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Abstract: Camera-based solutions can be a convenient means of collecting physiological measure-

ments indicative of psychological responses to stimuli. However, the low illumination playback

conditions commonly associated with viewing screen-based media oppose the bright conditions

recommended for accurately recording physiological data with a camera. A study was designed to

determine the feasibility of obtaining physiological data, for psychological insight, in illumination

conditions representative of real world viewing experiences. In this study, a novel method was

applied for testing a first-of-its-kind system for measuring both heart rate and facial actions from

video footage recorded with a single discretely placed camera. Results suggest that conditions repre-

sentative of a bright domestic setting should be maintained when using this technology, despite this

being considered a sub-optimal playback condition. Further analyses highlight that even within this

bright condition, both the camera-measured facial action and heart rate data contained characteristic

errors. In future research, the influence of these performance issues on psychological insights may be

mitigated by reducing the temporal resolution of the heart rate measurements and ignoring fast and

low-intensity facial movements.

Keywords: biosensors; psychophysiological methods; remote photoplethysmography (rPPG); facial

action coding (FAC); multi-modal physiological data; heart rate (HR)

1. Introduction

Research into camera-based physiological measurement systems has flourished in
recent years. Open-source software is now available which allows for the collection of
data associated with face, head, and eye movements, as well as heart rate, using only a
camera [1,2]. These software packages can be applied to a wide range of video signals,
not just those captured by specialist cameras, and have been used in a variety of domains
including deep fake recognition [3,4]. However, the primary objective of camera-based
physiological measurement systems is to be a viable alternative to contact sensors or manual
video annotation techniques.

Physiological measurements can provide insights into psychological states. Research
investigating these mind–body interactions is commonly referred to as psychophysiological
research. The methods employed in this field exhibit significant variability, which can be
categorized based on input modalities and analytic techniques. In terms of input modalities,
researchers often strive to gather as much insightful data as possible without interfering
with the subjects’ naturalistic experience. Regarding analytic techniques, researchers often
aim to leverage all of the collected data to test their hypotheses. The focus of this study
is specifically on the application of psychophysiological methods for assessing screen-
based media viewing experiences. This area of research is highly active for two primary
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reasons: screen-based media viewing is a significant sociological phenomenon, as evidenced
by a 2022 survey conducted by Ofcom, which reported that individuals in the United
Kingdom spend an average of 5 h and 16 min per day watching television and video
content across all devices [5]; and screen technologies offer a convenient means of delivering
experimental stimuli.

Studies have demonstrated that psychophysiological methods can provide insights
that traditional methods cannot when assessing audiovisual quality [6]. Wilson [7] ob-
served a significant increase in heart rate (HR) and galvanic skin response associated with
viewing screen-based media rendered at 5 frames per second (FPS), compared to 25 FPS.
This was despite only 16% of the participants noting a degradation in quality. Moreover,
Wilson also states that audio degradation was detectable through similar analyses of these
physiological modalities. These results exemplify why many believe psychophysiological
methods hold promise as a better approach for subjective audiovisual quality assess-
ment, compared to customary methods which rely solely on self-assessment, and therefore
may enable the development of more effective objective audiovisual quality assessment
methods [8–13].

Narrative engagement can also be effectively assessed using psychophysiological meth-
ods. Research has demonstrated that when individuals watch screen-based media, changes
in physiological features such as heart rate and gaze position correlate between those who
feel engaged [14–16]. Psychophysiological methods have also been used extensively for
assessing experiences in the domain of extended reality research [17]. Hinkle et al. [18]
applied contact sensors to measure facial muscle activity, body movement, eye movements,
skin temperature, and respiratory, cardiovascular, and neural activity. Various feature
extraction techniques and machine learning algorithms were then applied to these input
modalities, with the aim of developing a system capable of predicting emotion. The results
suggested that emotions could reliably be predicted using this approach, however, the
choice of features had a significant effect on the accuracy of prediction.

Camera-based physiological measurement systems have also been used in psychophys-
iological research. In Leong et al.’s 2023 review of the use of visual data in affective
computing, 30 quality-screened studies associated with facial expression and/or body
gesture-based emotion recognition were found [19]. The application of camera-based heart
rate measurement systems has also been explored by researchers investigating emotional
responses to playing games [20] and viewing pictures [21].

This camera-based approach to psychophysiological research may be considered
advantageous when compared to methods which use contact sensors, as a camera can
be a more discrete way of capturing insightful data. This suggests that camera-based
methods have the potential to provide more ecologically valid results when compared to
contact sensors. Another positive aspect of using a camera-based system is the ease of
making a video recording, compared to a contact sensor recording. One negative aspect of
using camera-based systems is that they are considered to have poor robustness to many
interpersonal and environmental factors—such as low room illumination (see Section 2).

Within the broader field of psychophysiological research, multiple sensors are often
used to provide a rich dataset for gaining psychological insight [6,7,15,17,18,22–26]. How-
ever, few studies use multimodal data extracted from a camera despite the technological
feasibility. For example, out of the 11 studies explored by Leong et al., only 3 applied a
multimodal camera-based physiological measurements solution—recording both body
gestures and facial expressions [19].

In some cases, researchers may wish to apply camera-based psychophysiological
methods for the assessment of cinematic viewing experiences. These experiences are
defined here as those in which the viewer is placed in near-darkness and the screen inhabits
much of their field of view. The motivation behind the reproduction of such conditions
in experimental work may be a wish to recreate a real-world viewing experience, as
many choose to view film or television shows with the lights turned down. Researchers
may also wish to create a cinematic viewing experience for exploring physiological signs
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of emotional responses, as darker ambient lighting has been shown to induce a greater
sense of arousal [27]. Notably, these cinematic conditions are also recommended when
assessing image quality [28]. Moreover, a cinematic viewing distance is recommended for
accompanying images with sound from a multichannel audio system [29].

The aim of this research is to explore the feasibility of using a multimodal camera-based
physiological measurement solution for the assessment of cinematic viewing experiences.
There is currently no existing research in this application area. Due to the conflict in
recommendations regarding illumination, this factor is investigated in depth, considering
how it impacts the physiological measurements obtained. This publication introduces
a new approach for assessing the performance of facial action coding systems, which is
significantly less labour-intensive than the existing method (see Section 3.1). Moreover,
it describes the first documented solution for obtaining both heart rate and facial action
measurements using a single camera, leveraging existing software systems.

2. Background

To be able to evaluate the feasibility of using a multimodal camera-based physiological
measurement solution for the assessment of cinematic viewing experiences, such a solution
must first be implemented. To achieve this, investigations were made into open-source
software which could be leveraged. In the first sub-section, PyVHR [2,3], a software package
designed for obtaining heart rate (HR) from video, is described and factors which influence
its performance are discussed. In the second sub-section, OpenFace 2 [1,30], a software
package applied for the automatic facial action coding (FAC) of video, is described in a
similar manner. These technical factors help inform the camera configuration described in
Section 3.3.

2.1. PyVHR

PyVHR is a framework for assessing the performance of remote photoplethysmogra-
phy (rPPG) algorithms. rPPG is a technique developed to estimate human cardiac activity
from a video signal. The version of PyVHR evaluated in this paper is version 1.0.2 which
can be accessed via the PyVHR releases page on the GitHub repository [3]. It is stated in
the publication associated with PyVHR, that this framework is unique in its capabilities for
providing a standardized and reproducible way of implementing full rPPG pipelines, with
a specific focus on obtaining continuous heart rate measurements from a video signal, and
benchmarking them against multiple datasets [3].

Conceptually, PyVHR takes the critical sub-process used in an established rPPG algo-
rithm, which convert an array of red, green and blue (RGB) digital pixels to an estimate of
blood volume pressure (BVP) for a region of skin, and places it in a standardised pipeline.
Hence, the RGB to BVP process can be compared without the influence of variations in any
other sub-processes. Examples of such variations include differences in how the colour of
the skin is sampled and how the heart rate is calculated from the BVP signal. Out of the
ten RGB to BVP sub-processes implemented, the Hann and Jeannes chrominance approach
(CHROM) [31] is shown to be most effective on the two datasets [32] tested in the associated
publication for PyVHR [3].

CHROM is a digital signal-processing algorithm which was developed with the aim
of improving motion robustness, so that remote heart rate measurements may be captured
effectively on subjects using gym equipment [31]. Despite the algorithm showing poor
performance within this difficult application area, it has become one of the most popular
approaches for rPPG. Notably, Haugg et al. showed a drop in performance from an average
error of 1.91 beats per minute (BPM) with the subject resting to 14.81 BPM with the subject
using the gym [33]. The algorithm adds sophistication to previously proposed methods
based on blind source separation, by considering the difference between light reflected
off the surface of the skin and light which has travelled through the skin and therefore
contains information associated with the subject’s cardiac cycle. It was developed using
117 one-minute uncompressed facial videos, as well as an undefined number of videos of
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subjects using a stepping machine and static bicycle in a gym. Both datasets were recorded
with a specialised camera in parallel with a pulse-oximeter finger clip [31].

There are multiple documented ways of using the PyVHR software framework, in-
cluding a graphical user interface (GUI). Within the demo workbook, functions from the
software pipeline are called individually. This segmentation of the overall process, from
video to heart rate, avoids extended run times. The CHROM method is used in the demo
workbook implementation [3] and hence hypothetically provides a reproducible system
performance benchmark with minimal usability hurdles. Details of the implementation
from the demo workbook can be found in Table 1.

Table 1. Description of each sub-process used to estimate heart rate from a video signal within the

PyVHR pipeline. Note that the demo workbook implementation was used to obtain heart rate data in

the study described later in this manuscript, with the 6-patch approach rather than the 100-patch

approach for skin extraction.

Name of Subprocess Description in PyVHR Documentation [3] Implementation in PyVHR Demo Workbook [2]

Skin extraction

“The goal of this first step is to perform a face skin
segmentation in order to extract PPG-related areas;

the latter are subsequently collected in either a
single patch (holistic approach) or a bunch of

“sparse” patches covering the whole face
(patch-wise approach).”

A set of 100 equidistant patches are selected across
the face. Alternatively, code is provided for the

selection of 6 patches: 3 on the forehead, 1 on the
nose, and 1 on each cheek.

RGB signal processing

“The patches, either one or more, are coherently
tracked and are used to compute the average

colour intensities along overlapping windows,
thus providing multiple time-varying RGB signals

for each temporal window”

The RGB signals are obtained by taking the mean
value of each patch across cascading 8-s windows,

with a stride of 1-s.

Pre-filtering

“Optionally, the raw RGB traces are pre-processed
via canonical filtering, normalization or

de-trending; the outcome signals provide the
inputs to any subsequent rPPG method.”

Pixel values below 0 or above 230 are removed
from patches. Then a sixth-order Butterworth

bandpass filter with a passband between 0.75 Hz
and 4 Hz is applied.

BVP extraction

“The rPPG method(s) at hand is applied to the
time-windowed signals, thus producing a
collection of heart rate pulse signals (BVP

estimates), one for each patch.”

The CHROM method is applied [31].

Post-filtering
“The pulse signals are optionally passed through a
narrow-band filter in order to remove unwanted

out-of-band frequency components.”

A sixth-order Butterworth bandpass filter with a
passband between 0.75 Hz and 4 Hz is applied.

BPM estimation
“A BPM estimate is eventually obtained through

simple statistics relying on the apical points of the
BVP power spectral densities.”

The power spectral density (PSD) of each window
of each patch of the filtered BVP estimate is

calculated. Then, the median of the PSD peak
frequency for all patches for that window is

converted into a BPM value.

There are two versions of PyVHR, one for CPU-only run times and the other for
computers with graphical processing units (GPUs). The GPU version of the package is
reported to run in real-time for 30 FPS high-definition video. The CPU version is also
reported to run in real-time when using the holistic skin segmenting sub-process. However,
when utilising the patches skin extraction functionality of the system (see Table 1) the
CPU version takes around 0.12 s to process a single frame. These results are based on the
following hardware configuration: “Intel Xeon Silver 4214R 2.40 GHz” (CPU), “NVIDIA
Tesla V100S PCIe 32 GB” (GPU) [3].

Exploring the robustness of rPPG systems is an active area of research. Nowara et al.’s [34]
results suggest that CHROM is relatively robust to different skin tones, compared to
the other four algorithms tested [35–38]. However, they found that for the darkest skin
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tone category in their dataset performance was poor, with an average error of 13.58 BPM
compared to all other skin tones for which the average error was between 2.14 BPM and
4.09 BPM [34]. There are also many other interpersonal factors which still have an unclear
influence on performance, such as age and wearing make-up. In a study assessing responses
to screen-based media with a large sample of participants, many of these influencing factors
are likely to be relevant.

Illumination has also been investigated. Yang et al. suggested that a drop from a
medium to dark condition causes a drop in average error from 1.04 BPM to 3.60 BPM
for their best-performing algorithm—a CHROM-based solution [39]. Moreover, Yin et al.
explored how unstable room illumination may influence CHROM performance, finding an
average error of 1.04 BPM under stable lighting compared to an average error of 2.45 BPM
under varying lighting [40]. Tohma et al. suggested that a bright and stable light greater
than 500 lux should be cast on the subject’s face, when studying the influence of illumination
on the measurement of heart rate variability from a video signal [41]. Moreover, they
suggest that subjects should remain static while measurements are being taken.

McDuff et al. showed that video compression can also influence CHROM performance,
decreasing from an average error of 1.78 BPM for uncompressed to an average error
of 9.31 BPM for the most compressed videos evaluated [42]. Notably, all publications
discussed in this section use specialised scientific cameras [31,41] or specific webcam
models [32,39,40] to avoid video compression. However, hypothetically this may not be
necessary in some use cases as McDuff et al. also showed that light video compression only
influences a small decrease in average error for heart rate measurements when calculating
heart rate from a one-minute window of the BVP signal [42].

Other technical features of the video signal may also hypothetically influence the
performance of rPPG systems. Video frame rate is one of these factors which has been
investigated, researchers have suggested a minimum frame rate of 30 FPS [41,43]. Less
research has been conducted to explore the influence of video resolution on rPPG system
performance. However, Blackford et al. suggest that both frame rate and resolution
have a minimal impact on the performance of their rPPG system at obtaining heart rate
estimations [44].

In PyVHR, the inclusion of each sub-process is supported by its positive influence on
performance as shown in the publications in which they are proposed [3]. The patches
approach for skin region is of interest is of particular relevance to this project as it has has
been shown to negate some of the negative influence of unstable illumination on system
performance, allowing for the selection of optimal regions of interest which facilitate the
extraction of a BVP signal with a higher signal to noise ratio (SNR) [32,40,45]. A low SNR
can lead to the true heart rate frequency not being the peak value of the power spectral
density function for the measurement window, hence leading to an incorrect HR estimate
(see Table 1).

2.2. OpenFace 2

OpenFace 2 is the second iteration of the OpenFace toolkit, developed for the measure-
ment of multi-modal physiological data from a video signal. The version of OpenFace 2
evaluated in this paper is version 2.2.0. This can be accessed via the releases page on the
OpenFace 2 GitHub repository [1]. The framework allows for facial landmark detection:
the prediction of where parts of the face are located (e.g, nose, mouth, eyebrows); and
facial action coding (FAC): the assessment of the expression of a subject using Ekman’s
standardised notation [46]. Moreover, it is also capable of gaze and head rotation estimation.
Example use cases for OpenFace 2 utilise the multiple physiological modalities measured
to allow robot teachers to adapt and react to students’ levels of engagement [25], or make
continuous predictions of emotion [26].

There are two ways of using OpenFace 2: via the command line interface (CLI) and the
graphical user interface (GUI). The first affords the user a series of high-level functions,
capable of performing each task individually or together (e.g., head pose estimation, gaze



Appl. Sci. 2023, 13, 8482 6 of 28

estimation, automatic FAC) with a single line of code. The second approach encapsulates
a series of graphical applications which allow for the configuration and use of OpenFace,
either offline or in real-time through interfacing with a local camera (e.g., a webcam),
without the need to write any code at all. Both approaches allow for the same functionality
and control in terms of available parameters. OpenFace 2 comes pre-trained and does not
require any supplementary software, or parameter tuning, to extract physiological data
from a video signal.

OpenFace 2 packages together solutions from existing publications, for each respective
task, and then applies some optimisation before configuring them into a pipeline with
an easy-to-use interface. In terms of FAC, the face is initially recognised [47], landmarks
are detected and tracked [48], and then these landmark locations are turned into a set of
FAC intensities [49]. In terms of speed of execution, the most computationally expensive
task of facial landmark detection and tracking is capable of running at “30–40 Hz frame
rates on a quad-core 3.5 G Hz Intel i7-2700K processor, and 20 Hz frame rates on a Surface Pro
3 laptop with a 1.7 GHz dual-core Intel core i7 4650U processor, without any GPU support when
processing 640 × 480 pixel videos” [30]. Hence, it may be interpreted that when processing
higher resolution or frame-rate videos, or using a computer exhibiting lower computational
performance, real-time processing may be implausible.

OpenFace 2 is described as being more robust to occlusion and low illumination
conditions than the original OpenFace toolkit [30]. This improvement was made by in-
cluding examples of these challenging conditions in the training dataset used to develop
the machine learning models applied in the facial landmark detection and face tracking
subsystems. However, the performance of the FAC system under low illumination cannot
be validated. This is due to the fact that there are, to the best of our knowledge, no readily
available FAC datasets which contain any examples of dark or changing illumination. One
noted limitation of the system is that faces less than 100 pixels across are not accurately
assessed by the facial landmark detection system. For more information regarding the
training data and technical implementation used in OpenFace 2, as well as performance
benchmarks for all physiological modalities, refer to the associated publication [30].

Researching factors which influence the performance of automatic FAC solutions
is complex. This is due to the difficulty associated with obtaining ground truth data.
Commonly, this process requires a team of skilled researchers to manually assess and
transcribe the facial movements from a video recording. This process takes a trained
facial action coder around 50–60 min for every minute recorded. Hence, there are a
limited number of examples of videos, with associated FAC, captured under challenging
conditions available to researchers. The FAC recognition system in OpenFace 2 was trained
on DISFA [50], SEMAINE [51], BP4D [52], UNBC-McMaster [53], Bosphorus [54] and FERA
2011 [55].

3. Methodology

The aim of this research is to explore the feasibility of using a multimodal camera-based
physiological measurement solution for the assessment of cinematic viewing experiences.
As dark room illumination is a feature of a cinematic viewing experience but bright room
illumination is recommended for camera-based physiological measurement systems, this
factor is investigated in depth. Hence, we are investigating the optimal solution in which
the data obtained is viable for psychological insight and the room illumination does not
detract from the viewing experience. Based on existing research, we hypothesise that
increasing room illumination will positively influence the performance of the camera-based
physiological measurement solution.

To evaluate this hypothesis, a comparison is made between camera-measured signals,
extracted from a single video file per participant, and expected signals. This is done for
heart rate (HR) and facial action coding (FAC) in three different illumination conditions. To
obtain an expected signal for comparison with heart rate measurements from PyVHR, a
Polar H10 chest strap heart rate monitor sensor, purchased from the Polar UK website [56],
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was used. To obtain an expected signal for the facial actions, to be compared to each
participant’s camera-measured response, a novel instructional film was created as a means
to reduce the common labour-intensive approach of manually annotating each video.

3.1. The Instructional Film

The institutional film prompts the replication of a series of predetermined facial
movements as exemplified by an on-screen model. Hence, the expected signal was obtained
by analysing the movements of this model. Specifically, this was done by manually coding
the video based on Ekman’s FAC system through cross-referencing information found in
the FAC Manual [46]. Therefore, the instructional film method compares the participant’s
movements, as measured by the camera-based FAC solution, to a transcription of the
model’s movements, made by the investigator, to gain insight into the performance of the
camera-based FAC solution.

This instructional film approach is considered desirable, as the common alternative of
manually coding each video is highly labour-intensive. As over 4 h of footage was captured
in this study, this would have taken approximately 220 h. However, inherently there is a
trade-off associated with this approach. The discrepancy between the expected response
signal and the camera-measured signal is influenced by two factors: system performance,
reflecting the accuracy of the system in measuring the individual’s physiological state;
and task performance, involving the individual’s ability to synchronously reproduce the
prompted action in accordance with on-screen instructions.

To produce a dataset Cosker et al. used a similar protocol in which a group of
participants were asked to recreate facial actions to the best of their ability [57]. Moreover,
Gosselin et al. showed that over 70% of their participants tested were able to activate target
action units—although they often co-activated other non-target action units when trying to
do so [58]. Therefore, it was considered feasible that participants should be able to recreate
facial action adequately enough to provide insight into differences in system performance
for OpenFace 2, between the illumination conditions as long as only the target expressions
are analysed. This is, however, based on the assumption that participants perform the facial
actions task consistently between trials.

There are also some benefits of using an instructional film for assessing the perfor-
mance of the camera-based heart rate measurement system. When assessing responses
to screen-based media, facial expressions are often elicited. Hence, the task of reproduc-
ing facial movements can be considered representative of these spontaneous movements.
Therefore, the influencing factor of motion is accounted for using this method when assess-
ing the system performance. Moreover, as the instructional film is delivered via a screen, the
changes in illumination on the skin are also representative of those which may be elicited
from stimuli used for exploring psychophysiological responses to screen-based media.

To create the instructional film, video content provided courtesy of IMotion was used
to prompt the 18 facial actions OpenFace 2 is capable of recognising [59]. These short
clips, each showing a different facial action, were repeated three times in a row before
moving on to the next one. The repetitions of each action were sequenced rhythmically and
consistently, with the expression onsets starting every three seconds throughout the film so
that the timing of the movement was predictable. To allow for the synchronisation of the
video footage with the instructional film, a visual marker was placed in the instructional
film in the form of a white flash at the start, which created a clear change in illumination
visible on the viewer’s skin. This was followed by a black screen which lasted 15 s, and
then the instructions began. Figure 1 shows the overall brightness of the instructional film,
showing the bright flash at the start followed by a dark screen which precedes the facial
action stimuli. The instructional film was 177 s long and rendered at 30 FPS at 720p.

It should be noted that further tasks were also included in the instructional film, which
continued after the aforementioned 177 s, notably prompting head and eye movements.
The associated data is not analysed in this paper.
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Figure 1. Plot of mean pixel values for the red, green, and blue channels in the instructional film.

Note the bright screen at the start of the instructional film, followed by the short dark section, and

then the series of facial action stimuli that the participants are tasked with reproducing.

3.2. Experimental Protocol

The experimental protocol can be seen in Figure 2. Trial counterbalancing was used
to avoid participants’ improving task performance influencing the outcomes of the study.
Specifically, this meant randomising the order of the illumination conditions for each
participant. This was done to help address concerns regarding the assumption underlying
the use of the instructional film: that participants perform the task consistently between
trials. By randomising the order of the illumination conditions, the influence of any
hypothetical improvements in task performance with each subsequent trial is reduced.
Note, that the term trial is used here to refer to each attempt at the instructional film.

A familiarisation task was also included in the protocol to reduce variation in task
performance with each subsequent trial. Specifically, subjects were shown the video clips
associated with each facial action included in the instructional film, via the Qualtrics
form, and prompted to replicate each one until they felt they could reproduce it to the
best of their ability. Participants were allowed as much time as they needed, which was
typically around 15 min (exact data was not recorded). To ensure participants did not rush
through this familiarisation task, they were asked to assess the difficulty of replicating each
individual facial action. This data could then also be used to help evaluate the efficacy of the
instructional film approach. To aid the practice of producing the facial actions, participants
were given a mirror for the duration of the familiarisation task. After practising each
movement, the participants were also given the chance to familiarise themselves with the
speed and style of the instructional video through the viewing of a short preview. After
this preview, they were asked to assess the pacing of the activity.

As part of the protocol participants were also asked to sit quietly and wait for three minutes
before each trial. This length of time was chosen based on the following criteria:

• To allow participants to approach a baseline heart rate, hence providing a similar car-
diovascular signal between trials allowing for a fair comparison of system performance.

• To reduce the intensity of the experiment session, allowing participants to relax and
not become overwhelmed to the point they cannot maintain a consistent level of
task performance.

• To not reduce the intensity of the experiment session to the point where participants
are bored, which may also affect their task performance.

• To provide enough time for the investigator to prepare for the next trial.
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Figure 2. Experimental protocol flow chart, showing each step in the study for each participant.

The video data captured in this study could not be anonymised, as participants’ faces
had to be clearly visible in the recordings. Hence, based on legal requirements, the decision
was made to only keep this footage for the necessary period for processing—evaluated
as 60 days by the researchers involved [60]. After this point in time, the data extracted
from the footage could subsequently be maintained with no way of associating the identity
of the participant with their data. This was achieved by destroying all communications
between participants and investigators, such as replies to recruitment emails. Moreover, the
randomly generated participant codes from Qualtrics were used to label the data pertaining
to each subject. To ensure that the data were secure, password protection was used on the
folders in which the data were stored.

Participants were all employees of Bang & Olufsen in Struer, Denmark. There was no
financial reward for being a part of the study. To be eligible, participants had to be over
the age of 18 and have no known heart problems. Informed consent was obtained from all
subjects involved in the study and participants were told they could leave the study at any
point, without reason, and their data would be destroyed. The protocol, handling of data,
and all other ethical factors were approved by the University of York, School of Physics,
Technology & Engineering ethics committee (reference: Williams291121).

In total 22 participants were recruited. However, two participants were later dis-
counted due to missing data. In one trial the investigator failed to press record on the
camera; in another, the Polar H10 did not record during one trial due to a loss of Bluetooth
connection. Hence, the subsequent analysis is made on the remaining 20 participants, for
which all data were obtained.

The demographic questions asked in this study help to describe who was in the
sample in terms of possible influencing factors applicable to camera-based physiological
measurement. Participants were asked to report: their gender; whether they had facial
hair; whether they were wearing glasses; and if they had performed vigorous exercise or
consumed caffeine, alcohol, or nicotine, in the past 3 h. The results of these questions can
be seen in Table 2. Participants were also asked to note their age and assess their skin tone
using the Monk scale [61]. The maximum, minimum, and mean ages of participants were
18, 41 and 63, respectively. The maximum, minimum, and mean skin tone was 1, 3, and
7, respectively.
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Table 2. Description of the sample ascertained from responses to the questions presented to each

participant at the start of the study.

Participant Question Option Frequency %

Gender Female 3 15
Male 17 85

Factor in last 3 h Nicotine 2 10
Alcohol 1 5
Caffeine 13 65
Exercise 1 5

None 5 25

Glasses Yes 11 55
No 9 45

Facial hair Yes 7 35
No 13 65

3.3. Experimental Setup

To recreate a cinematic viewing experience, a suitable viewing distance had to be
chosen. The International Telecommunication Union standard for the subjective assess-
ment of the quality of television images (ITU-R BT.500-14) [28] recommends a viewing
distance of 3.2 times the height of the screen and this condition was replicated for this
study. This recommendation relates to the optimum distance for assessing image qual-
ity, in which the screen inhabits a wide field of view. For the 46-inch (corner to corner)
screen installed in the room where the experiment took place, this meant that the viewing
position was 183 cm away from the screen. Notably, the ITU recommendation for the
subjective assessment of multi-channel stereophonic sound systems with accompanying
images (ITU-R BS.775-4) [29], similarly recommends 3 times the height of the screen for
such studies.

To decide on a suitable set of room illuminations for testing, recommendations from
ITU-R BT.500-14 were used, alongside considerations for the practicality of reproduction
in the room where the study took place. Three room-illumination levels were chosen to
correspond to the ‘maximum’, ‘minimum’, and ‘off’ settings deliverable using the lighting
interface within the room. The darkest setting was representative of the illumination level
considered optimal for the assessment of image quality, the medium setting was represen-
tative of a dimly lit domestic environment, and the bright setting was representative of a
well-lit domestic environment [28].

The illumination conditions were measured by pointing a lux meter directly upwards
towards the ceiling and then forward towards the television screen from the viewing
position. For these two directions, readings were taken for the maximum and minimum
light intensity, corresponding to a white and black image being shown on the screen, in all
three illumination conditions. The screen brightness did not change between conditions or
trials. All of these readings can be seen in Table 3. All lighting conditions were created by
controlling two white light LED panels the centres of which are 1.2 m above, 1 m to the
left and right, and 83 cm in front of the viewer’s head. There only other light source in the
room was the television screen. The experimental setup can be seen in Figure 3.

Researchers commonly use specific webcams or specialised scientific cameras when
trying to record heart rate from video (see Section 2.1). However, in this study participants
were recorded using a Panasonic Lumix DMC-FZ1000 digital single-lens reflex (DSLR)
camera (purchased in Denmark), placed discretely underneath the screen on a fixed tripod.
This camera was chosen as it has an optical zoom, allowing for video to be captured at a
distance without decreasing the resolution. Moreover, DSLR cameras can generally open
to a wider aperture and have larger, more sensitive, sensors than webcams. This means
they are more suited to capturing video footage in darker settings. This is also considered a
reproducible solution, as the Panasonic Lumix DMC-FZ1000 is an entry-level DSLR camera
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which has been commercially available since 2016. Many other DSLR cameras are capable
of recording with the same, or similar, technical parameters. The 13.2 × 8.8 mm sensor
found in the Panasonic Lumix DMC-FZ1000 is typical of entry-level DSLR cameras. One
trade-off with using a DSLR camera is that video compression is unavoidable. As noted in
Section 2.1, compression is known to reduce the performance of rPPG solutions. However,
compression is also very useful for ensuring the manageability of data collected in terms of
both storage capacity and playback compatibility.

Table 3. Description of the illumination conditions, made up of the illumination incident on the

participant due to the screen and the room lighting. The minimum illumination measurement was

made with the television displaying a black screen and the maximum with a white screen.

Illumination Direction Maximum (lux) Minimum (lux)

Bright Upward 370 349
Forward 270 192

Medium Upward 60 46
Forward 93 23

Dark Upward 5 0
Forward 20 0

Figure 3. Photograph taken in the room where the experiment took place, showing the participant’s

chair, lighting, and position of the camera on a tripod under the television (highlighted by the

white circle).

The parameters chosen for shooting were: high resolution (1080p), lowest video
compression ratio available (28 Mbps H.264), zoom to frame face (50 mm), highest aperture
possible at the zoom position (f/3.4), and slowest feasible shutter speed to create the
longest exposure possible whilst shooting at 50 FPS (1/60 s). The decision was made to
use a progressive encoding format, rather than an interlaced format (e.g., 1080i), due to
the fact PyVHR and OpenFace 2 both use frame-wise processing. The shutter speed was
deemed appropriate as no noticeable motion blur was found when recording facial actions
in a pre-study test, as assessed using frame-by-frame inspection. The only difference in
camera settings between the three room illuminations was the ISO setting, which relates to
the sensitivity of the sensor to incoming light. The bright, medium, and dark sensitivity
settings were set to ISO400, ISO1600, and ISO6400, respectively. Maintaining the ISO400
sensitivity would render the participant’s face invisible in all but the bright illumination.

The data compression applied by the camera provides a roughly 100:1 reduction in
data, as uncompressed video at the same specification would have a bit rate of 2.98 Gbit/s.
This value is obtained by multiplying the number of channels (3) by the bit depth of each
channel (8) and then multiplying this by the resolution (1080 × 1920) and the frame rate (50).
McDuff et al. found that applying a similar compression ratio artificially led to an increase
in average error from 1.78 BPM to 2.68 BPM. However, it should be noted that their system
did not apply skin patch processing and the correlation between rPPG and contact sensor
readings is not reported in this publication [42].
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4. Analysis

The null hypothesis for this study is that room illumination has no influence on the
mean absolute error (MAE) and Pearson correlation (PCC) performance metrics. There is
also another null hypothesis, associated with the assumption of consistent task performance
discussed in Section 3.1, which states that there is a difference in MAE and PCC metrics for
the FAC between trials. To obtain the PCC and MAE metrics, the camera-measured signals,
outputted by OpenFace 2 and PyVHR, are compared to the expected signals, associated
with perfectly replicating the model’s movements and data recorded by the contact sensor
(Polar H10), respectively. Subsequently, these metrics are assessed for each physiological
modality using statistical testing to evaluate if they have statistically significant different
mean values. As well as assessing if there is a difference in the performance metrics between
the three illumination conditions, the analysis in this section also aims to explore the nature
of these differences.

4.1. Preprocessing

To make the analysis in this study possible, the camera-measured signals and expected
signals first had to be obtained, synchronised, and compiled into a dataset. An outline of
this process can be seen in Figure 4.

Figure 4. Data preprocessing flow chart showing how all the data were collected for the study and

processed ready for further analysis (see Section 4).

Initially, the instructional film was manually coded to obtain the expected signal for
FAC. For each movement, the first, last, and peak frame number reference was transcribed.
Next, the intensity of the model’s movement at this peak was also assessed, through cross-
examination with examples within Ekman’s FAC Manual [46]. Using this data, an array of
expected facial movement intensities could be produced which matched the sample rate of
the recorded videos (50 Hz). This expected response signal was univariate, only describing
the activation of the target expression being demonstrated by the on-screen model in the
instructional film.

The video footage was cut so that the recordings began at the start of the instructional
film. This was done with LosslessCut [62], a software solution for segmenting video files
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without re-encoding, using the visual marker discussed in Section 3.1. This also allowed
for visual inspection, confirming that all the footage was in focus and all participants had
made an attempt at the instructions prompted in the film. The truncated video was then
processed with OpenFace 2 (2.2.0) using the CLI FeatureExtraction command, to output the
camera-measured signal [1]. This was then sliced to create a univariate signal containing
only the target expressions.

The Polar H10 is able to process electrocardiogram (ECG) data in real-time on the
device and deliver a heart rate value each second via Bluetooth, as well as a timestamp,
hence no pre-processing was needed to obtain this expected heart rate signal. To obtain the
camera-measured signal, PyVHR was used to process the video footage from the start of
the instructional film until the end of the facial actions task. The specific rPPG process used
is described in the demo file available via the associated GitHub repository [2]. Notably,
the six-region approach was preferred to the one-hundred-region approach for facial patch
sampling as it was considered to reduce the influence of facial hair and glasses by not
sampling these regions.

When processing the video data using PyVHR (1.0.2), it became clear that processing
any more than one minute of video with the patches extraction subprocess enabled, led
to a ‘memory full’ error. To address this issue, each video was cropped using the FFmpeg
library at lossless quality [63]. The crop window removed much of the background, whilst
still ensuring that none of the participants’ faces moved out of frame at any point in any of
the videos. Specifically, the video was cropped to a 700 pixel by 1080 pixel frame, centred
in the middle of the original 1920 pixel by 1080 pixel frame. Reducing the resolution in
this way caused the file sizes to increase, due to the lossless re-encoding, but led to faster
execution times in PyVHR and successful processing without error.

After the video data had been processed using PyVHR, to obtain the camera-measured
signal, the Polar H10 data was synchronised with this data by aligning the associated
timestamps. To obtain these millisecond precision timestamps from the file’s metadata,
ExifTool was used [64]. However, the alignment of the two signals appeared to be incorrect
using this method. Hence, the synchronisation was reassessed by analysing the maximum
value of the cross-correlation function, with the expected (Polar H10) and camera-measured
(PyVHR) signals as inputs. This assessment was made for all videos in bright condition.
Implementation notes for this process are accessible via the SciPy library documentation [65].
The outcome of this process suggested that the internal clock of the Polar H10 sensor was
54 s behind the timestamps obtained from the camera. Subsequently, this delay was
accounted for.

During the preliminary analysis of the data, it became apparent that for some video
frames no measurement had been made by the camera-based systems. This occurred when
the face was barely illuminated at the start of the facial action instructions in the darkest
setting. Another, less common reason for no measurement being made was during a facial
occlusion event. For example, one participant adjusted their glasses at the end of the
instructional film and two participants stood up at the end of their third and final trial. As
no facial occlusion events occurred during the facial actions task this was deemed to have
had no influence on the outcomes of this study.

4.2. Qualtrics Analysis

The difficulty assessment made during the familiarisation task can be seen in Figure 5.
These data show that some facial actions were considered to be harder to reproduce than
others. They also show that the perceived difficulty of the facial actions varied between
participants. Participants also commented on the difficulty of performing the first two
facial actions separately: AU01 and AU02. However, it is clear that on average the facial
actions were not assessed as being difficult. A question relating to the pacing of the facial
actions was also presented to the participants, for which all but one assessed the speed and
time between actions as optimal (not too fast or too slow).
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A built-in feature in Qualtrics was used for counter-balancing, randomising the or-
der of illumination conditions for each participant. However, the counterbalancing was
not applied evenly. Notably, more participants had their first trial in the bright illumi-
nation compared to the other two conditions. In Table 4, the outcomes of the automatic
counterbalancing process are shown in full.

Figure 5. Box plot showing the distribution of difficulty scores for each facial action as assessed by

the participants in the study. The features of the box plot represent the minimum, maximum, and

quartiles of the response distributions.

Table 4. Table showing the order in which the illumination conditions were presented. Note the

imperfect outcomes of the counterbalancing process automatically managed by Qualtrics. Ideal

counterbalancing would lead to all values in the frequency column being the same.

Illumination Trial Order Frequency %

Bright First 9 45
Second 5 25
Third 6 30

Medium First 4 20
Second 6 30
Third 10 50

Dark First 7 35
Second 9 45
Third 4 20

4.3. Facial Action Analysis

These analyses compare the 177 s of FAC data extracted from each video by OpenFace 2
of participants responding to the instructional film, with the 177 s of data manually coded
from the movements of the model in the instructional film. The sample rate for both of
these univariate signals is 50 Hz (see Section 4.1). The relationship between the camera-
measured target expression and the expected target expression, from the manual coding,
can be quantified by calculating the MAE and PCC for each video. Both of these signals are
visualised in Figure 6. In Figures 7 and 8 the distribution of these performance metrics is
shown, for each illumination condition.

The distribution of each metric in each illumination condition was tested for normality
using the Shapiro–Wilk test [66]. All six distributions were found to be normally distributed,
so parametric statistics were used in the subsequent analysis. For both the MAE and PCC
distributions the assumption of sphericity was met, as assessed using Mauchly’s test of
sphericity [67]. Hence, a repeated measures ANOVA [68] was applied revealing that there
were significant differences in both MAE and PCC between the illumination conditions
(MAE: F = 8.251, p = 0.001) (PCC: F = 9.427, p < 0.001).
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Figure 6. Figure showing the mean of the camera-measured target facial action for each illumination

condition for each frame, alongside the expected response associated with perfectly replicating the

instructional film. Note that AU18 was accidentally included in the film despite not being recognised

by OpenFace 2, hence data captured during this time was ignored.
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Figure 7. Box plot showing the distribution of MAE values quantifying the difference between the

expected target facial action signal and the signal camera-measured signal for each illumination

condition. Each cross, in the overlaid swarm plot, shows an individual value within the distribution.

The means and standard deviation of the distributions are as follows: Bright (mean: 0.82, std: 0.10),

Medium (mean: 0.84, std: 0.10), Dark (mean: 0.88, std: 0.08).

Figure 8. Box plot showing the distribution of PCC values quantifying the relationship between the

expected target facial action signal and the camera-measured signal for each illumination condition.

Each cross, in the overlaid swarm plot, shows an individual value within the distribution. The means

and standard deviation of the distributions are as follows: Bright (mean: 0.46, std: 0.12), Medium

(mean: 0.42, std: 0.14), Dark (mean: 0.37, std: 0.12).

As post hoc analyses, pairwise comparisons were made to assess the significance
of the difference in mean PCC and MAE between each illumination condition. This
was done using the dependent t-Test. As multiple comparisons are made Bonferroni
adjustment [69,70] is applied, leading to an adjusted significance threshold of p < 0.008.
These results can be seen in Table 5. They show a significant difference between the Bright
and Dark conditions for both MAE and PCC.

To test the assumption that participants perform the facial actions task consistently
between trials, the differences between the MAE and PCC metrics for each participant’s
first, second, and third trials were assessed. All six distributions were found to be normally
distributed using the Shapiro–Wilk test [66], so parametric statistics were used in the subse-
quent analyses. The two sets of three distributions of performance metrics, corresponding
to the MAE and PCC in each illumination condition, were found to meet the assumption
of sphericity using Mauchly’s test [67]. A repeated measures ANOVA [68] was applied
revealing that neither the MAE nor PCC approached statistically significant differences in
mean value between the illumination conditions (MAE: F = 0.553, p = 0.580) (PCC: F = 0.614,
p = 0.547). The data analysed in this paragraph can be seen in Figures 9 and 10.
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Table 5. Results of dependent t-tests assessing differences in mean for the performance metric

distributions between illumination conditions, for automatic FAC. Statistically significant differences

in mean are shown in bold.

FAC Distributions for Comparison t-Test (A vs. B)

Metric Condition A Condition B t p

PCC Dark Medium −2.299 0.033
Dark Bright −4.109 <0.001

Medium Bright −2.156 0.044

MAE Dark Medium 2.428 0.025
Dark Bright 3.977 0.001

Medium Bright 1.566 0.134

Figure 9. Box plot showing the distribution of MAE values quantifying the difference between the

expected target facial action signal and the camera-measured signal for each attempt at the facial

actions task instructed by the film. Each cross, in the overlaid swarm plot, shows an individual value

within the distribution. The means and standard deviation of the distributions are as follows: First

(mean: 0.39, std: 0.13), Second (mean: 0.43, std: 0.14), Third (mean: 0.43, std: 0.12).

Figure 10. Box plot showing the distribution of PCC values quantifying the relationship between the

expected target facial action signal and camera-measured signal for each attempt at the facial actions

task instructed by the film. Each cross, in the overlaid swarm plot, shows an individual value within

the distribution. The means and standard deviation of the distributions are as follows: First (mean:

0.87, std: 0.10), Second (mean: 0.84, std: 0.10), Third (mean: 0.84, std: 0.09).



Appl. Sci. 2023, 13, 8482 18 of 28

Through visual inspection of the camera-measured signals, it appeared that there
are three characteristic errors. First, on average, the camera-measured facial action was
of lower intensity than that expressed by the model. Second, OpenFace 2 often measures
facial actions with an intensity between zero and one, whereas the expected signal is never
assessed in this range of values. This is due to Ekman’s system defining a magnitude of
one being the minimum observable intensity [46]. In Figure 11, both of these characteristic
errors can be seen.

The third characteristic error is that the camera-measured signal appears to make
small erratic changes, even when the facial expression does not appear to change in the
associated video recording. In Figure 12, the power spectral density of the target signal
measured by OpenFace 2 is shown for all data collected under each of the three illumination
settings. It has been suggested that the fastest micro-expressions last no longer 65 ms [71].
In all three cases, there appear to be frequency components representative of movements
lasting less than this duration (15.38 Hz). The power spectral density was calculated using
the default implementation in the associated matplotlib function [72], with an increased
window length of 1024 applied to optimise frequency resolution for visualisation, applied
to the concatenated target expressions signals for each condition. Power spectral density
was chosen for this visualisation as it allows for a clear comparison of the power of each
frequency integer band.

Figure 11. Figure showing the camera-measured response for participant one to the AU12 facial

action for each illumination condition, alongside the expected response associated with perfectly

replicating the instructional film. Note that the camera-measured data from all three conditions are

lower in magnitude than the expected response, contain values between zero and one, and contain

small erratic changes in magnitude.

Figure 12. Power spectral density of recorded facial action code data from OpenFace 2, for the target

expression. Research into the speed of microexpressions suggests that there should be no frequency

components to the right of the grey line (15.38 Hz) [71].
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4.4. Heart Rate Analysis

These analyses compare the 177 s of HR data extracted from the video footage by
PyVHR of participants responding to the instructional film, with the 177 s of HR data
measured by the Polar H10 contact sensor. The sample rate of both these univariate signals
is 1 Hz. The relationship between the camera-measured signal and the expected heart rate,
from the Polar H10 contact sensor, can be quantified by calculating the average MAE and
PCC for each video. In Figures 13 and 14 the distribution of these performance scores is
shown, for each illumination condition.

Figure 13. Box plot showing the distribution of MAE values quantifying the difference between the

expected target heart rate signal from the contact sensor and the camera-measured signal for each

illumination condition. Each cross, in the overlaid swarm plot, shows an individual value within

the distribution. The means and standard deviation of the distributions are as follows: Bright (mean:

3.20, std: 1.11), Medium (mean: 16.12, std: 9.01), Dark (mean: 23.81, std: 6.89).

Figure 14. Box plot showing the distribution of PCC values quantifying the relationship between the

expected target heart rate signal from the contact sensor and the camera-measured signal for each

illumination condition. Each cross, in the overlaid swarm plot, shows an individual value within

the distribution. The means and standard deviation of the distributions are as follows: Bright (mean:

0.28, std: 0.24), Medium (mean: 0.01, std: 0.29), Dark (mean: 0.19, std: 0.30).

The distribution of each metric in each illumination condition was tested for nor-
mality using the Shapiro–Wilk test [66]. All six distributions were shown to be nor-
mally distributed, so parametric statistics were used in subsequent analysis. The PCC
distributions were found to meet the assumption of sphericity, using Mauchly’s test of
sphericity [67]. However, the MAE distributions did not meet the assumption of sphericity,
so the Greenhouse–Geisser correction was applied [73]. A repeated measures ANOVA [68]
was applied revealing that there were significant differences in both mean MAE and PCC
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values between the illumination conditions (MAE: F = 43.415, p < 0.01) (PCC: F = 14.716,
p < 0.01).

As post hoc analyses, pairwise comparisons were made to assess the significance
of the difference in mean MAE and PCC between each illumination condition. This
was done using the dependent t-test. As multiple comparisons are made Bonferroni
adjustment [69,70] is applied, leading to an adjusted significance threshold of p < 0.008.
These results can be seen in Table 6. They show a statistically significant difference for all
pairwise comparisons, apart from between Dark and Medium conditions for PCC.

Table 6. Results of dependent t-tests assessing differences in mean for the performance metric

distributions between illumination conditions for heart rate estimation. Statistically significant

differences in mean are shown in bold.

HR Distributions for Comparison t-Test (A vs. B)

Metric Condition A Condition B t p

PCC Dark Medium −1.901 0.036
Dark Bright −5.788 <0.001

Medium Bright −3.327 0.002

MAE Dark Medium 2.724 0.007
Dark Bright 12.044 <0.001

Medium Bright 6.403 0.001

In Figure 15, the residual error, the difference between the heart rate measurements
from the contact sensor and the camera-based solution, is shown. Visual inspection of this
graph suggests the system commonly overestimates the heart rate in medium and dark
conditions. The prevalence of frames recorded with a heart rate of zero during the dark
introduction part of the film can also be seen in this figure. Through further inspection of
the two signals, it appeared that the camera-based measurement would also often increase
and decrease by large increments over the course of only a few seconds. This characteristic
spiking can be seen in Figure 16. In Figure 17, the relation between the heart rate values
recorded with the Polar H10 is compared to the data obtained using PyVHR, for each
corresponding sample, using a two-dimensional histogram. This visualisation highlights
both the tendency for the camera-based system to overestimate as well as the tendency
to make measurements of zero BPM in the dark illumination condition. Moreover, it
highlights the commonality of erroneous readings between 120 BPM and 130 BPM in bright
and medium illumination conditions.

Figure 15. Mean difference between the camera-measured HR and the HR measured by the contact

sensor for each sample in each illumination condition.
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Figure 16. Example comparing the camera-measured signal and the physical heart rate sensor for

a video captured in the bright illumination condition. Note the spiking behaviour in the camera-

measured data.

Figure 17. Two-dimensional histogram showing the relationship between the camera-measured heart

rate values and the expected values as measured by the contact sensor, for each sample under each

illumination condition. The dotted line describes where the two measures are equal. A bin size of ten

helps characterise the relationship between the two variables clearly.

5. Discussion

In the methodology section, concerns were highlighted as to whether the relationship
between the camera-measured signal (generated by OpenFace 2), and the expected signal
(associated with perfectly replicating the model’s movements) could be used to effectively
assess system performance. Specifically, the concern was that the individual’s improving
performance in the facial action replication task, with each subsequent trial, may create
a confounding effect between the illumination conditions which may lead to incorrect
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conclusions to be drawn from the study. Therefore, any finding of a between illuminations
effect was considered to be based on an assumption that participants perform the facial
actions task consistently between trials. To test this assumption a repeated measures
ANOVA was used, showing there is no such difference in MAE or PCC between trials.
Hence, we consider that under the conditions of this study, this assumption has been met
and that the findings regarding the influence of illumination on the performance of the
camera-based FAC solution can be considered conclusive.

To reduce any influence of inconsistent task performance, counterbalancing of the
order of conditions should be applied and further considerations should be made to
mitigate the influence of participants struggling to create certain facial actions (e.g., AU02).
For example, the instructional film may be individualised to only prompt facial movements
which participants can effectively recreate. Such optimisations could lead to an instructional
film approach being a viable alternative to manually coded facial action datasets, for
training and benchmarking camera-based FAC systems. In the case of this study, the results
obtained should not be considered a comparable benchmark when compared to other
datasets due to the influence of task performance on the MAE and PCC metrics. As the
pacing of the instructional film was considered optimal by all but one of the participants,
similar timings should be used in future research when applying this methodology.

Another limitation of this research relates to the diversity of participants, given that
13 (65%) of the sample were white males. Hence, this demographic is over-represented.
However, some interindividual factors which may hypothetically influence the perfor-
mance of remote camera-based physiological measurement are well represented within
the datasets. For example, many of the participants were wearing glasses (55%) or had
facial hair (35%). These factors likely influenced the performance of the camera-based
physiological measurement solution. However, they are not explored in this publication
due to scope limitations. In future work exploring the use of camera-based physiological
solutions, researchers should strive to obtain a more varied sample of participants.

Analyses of the data collected suggest that the camera-based automatic FAC solu-
tion implemented performs better under brighter room illumination, as hypothesized.
Although, the difference between the performance metrics for the medium and bright
conditions is not considered statistically significant. Based on these results, we recommend
that when using a similar camera-based FAC system, the room illumination should be at
least as bright as the medium condition and should be kept consistent between participants.

In all three conditions, characteristic performance issues were found in the camera-
measured FAC data: erratically changing values containing frequency content associated
with facial movements faster than the fastest possible microexpression [71]; values be-
tween zero and one, which corresponds to an impossible score within Ekman’s coding
method [46]; values of lower intensity than the actions demonstrated by the model in the
instructional film. However, it is unclear if the values between zero and one are due to
some undocumented adaptation of the coding method, or a performance issue. Moreover,
it is unclear if this underestimation is due to participants’ task performance (high-intensity
actions may be harder to reproduce) or system performance (OpenFace 2 underestimates the
magnitude of high-intensity facial actions). To avoid these issues influencing the outcomes
of psychophysiological research, the recommendation is made to avoid drawing inferences
based on microexpressions or low-intensity expressions, between zero and one, when
using a similar camera-based FAC system. It should be noted that there is no conclusive
indication that these characteristic errors were more prevalent with each incrementally
darker room illumination, based on the analyses made.

The analyses of the data collected suggest that the camera-based heart rate measure-
ment solution implemented performs better under brighter room illumination. Notably,
the difference in MAE between the setting was large and highly significant and the per-
formance of the system was very poor in all but the bright condition. Hence, when using
a similar camera-based HR measurement system, we strongly suggest the recreation of
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illumination conditions similar to the bright setting. Or if possible, brighter and with a
smaller component of light emanating from the screen.

The residual error between the camera-measured signal and the expected signal from
the contact sensor can be partly characterised by distinct increases and decreases in heart
rate occurring over a short time period. These upwards spikes appear to be part of a wider
trend of higher heart rate predictions being made by the camera-based system, compared
to the contact sensor. These spikes also contributed to the poor correlation between the
camera-based heart rate measurements and the Polar H10 measurement. Even in the bright
condition, the correlation was found to be weak (mean PCC = 0.28). Hence, the suggestion
is made that in psychophysiological research, features relating to short-term changes in
heart rate (e.g, once every second) should not be obtained using a similar camera-based HR
measurement system. Instead, the recommendation is made to obtain sparse measurements
over a longer duration, reducing the temporal resolution of the signal. For example, before,
during, and after the viewing of screen-based stimuli, or once every minute. To achieve
this, adaptations to the stride and window length settings within the PyVHR configuration
should be considered. This reduction in error, associated with an extended window length
in depth, is explored in depth by Shin et al. [74].

Occlusion events were identified as a source of erroneous measurements for both the
camera-based HR measurement and FAC systems. When a face is not recognized, which
can happen due to low illumination or obstructions, no measurement can be obtained.
In our study, data, it is evident that the initial illumination during the instructional film
contributed to such occurrences in the dark condition (refer to Figure 15). While no
occlusion events were observed during the facial actions task of the instructional film,
the decision to exclude data analysis from the head movement and eye movement tasks,
as mentioned in Section 3.1, was made due to the prevalence of facial occlusion events.
Specifically, rotating the head to look away from the screen, in any direction, was found to
cause a loss of tracking.

A DSLR camera was chosen due to its ease of procurement and convenience, as well as
advantages when shooting at a distance and in dark conditions compared to common rPPG
video capture devices such as specialised scientific cameras and specific model webcams
(see Section 3.3). There was limited control over some camera settings, for example, the
ISO setting was chosen based on visual inspection and may hypothetically have influenced
the data obtained in an unexpected way. To better understand how camera settings,
interpersonal factors, and environmental conditions influence the quality of physiological
data encoded in a video signal, future research should explore the development of a
quality assessment metric. This video quality metric should be developed by considering
existing research into image and video quality assessment [10,75], as well as the research
described in this manuscript pertaining to factors which influence the performance of
remote physiological measurement solutions (Section 2). Provisionally, such a model
would allow researchers to predict if a video signal is viable for physiological analysis,
using standard tools such as OpenFace 2 [30] and PyVHR [3].

Creating such a video quality metric may also provide insight into how image en-
hancement may be applied to improve the extraction of physiological data. Such techniques
have shown promising results in some publications [76–78]. Moreover, similar intelligent
systems, such as driverless cars, have benefited from image enhancement to enable their
camera-based systems to perform in challenging conditions [79]. In the future, we ex-
pect that new camera-based physiological measurement software solutions will become
available that utilise video enhancement, as well as other technological advancements.
Provisionally, these will help improve the feasibility of using camera-based physiolog-
ical measurement solutions in challenging conditions—such as for assessing cinematic
viewing experiences.
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6. Conclusions

In this study, the feasibility of using a multimodal camera-based physiological mea-
surement solution for the assessment of cinematic viewing experiences was considered.
A system was implemented that extracts HR and performs FAC using only open-source
software and a basic DSLR camera. It was then tested under three illumination conditions,
revealing that a reduction in room illumination has a significant negative effect on system
performance. Hence, the recommendation is made to apply illumination similar to, or
brighter and less variable than, the bright room condition in this study (192 to 270 lux
incident on the viewer’s face) when using similar camera-based physiological measure-
ment solutions in the future. This recommendation is made even though it represents a
sub-optimal reproduction of a cinematic viewing experience.

When analysing the data obtained using the camera-based physiological measurement
solution, characteristic performance issues were found under all three illuminations tested.
This led to the conclusion that researchers should consider reducing the temporal resolution
of the HR measurements obtained from a camera when trying to make inferences about a
person’s psychological state. For FAC, characteristic performance issues were found which
suggests that the system implemented should not be used to assess micro-expressions, or
low-intensity facial actions when trying to make inferences about a person’s psychological
state. If all of these recommendations are followed, we consider the application of the
camera-based multimodal physiological solution implemented in this study to be feasible
for assessing screen-based media viewing experiences.

To gain this insight, a novel instructional film was used. This approach proved to be a
time-effective way of gathering insightful data for evaluating the camera-based FAC system.
Notably, the validation of illumination as a performance influencing factor, as described
in the OpenFace 2 publication [30], is considered to be a novel research contribution. The
method saves time as only the instructional film requires manual FAC, rather than the
videos of every participant in the dataset. Future research should be conducted to develop
this method as a means for testing camera-based physiological measurement solutions.

No similar solution, which is capable of FAC and HR measurements from a single
camera, has been designed and tested in research to date. In future, researchers should aim
to test and improve the robustness of this solution. There is also potential to improve this so-
lution for capturing physiological data related to screen-based media viewing experiences
by investigating additional capabilities, such as head and eye tracking, as well as incorpo-
rating audio recording. These advancements can further enhance the comprehensiveness
and accuracy of physiological measurements, thereby enriching our understanding of the
psychological processes involved in media consumption.
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Abbreviations

The following abbreviations are used in this manuscript:

FAC Facial Action Coding

rPPG Remote Photoplethysmography

MAE Mean Absolute Error

PCC Pearson Correlation Coefficient

DSLR Digital Single Reflex Camera

BPM Beats Per Minute

FPS Frames Per Second

HR Heart Rate
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