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Abstract

The z-spectrum contains many pools with different exchange rates and T2 values,

which can make it difficult to interpret in vivo data and complicates the design of

experiments aimed at providing sensitivity to one pool. This work aims to character-

ise the main pools observable with MRI at 7T in the human brain. To achieve this, we

acquired z-spectra at multiple saturation powers in the human brain at 7T. We used

simulations to optimise the use of particle swarm optimisation (PSO) to fit these data,

validating this approach using further simulations and creatine phantoms. We then

used the PSO to fit data from grey and white matter for the pool size, exchange rate,

and T2 of five proton pools (magnetisation transfer, amides, amines, nuclear Over-

hauser enhancement NOE�3.5ppm and NOE�1.7ppm in addition to water). We then

devised an approach for using PSO to fit z-spectra while limiting the computational

burden, and we investigated the sensitivity of the fit to T2 and k for three overlapping

pools. We used this to measure the exchange rate of creatine and to show that it var-

ied with temperature, as expected. In the brain we measured a significantly larger

pool size in white matter than in grey matter for the magnetisation transfer pool and

the NOE�3.5ppm pool. For all other parameters we found no significant difference

between grey and white matter. We showed that PSO can be used to fit z-spectra

acquired at a range of B1 to provide information about peak position, amplitude,

exchange rate, and T2 in vivo in the human brain. These data could provide more sen-

sitivity to change in some clinical conditions and will also provide key information for

further experimental design.
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1 | INTRODUCTION

In MRI, the z-spectrum represents the change in water signal due to its exchange with off-resonance magnetisation and yields information about

solute molecules present in a sample through magnetisation transfer (MT), chemical exchange saturation transfer (CEST), and nuclear Overhauser

enhancements (NOEs) thought to be mediated through chemical exchange. However, the size and shape of each peak in the z-spectrum depends

not only on the concentration of exchanging solute, but also on the rate at which it exchanges with the water protons and its T2. The exchange

rate is of particular interest biologically because it is generally pH dependent,1 and for experimental design because the relationship between the

CEST signal and saturation power depends on the exchange rate. However, there remains considerable uncertainty in the values of these basic

biological parameters in human tissues.

Analytical solutions exist to the Bloch–McConnell equations (which provide a complete description of precession, relaxation, and exchange in

a multipool system) and these have been used to estimate either pool size2 or exchange rate,3 but are unable to separate these parameters

directly.4 Experimental approaches have been proposed to measure exchange rates including QUESP and QUEST (quantifying exchange rates

using varying saturation power and time, respectively) methods.5 Of these, only QUESP is capable of truly separating pool size and exchange

rate,6 but a reasonable estimate of exchange rate is required prior to the experiment, because saturation power must be optimally sampled around

k/γ, and QUESP may become invalid in the case of overlapping CEST peaks. An alternative approach is to collect z-spectra at a range of saturation

powers and fit directly for pool size and exchange rate, which will account for overlapping peaks, but which is computationally very expensive.

One solution is to compare acquired spectra with a look-up table of z-spectra simulated for a range of pool sizes, exchange rates, and apparent T2

for each exchanging pool at different saturation powers.7–9 This requires prior knowledge of the system, because the fitted variables must lie

within in the range of variables simulated in the look-up table, and although computationally efficient, it imposes large memory requirements.

Alternatively, z-spectra can be fitted using a Bayesian approach,10 which drastically reduces the computation time, but the results can be biased if

the estimated Bayesian priors are incorrect.

Here, we present a novel method of fitting the z-spectrum to measure the pool size and exchange rate of exchanging CEST and NOE pools

with, we believe, fewer assumptions than any currently reported method, by using a particle swarm optimisation (PSO) algorithm to search vari-

able space for the solutions for the Bloch–McConnell equations, while avoiding local minima. This paper describes tests of the PSO fit in simula-

tions and creatine phantoms, and then describes work undertaken using the PSO to investigate the number of pools needed to characterise the

z-spectrum from grey matter (GM) and white matter (WM) in vivo at 7T.

2 | THEORY

2.1 | Particle swarm optimisation for fitting z-spectra

Fitting the z-spectrum poses two challenges: changes in the size, exchange rate, and apparent T2 of a pool can produce similar effects on the

shape of a z-spectrum, and the effects of overlapping peaks combine nonlinearly. The PSO algorithm11,12 is particularly appropriate for solving

highly nonlinear, multidimensional problems13 which lead to local minima.

Broadly, the PSO algorithm initialises a ‘swarm’ of particles, each with random coordinates and random velocity within the bounded variable

space. The velocities determine the changes in particle positions between iterations. A minimisation function is used to calculate how close each

particle is to the optimal solution (‘best position’) at each iteration. For each iteration the velocity of a particle is determined by where it is

currently going, the best place it has been, and the best place any particle currently is. Formally, the velocity of particle i at k+1th iteration is

given by

vikþ1 ¼wvikþc1 rand
pi�xik
Δt

þc2 rand
pgk �xik
Δt

, ð1Þ

where xik is the position of particle i in the current iteration k, vik is the velocity of particle i in the kth iteration, rand is the random function, pi is

the best position of particle i from all previous iterations, and pgk is the position of the gth particle that is in the best position during the current kth

iteration. The inertia factor, w, controls the influence of current motion on subsequent particle velocity (usual range between 0.4 and 1.4); the

self-confidence range, c1, controls the influence of individual particle history on subsequent particle velocity (usual range between 1.5 and 2); and

the swarm confidence range, c2, controls the influence of the swarm history on subsequent particle velocity (usual range between 2 and 2.5).14

Figure 1 illustrates the PSO algorithm for a one-dimensional problem with several local minima.

An analytical, steady state, solution to the Bloch–McConnell equations describing the effect of continuous wave (CW) saturation was used to

simulate the z-spectra2,15:
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Z Δω,tð Þ¼ cos2 θð Þ�Z Δωð Þss
� �

e
�tsat
T1,ρ þZss, ð2Þ

where Zss is the steady state condition, T1,ρ is the overall longitudinal relaxation time of the system in the rotating frame, tsat is the length of time

that saturation is applied for, and θ is the angle between the effective field during saturation and the z direction in the rotating frame,

θ¼ tan�1 ω1
Δω, where ω1 ¼ γB1. R1,ρ at a particular off-resonant frequency Δωð Þ is given by

R1,ρ Δωð Þ¼Reff Δωð ÞþRex,b Δωð ÞþRex,c Δωð ÞþRex,n Δωð Þ ð3Þ

when considering four pools: free water, a bound pool (b), a CEST pool centred on +3.5 ppm (c), and an NOE pool centred on �3.5 ppm (n),

although this can easily be generalised to more pools. Reff (Δω) describes the relaxation of free water in the rotating frame:

Reff Δωð Þ¼R1,f cos
2θþR2,f sin

2θ ð4Þ

Rex,i for a general exchanging pool, i, is assumed to have a line shape that can be expressed as15

Rex,i Δωð Þ¼M0,iki
Ai Δωð Þ

Γ2
i
4 þ Δω�δωið Þ2

, ð5Þ

F IGURE 1 Illustration of how the PSO works, showing evolution of the seven particles to solve a one-dimensional problem with multiple
local minima, from initialisation (k = 0), to k = 10 and k = 20 iterations (at which point the problem was solved). PSO, particle swarm
optimisation.
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where the full width half maximum is given by

Γi ¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1

kiþR2,i

ki
þ kiþR2,ið Þ2

s
ð6Þ

and

Ai Δωð Þ¼ ω2
1

Δω2þω2
1

� � � δωiþ
R2,i Δω2þω2

1

� �
ki

þR2,i kiþR2,ið Þ
� �

: ð7Þ

M0,i is the size of the ith pool expressed as a fraction of the total proton pool, ki is its exchange rate with water in Hz, T2,i is its apparent trans-

verse relaxation time in seconds, and δωi is its frequency offset in Hz. The MT bound pool (b) line shape cannot be defined analytically, but the

analysis above assumes that it can be approximated as a Lorentzian close to the water resonance16; the result of this is that the estimated values

of kb and T2,b are only indicators of the underlying macromolecular bound pool.2 Experimental z-spectra acquired at multiple off-resonant frequen-

cies (Δω) and a range of saturation amplitudes (ω1), using CW saturation with a saturation time exceeding T1,f/4 to reach steady state, can be

fitted for M0,i, ki, T2,i and δωi of each pool using the PSO algorithm. The prior information required is the expected number of exchanging pools,

their frequency offsets (δωi , allowed to vary by 0.1 ppm), the B1 values for each level of saturation estimated from B1 maps, the saturation time,

and the observed T1.

Fitting multiple parameters together is very time consuming, therefore, a multilevel recursive fitting approach was developed for multipool

fits, first fitting each exchanging pool to a limited range of the z-spectrum data, before finally fitting all pools to the whole spectrum together. This

is described in the Methods for the human brain data.

3 | METHODS

Initially, the method of applying the PSO to fit z-spectra (z-PSO) was optimised. Then Monte Carlo simulations were performed to investigate the

accuracy and precision of the fit. Next, z-PSO was used to investigate the effect of temperature and pH on the exchange rate in a creatine phan-

tom. Finally, the z-PSO was used to measure the z-spectrum parameters in the human brain.

3.1 | z-PSO optimisation

Experimental z-spectra acquired from cerebral GM at 63 off-resonance frequencies (indicated in Table 1) and at five saturation powers were fitted

to a six-pool model (free water, MT, amides, NOE�3.5ppm, NOE�1.7ppm and amines). The PSO was run for a varying number of particles, computa-

tion time was recorded, and the final sum of squares difference between the data and fitted spectra was used as a metric of goodness of fit

(Figure 2A). Fits containing smaller numbers of particles were then repeated so that the number of particles multiplied by the number of repeats

equalled 100,000 (Figure 2B shows 100 repeats of a swarm of 1000 particles) and the best fit across all repeats was then taken for each swarm

size (Figure 2C).

Simulations were used to determine the potential precision and accuracy of the fitting. z-spectra were simulated with one exchanging amide

pool located at +3.5 ppm, sampled at 63 off-resonance frequencies and at five saturation powers. Twenty-seven sets of spectra were simulated,

with varying combinations of pool size (0.1%, 0.5%, and 1.0%), exchange rate (10, 100, and 1000 Hz), and T2 (1, 10, and 100 ms). Gaussian noise

was added to each spectral point, at a level representative of experimental data (0.5% of M0,f ), and this was repeated to give 10 realisations of

each spectrum. Each spectrum was fitted using z-PSO.

Next, to determine how the fitting of exchanging pools was affected by the presence of an underlying MT pool, this was repeated for a

three-pool model (free water, MT, and one CEST pool located at +3.5 ppm), with the CEST pool parameters fixed at M0,c =1%, kc =100Hz, and

T2,c =10ms, and the bound pool parameters varying as M0,b =1%, 5%, and 10%, kb =1, 10, and 100Hz, and T2,b =50, 100, and 200μs.

3.2 | Creatine phantoms

Creatine phantoms were used to investigate the feasibility of using z-PSO to find the exchange rate, as the creatine signal at +2.0 ppm17 has an

exchange rate that depends on both temperature and pH.18 Creatine solutions (10 g/L) with pH 5.5, 7.0, and 8.5 were created by adding
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phosphate buffer solution (sodium chloride solution containing a combination of monosodium phosphate and disodium phosphate in different

proportions for different pHs). Six millilitres of each solution was placed into a sealed test tube, which was placed in an MR-compatible water bath

inside the NOVA eight-channel pTx head coil of a 7T Philips Achieva MRI system. The water bath was connected to heated/cooled water pumped

via tubes fed through the wave guides in the RF cage of the scanner room. The water bath was heated/cooled to the target temperature then

switched off and allowed to settle for 2 min before scanning to avoid residual flow artefacts. The pump was switched back on between the acqui-

sition of each spectrum, to bring the water bath back to the target temperature (at 40�C the bath cooled by 1–2�C during the acquisition of each

spectrum).

Because of hardware limitations, semi-CW saturation had to be used,19 in which odd/even channels on the pTx system transmit were alter-

nately driven with 50-ms square pulses for a total of 3 s. The RF power to the odd and even channels was adjusted to give similar B1 in a central

region of interest (ROI) of the sample. Final B0 and B1 maps were then acquired. Z-spectra were acquired at 64 off-resonance frequencies

between ±100,000 Hz with a 3-s saturation train comprised of 60 alternating odd/even channel RF blocks of 50 ms, for B1,max of 0.5, 1.0, and

F IGURE 2 (A) Variation in goodness of fit (final sum of squares) and computation time for the final PSO fit, using swarm of different sizes.
(B) The change in best goodness of fit (considering all fits so far) for 100 repeats of a swarm of 1000 particles, so that the total number of
particles considered was 100,000. (C) Variation in goodness of fit and computation time when using swarms of different sizes repeated to give a
total number of particles of 100,000, and then choosing the best fit from each of the sub fits as in (B). PSO, particle swarm optimisation.
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1.5 μT. The acquisition of each z-spectrum took 9.5 min using a turbo field echo (TFE)-echo planar imaging (EPI) readout (TFE factor 102 in-plane,

EPI factor 11 in slice, TR = 17 ms, TE = 8 ms, shot-to-shot interval = 9 s [made up of 3 s of saturation, 1.7 s of readout, and 4.3 s of recovery],

SENSE 2, 1 � 1 � 3 mm3 voxels). This was repeated with the water bath at 40, 30, 20, and 10�C.

The data were processed using in-house functions written in MATLAB.20 The first acquired point in each z-spectrum was discarded, because

of the system approaching steady-state. The spectra were B0-corrected by shifting the z-spectrum from each pixel by the value of the field offset

in the corresponding pixel in the acquired B0 map and then interpolating to the original sampling points. Next, the data were normalised by divid-

ing each point in the z-spectrum by the point acquired at +100,000 Hz, which was equivalent to the signal acquired after no saturation (S0),

assuming there are no exchanging pools this far off resonance.9,21 The average signal within each sample (at each temperature and pH) was calcu-

lated to give z-spectra at three different saturation powers, which were finally fitted to a two-pool model with δωc allowed to vary between

+1.85 and +2.15ppm, M0,c allowed to vary between 0% and 0.5%, kc allowed to vary between 1 and 2000Hz, and T2,c allowed to vary between

0.5 and 100ms. T1obs was fitted from the change in on-resonance signal away from the creatine peak with RF saturation. The z-PSO used a swarm

of 20,000 particles, run 100 times (180min for 100 runs) to fit the two-pool model, with the points around the visible peaks upweighted in the fit

to avoid overfitting noise in the wings of the spectra at low temperature where the exchanging peaks were small.

3.3 | Human brain tissue in vivo

Six healthy volunteers (four females; age 24 ± 1 years) were recruited and scanned in the 7T Philips Achieva MRI scanner using a NOVA eight-

channel pTx head coil, once local ethical approval had been received and each participant had provided written consent. The same sequence was

used to acquire the z-spectrum as for the creatine phantom, except that this time, spectra were acquired at 63 off-resonance points and at five

nominal B1 values of 0.33, 0.67, 1.00, 1.33, and 1.67 μT. A 192 � 192 � 24 mm three-dimensional acquisition volume was positioned above the

ventricles using the sequence described for the creatine phantom. Subjects were encouraged to watch a movie through prism glasses during the

scan, to alleviate boredom and reduce head motion.22 A high-resolution T1-weighted anatomical image (phase-sensitive inversion recovery

[PSIR]23) was acquired to create GM and WM masks using FAST (FMRIB's Automated Segmentation Tool)24 excluding pixels on the GM/WM

boundary. B1 and B0 maps were acquired using the AFI sequence and a multigradient echo sequence. After acquisition, the z-spectrum images

were coregistered using MCFLIRT (intramodal Motion Correction based on FMRIB's Linear Image Registration Tool)25 and then the whole dataset

was aligned to the PSIR image using FLIRT (FMRIB's Linear Image Registration Tool). The data were B0-corrected by interpolation based on the

B0 map. The data from the z-spectrum images were averaged over the masks to create a set of spectra for the GM and WM for each subject. The

average value of B1 across the masks was also calculated for each subject.

The GM and WM spectra for each subject were fitted using z-PSO to a six-pool model including (offset frequency with bounds) free water

(0 ppm), MT (�2.34 ± 0.05 ppm), amides (+3.5 ± 0.1 ppm), amines (+2.0 ± 0.15 ppm), NOE (�3.5 ± 0.1 ppm), and a second NOE (�1.7

± 0.15 ppm, as previously observed in blood9 and rat brain26). These peaks were selected based on the literature and the peaks observed in the

acquired spectra. A multilevel recursive fitting approach was used to fit these six-pool data, initially fitting each exchanging pool to a limited range

of the spectrum, before finally fitting all pools to the whole spectrum together (Table 1). First, the acquired z-spectra (excluding points in the

ranges of –5 to –1 ppm, and +1 to +5 ppm) were fitted to a two-pool model of free water and MT. Six variables were estimated between pre-

determined bounds: the T1,obs and T2,obs of the free water, and the size, exchange rate, apparent T2 and peak position of the MT pool (M0,b, kb and

T2,b, δωb); T1,f was fixed at 2 s, and here we assumed that T1,b could be fixed at 2 s (assuming a small bound pool size15). Next, a three-pool model

of free water, MT, and amide was fitted to the acquired z-spectra excluding points between 2 to 1 ppm and �1 to �5ppm, for the four variables

describing the amide pool (M0,c, kc and T2,c, δωc), while fixing the six parameters for the free water and MT pools to the results from the previous

fit. This was repeated for each pool in turn to give estimates for the sizes of each peak. Subsequently the fits were repeated to all datapoints, for

the four variables of each pool in turn, taking the parameters describing the other peaks from the previous fits to account for the effects of over-

lapping peaks. Finally, the entire measured z-spectrum was fitted to a model including all exchanging pools and using the latest fitted values for

the variables of each exchanging pool as starting values in the fit.

We also investigated the effect on the final fit of dropping pools from the model.

4 | RESULTS

4.1 | Z-PSO optimisation and testing

Figure 2A shows that the computational time for the PSO increased linearly with the number of particles used (in a single swarm), but the sum of

squares of the residuals (SSR) declined approximately exponentially, with little benefit of using more than 1000 particles for this model. Figure 2B

shows how repeating the fit with new swarms gradually identified better fits with smaller SSRs (at the fifth and 63rd fits for Figure 3B). Figure 2C
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shows if fits were repeated at different swarm sizes to give the same total number of particles; swarm size had little effect on the total computa-

tion time (wall clock time), and the goodness of fit did not change significantly with swarm size, although even the smallest of swarms were better

at finding a smaller SSR than a series of individual particles.

Figures 3 and S1 show the results of fitting simulated noisy data from a simple two-pool (amide + free water) system. The results suggest that

the fit provides high precision and accuracy both for pool size and exchange rate, except for some slow exchange rate cases, particularly when

F IGURE 3 Monte Carlo fits of noisy simulated two-pool (amide + free water) data for the amide (A) Pool size, (B) Exchange rate, and (C) T2,c.
The boxes indicate the mean and standard deviation of the fitted results. The colours and corresponding dotted lines indicate the different
simulated parameters for the amide pool.
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T2,c is short, which is expected, as short T2,c and low exchange rate both broaden the peak. Overall T2,c can also be fitted but with some variability,

particularly at higher values (�100ms).

Figures 4 and S2 show that when an underlying MT pool was included (i.e., MT, amide, and free water pools) the fit was robust for both the

MT and CEST parameters, with significant systematic or random errors only for small MT concentration (M0,b =1%) and low exchange rate

(kb =1Hz).

F IGURE 4 Monte Carlo fits of noisy simulated three-pool (MT, amide + free water) data for the MT (A) Pool size, (B) Exchange rate, and
(C) T2,b, along with (D) Pool size, (E) Exchange rate, and (F) T2,c fitted for the fixed amide pool. The boxes indicate the mean and standard deviation
of the fitted results. The colours and corresponding dotted lines indicate the different simulated values of pool parameters. MT, magnetisation
transfer.
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4.2 | Creatine phantoms

Table 2 and Figure S3 give the fitted parameters for the creatine phantom scanned at different pH and temperatures, with Figure 5 highlighting

that the creatine–water exchange rate was highly dependent on temperature but independent of pH in this experiment.

4.3 | Human brain tissue in vivo

Figure 6 shows that the z-PSO fitted in vivo in human GM and WM z-spectra well in most cases (raw images are shown in Figure S4). Table 3

shows the parameters fitted to the six-pool model, averaged over all subjects, and indicates when a significant difference was found between the

GM and WM values.

We compared the results from the six- and five-pool models (excluding each exchanging pool in turn). We found the results for each five-pool

model agreed with the six-pool model within two standard deviations of the variation across the group, except: (1) when NOE�3.5ppm was

excluded, in which case NOE�1.7ppm was estimated to be significantly larger for GM; (2) when the amide pool was excluded, in which case the

adjacent amine pool size was estimated to be larger than expected, and the NOE�1.7ppm pool was estimated to be larger in WM, probably because

of the overlap across the water peak; and (3) when MT was excluded all pools were estimated to be larger, as expected, except for NOE�1.7ppm.

We used an F-test to determine whether the six-pool model was significantly better than the five-pool model for each subject individually

(Figure S5 shows the fits for one subject). The fit to the six-pool model was significantly better for all subjects, except for when (1) amide was mis-

sed: the F-test suggested that the six-pool model was a significantly better fit for 50% of subjects at p less than 0.05 (33% at p < 0.01) for GM

and for 17% of subjects at p less than 0.05 (50% at p < 0.1) for WM, although Figure 6 shows clear peaks in the data at 3.5 ppm for all subjects;

(2) NOE�1.7ppm was missed: the six-pool model was a significantly better fit in 67% of cases at p less than 0.01 in both GM and WM; (3) amine

was missed: the six-pool model was significantly better in 83% of subjects at p less than 0.05 (66% at p < 0.01) for both GM and WM. Subject

2 had twice the sum of square error compared with other subjects and was one of the subjects that showed no improvement in the six-pool

TABLE 2 Results of fitting the z-spectra from the creatine phantom with the z-PSO algorithm. The fitted T1obs was between 1960 and
2070 ms with T1f fixed at 2 s, while the fitted T2f varied between 0.5 and 2 s (full results are shown in Figure S3).

10�C 20�C 30�C 40�C

M0,c (%) kc (Hz) T2,c (ms) M0,c (%) kc (Hz) T2,c (ms) M0,c (%) kc (Hz) T2,c (ms) M0,c (%) kc (Hz) T2,c (ms)

pH 5.5 0.50 17 >100 0.26 117 15.8 0.29 261 >100 0.31 658 28.6

pH 7.0 0.50 22 >100 0.35 104 9.9 0.29 300 23.6 0.31 689 >100

pH 8.5 0.31 37 >100 0.20 159 12.9 0.17 329 >100 0.14 676 13.4

F IGURE 5 Variation of measured exchange rate with pH and temperature for the creatine phantoms.
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F IGURE 6 In vivo z-spectra for grey matter (GM; blue) and white matter (WM; red) for six subjects (data shown as points and best fits shown
as lines).
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model in these three cases, possibly because the water peak was broader compared with the other subjects. Subject 6's data were acquired at

lower power, which may explain why the NOE�1.7 ppm and amide peaks made no difference in that case.

5 | DISCUSSION

We have estimated pool size, T2 and exchange rate for MT, amide, amine, and two NOE z-spectrum components, fitting large z-spectrum datasets

using PSO with limited dependence on the starting points in the fit. There are few prior reports of these parameters being measured simulta-

neously because of the large datasets required and the difficulty in fitting the data, but they are potentially of biomedical interest, for instance, in

assessing demyelination and remyelination in multiple sclerosis, amides in tumours, or pH in tumours or after stroke. They are also important in

optimising future experiments because there is considerable interaction between the exchange rate and the dependence of the observed

z-spectrum on B1 amplitude. The results are also relevant at lower field because exchange rate and fundamental pool size are B0 independent and

knowledge of T2 at 7T will guide the values likely to occur at lower field.

To achieve a fit in a reasonable time we fitted the analytical solution to the Bloch–McConnell equations, which requires the z-spectra to be

acquired using CW (or approximate CW) saturation, which we implemented using alternating transmission on a dual channel system. This will only

be approximate in some parts of the head, but it has been shown that pulsed irradiation may be a suitable alternative to CW saturation when

measuring samples containing only slow exchanging pools.27

5.1 | Z-PSO fitting for multipower z-spectra

The PSO performed well using many small swarms compared with one large swarm, which allowed parallelisation to drastically reduce the fitting

time. Nonetheless, a small PSO fitted better than one particle repeated 100,000 times (equivalent to a simple least-squares fit repeated for multi-

ple starting points; Figure 2C), showing the power of the collective search approach. The University of Nottingham High Performance Computing

system allows a maximum of 400 parallel computations per user, and therefore, by using 100 repeats of 1000 particle swarms, we could fit

z-spectra datasets acquired at five RF powers together in about 16 min. It is not clear why the 100,000 particle fit (Figure 2C) was so much

slower, but this may have been due to the high memory demand for the large particle swarm or greater communications between the particles.

Monte Carlo simulations (Figures 3 and 4) confirmed that pool size, exchange rate, and T2 can be estimated accurately and precisely for a

two-pool model, provided that T2 is not too long and the exchange rate is not too slow. It is difficult to fit pools with low exchange rates, particu-

larly for short T2, as these situations both give low amplitude peaks (Figures 3 and S1). However, the exchange rate is generally considered on a

logarithmic scale, so even a 100% error can provide a useful guide to the physical value. Longer T2 values can be difficult to fit as the line width

becomes dominated by exchange processes so that T2 has little effect on the spectra (Figure S1). Figures 4 and S2 show that for a three-pool sys-

tem the PSO could fit the MT pool well, except when the pool size was small, the exchange rate was slow, or T2 was very short, as in these cases

the parameter would have very little impact on the spectrum.

The primary strength of the z-PSO is its inherent lack of sensitivity to starting values (including B1) and hence lack of bias in the results, which

will be particularly valuable when applying this technique in clinical conditions where exchange rates and pool sizes may change considerably both

temporally and spatially because of physiological changes in pH, temperature, and tissue composition. The alternative approach is to use

TABLE 3 Parameters resulting from fitting in vivo human grey matter (GM) and white matter (WM) z-spectra to the five-pool model. The
results quoted are the intersubject mean and standard deviation. The GM and WM results are compared with a two tailed t-test.

MT Amides Amines NOE�3.5ppm NOE�1.7ppm

M0 (%) GM 5.1 ± 0.4 0.17 ± 0.07 0.04 ± 0.01 0.26 ± 0.06 0.1 ± 0.1

WM 7.1 ± 0.6 0.11 ± 0.04 0.03 ± 0.01 0.42 ± 0.04 0.7 ± 0.8

t-test *p = 0.00008 p = 0.08 p = 0.1 *p = 0.0002 p = 0.1

k (Hz) GM 6 ± 2 145 ± 80 298 ± 215 68 ± 63 78 ± 100

WM 8 ± 3 176 ± 156 191 ± 48 34 ± 13 42 ± 70

t-test p = 0.35 p = 0.7 p = 0.3 p = 0.2 p = 0.5

T2 (ms) GM 0.09 ± 0.02 0.53 ± 0.05 3 ± 1 0.90 ± 0.15 1.4 ± 0.3

WM 0.080 ± 0.009 0.69 ± 0.16 4 ± 1 0.93 ± 0.18 7 ± 11

t-test p = 0.1 p = 0.04 p = 0.51 p = 0.8 p = 0.3

*Significant difference at p < 0.01.
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fingerprinting and machine learning approaches7,8 which require prior simulation of a very large library of z-spectra9 incorporating all possible

physiological and physical conditions, potentially trading memory for computational time. A head-to-head comparison of these methods in real-

world clinical scenarios is needed.

5.2 | Creatine phantom

The creatine exchange rate was found to decrease exponentially with temperature as expected and it agreed reasonably well with previous

reports.28 Varying pH using a phosphate buffer had no measurable effect on the measured exchange rate of the samples (Figures 5 and S3). How-

ever, a recent study suggests that creatine exchange is not strongly catalysed by phosphate,29 and another study has shown a complex relation-

ship between line broadening and phosphate,30 which is similar to the changes we see in our data, as demonstrated in Figure S3c.

The concentration of creatine used was 76 mM, and the molarity of water is 55.56 M. Assuming four protons per mole for creatine and two

protons per mole for water, then the fitted pool size is expected to be 0.26% for these solutions (assuming all the creatine protons are NMR-

visible in the regime of the experiment). This agrees well with the results, particularly at high temperature (i.e., high exchange rate), but somewhat

larger values were observed at low temperature (i.e., low exchange rate), consistent with the scatter observed for a low exchange rate in Figure 3.

The fitted T2,c sometimes hit the upper bound of 100ms used in these simulations, but when it fitted it generally approximated the literature

value of 30ms.28 This variability is also predicted in the simulation results in Figure 3.

The T1,obs did not vary very much around the fixed T1,f value of 2000ms. We also investigated the effect of allowing T1,f to vary with temper-

ature (from 2500 to 4000ms between 10 and 40�C31) and the overall results for pool size and exchange rate were very similar, although the

exchange rate at 40�C reduced slightly to around 550Hz.

5.3 | Human brain tissue in vivo

We successfully fitted the in vivo z-spectra acquired at multiple B1 values to a Bloch–McConnell six-pool model (Table 3). We averaged over the

whole of the GM and WM, but the regions could be subdivided.

The observed spectra and F-test results together suggest that six pools are required to describe in vivo 7T brain data acquired in this B1

range, and the parameters fitted to five-pool models generally agreed with the parameters fitted to the six-pool model. To compare these results

with the literature, we have reviewed studies that have quantified the pool size or exchange rates for at least three pools in Table 4. We have not

included many other studies that have quantified pool sizes in the z-spectra but may have been confounded by the effects of multiple exchanging

pools. For instance, SIR and omega plots33 methods provide convenient and robust measures of pool size and exchange rate, respectively, but can

be sensitive to several exchanging pools. Such measures are invaluable in certain circumstances (e.g., for assessing changes in pH), but the fitted

parameters cannot then be compared with the pool-specific values measured here.

We confirmed that the MT pool is larger in WM than in GM (Table 3), which is assumed to be due to myelin. Here, we assumed that T1b could

be neglected in the model and it was fixed at 2 s; this is not valid for large MT pool sizes and non-Lorentzian line shapes. The measured MT pool

sizes are similar in absolute and relative terms to those measured in the literature.9,32 Larger values (up to about double, particularly in WM) are

sometimes reported,7,8,16,34 often from models assuming only one or two exchanging pools or with limited freedom on the parameters of the

other pools,7,35–37 so that results for the MT pool are probably influenced by more than just the solid-state pool. There is considerable variability

in the values of exchange rate and T2 reported for the bound pool in the literature, probably because of differences in the line shape assumed for

this pool, different saturation powers used, and the difficulty of separating T2 and the exchange rate given that they have counteracting effects

on the line width. However, we and Liu et al.32 measured similar values of T2 and both groups assumed a Lorentzian line shape and sampled over

a similar frequency range, although Liu et al. used a larger range of saturation powers, which may explain why we measured different exchange

rates. Some of these variations could be reduced by making fewer assumptions for the bound pool model (i.e., by using eq. 10 from Zaiss et al.2

rather than eq. 16 from Zaiss and Bachert15).

There has been less work on quantification of the NOE�3.5ppm pool; however, our pool size fraction is much smaller than that previously

reported (Table 3), possibly because of the long T2 fitted. It was found to be significantly larger in WM than in GM, confirming previous reports

that have attributed this difference to myelin.

The second NOE pool located at �1.7 ppm has previously been identified in blood and the sagittal sinus,21 rat brain,26 and brain tumours,38

but has not been fully quantified in the healthy human brain. We found that the pool size is significantly higher in WM than in GM, and it has been

speculated that this may be indicative of mobile membrane proteins.39

We found a trend for a larger amide pool in GM than in WM, agreeing with previous reports, with similar relative differences in amplitudes.40

The T2 values measured for this pool were smaller than those reported by Heo et al.,8 and both are an order of magnitude smaller than those

reported by Liu et al.,32 although in all three studies the exchange rates are of the same order. Again, it is difficult to separate these parameters
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and the results are likely to depend on the saturation powers used, but it should be noted that we also fitted for amine pool, which may otherwise

contaminate the amide fit.

The pool labelled as amines (at 2 ppm) was measured as having the fastest exchange rate, as expected, but was still lower than generally

assumed in some work,41 although this pool may correspond to several metabolites with different exchange rates.42,43 However, the slow

exchange rate measured in the amines group, and the fast exchange rate of the amide group, may also indicate contributions from an underlying

aromatic NOE, reported to be at +1 to +5 ppm.44

Others have reported a CEST signal at 3 ppm which has generally been related to glutamine in the brain, but its higher exchange rate makes

it inaccessible with the saturation powers generally available on human scanners and so we did not attempt to fit for it.

The z-spectrum contains contributions from a range of metabolites and a large range of data is required to assess pools, particularly if they

have very different exchange rates. However, such large datasets are very susceptible to experimental errors and variations. The in vivo data in

Table 3 show more variability that the simulations might predict, and although this could be due to genuine biological variability, it seems likely

that it is driven by variations in the experimental conditions, for instance, low B1 (subject 6), apparently long water T2 (subject 2), or variations in

T1. Moreover, some variation in the experimental and biophysical parameters will occur across the ROI and it is possible more stable results could

be achieved with smaller ROIs. Overall, the largest % variation occurred in the NOE-1.7 ppm peak, probably related to its small amplitude, but also

its closeness to the water peak and hence its sensitivity to small variations in B0 and direct saturation. The dependence of the fit on so many

experimental and biophysical parameters is a weakness of the approach; future work should explore the sensitivity of the final results to these

parameters to identify strategies for reducing variability.

In future, better sensitivity could be obtained by combining methods where the amplitude and length of saturation are modified to enhance

sensitivity to fast or slow exchange pools,5,41,45 although that would require a change to the analytical expression used in the fit which currently

assumed CW steady state saturation.6 Here, the imaging readout module gave a relatively high spatial resolution, but the scan time could be

reduced, for instance, by using an EPI readout.

6 | CONCLUSIONS

We have used PSO to fit multipower CEST spectra to characterise the properties of the amide, amine, NOE�3.5ppm and NOE�1.7ppm pools in GM

and WM at 7T. The approach was validated using simulations and a creatine phantom at various temperatures.
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