm for solving (3)

1: Input: Channel matrices H; gi,∀i; Noise variance σ2
i ;

required SINR η; population size N; maximum generation
T ; λi; ρn; β0; γ;

2: Randomly generate N populations
{{W1, θθθ1}, {W2, θθθ2}, · · · , {WN , θθθN}};

3: Evaluate the light intensities of N populations as (12);
4: Rank the fireflies in a descending order of It (Wt, θθθt);
5: Define the current best solution: I⋆ := I1

(
W⋆, θθθ⋆

)
;

{W⋆, θθθ⋆} := {W1, θθθ1};
6: for n = 1 : T do
7: for l = 1 : N do
8: for t = 1 : N do
9: if Il (Wl, θθθl) > I⋆ then

10: I⋆ := Il (Wl, θθθl); {W⋆, θθθ⋆} := {Wl, θθθl};
11: end if
12: if It (Wt, θθθt) > I⋆ then
13: I⋆ := It (Wt, θθθt); {W⋆, θθθ⋆} := {Wt, θθθt};
14: end if
15: if It (Wt, θθθt) > Il (Wl, θθθl) then
16: Move firefly l towards firefly t as (13) and

(14);
17: end if
18: Attractiveness varies with distances via

e−γ
(
r(n)

w,tl

)2

and e−γ
(
r(n)
θ,tl

)2

;
19: Evaluate new solutions and update light inten-

sity as (12);
20: end for
21: end for
22: Rank the fireflies in a descending order of It (Wt, θθθt);
23: Update the current best solution: I⋆ := I1

(
W⋆, θθθ⋆

)
;

{W⋆, θθθ⋆} := {W1, θθθ1};
24: end for
25: Post-process results and visualization;
26: return W⋆, θθθ⋆.

Lemma 2: The computational complexity of the FA ap-
proach is on the order of:

T N2
[
M2

t + Nt + N
(
UMt + U(N2

t + MtNt) + Nt

)]
+T N log N + NMtU + NtN + N log N

+N
[
UMt + U(N2

t + MtNt) + Nt

]
. (20)

Proof: Due to space limitation the proof is omitted here.
It will be provided in a full report of this work.

Remark 2: When the numbers of antennas Mt and Nt are
large, letting Nt = Mt in (17), the dominant term of the com-
plexity to attain ε-solution to (3) is N6 1

2
t . On the other hand,

the dominant term of (20) is N5
t when assuming N = Nt = Mt.

V. Simulation Results

We simulate a RIS-aided communication system which
consists of one BS, one RIS, and two users, i.e., U = 2.
The distance between the BS and the RIS is 10 m. Users
are randomly distributed with a distance of 6 m from the RIS.
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Fig. 1: The total BS’s transmit power versus the required SINR
level with different numbers of BS’s antennas and RIS’s reflective
elements. The firefly population is N = 120. The number of maximum
generations T = 50.

The pathloss exponents of both wireless links from the BS
to the RIS and from the RIS to users are set to be 2.2 with
the signal attenuation at the reference distance of 1 m being
30 dB [16], i.e., the large-scale fading coefficient is modeled
as −30 − 22 log10(d) dB where d is the distance between the
BS to RIS or RIS to a user. The noise variance at each user
is −124 dBm. Monte Carlo simulations are carried over 100
channel realizations. Each channel realization is associated
with a random user location and a random fading coefficient.

CVX package [17], i.e., a Matlab based modeling system
for disciplined convex programs, is utilized to obtain the
solution for the AO approach with n0 = 10 iterations. The
setup parameters for FA are as follows. The variation of the
attractiveness γ is set at 1. The penalty constants are set equal
but they dynamically vary as λi = ρk = n2, ∀i, k where n is
the generation index in Algorithm 1. The attractiveness at zero
distance is β0 = 1. Finally, the initial randomization factor is
α(0) = 0.9 and its value at the n-th generation is α(n) = α(0)0.9n.

Fig. 1 illustrates the total BS’s transmit power versus the
required SINR level with different numbers of BS’s antennas
and RIS’s reflective elements. The results indicate that the
proposed FA prevails the AO approach in terms of lower power
consumption. The superior performance of the FA approach
over its AO counterpart can be explained as follows. As the
AO approach approximates non-convex problem (3) by two
convex sub-problems (5) and (6), the solution obtained by
the AO approach is not necessary the global optimal solution
of the original problem (3). On the other hand, the proposed
FA possessing both exploitation and exploration abilities can
effectively handle such non-convex problem and obtain much
better solution than its counterpart.

We now compare the computational complexities of the AO
and FA approaches for the experiments presented on Fig. 1.
As Nt is larger than Mt, from Lemma 1 one can show that
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Fig. 2: The total BS’s transmit power versus the number of maximum
generations with different numbers of BS’s antennas and RIS’s
reflective elements. The firefly population is N = 120. The required
SINR level is 10 dB.

the dominant term of the complexity of the AO approach
is n0N6 1

2
t . Similarly, from Lemma 2 one can conclude that

the dominant term of the complexity of the FA approach is
T N3N2

t . Substituting for Nt = 30, n0 = 10, N = 120 and
T = 50, we can arrive at the fact that the computational
complexities of the AO and FA approaches are on the same
order of O

(
1010

)
.

In Fig. 2, the total BS’s transmit power is plotted versus the
maximum of generation T used in the FA in Algorithm 1 with
different BS’s antennas and RIS’s elements. The results indi-
cate that the proposed FA require around 50 to 60 generations
to attain the optimal solution for all setups.

VI. Conclusion

We have proposed a novel FA to solve a non-convex opti-
mization problem comprising constraints as multivariate func-
tions of independent optimization variables. The proposed FA
approach outperforms the alternative optimization approach in
offering better solution with similar computational complexity.
This verifies the effectiveness of the proposed FA approach in
handling multivariate and non-convex problems.
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