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ABSTRACT

Collaborative optimization (CO) is an architecture within the multi-
disciplinary design optimization (MDO) paradigm that partitions
a constrained optimization problem into system and subsystem
problems, with couplings between them. Multi-objective CO has
multiple objectives at the system level and inequality constraints at
the subsystem level.Whilst CO is an established technique, there are
currently no scalable, constrained benchmark problems for multi-
objective CO. In this study, we extend recent methods for generating
scalable MDO benchmarks to propose a new benchmark test suite
for multi-objective CO that is scalable in disciplines and variables,
called ‘CO-ZDT’. We show that overly-constraining the number of
generations in each iteration of the system-level optimizer leads
to poor consistency constraint satisfaction. Increasing the number
of subsystems in each of the problems leads to increasing system-
level constraint violation. In problems with two subsystems, we
find that convergence to the global Pareto front is very sensitive to
the complexity of the landscape of the original non-decomposed
problem. As the number of subsystems increases, convergence
issues are encountered even for the simpler problem landscapes.
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search heuristics; · Applied computing → Multi-criterion
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1 INTRODUCTION

To evaluate the performance of an optimization algorithm is it cus-
tomary, if not compulsory, to employ benchmark problems. These
problems are widely used in research to compare and evaluate the
performance of different algorithms under the same conditions.
By using benchmark problems, researchers can objectively eval-
uate the performance of optimization algorithms, identify their
strengths and weaknesses, which subsequently facilitates the pro-
cess of improving the design of the algorithm. Benchmark problems
are typically designed to be challenging and complex, with multiple
objectives, constraints, and many decision variables.

Several benchmark test suites have been proposed to evaluate the
performance of algorithms in solving single- and multi-objective
problems. BBOB [4] is a relatively recent test suite that contains
many different types of problems, and it is organized into several
variants, such as bbob-biobj with 55 bi-objective functions, and
bbob-constrained with 10 single-objective functions with varying
number of constraints. DTLZ [8] is another popular test suite that of-
fers scalability in both in the number of decision variables and objec-
tives, and it is useful in evaluating the performance of optimization
algorithms in handling nonlinearity, non-convex Pareto fronts, and
discontinuities. Another example is WFG [15] that offers test prob-
lems with highly customisable properties, such as non-separability,
bias, multi-modality, and mixed Pareto-front shapes. Many of these
characteristics, including the need to satisfy constraints, are found
in many real-world problems, but existing benchmarks often lack
multi-disciplinary design optimization (MDO) characteristics.

MDO problems require the optimization of a system that in-
volves multiple disciplines, such as aerodynamic, structural, and
powertrain optimization, that are often found in the automotive
industry [22]. These types of problems involve complex interac-
tions between different components and require a more integrated
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approach to optimization than trying to optimize the components
in isolation. MDO problems are not restricted to the engineering
domain, and applications in other areas such as public adminis-
tration can also be found, where MDO can be used to optimize
complex systems that involve multiple stakeholders, such as urban
planning, labour market, or housing policy [18, 24]. Not manyMDO
benchmark problems can be found in the literature, and there are
even fewer search results when constraints and multiple objectives
are both considered.

Recently, a MDO bi-objective test suite [16, 17] was proposed,
scalable in both the number of decision variables and disciplines.
These benchmark problems have been constructed by using the
multi-disciplinary feasible (MDF) architecture [6]Ða type of archi-
tecture categorised as monolithic [21]. This implies that there is
only a single optimization problem in the entire system, and the
behaviour of each component, or discipline, in the system is mod-
elled by the use of discipline analysis. Much of the literature in
multi-objective MDO is concentrated on monolithic problems.

There are other architectures in the literature that are called dis-
tributed [21], where the optimization problem is decomposed into a
set of smaller optimization problems, which produces the same so-
lution when reassembled. The primary motivation for partitioning
the problem is to allow different teams or (engineering groups), to
work separately on a part of the problem that fits into their own ex-
pertise, following a more engineering-like environment. This paper
builds up on [16, 17] by proposing a distributed version of the test
suite based on the collaborative optimization (CO) [3] architecture.
We also introduce constraints at each subproblem, resulting in more
realistic MDO problems.

The survey paper by Martins and Lambe [21] proposes and uses
a taxonomy for different variations of the MDO architectures (see
Fig. 7). We will use the proposed taxonomy in this paper to refer to
the MDO architectures.

The paper is structured as follows: Section 2 covers the key
concepts and literature in the field, including an introduction to
multi-objective MDO, collaborative optimization, and constrained
MDO. Section 3 introduces the proposed problem and some of the
relevant nomenclature. Section 4 goes through the proposedmethod
for solving the problem. Section 5 gives details on the experimental
setup, and Section 6 shows the results for case studies one and two.
Section 7 provides conclusions, discussion, and future work in the
area.

2 RELATED LITERATURE

2.1 Introduction to Multi-Objective MDO

MO-MDO is a growing field where some of the concepts used in
multi-objective optimization are applied to problems in MDO.

Most benchmarks and existing problems in MO-MDO are single-
objective. Some of the multi-objective problems are derived directly
from the single-objective problems, for example the NASA MDO
test suite [25], from which a multi-objective version of the Golinski
speed reducer has been derived [11, 12]. An MO-MDO test suite
based on the ZDT problems was proposed in [16] and [17], and
is aimed at monolithic MDO problems, that is, where only the
subsystem analyses are treated as distributed components. Many
of the other test problems that exist in the literature have overly

specific applications or rely on multi-disciplinary analysis (MDA)
equations that are difficult to implement.

A large proportion of the literature or distributed multi-objective
MDO centres around multi-objective concurrent subspace optimiza-
tion (CSSO) [9, 13, 14, 26] and CO [10, 23, 27, 29].

Constrained MO-MDO. Constrained MO-MDO is a subset of gen-
eral MO-MDO literature, and is therefore very limited. While con-
straints are often included as part of the written optimization prob-
lem in the relevant research literature, very little work has been
dedicated to constraints in multi-objective MDO.

Some of the research articles on multi-objective CO [27] have
adapted the Golinski speed reducer test problem from the MDO
NASA test suite [25] (adapted in [12]) which include constraints on
the design variables at the subsystem levels. The multi-objective
Sellar problem [28] is adapted and used in [10] to demonstrate
the authors’ method for handling MO-MDO problems, with one
inequality constraint in each of the two subsystems.

Aside from the above, to the knowledge of the authors, there is
no literature focusing on the use of constraints in MO-MDO, and
none at all in scalable MO-MDO.

2.2 Background: Collaborative Optimization

CO, proposed in 1996 [3], is a distributed MDO architecture where
optimizers work at both the system and the subsystem levels to
obtain separate distributed goals ś i.e. one goal for the system-
level problem, and another (a consistency objective) for each of
the subsystem-level problems. This involves different objective
functions, constraints, and design variables in each problem.

Copies of design and linking variables, denoted with a hat ˆ, are
used to ensure consistency between the variables at the subsystem
and system levels. Copies of the global variables are established at
the subsystem levels, while copies of the local and linking variables
are established at the system level.

The subsystem problems work to minimise the sum of squared
errors between the copies of the design variables received from the
system-level optimizer, and the design variables obtained at the
subsystem level. Constraints may be in action at the subsystem level,
providing some conflict between the system and subsystem-level
objectives.

The aim of CO is to allow the optimizers at the subsystem
level to work with some degree of independence from other teams.
Information-sharing is limited, as each subsystem only has access
to its own design variables and the copies of linking variables of
other subsystems. This may be useful in real-world applications
where data privacy is important. For example, in applications such
as decision-making in government, sharing data can be an issue due
to security concerns. Similarly, in industrial applications, commer-
cially sensitive informationmay need to be kept within departments
or disciplines to minimise risk of information leaks. Because of this,
CO may be a good option for an MDO optimization architecture in
such fields.

However, CO has some key difficulties. It has also been shown
that single-objective CO is generally slow to converge when com-
pared with other architectures [1, 30], especially the monolithic
architectures such as multi-disciplinary feasible or all-in-one. Addi-
tionally, according to the formulation of CO, increasing the number
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of design variables means that more copy variables are introduced,
meaning that a similar optimization problem executed in a differ-
ent MDO architecture would contain fewer design variables (and
therefore quicker convergence) [1].

Multi-objective CO. The literature on multi-objective CO is fairly
limited. Some of the multi-objective CO strategies rely on a priori
methods such as linear physical programming [20, 23] or weighted
sums [29]. However, a designer may prefer an a posteriori approach
that allows them to choose a solution according to trade-offs or
conflicts.

The collaborative optimization strategy for multi-objective sys-
tems (COSMOS) was proposed in 2007 [27]. This is a set-based ap-
proach where child solutions are generated from parent solutions,
and the best solutions go forward to make up further generations.
In COSMOS, the optimization is terminated when the number of
supervisor iterations has met a predetermined number; in [27], this
is 20.

Also based on the CO architecture is the Pareto Genetic Algo-
rithm Collaborative optimization (PGACO) [10]. PGACO uses a
similar approach to COSMOS by adopting an internal and an exter-
nal cycle (analogous to the supervisor iterations in COSMOS) and
using selection, crossover and mutation operators on the solutions
following the completion of one external loop. As in COSMOS,
the external loop termination criteria is based on a predetermined
number of loops, and once this number is reached, the optimization
is terminated.

3 PROPOSED TEST SUITE

The proposed test suite builds on a previously proposed multi-
objective MDO test suite by the present authors, based on a mono-
lithic architecture [16, 17]. However, monolithic architectures as-
sume the existence of a single optimization problem, and may not
be suitable for dealing with optimization problems that have been
partitioned along disciplinary lines (or engineering groups), where
each discipline has its own subproblem. The proposed test suite
addresses this issue by adopting a distributed architecture based
on the CO approach. There are other distributed architectures in
the literature [21], but we have chosen CO because the disciplinary
subproblems can be independent from each other, allowing teams
to control the level of detail shared between them. Another con-
tribution of the new test suite when compared with [16, 17] is
the inclusion of constraints in the problem formulationÐa very
common property of many engineering problems. Given that the
proposed problem formulation is based on the ZDT problems [32],
we named this new test suite ‘CO-ZDT’.

The CO architecture has a system subproblem where it is pos-
sible to define performance criteria for the entire system. Each
discipline (or subsystem) contains a subproblem with a discipline
analysis, and interdependencies can exist between the discipline
analysis of the different subsystems. There are three types of de-
sign variables: global, local, and linking. Global variables are de-
noted by z = (𝑧1, . . . , 𝑧𝑛𝑧 )

𝑇 and are accessible to both system
and subsystem subproblems. Local variables are distributed across
𝑁 subsystems, and are only accessible to their subproblems. Let
x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛𝑥𝑖 )

𝑇 which contains 𝑛𝑥𝑖 local variables at the
ith subsystem where 𝑖 ∈ {1, . . . , 𝑁 }. The linking variables are the

output of an analysis conducted by each discipline, with the in-
tention of mimicking the behaviour of a particular component in
the system. There is a total of 𝑛𝑦𝑖 output linking variable at the

𝑖th subsystem, given by y𝑖 = (𝑦𝑖,1, . . . , 𝑦𝑖,𝑛𝑦𝑖
)𝑇 . The disciplinary

subproblems are made independent of each other by using copies
of the design variables. These are denoted with a hat; for example
x̂𝑖 is the copy of the vector of local variables x𝑖 . The łcopiesž of
local and linking variables are treated as design variables at the
system subproblem, while the łcopiesž of the global variables are
treated as design variables by the subproblems of the subsystems.
The system subproblem is given by:

min 𝑓1 (z) = 𝑧1

min 𝑓2 (𝜉 (x̂, ŷ), z) = 𝑔 (𝜉 (x̂, ŷ), z)ℎ (z, 𝝃 (x̂, ŷ) )

where 𝑔 (𝜉 (x̂, ŷ), z) = 1 +
9

𝑁𝑣 − 1

(

𝑁
∑︁

𝑖=1

𝑛𝑥𝑖
∑︁

𝑗=1

˜̂𝑥𝑖,𝑗 +
𝑛𝑧
∑︁

𝑗=2

𝑧 𝑗

)

ℎ (z, 𝝃 (x̂, ŷ) ) = 1 −

√︄

𝑓1 (z)

𝑔 (z, 𝝃 (x̂, ŷ) )

w.r.t x̂, ŷ, z

s.t. 0 ≤ x̂, ŷ, z ≤ 1

𝐽 ∗ =

𝑛𝑧
∑︁

𝑖=1

(𝑧𝑖 − 𝑧1,𝑖 )
2 +

𝑛𝑧
∑︁

𝑖=1

(𝑧𝑖 − 𝑧2,𝑖 )
2+

𝑁
∑︁

𝑖=1

𝑛𝑥𝑖
∑︁

𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑖,𝑗 )
2 +

𝑁
∑︁

𝑖=1

𝑛𝑦𝑖
∑︁

𝑗=1

(�̂�𝑖,𝑗 − 𝑦𝑖,𝑗 )
2 ≤ 𝜀

(1)

where the linking variables have been incorporated into the sub-
problem via the following function:

𝜉 (x̂𝑖 , ŷ𝑖 ) = x̂𝑖 + | |ŷ𝑖 − y∗𝑖 | |1 . (2)

In Equation 2 the decision variables are penalised by the devi-
ation between the linking variables and their optimal values (y∗𝑖 ).

The operator | | • | |1 is the L1-norm. Let the output of Equation 2 be
denoted by the vector ˜̂𝑥𝑖 = ( ˜̂𝑥𝑖,1, . . . , ˜̂𝑥𝑖,𝑛𝑥𝑖 )

𝑇 . The function 𝐽 ∗ is a
consistency constraint that quantifies the difference between the
values of the decision variables (and linking variables as well) that
are kept by the system and subsystems subproblems. Given that
the consistency constraint can be difficult to satisfy (implying that
the deviation between system and subsystems is zero), we consider
that the constraint is satisfied when the deviation is below a small
number 𝜀 (bigger than zero). The subproblem at the 𝑘th subsystem
where 𝑘 ∈ {1, . . . , 𝑁 } is given by:

min 𝐽𝑘 (xk, yk, ẑk ) =

𝑛𝑧
∑︁

𝑖=1

(𝑧𝑖 − 𝑧𝑘,𝑖 )
2 +

𝑛𝑥𝑘
∑︁

𝑖=1

(𝑥𝑘,𝑖 − 𝑥𝑘,𝑖 )
2+

𝑛𝑦𝑘
∑︁

𝑖=1

(�̂�𝑘,𝑖 − 𝑦𝑘,𝑖 )
2

w.r.t xk, yk, ẑk

s.t. 𝑐𝑘 ≡ −|𝛼𝑘 (𝑧1 − 𝛽𝑘 ) | + 1 ≤ 0 and 0 ≤ xk, yk, ẑk ≤ 1

(3)

The objective function resembles the consistency constraint
found in the system subproblem (Equation 2), and its aim is to
reduce the inconsistency with respect to the 𝑘th subsystem. The
constraint function 𝑐𝑘 generates infeasible regions in 𝑓1, where 𝛼
determines the width of the regions and 𝛽 specifies their lateral
placement. Based on our experimental results we recommend set-
ting 𝛼 to 0.02. The value of 𝛽 depends on the number of subsystems
and should be set in a way that produces a number of evenly spaced
feasible regions across the objective space. The values of the linking



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Johnson et al.

variables are determined at the subsystem level and require solving
the following system of equations:

𝑨y = −𝑪 ˆ̄z − 𝑫x, (4)

where ˆ̄z = (ẑ2, . . . ẑ𝑛𝑧 )
𝑇 excludes the first shared variable used in

𝑓1, y = (y1, . . . , y𝑁 )𝑇 contains all linking variables, and all deci-
sion variables are in x = (x1, . . . , x𝑁 )𝑇 . The matrices 𝑨, 𝑪 and 𝑫

specify the couplings between the subsystems; more details about
these matrices can be found in [17]. To solve the system of equa-
tions in Equation 4, a multidisciplinary analysis solver from the
MDO literature can be used (e.g. GaussśSeidel or Newton-based
methods [21]).

4 PROPOSED METHOD AND TERMINATION

CRITERIA

The method used in this paper builds upon the single-objective
approach for CO, but is different from some of the existing multi-
objective CO strategies such as COSMOS in that each member of
the population is optimized separately.

(1) The variables xi
(0) and ẑ(0) are initialised using a Latin

hypercube design of experiments. This is of size 𝑛𝑃𝑜𝑝 , the
size of the population. The matrices 𝐵𝑖 ,𝐶𝑖 and𝐷𝑖 , used in the
subsystem analyses, are also initialised and row-normalised.

(2) The subsystem analyses are run once, using the values of
xi

(0) and ẑ(0) established in Step (1). These return the values
of the initial linking variables yi (0) .

(3) The initial global, local and linking variables are sent to the
consistency constraint 𝐽 ∗ in the system-level optimization
problem shown in 3. The system-level optimizer then uses
its own design variables x̂i, ŷi and z to find a set of solu-
tions that satisfy the consistency constraint and are close
to optimal in objective functions 𝑓1 and 𝑓2. At this stage
in the optimization, 𝜀 is a large number, for example 10, to
guarantee a set of solutions are found.

(4) The main optimization loop takes place:
(a) The subsystems receive the variables x̂i, ŷi and z, obtained

by the initial optimization in Step (3). They perform a
single-objective optimization using the variables xi and ẑ

with the aim of minimising the consistency objective 𝐽𝑖
and satisfying the subsystem constraints 𝑐𝑖 . The linking
variables yi are obtained by running the subsystem analy-
ses shown in Equation 3, and are used in the consistency
objectives.

(b) When optimization at the subsystem level has been termi-
nated, the system-level problem receives the variables xi,
yi and ẑ from the subsystems. The system then runs the
optimization again, similarly to that in Step (3), but 𝜀 is set
to a much lower value ś in this paper, between 10−1 and
10−7. Subject to the consistency constraints, the system
solves the problem with variables x̂i, ŷi and z.

(c) The termination criteria, described in Section 4 are as-
sessed. If the termination criteria are satisfied, or all the
permitted supervisor iterations have been expended, the
optimization terminates. If the termination criteria are not

satisfied, and the number of completed supervisor itera-
tions is lower than the permitted number, the optimization
loop repeats from Step (4)(a).

(5) When the optimization process has been terminated, the
results are stored for further analysis.

The above method is also described in the extended design structure
matrix (XDSM) in Figure 1. See [19] for more information on XDSM
diagrams.

There are three termination criteria:

(1) The constraint on the shape variable expressed in 3 is satis-
fied.

(2) The constraints on the linking variables expressed in 3 are
satisfied to within 10−15.

(3) The consistency constraint in the system-level problem is
satisfied by all solutions (i.e. the maximum 𝐽 ∗ must be equal
to or less than 𝜀).

There are amaximumof 10 permitted supervisor (system-subsystem)
iterations for the sake of reducing experimental time while allowing
the optimizers a suitable number of function evaluations to find a
permissible result. When all of the above termination criteria are
met, the optimization process is terminated. If all of the above crite-
ria are not met within the 10 supervisor iterations, the optimization
is terminated and the results are stored.

The code used to conduct the method described in this section
are available in the project’s GitHub repository1.

5 EXPERIMENTAL SETUP

The following experiments were undertaken in Python, making
use of the PyMoo package [2] for the system-level optimizer and
SciPy [31] for the subsystem-level optimizers. The system-level
optimizer is NSGA-II [7]. For each run of NSGA-II, a population
of 50 is used with a number of generations that is varied between
2000 and 10,000 in the experiments. The subsystem-level optimizers
are both SLSQP with a maximum of 200 iterations and a function
tolerance of 10−5. This is to prevent excessive optimization time.
The optimal linking variable values 𝑦∗ from Equation 3 is a vector
of zeros of length 𝑛𝑦𝑘 for each subsystem 𝑘 . Each optimization is
repeated 11 times for statistical significance. The hypervolumes of
each of the repetitions at the final supervisor iteration are measured,
and the median repetition is used for analysis.

The constraints are spread equally between 0 and 1 in the 𝑧1
variable. For example, for a 2-discipline system, there would be
2 equally spaced constraints, and in a 5-discipline system, there
would be 5 equally spaced constraints.

The first experiment involves varying 𝜀 between 10−1 and 10−7.
Two subsystem problems will be used, and the number of gener-
ations will not be allowed to vary throughout. Each of the ZDT
problems except 3 and 5 are used.

The second experiment looks at the evolution of the design
variables and the consistency constraint at the system level for
CO-ZDT1, 2, 4 and 6 for two, three, five and ten subsystems. 𝜀 is
set to 10−7.

1https://github.com/vj2Sheffield/CO_ZDT_benchmarks
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Figure 1: The XDSM diagram for the multi-objective collaborative optimization strategy used in this paper.
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∗

1,...,N, z
∗ System Optimizer x̂1,...,N, ŷ1,...,N, z x̂i, ŷk, z ŷk
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yi Analysis i

The third experiment investigates the outcomes of the optimiza-
tion when 10,000 generations are used in a problem with 2 subsys-
tems. Once again, 𝜀 is varied between 10−1 and 10−7.

The fourth study extends the approach in the first experiment to
three subsystems. 2000 generations are used and 𝜀 is varied between
10−1 and 10−7.

6 RESULTS

6.1 Convergence in a Single Supervisor Run of

Multi-objective CO

The speed of convergence is of particular interest in collabora-
tive optimization. In case study one, we set the number of allotted
generations to 15,000 for one design point (15,000 function evalua-
tions) to allow the optimizer to reach an acceptable value. This run
takes place after the initial system-level optimization and a single
subsystem-level optimization ś in other words, this is after one
supervisor iteration. The experiments were also undertaken with
two, three, five and ten subsystems to demonstrate the effects of
increasing the number of subsystems on convergence speed.

Figure 2 shows the value of the consistency constraint 𝐽 ∗ over
the 15,000 generations for CO-ZDT1, 2, 4 and 6 and two, three, five
and ten subsystems. When the consistency constraint value crosses
the red dashed line, it indicates that the constraint is satisfied, and
in a run of the multiobjective CO method we outlined in Section 4,
termination criterion (1) would be satisfied.

It can be seen that the only cases where the consistency con-
straint is satisfied is in CO-ZDT1, 2 and 6 for two subsystems.
CO-ZDT1 and 2 show similar evolutions of constraint values, with
each of the different subsystem numbers reaching similar final val-
ues. The ten-subsystem problems show the slowest reduction in the
consistency constraint, settling at just below 1. The CO-ZDT4 and
6 problems show similar results, with 10 subsystems demonstrating
the most shallow curve. Additionally in both the CO-ZDT4 and 6

problems, the final value of the consistency constraint is lowest in
two subsystems, followed by three, five and ten subsystems.

Figure 2: The values of the consistency constraints 𝐽 ∗ with a

budget of 15,000 generations and for 2, 3, 5 and 10 subsystems.

The red dashed lines indicate the placement of the constraint

𝜀 = 10−7.

Figure 3 shows the convergence of the global (excluding 𝑧1), copy
local and linking variables for CO-ZDT1, 2, 4 and 6 problems with
two subsystems. The variables shown in CO-ZDT4 are absolutes to
demonstrate the movement of the variables at very small values.
Like in Figure 2, ZDT1 and 2 demonstrate similar convergence
patterns, reaching their final values before the 4000th generation.
In CO-ZDT4, the variables decrease in the first 5000 generations,
then stagnate between 10−4 and 10−2 until the 15,000th generation.
In CO-ZDT6, the variables drop in the first 2000 generations, stall
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at approximately 10−13, and then decrease again just before the
10,000th generation.

Figure 3: The convergence of the global, copy local and copy

linking variables in one run of the optimizer with 𝜀 = 10−7,

excluding z1, and a budget of 15,000 generations and two sub-

systems. The variables in CO-ZDT4 are absolutes to demon-

strate the convergence movements at smaller values.

Figure 4: The convergence of the global, copy local and copy

linking variables in one run of the optimizer with 𝜀 = 10−7,

excluding z1, and a budget of 15,000 generations and ten

subsystems.

Figure 4 shows the convergence of all variables for the problem
where there are ten subsystems. In these problems, there are 110
variables in total: 10 global variables, 50 local copy variables, and
50 linking copy variables. It can be seen that some of the variables
decrease substantially, especially in CO-ZDT1, 2 and 6. However,
some of them also remain between 10−1 and 10−5 and stagnate.

6.2 System Runs with 2000 Generations

In case study two, CO-ZDT1, 2, 4 and 6 were studied using the multi-
objective CO method described in Section 4 using a set number of
generations, population, and maximum supervisor iterations.

Figure 5 shows the mean number of supervisor iterations used
before termination for each of the CO-ZDT problems and each 𝜀

value. It can be seen that, for all CO-ZDT except CO-ZDT4, the
number of supervisor iterations at termination increase steadily
until 𝜀 = 10−4 and then jumps for smaller values in a shape resem-
bling a sigmoid curve. In CO-ZDT4, the mean number of iterations
starts at just under 6, then jumps to 10 for the remaining 𝜀 values.

Figure 5: The mean number of supervisor iterations com-

pleted at termination.
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Figure 6 shows the nondominated solutions at termination for
each of the CO-ZDT problems for 𝜀 = 10−1 and 10−7. Firstly, the
solutions for CO-ZDT1 and 2 are easily recognisable as they adhere
closely to the Pareto front, while CO-ZDT4 and 6 do not, with CO-
ZDT4 displaying large 𝑓2 values and CO-ZDT6 having solutions
limited to the values of 𝑓1 larger than 0.9.

In terms of constraint violation, the problems where 𝜀 is very
low shows better constraint adherence than in those where 𝜀 is
larger. Additionally, diversity along the nondominated solutions is
greater in problems where 𝜀 is small than in those where it is large.
Interestingly, a smaller 𝜀 appears to lead to 𝑓2 values in CO-ZDT4
that are further away from the Pareto front than larger values -
𝜀 = 10−1 tops out at just under 40, while 𝜀 = 10−7 reaches over
150. The opposite effect is found in CO-ZDT6, where 𝑓2 becomes
smaller with a smaller 𝜀; the largest 𝑓2 solution in 𝜀 = 10−1 is over
4, while the largest in 𝜀 = 10−7 is just over 0.8.

6.3 System Runs with 10,000 Generations

In case study three, the number of generations was increased to
10,000, and the number of subsystems in the problem was main-
tained at two.

Figure 7 shows the nondominated solutions for CO-ZDT1 and
4 in a two-subsystem problem, 𝜀 = 10−1 and 10−7 and 10,000 gen-
erations. It can be seen that the solutions at 𝜀 = 10−1 are much
less evenly spread across the objective space when compared with
𝜀 = 10−7. In CO-ZDT4 at 𝜀 = 10−1, the shape of the Pareto front
is not recovered. However, at 𝜀 = 10−7 for CO-ZDT4, the shape
is recovered, and the nondominated points are much closer to the
Pareto front in 𝑓2.
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Figure 6: Nondominated solutions at termination for 𝜀 = 10−1 and 10−7 for CO-ZDT1, 2, 4 and 6, in a two-subsystem problem.
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Figure 7: Nondominated solutions at termination for 𝜀 = 10−1

and 10−7 for CO-ZDT1 and 4 in a two-subsystem problem

with 10,000 generations at the system level.
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6.4 System Runs with 2000 Generations and 3

Subsystems

In case study four, the number of disciplines was increased to three

and the number of generations was set at 2000, as in experiment

one.

Figure 8 shows the mean number of supervisor iterations at

termination for each of the CO-ZDT problems studied in this paper.

CO-ZDT1, 2 and 6 trend upwards from 𝜀 = 10−1 to 10−5, and then

reach 10 supervisor iterations. CO-ZDT4 begins with an average

of 10 supervisor iterations, where it remains for all of the 𝜀 values.

Like in case study one, the results indicate that for all the CO-ZDT

problems studied in this paper, the number of supervisor iterations

needed for termination increases with smaller values of 𝜀.

Figure 9 shows the nondominated solutions for the three-discipline

problem using the same format as in Figure 6. The constraints on 𝑧1
are shown by the red lines while the black dots show the nondomi-

nated solutions. For CO-ZDT1, it can be seen that the nondominated

Figure 8: The mean number of supervisor iterations com-

pleted at termination for three subsystems.
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solutions for both 𝜀 = 10−1 and 10−7 are close to the Pareto front,

but in 𝜀 = 10−1 there are greater constraint violations. Additionally,
in 𝜀 = 10−7, the nondominated solutions fail to cover the whole

range of possible 𝑧1, meaning the solutions do not extend past ap-

proximately 0.73. The spread gets worse with CO-ZDT2, especially

at the smaller value of 𝜀 = 10−7, where the solutions only extend

to 0.04, and 0.4 for 10−1. In CO-ZDT4, the solutions are more con-

centrated in the middle of 𝑓1 for 𝜀 = 10−1, but is less resemblant

of the shape of the Pareto front than in 10−7. Like in case study

1, the nondominated solutions are further away from the Pareto

front in 𝜀 = 10−7. Again, similarly to in case study 1, the solutions

for CO-ZDT6 are limited to the larger values of 𝑓1 in both 𝜀 = 10−1

and 10−7.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we have proposed a set of four scalable benchmark

problems for multi-objective collaborative optimization based off

the ZDT test suite. We have investigated the results of running

the optimization with the NSGA-II optimizer at the system level

and the SLSQP optimizer at the subsystem level. We found that the

problems tend to be slow to converge, and benefit from the use of

a larger budget of function evaluations at the system level. We also

found that the number of subsystems also tends to decrease the
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Figure 9: Nondominated solutions at termination for 𝜀 = 10−1 and 10−7 for CO-ZDT1, 2, 4 and 6, in a three-subsystem problem.
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speed of convergence, and that, in CO-ZDT4, the optimizers tended

to find a solution that satisfied the consistency constraints much

more slowly than in other CO-ZDT problems.

Establishing a set of constrained benchmarks in the area of

MO-MDO opens up a wide range of research approaches for spe-

cialists in other fields, such as multi-criterion optimization, multi-

disciplinary design and classical optimization.

7.1 On the Speed of Convergence in CO

It is well-established that CO takes a long time to converge on a

solution. Tedford and Martins show that, out of several monolithic

and distributed architectures in single-objective problems, CO often

demonstrates the slowest convergence [30]. Alexandrov and Lewis

note the poor efficiency in CO due to the high autonomy afforded

to the subsystems [1], especially in problems with large numbers

of design variables (often caused by the structure of CO itself).

Cormier et al. state that the slow convergence associated with

CO had a detrimental effect on their design of a reusable launch

vehicle [5].

Given the above, and the results in Section 6, we find that our

results are in line with the existing literature on CO. This archi-

tecture produces more complex problems than ‘vanilla’ ZDT and

therefore requires more computational resources.

7.2 Future Work

Multi-objective MDO is an emerging field and further work in this

area could take many different directions. Firstly, and most im-

portantly, it should be stated that problems closely related to the

ZDT test suite do not have attributes that are desirable for a bi-

objective BBOB problemÐlacking scalability in objectives, relying
on the leading variable to determine the shape of the nondominated
solution front, no nonseperability in objective functions, and so
on. The benchmark test set proposed in this paper inherits these
problems. Therefore, future work should be focused on developing
problems that are more realistic to real-world problems, and con-
tain attributes such as more than two objectives, complex variable
transformations, deception, degeneracy and so on.

Secondly, the number of supervisor iterations could be increased,
with an analysis on how long it takes the optimization to reach a
satisfactory solution.

Indicator-based constraints could be introduced as a requirement
for termination, in addition to the termination criteria set out in
Section 4. An example of this would be adding a termination crite-
rion stating that a certain hypervolume must be achieved before
the optimization process is allowed to terminate.

Additionally, future work should allow for some variation of the
optimization problems by linking the subsystems together in dif-
ferent ways. In this work, each subsystem has contributed linking
variables to and received linking variables from only one other dis-
cipline. In further work, subsystems should receive and contribute
linking variables to and frommultiple subsystems. This complicates
the problem, and is more realistic to real-world problems.
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