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Abstract

We present the methodology and results of a simulation to determine the recoverability of LEO objects using a blind stacking tech-
nique. The method utilises sCMOS and GPU technology to inject and recover LEO objects in real observed data. We explore the target
recovery fraction and pipeline run-time as a function of three optimisation parameters; number of frames per data-set, exposure time,
and binning factor. Results are presented as a function of magnitude and velocity. We find that target recovery using blind stacking is
significantly more complete, and can reach fainter magnitudes, than using individual frames alone. We present results showing that,
depending on the combination of optimisation parameters, recovery fraction is up to 90% of detectable targets for magnitudes up to
13.5, and then falls off steadily up to a magnitude limit around 14.5. Run-time is shown to be a few multiples of the observing time
for the best combinations of optimisation parameters, approaching real-time processing.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In recent years the number of objects in Earth’s orbit
has increased dramatically (Blake, 2022; Pardini and
Anselmo, 2021). This is due to both launches, including a
number of large satellite constellations (e.g. Starlink, One-
Web, etc.) (Bernhard et al., 2022), as well as the result of
unintentional collisions (e.g. the Iridium 33 and Cosmos
2251 collision in 2009 which produced approximately
2300 catalogued fragments) and intentional anti-satellites
tests (e.g. the Chinese missile test in 2007 which produced
more than 2000 trackable pieces of debris) (Springer
et al., 2010). Fig. 1 shows how this number has changed
since the start of the space exploration era.
https://doi.org/10.1016/j.asr.2023.05.003
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The number of fully characterised and catalogued Low
Earth Orbit (LEO) objects is approximately 80% for
objects P 10cm but much less for objects smaller than this
(Pardini and Anselmo, 2021). With an average collision
velocity of 10 km/s, even a 1 cm sized LEO object can cause
a fragmentation event should it collide with another object
(Olivieri and Francesconi, 2020). Every collision has the
potential to lead to not only the loss of satellite functional-
ity, but also the chance for fragments to produce a cascad-
ing collision cycle leading to an eventual Kessler syndrome
in which part of LEO becomes unusable (Kessler and
Cour-Palais, 1978). These factors mean that the need for
more robust and adaptable tracking of LEO satellites
and debris is vital.

Most optical detection methods rely on either identifica-
tion from single images (Chote et al., 2019; Diprima et al.,
2018), or must make assumptions about the orbit of an
object before observation (Blake et al., 2021). In this way
org/licenses/by/4.0/).
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Fig. 1. Number of catalogued objects in Earth orbit as a function of year.
Reproduction of Fig. 1 from Lawrence et al. (2022).

Table 1
CLASP instrument specifications.

Parameter Value

Diameter 36cm
FoV 2:63� 1:76deg

Focal length F/2.2
Detector QHY600M sCMOS
Pixel size 3.76lm
Gain 0.42e�/ADU

FWHM 3.6pixels
Zero point 22.15mag
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a telescope can track the assumed orbit, reducing the rela-
tive motion of the target and thus increasing its detectabil-
ity. The obvious downsides of this method are that every
different orbit requires a different data-set and only targets
on, or close to, the observed orbit are detectable. The
method laid out in this paper, blind stacking, is designed
to mitigate these effects (Yanagisawa et al., 2021; Rice
and Laughlin, 2020). Blind stacking, also known as
track-before-detect, does not track any specific orbit there-
fore we have freedom to choose the preferred tracking rate.
For simplicity of design this work employs a fixed orienta-
tion instrument. Blind stacking can be used to locate tar-
gets on any given orbit, moving in any chosen direction
and can identify multiple targets on different orbits within
the same data-set, provided the object spends sufficient
time within the instrument field of view.

Of course, blind stacking also has its deficits. When
compared to traditional stacking, blind stacking has a
reduced sensitivity; since the light from a particular target
is spread over more pixels, the corresponding surface
brightness is reduced. Blind stacking is also a multi-
variable problem with exposure time, plate scale, observa-
tion angle, velocity range, number of paths and number of
frames all having an impact on the recoverability of LEO
targets. This paper attempts to quantify some of these
parameters and explores blind stacking as an optical
LEO object observational tool.

To reach the precisions and exposure times required for
the optical detection of objects at LEO this simulation uses
scientific Complementary Metal–Oxide–Semiconductor
(sCMOS) detectors. Significant advances in sCMOS detec-
tors in recent years have made them competitive with tra-
ditional CCD detectors, and in applications where high-
framerates are required they are clearly superior (Walker,
2020). These detectors can have extremely high quantum
efficiencies, upwards of 90%, as well as very fast read-out
times while maintaining a very low read-out noise (typi-
cally on the order of 1–2 electrons). This means sCMOS
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detectors allow us to observe continuously with sub-
second exposure times without sacrificing precision (Polo
et al., 2022; Zimmer et al., 2016). These aspects make
sCMOS detectors ideal for LEO observations where the
targets are moving quickly and thus require short exposure
times, or large fields of view, to capture and characterise
(Chote et al., 2019; Wise, 2019). The high cadence of obser-
vations enabled by the use of sCMOS devices, combined
with the high computing resources required by the blind
stacking method, make this problem unfeasible for tradi-
tional CPU-based computing. Fortunately however, the
problem is highly parallelisable, meaning the computa-
tional time can be drastically reduced through judicious
use of GPU processing. GPUs are well suited for this pur-
pose and can result in multiple orders of magnitude
improvements in computational runtime for appropriate
algorithms.

This paper proceeds as follows. Section 2 lays out the
data acquisition and the set-up and execution of the simu-
lation. Section 3 details the key results and Section 4 anal-
yses said results and presents our conclusions.
2. Methodology

2.1. Data acquisition and reduction

The data used in these simulations were obtained using
the University of Warwick CLASP test telescope, located
at the Roque de los Muchachos Observatory on La Palma
in the Canary Islands. The telescope features two 36 cm
F/2.2 prime focus RASA 36 astrographs mounted on a
direct drive Planewave L600 mount with 61MPix 3.76
micron pixel QHY600M sCMOS detectors. Each instru-
ment has a field of view of 2:63� 1:76deg. The zero point
of the system, i.e. the magnitude of a target which produces
a flux of 1 e�/s, is found to be 22.15mag. The typical Full
Width at Half Maximum (FWHM) of the system Point
Spread Function (PSF) is determined using a combination
of Source Extractor Python (SEP) and SciPy (Barbary,
2016; Bertin and Arnouts, 1996; Virtanen et al., 2020)
and found to be �3.6pixels (�0.001deg). Table 1 sum-
marises the instrument specifications and Fig. 2 shows
the instrument set-up.

Data were obtained over a range of nights and at a
range of exposure times from 0.125sec to 1.0 sec. Pixel val-



Fig. 2. Warwick CLASP telescope on Roque de los Muchachos Obser-
vatory, La Palma. Photo credit: Paul Chote.
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ues are currently read out over a fibre connection which
limits the maximum cadence to 0.253ssec. Shorter expo-
sures are possible but currently result in deadtime where
photons are not collected. This limit is temporary and
greater cadence values are included in the following simu-
lation to account for planned improvements in the system.
Significant improvements in cadence however, would
require smaller image sizes, or an adapted observational
set-up, avenues which are being considered. Image frames
are reduced using master bias and master flat fields and
background subtracted using SEP. Pixel values are capped

at the 99th quantile to reduce the impact of particularly hot
or noisy pixels, as well as to limit the impact of bright back-
ground stars.

Observations are taken with a stationary telescope,
resulting in trailing objects as well as trailing stars. Observ-
ing with a sidereally tracking system was considered, since
Fig. 3. Plot showing how the noise properties of individual images change
with exposure time. Also included is a line of best fit and the read noise
limiting value. The transition to being read noise limited occurs at an
exposure time of 0.041s.
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it would reduce the length of star contaminated pixels in
individual images. However, we find that, for the telescope
system used, and the relevant binning and exposure times
employed, the reduction in star trail length in pixels is fairly
negligible. Therefore, it was decided to proceed with a com-
pletely stationary system to limit the number of moving
parts and ensure the results are applicable to the simplest
observing strategy possible.

From these data we can calculate the background noise
as a function of exposure time. Fig. 3 shows these details.

From this plot we see that the background noise
increases as the square root of the exposure time. This is
due to the fact that longer exposures increase the number
of background sky photons and therefore lead to an
increase in photon shot noise. This aspect leads to a
favouring of short exposure times when attempting to
probe fainter targets. At the shortest exposures the noise
eventually hits the read noise limit of 2.6 electrons (how-
ever, this happens below any of the exposure times consid-
ered in this paper). The background noise is given by

noise ¼ �6:57þ 45:25
ffiffi
t
p

if t P 0:041

2:6 otherwise:

(
ð1Þ
2.2. Target velocities

To best utilise the blind stacking procedure the optimal
velocity range of targets must be known. That is, it is ben-
eficial to search only the range of velocities that a target
might reasonably have, since testing more paths increases
both the runtime and the background noise of a stacked
image (see Section 2.4). To determine this range we choose
a random date and download all recent LEO Two-Line
Elements (TLEs) from the Space Track database (space-
track.org). LEO objects are selected using mean motion
and eccentricity limits. Recent in this case means having
been updated within the last 20 days. For each object in
Fig. 4. Velocity of satellites as observed from La Palma on a chosen night,
separated by observational elevation angle, h, in degrees. Only sunlit
satellites are included.
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this catalogue we calculate its location and velocity, as
observed from La Palma, at regular intervals throughout
an entire night. This distribution of velocities gives a rea-
sonable range of velocities to target using the blind stack
search. Fig. 4 shows the distribution of velocities in deg/s
for all of the catalogue targets. Since the velocity of a target
is lower when it is closer to the observer’s horizon, we sep-
arate the plot into four observational elevation angle bands
(denoted h, given in degrees). Additionally, only sunlit tar-
gets are included since these are the only ones visible to our
optical system. Repeating this search for different dates
resulted in negligible variances.

For the velocity range taken for this simulation we focus
only on targets which are both sunlit and at least 20deg
above the horizon, meaning they are observable with our
current telescope setup. Since this distribution has a high-
velocity tail (note the log–log scale) our upper limit is taken

to be the 90th quantile of the valid targets. This means that
we will not be able to recover the fastest 10% of targets but,
due to the number of paths scaling with velocity squared
(see Section 2.4) we save approximately 90% of the compu-
tational time associated with testing paths (the reduction in
tested paths also results in a reduced background in the
stacked images). The selected range is 0.043–0.380deg/s.
Limiting observations to lower observational elevation
angles only could reduce this range further. Observing at
lower elevation angles results in additional challenges,
one of the most important being an increase in the average
distance between the target and the observer. The increased
distance leads to a reduction in target brightness and thus a
further difficulty in target recovery. Here, we consider
recoverability as a function of magnitude of the target as
seen by the observer, not an absolute value, so our recov-
erability limits are independent of observational elevation
angle. However, it should be noted that the same magni-
tude target will correspond to a larger physical target size
when observed at lower elevation angles. Additionally, fac-
tors such as increased sky-mass and reduced seeing occur at
lower observation elevation angles. These will affect recov-
erability but, since this simulation does not separate targets
by elevation angle (other than to remove the very lowest
targets) these impacts are beyond the scope of this work.
Fig. 5. Generation of a simulated target streak, built up from multiple
point distributions. The red line shows the targets motion and the red
points shows the centres of the individual point distributions.
2.3. Simulated signals

We next had to simulate a range of realistic target sig-
nals that could be tested for recovery using our blind stack-
ing code. Based on the acquired data discussed in
Section 2.1 we determined that the PSF of the system
had a FWHM of 3.6pixels. To simulate the object streak
we first chose a velocity from the distribution above. This
velocity, combined with the exposure time, give the length
of the streak in a single image. The streak was simulated on
910



B.F. Cooke et al. Advances in Space Research 72 (2023) 907–921
a grid of pixels with dimensions equal to the streak length
plus a buffer zone of 3 times the FWHM. The streak was
split into multiple sections and at each step the location
of the target was calculated, assuming that it moved uni-
formly from the start of the streak to the end over the dura-
tion of the exposure time. The total motion of an object
across the field of view is only a few degrees so curvature
is negligible. At each step in time the distance from each
pixel to the target location was calculated and used to
determine its flux based on a normal distribution with

r ¼ FWHM= 2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p� �

. This was repeated for all time

steps with the flux at each pixel being summed, resulting
in a diffuse streak. The resulting image was then scaled,
according to the zero point and exposure time to give the
flux of a target of any specific magnitude using the follow-
ing equation:

F ¼ 10ðZ�MÞ=ð2:5Þt; ð2Þ

where F is the total electron flux, Z is the zero point of the
data, M is the required magnitude and t is the exposure
time. To convert flux from e� to ADU we divide by the
nominal gain of 0.42e�/ADU.

Fig. 5 shows the generation of an example target streak
from a combination of multiple point distributions. The
Fig. 6. Example injected signals. Shown for a range of exposure times,
binning factors and target magnitudes. Simulated signals are placed within
true observational data.
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red line shows the motion of the target across a single
frame with the red points showing the centres of the indi-
vidual point distributions that are combined to create the
streak effect.

This streak could then be generated for a random angle
and injected into any pixels in the individual data frames.
The position in the initial frame was chosen at random with
its location in subsequent frames determined by the objects
velocity, direction and frame exposure time. Objects that
moved off the edges of the image between frames were no
longer injected, so as to simulate targets which are not
observed for the full data-set.

Fig. 6 shows some examples of injected signals. In each
sub-figure a target of given magnitude is simulated and
injected into a real observed data frame. All simulated tar-
gets have the same velocity so as to allow for easy compar-
ison. The exposure time and binning factor used for the
generation of each simulated target is given. Slower mov-
ing, brighter targets are chosen here so as to be visible in
individual example frames for demonstration purposes.
Additionally, image colour scale and magnification are
optimised to most clearly display the injected signals,
parameters which cannot be known for random targets.
Visible also in these example frames is the result of longer
exposures on the star trails. Since the telescope set-up is
stationary, stars trail slightly in individual exposures and
longer exposures led to longer trails. From these example
frames we see that this effect is negligible in individual
images, validating the use of the stationary telescope
system.

The simulated signals as shown here are simplifications
of observed LEO signals which can show significant vari-
ability on a range of time scales. The sources of variability
can be caused by a range of effects, including the motion of
the target, (i.e. tumbling satellites can show brightness vari-
ations of many percent), atmospheric effects (i.e. scintilla-
tion, which can cause brightness fluctuations of tens of
percent) and instrumental effects (i.e. cross-track jitter,
caused by the uneven distribution of flux across multiple
pixels due to the fact that targets are not being spatially
resolved). These myriad effects all result in a target bright-
ness profile that can be variable on short time scales. How-
ever, the methods discussed in this paper are all based on
average brightness values. The stacking and integration
techniques discussed depend on the total brightness
observed across a full exposure, or sequence of exposures.
Therefore, the changing brightness profile is not the figure
of merit, only the average brightness across the relevant
observation window. As such, we do not simulate these
additional effects, and all results are given in terms of the
average brightness of a target.

2.4. Blind stacking

With the simulated streaks properly injected into the
data the next step is the actual blind stacking procedure.
Blind stacking works by making assumptions about the
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motion of a potential target and then testing the data for a
target with that motion. This process is repeated for all
potential motions that one wishes to consider with the
results being combined into a single image. The procedure
followed in this paper is broadly similar to that laid out in
Rice and Laughlin (2020).

A potential motion is chosen and decomposed into an x
and y component, (vx; vy), measured in number of pixels. At
each time-step in the data the corresponding frame is offset
from the first by (ivx; ivy) where i is the index of the frame
(zero-indexed). This leads to a stack of pixels at each pixel
location which are combined to give a single value for each
pixel. The method used to combine the stacked pixels is a
trimmed mean, in which we reject the brightest and faintest
pixels in a stack and then average the surviving values.
Only pixels overlapping the first image are considered, pix-
els whose offsets move them off the footprint of the original
frame are considered lost. This process is then repeated for
every potential motion to be considered. After each tested
motion the stacked images are compared with only the
brightest pixel at each location being saved (along with
the meta-data about which tested path produced it). This
results in a single master stacked image, the same dimen-
sions as the original frame, with a single value at each pixel
Fig. 7. Graphical representation of the blind stacking pipeline.
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location, but that comprises information about any poten-
tial path. Targets which have moved at a constant rate
between frames will align when the correct path is tested,
resulting in a brightness spike in the stacked image. These
bright spikes are thus indicators that there is a moving
object at that location in the original frame. The meta-
data at that location then reveals the x and y motion of said
object. Fig. 7 shows a graphical representation of this pro-
cess. For a pseudo-code description of the blind stacking
algorithm see Appendix A.

The number of paths that must be tested is related to the
range of velocities a potential target might reasonably be
expected to have (see Section 2.2). Because the direction
of the object is unknown, testing a particular magnitude
of motion requires testing all paths that have that magni-
tude, regardless of direction. With an upper and lower
limit, vmax and vmin, the number of paths that must be tested
is roughly given by the following equation,

npaths � pðv2max � v2minÞ: ð3Þ
where vmax and vmin are measured in pixels. The introduc-
tion of a lower limit saves little in the number of paths
but has the added effect of removing spikes from stars,
which are typically moving much slower than any potential
LEO target. Preferring specific directions could limit the
number of required paths dramatically but would result
in a reduction in generality of the technique. If searching
for a specific subset of targets however, it would be a useful
mitigation.

The presence of noisy and/or star contaminated pixels,
combined with the algorithm’s process of choosing the
brightest stacked pixel at each location, every path tested
has the possibility of lining up high noise pixels and creat-
ing a spike. This means that the more paths that are tested,
the greater the average pixel value in the master stacked
image and therefore, the brighter a true spike must be to
have the same signal to noise ratio. It is also noted that
longer exposures create longer star trails, increasing the
number of bright background pixels and exacerbating this
issue, though this affect is negligible at the exposure time
and binning factors considered here.

Therefore, limiting the number of paths is vital to the
success of the blind stacking technique.

2.5. Optimisation parameters

There are three key physical optimisation parameters
that we have considered in this study. These are the number
of frames used in each data-set, n, the exposure time of
each frame, t, and the amount of binning carried out before
stacking the frames, b.

2.5.1. Number of frames

The optimal number of frames per data-set, n, is a factor
of exposure time and target velocity. The ideal observing
time (exposure time � number of frames) for a specific tar-
get should be equal to half the time for which a target will



B.F. Cooke et al. Advances in Space Research 72 (2023) 907–921
be within the field of view. This maximises the number of
frames a target will appear in whilst ensuring the target will
appear in the first frame of at least one data-set. Appearing
in the first frame is a requirement for an object to be
detected since this is the frame against which all path are
measured (although this requirement will be further inves-
tigated in following work). Observing for longer than this
amount of time increases the SNR of objects which appear
in all frames (since more frames are stacked together) but
reduces the fraction of objects which appear in all frames
(since it requires them to remain in the FoV for longer).
Observing for a shorter amount of time increases the
chance that an object will appear in all frames but reduces
the number of frames that can be stacked for each object,
reducing the SNR. Simulating multiple objects drawn from
the speed distribution shown in Fig. 4 and allowing them to
cross a random part of the FoV shows that 90% of targets
are within the field of view for P 4:3s (CLASP has a field
of view of 2:63� 1:76deg). To detect a target it must
appear in the first frame of a data-set so observing for
ð4:3=2Þ ¼ 2:15s means that we will have a data-set that
has 90% of targets visible in the first frame. Observing
for less than this would result in only a small increase in
detections. This corresponds to � 17 frames of 0.125s
exposures. Conversely, only 50% of targets are visible for
P 10:4s. Observing for longer than ð10:4=2Þ ¼ 5:2s would
make these slower targets clearer but would both increase
memory requirements (more frames must be stored at
once) and make it more likely that faster targets would
not be caught in the first frame of a data-set. Additionally,
these slower targets are easier to detect anyway since their
light is spread across fewer pixels in each individual image.
This corresponds to � 42 frames of 0.125s exposures.
Fig. 8 shows this distribution including the 0.1 and 0.5
quantiles.

With these values in mind (but adapting for ease of com-
putation) the n values we choose to test are 24, 40 and 56
for t ¼ 0:125s; 12, 20 and 28 for t ¼ 0:25s; and 6, 10 and
Fig. 8. Distribution of the time for which simulated targets are within the
field of view. Also included are the 0.1 and 0.5 quantiles.
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14 for t ¼ 0:5s. These values correspond to total observing
times of 3, 5 and 7 s.
2.5.2. Exposure time

Decreasing the exposure time, t, reduces both the back-
ground noise of the individual frames (up to a threshold,
see Fig. 3) and and the number of paths that must be tested
between successive frames, subsequently reducing the run-
time. The exposure times discussed in this report are
0.125s, 0.25s and 0.5s. These exposure times are chosen
in order to test a range of parameter space while allowing
for hardware and software constraints (see Section 2.1).
Going to shorter exposures would require the telescope sys-
tem to run at higher cadences, which is currently not an
option with our observational set-up. Longer exposures
would result in intractable run-times that would make the
simulations and analysis untenable. The chosen exposure
times give a good range and clear display of the effect of
exposure time on recovery and run-time. Longer exposures
mean the number of pixels a target can move between
frames increases and therefore the number of testable paths
also increases as the maximum motion squared.
2.5.3. Binning

Binning refers to the combination of pixels in each indi-
vidual frame before proceeding with the blind stacking pro-
cedure. A binning factor of b means that groups of b by b
pixels are averaged together, resulting in 1=b2 as many pix-
els in the binned image than in the unbinned one. Binning
is implemented in both the x and y directions with pixels
being averaged into single bins. Any edge pixels which can-
not form an entire bin are discarded (thus the frame may
lose the data from up to b� 1 pixels in both x and y direc-
tions after binning, for a binning factor b). Binning is
implemented after reduction and background removal
and after the injection of any simulated signals.

The binning used in the results discussed here is achieved
by taking the mean value of the binned pixels, this is most
equivalent to the real world case of scaling up the pixel size
of the telescope (although it doesn’t account for a changing
field of view). The chosen binning values to be tested in
these results are 2, 4 and 8. We don’t test the unbinned
images since, firstly, this would require a significant run-
time, and secondly, the individual unbinned images contain
a subtle but measurable odd/even pixel offset such that
odd/even pixels are drawn from slightly different distribu-
tions. Binning by an even value removes the effect. Addi-
tionally, binning by a power of 2 is easiest computationally.

As well as reducing the number of pixels per image, bin-
ning can also potentially reduce the number of tested paths
by the same factor, however, this then reduces the resolu-
tion of the tested paths and thus the recovery fraction.
For example, if a target moves 5 pixels per frame in the x
direction and the pixels are then binned by a factor of 2
the closest integer-pixel paths that can be tested are 4 or
6. After 40 frames the target will have moved 200 unbinned
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pixels whereas the closest paths will have moved 160 or 240
unbinned pixels, thus they will be stacking the wrong pixel
values. The larger the number of frames and the larger the
binning factor the worse this effect can become. To account
for this, while still gaining a benefit from binning the
images, we must test non-integer motions in the binned
images. As before, consider a path of 5 unbinned pixels
per frame. In the unbinned image the position of this pixel
is 0, 5, 10, 15, 20. . .whereas in the binned image the loca-
tion of the binned pixel that contains this unbinned pixel
is 0, 2, 5, 7, 10. . .We see that this sequence is no longer
an arithmetic progression, therefore, to accurately portray
this motion we must test a path that alternates between
moving 2 and 3 pixels per frame. The result is that, to
ensure sufficient resolution in the tested paths, we must test
as many paths in the binned images as we do in the
unbinned images.

2.6. Detection code

Once the simulated targets have undergone blind stack-
ing the resulting images must be searched automatically,
and any detections compared to the injected signals. Addi-
tionally, we need to search the individual images in a sim-
ilar manner, in order to quantify the improvement in
detectability produced by the blind stacking method. When
searching for targets in images we can either search the
image as it appears, looking for clusters of bright pixels,
indicating an extended object, or we can attempt to inte-
grate along a potential streak, increasing the signal to noise
of a detection. Since we don’t know the location or velocity
of any target that may potentially be in an image, we need
to integrate along all possible paths, in much the same way
as we test all potential paths during the blind stacking
phase. This is repeated for every individual pixel in the
image. We first choose a path from the list of possible
paths. At each pixel location we determine which other pix-
els would contain parts of an extended object, if it were
moving along the path being tested and was centred on
the pixel being tested. We then calculate the SNR of these
pixels using the following equation;

SNR ¼ snffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
snþ nr2
p ; ð4Þ

where s is the average signal per pixel, n is the number of
pixels, and r is the noise per pixel (assuming negligible read
noise from the sCMOS detector). This value is then
assigned to the relevant pixel. The same process is repeated
for every pixel, generating an SNR image. This is com-
pared to the master image, and only the brightest value
at each pixel location is kept. We repeat these steps for
every potential path. The result is an image in which the
pixel values correspond, not to brightness, but to the max-
imum SNR of an pseudo-aperture placed at that location,
with parameters corresponding to a potential path. For a
pseudo-code description of the integration algorithm see
Appendix B.
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We can then search this image for detections using SEP.
This allows us to detect fainter targets than searching the
pre-integrated image, since we are considering the inte-
grated flux, as opposed to the flux of individual pixels.
Using the above SNR equation, the SNR of a streak of n
pixels is

ffiffiffi
n
p

times larger than the SNR of an individual
pixel. However, it must also be noted that, since we must
test every potential path, any individual pixel has npaths dis-
tinct SNR values generated, and only the largest value is
saved. This means that the more paths that are tested,
the brighter the background level in the SNR image, while
the integrated flux of the true detection is unchanged.
When searching for detections it is the difference between
the target SNR and the background SNR level that is the
relevant quantity. Because of this effect, the SNR of true
detections decreases with the number of tested paths and
improvements in detectability resulting from integration
are less than would be expected in the traditional case
where the target location or direction of motion is known.
Dividing this quantity by the noise in the integrated image
gives the number of standard deviations of a detection
above the background level. To limit the number of false
positives we set the required threshold to 5 standard devi-
ations above the mean.

One additional aspect that must be considered when
integrating the individual images is that the stars must first
be masked out. Since the stars are bright and occupy more
than a single pixel (due to the telescope PSF) the integra-
tion step may highlight short paths which cross over a
bright star. Masking these stars using SEP first, reduces
the false positives significantly. This is not necessary when
integrating the stacked image since the stars are not seen
due to the choice of allowed paths.

To compare detections in the stacked image to those in
the individual images we must perform the same integra-
tion step. The integration procedure used to produce the
results seen in this paper is performed only on the final
result of the blind stacking algorithm. This is computation-
ally simple because the stacking pipeline (which should ide-
ally, be close to real time) is separated from the integration
and detection pipeline (which can occur later and need not
be real time). For a more complete integration analysis the
integration step can be run in tandem with the blind stack-
ing process. After each path-specific master frame is gener-
ated, the integration step is implemented, using just the
path being currently tested, before the result is then com-
pared against the final master image (as seen in the flow-
chart above). This has the benefit that the integration
step considers only the pixels generated by stacking along
the same path, whereas the previous method can integrate
along pixels generated by stacking multiple different paths.
The downside is that the integration step is now part of the
blind stacking pipeline and therefore, must ideally be run in
real time. In practise, this full method is too computation-
ally intensive to justify the minor increase in recoverability
it produces.



Fig. 9. Recovery fraction as a function of target magnitude. Distributions
all have an exposure time of 0.125s and a binning factor of 4. n=24, 40, 56
results are in red, green and blue respectively. Solid lines show the stacked
frame recoverability and the black dashed line shows the single frame
recoverability for comparison.
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Once the integration steps are done, the resulting images
are searched for detections using SEP. The SEP thresholds
are chosen to maximise the recoverability of targets, while
keeping false positives to a minimum. Cuts are made based
on SNR, as well as target shape and size (adjusted by the
relevant optimisation parameters). The resulting integrated
images show the same extended detections as in the non-
integrated frames. The centre of a streak is the brightest
and corresponds to testing the correct path at the correct
pixel. Surrounding pixels are then fainter, but still brighter
than the background level, and correspond to integrating
along slightly incorrect paths that contain only part of
the true signal, or paths that contain too many background
pixels along with the true signal. The location, orientation
and length of the detections are compared to those of the
injected signals. Detections with parameters sufficiently
close to those of a simulated target (allowing for inaccura-
cies due to binning etc.) are defined as true detections,
whereas clusters not matching any of the targets are false
positives. Targets which don’t have a corresponding detec-
tion are defined as not recovered.

3. Results

There are multiple ways in which to evaluate the success
of the blind stacking method as a function of the optimisa-
tion parameters. The key aspects discussed here are recov-
erability (the fraction of injected signals that are
successfully recovered) and run-time (the time required
for the blind stacking code to complete). We can look at
how these measurements are affected by the choice of opti-
misation parameters to determine the optimal combina-
tion. Analysed parameters are the number of frames per
data-set, n, the binning factor, b and the exposure time t.
Results presented below are averaged across 50 runs, with
each run containing 10 unique and randomly generated
injected signals. Recoverability is presented as a fraction
of potentially recoverable objects (i.e. objects moving too
quickly or appearing in too few frames are not included).

3.1. Recoverability

To look at recoverability we look at the output of the
detection code and determine what fraction of injected sig-
nals are correctly recovered. This can be left as a single
value for any combination of optimisation parameters,
or, more usefully, broken down by target magnitude or
velocity. To best explore how each optimisation parameter
affects recoverability we examine each in turn while holding
the other two constant (or, in the case of number of frames,
relatively constant). We will then plot the results as a func-
tion of target magnitude. Fig. 9 shows the effect of the
number of frames per data-set, n, on recoverability. In this
plot the 3 distributions show the results of using 24, 40 and
56 frames. All distributions use an exposure time of 0.125s
and a binning factor of 4.
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In this figure we see the impact of the number of frames
in a data-set on stacked frame recoverability (single frame
recoverability is obviously independent of number of
frames in a stack. For the brighter targets we see that the
number of frames has a limited effect on the recoverable
fraction, with most targets being recovered successfully.
This is due to the fact that these brighter targets are more
easily identified, sometimes even visible in individual
images, thus requiring the stacking of fewer frames to reach
the required SNR for detection. Should we test data-sets
with many fewer frames we would expect to see a greater
decline. At the fainter end of the distribution the number
of frames has a more appreciable effect on recoverability.

Targets fainter than � 13:5th mag show a preference for
data-sets of 40 frames. Fewer frames than this means the
increase in SNR gained when stacking images is not as
large as it could be, leading to the loss of the faintest tar-
gets. More frames than this creates a longer observing per-
iod and therefore means that targets appearing in few
frames are less likely to be caught in the preceding data-
set (since they would need to appear in the first frame of
the preceding data set which is now further in the past).
This means targets must now be detected based upon fewer
frames, meaning their SNR is reduced and therefore so is
their recoverability. 40 frames (or 5s of observing to gener-
alise to all exposure times) is currently the optimal length
of data-set.

Fig. 10 shows the effect of exposure time. In this plot
each distribution has a binning factor of 4 and a total expo-
sure time of 5s (meaning 40, 20 and 10 frames for the dif-
ferent exposure times). The results of using exposure times
of 0.125s, 0.25s and 0.5s are seen.



Fig. 11. Recovery fraction as a function of binning factor. Distributions
all have an exposure time of 0.125s and use 40 frames. b=2,4,8 results are
in red, green and blue respectively. Dashed lines show the single frame
recoverability and solid lines show the stacked frame recoverability.

Fig. 10. Recovery fraction as a function of target magnitude. Distribu-
tions all have an observing time of 5s and a binning factor of 4. t=0.125,
0.25, 0.5s results are in red, green and blue respectively. Dashed lines show
the single frame recoverability and solid lines show the stacked frame
recoverability.
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This figure shows the impact of exposure time on target
recoverability. For single frame efforts, exposure time has
little effect on recoverability. Increased exposure time
should lead to a longer streaks without reducing the aver-
age flux per pixel, this in turn should lead to an increased
SNR as given by Eq. 4. However, two factors balance this
out. The first is the increased noise in individual frames (see
Fig. 3), reducing the ease of detection. The second effect is
that searching for longer streaks necessitates testing more
paths. This in turn leads to an increased background level
in the integrated image (as discussed in Section 2.6) mean-
ing that true detections are closer to this limit. These effects
combined, lead to a small impact of exposure time on sin-
gle frame recoverability. The effect on stacked frame recov-
erability is much more significant, with a strong reduction
in recoverability for longer exposures. This is due to similar
effects as for the single frame, except now, the increased
number of paths affect the results during both the stacking
procedure, and the integration stage. This results in a sig-
nificant degradation of the target signals, so much so that,
at t ¼ 0:5s, the single frame recoverability is superior to the
stacked frame recoverability.

Fig. 11 shows the effect of binning factor. Each distribu-
tion is run using an exposure time of 0.125s and uses 40
frames. The different binning factors tested are 2, 4 and 8.

In this figure we see how the degree of pixel binning
affects the recoverability of targets as a function of magni-
tude, for both the single and stacked frames. Binning
should improve detection up to a limit, since binning pixels
reduces the background noise, while concentrating more
signal onto fewer pixels. Too little binning means that we
do not benefit fully from the noise reduction, whereas too
much binning means that the target pixels contain signifi-
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cant background noise. Therefore we would expect recov-
erability to peak at a binning factor 4, based on the
system PSF.

When looking at the single frame results however, we
see that increasing the binning leads to a reduction in the
recovery fraction. This is due to inaccuracies during the
integration step caused by the loss of resolution when bin-
ning. Examining the recovery before integrating we see that
the recovery peaks at a binning factor of between 4 and 8,
which matches expectations. The integration step however,
determines which pixels should contain signal based on the
binned image. Increased binning makes these pixels less
accurate (i.e. they may not be the ones that contain the
maximum signal) leading to a reduced SNR and worse
recoverability. For the stacked frames however, the recov-
erability peaks at a binning value between 4 and 8, as
expected. In this case, the inaccuracies introduced during
the integration step are offset by the boost in signal result-
ing from the blind stacking procedure. It therefore turns
out that the optimal binning value for recoverability using
the blind stacking method is not equivalent to the optimal
binning value for recoverability in individual frames.

Alongside looking at recoverability as a function of
magnitude we can also look at the effect of target velocity.
Fig. 12 shows the recoverability as a function of target
velocity. This run uses an exposure time of 0.125s, a bin-
ning factor of 4, and 40 frames.

In this figure we see that for a single frame, recoverabil-
ity is broadly independent of target velocity, whereas in the
stacked frame recoverability falls with increasing target
velocity. This is due to the combination of two distinct
regimes. In the bright regime, simulated targets are at or
above the imposed pixel threshold value used to reduce
the false positive effects of bright stars. For these suffi-



Fig. 12. Recovery fraction as a function of target speed. Distributions
have an exposure time of 0.125s, a binning factor of 4 and use 40 frames.
The dashed line shows the single frame recoverability and the solid line
shows the stacked frame recoverability.
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ciently bright targets, increasing the speed increases the
number of pixels over which the signal is spread, but does
not significantly decease the signal per pixel. Therefore, the
total signal is seen to increase and the SNR rises. For
fainter targets (the majority of targets) this threshold is
not an issue and the signal per pixel falls as the number
of pixels rises with increasing target velocity, leading to a
reduction in SNR. When looking at single frames, few faint
targets are recovered, therefore these two effects cancel out
and lead to an apparent independence of recoverability
with target velocity. In the stacked frames however, more
faint targets are seen so the faint target behaviour is
enhanced leading to the displayed inverse relation between
target velocity and recoverability.
Fig. 13. Recoverability as a function of target magnitude and speed.
Points accessible to both the single and stacked frames are coloured by the
ratio of the detection threshold in both cases, with positive values meaning
the target is more easily detected in the stacked frame. Targets only
accessible in the stacked frame are coloured blue. There are no targets
accessible only in the single frames.
3.2. Predicted recoverability

We have seen how the recoverability of targets is
affected by the optimisation parameters in our simulation
but it is important to consider how this compares with
what we predict the detectability limits to be. To do this,
we use the frame background levels and their respective
noise values, combined with the results of Eq. 4. For a
given combination of target magnitude and velocity we
can then predict the number of standard deviations above
the noise a detection would appear in both an integrated
single image and an integrated stacked image. This pre-
dicted recoverability can then be compared to the results
of our simulations to determine how close to the ideal case
our results are. In the predicted results we assume a given
target is moving a track oriented at 45 degrees to the pos-
itive x axis of the images. A track of this direction means
that the pixels chosen when calculating the SNR will be
optimal to collect the maximum amount of signal while
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limiting the background. Additionally, the binning is car-
ried out centred on the target, meaning that the central
track of binned pixels will contain the maximum amount
of signal. In the full simulation, targets can be injected
moving in any direction and at any location. This means
that, in practise, the combination of the binning and selec-
tion of the streak pixels may be sub-optimal. Therefore we
would expect the simulated data to perform less well than
the predicted results, although patterns in the data should
be replicated. Fig. 13 show the predicted recoverability lim-
its for a simulation using t ¼ 0:125s, n ¼ 40 frames and
b ¼ 4.

This figure uses the same required threshold of 5 stan-
dard deviations above the mean for a detection. Targets
that reach this threshold in both the single frame results
and the stacked frame results are coloured by the ratio of
the two thresholds, with positive values meaning a target
is detected more easily in the stacked image. Targets which
only reach the required threshold in the stacked image are
coloured blue. There are no targets which only reach the
required threshold in the single images. From this figure
we see that, for this combination of optimisation parame-
ters, we should be able to detect targets in the 13–13.5 mag-
nitude range in single integrated frames, with a preference
for slower moving targets. Moving to the stacked frames
however, we expect detections of targets up to a magnitude
of 14.5, again, with a preference for the slower moving tar-
gets. These predictions match well with the results seen in
Fig. 10. The recoverability seen in the the simulated data
is slightly lower than predicted here, but that is expected
as mentioned above. The same predictions can be made
for any combination of optimisation parameters but each
show good agreement with the simulation results.

It is notable that the improved detection limits in the
stacked case are not simply equal to the detection limits



Fig. 14. Relative run-time (blind stacking algorithm runtime divided by
observing time) for all combinations of optimisation parameters.
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of a single frame multiplied by
ffiffiffi
n
p

as would be the case in
traditional stacking. As mentioned above, each incorrect
path tested increases the background level of the stacked
image, while the brightness of the true detection remains
constant, regardless of the number of paths tested. There-
fore, the relevant value, i.e. the signal above the back-
ground level, decreases with number of paths tested,
resulting in a reduced stacking improvement when com-
pared to traditional stacking methods where only one path
is tested.

3.3. Run-time

Finally we look at the impact of optimisation parame-
ters on algorithm run-time. The results presented here
show the run-time of the blind stacking algorithm divided
by the total observing time of a data set (i.e. n� t). Values
greater than/less than one mean the algorithm takes more/-
less time to run than the time used to collect the observa-
tions. Fig. 14 shows how the algorithm run-time changes
with the combination of optimisation parameters used.

From this figure, we see how the algorithm run-time
divided by observing time, or relative run-time, changes
with each optimisation parameter individually as well as
with each parameter combination tested. Firstly, we notice
that the relative run-time increases with exposure time.
This is due to the fact that we must test more individual
paths between frames when the exposure time is longer.
Longer exposures would also mean longer observing times,
but we adjust the number of frames accordingly. Thus the
shortest relative run-time corresponds to the runs with the
shortest exposure time. Secondly, we see that relative run-
time decreases with binning factor. Binning factor affects
run-time by reducing the number of pixels which must be
analysed. The number of pixels in the binned image is

reduced by a factor of b2 which reduces the run-time by
the same factor. Binning can also affect the number of
paths tested, as discussed in Section 2.5.3. For the method
used here, however, the number of paths is unchanged
compared to the unbinned approach. Finally, we see the
effect of the number of frames per data-set. This produces
the smallest effect since, although run-time increases with
number of frames, so does observing time. There is, how-
ever, a small decrease in relative run-time for a larger num-
ber of frames. This is due to the fact that the more frames
that are included in a data-set, the greater the number of
paths that don’t reach the limiting number of frames.
Therefore, longer sequences of frames can avoid testing
slightly more paths, reducing the relative run-time and
resulting in the observed pattern. Based on the results from
this figure, and the desire for a real-time or close to real-
time system, the preferred combinations of optimisation
parameters would be 0.125s exposures with a binning fac-
tor of 4 or 8, or 0.25s exposures with a binning factor of
8. Other combinations currently require relative run-times
that are unrealistic.
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Results presented here have have been computed using
the NVIDIA A30 GPU for the bulk of the processing.
GPU processing allows for a significant speed up over
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CPU because large amounts of the algorithm can be paral-
lelised. With the exception of edge cases, all pixels in an
image are treated identically during the blind stacking pipe-
line, additionally the resulting stacked value for a given
pixel is not affected by the stacked value for any other pixel
so the order of processing is irrelevant. These reasons make
large parts of the blind stacking pipeline highly parallelis-
able and thus conducive to GPU processing (pseudo-code
Algorithms 1 and 2 highlight which computing steps are
carried out on the GPU). Using a GPU where possible
results in a computational speed up of multiple orders of
magnitude. The limitations imposed by the use of a GPU
is that data must be first transferred from the CPU to the
GPU for processing and then back again for analysis.
However, the transfer time is found to be only a very small
fraction of the total runtime, thus using a GPU still pro-
vides significant speed-up.

There are still potential avenues for reducing this run-
time. Firstly, observing at a higher cadence would reduce
the length of target streaks and thus, the number of paths
that must be searched between frames. This would reduce
the runtime required but is not currently possible with
our observational set-up. Limiting ourselves to a slower
subset of LEO targets would also reduce the number of
paths that must be tested and therefore the runtime of
the algorithm. This could be done by focusing on targets
observed closer to the horizon, or targets on higher orbits
(although these approaches bring their own complexities,
as mentioned in Section 2.2). Additionally, limiting the
orbits searched, i.e. focusing on polar orbits only, would
drastically reduce the range of directions an object could
be moving, limiting the paths searched and thus the run-
time. Finally, utilising a higher-performance GPU could
result in a computational speed up.
4. Discussion and conclusions

We have analysed the feasibility of the blind stacking
method for the detection of LEO targets. We point out that
this study employs the use of real observational data into
which simulated signals are injected, thus is more represen-
tative than a pure simulation-based approach. The reasons
for still employing simulated injections as opposed to a full
real-data search campaign are twofold. Firstly, this work is
a proof of concept; we wish to prove the feasibility and lim-
itations of the method which is most easily accomplished
with a simulated input catalogue. Secondly, detecting
real-world targets would require cross-checking against
known targets and confirming unknown ones, necessitating
additional analysis codes. We plan to follow this work up
with a full on-sky implementation of the method.

Current results show that, in terms of recoverability of
targets, the method is absolutely feasible, being capable
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of successfully recovering targets well below the magnitude
thresholds available from individual frames. Depending on
the exact combinations of optimisation parameters, we
have shown this method capable of the recovery of targets

at 14th magnitude and below. Taking a CubeSat at this sort

of altitude to present around 13th magnitude shows this
method capable of detecting objects with surface areas sig-
nificantly smaller than this (a change of one magnitude cor-
responds to a change in surface area, and thus flux, of 2.5
times, under certain assumptions).

The optimal combination of high-level algorithm
parameters for the recovery of the faintest objects is cur-
rently an exposure time of 0.125s, a pixel binning factor
of 4 or 8, and a data-set comprising of �40 frames. As
shown above, this combination leads to the best faint
object recovery giving an approximate recovery of 80%
of 13–13.5 magnitude targets and � 50% of 13.5–14 mag
targets. Recoverability of brighter targets is generally con-
sistent at close to 100% as well.

In terms of run-time we show that the optimal combina-
tion of parameters are short exposures, large binning fac-
tors, and large numbers of frames per data-set (although
this last aspect has a rather limited effect). In order to
approach a real-time algorithm, we require exposure times
of 0.125s, combined with a binning factor of 4 or 8, or an
exposure time of 0.25s, combined with a binning factor of
8. Other combinations, while still sometimes capable of
good recovery, generally require too much computational
time to be feasible. The best relative run-times are K 5,
meaning the blind stacking algorithm requires up to 5 times
longer than the data collection time to run.

The results presented here have been a proof of concept
of the blind stacking procedure, applied to LEO targets.
We hope to apply these findings to a full on-sky application
in the short term.
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Appendix A. Blind stacking algorithm

Algorithm 1. Blind stacking algorithm (Commented lines take place on the GPU)
1: for Each Pixel do
920
2: PixelLocation ½PixelLocationX;PixelLocationY�

3: MasterFrame½PixelLocation�  0

4: for Each allowed X Motion do
5: x X Motion

6: for Each allowed Y Motion do
7: y  Y Motion ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

8: Total Motion x2 þ y2
9: if Total motion within allowed range then

10: PixelValue 0
 . GPU

11: for Each Frame do
 . GPU

12: PixelLocationX PixelLocationXþ x
 . GPU

13: PixelLocationY PixelLocationYþ y
 . GPU

14: PixelLocationFrame ½PixelLocationX;PixelLocationY�
 . GPU

15: PixelValue PixelValueþ Frame½PixelLocationFrame�
 . GPU

16: end for
 . GPU

17: if PixelValue > MasterFrame½PixelLocation� then
 . GPU

18: MasterFrame½PixelLocation�  PixelValue
 . GPU

19: end if
 . GPU

20: end if
21: end for
22: end for
23: end for
Appendix B. Integration algorithm

Algorithm 2. Integration algorithm (Commented lines take place on the GPU)
1: for Each Pixel do

2: PixelLocation ½PixelLocationX;PixelLocationY�

3: IntegratedFrame½PixelLocation�  0

4: for Each allowed X Motion do

5: x X Motion

6: for Each allowed Y Motion do
7: y  Y Motion ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

8: Total Motion x2 þ y2
9: if Total Motion within allowed range then
10: NSteps Total Motion
 . GPU

11: PixelValue 0
 . GPU

12: for Each Step do
 . GPU

13: PixelLocationX PixelLocationXþ x=NSteps
 . GPU

14: PixelLocationY PixelLocationYþ y=NSteps
 . GPU

15: StreakPixel ½PixelLocationX;PixelLocationY�
 . GPU

16: PixelValue PixelValueþ Image½StreakPixel�
 . GPU

17: i iþ 1
 . GPU

18: end for
 . GPU

19: if PixelValue > IntegratedFrame½PixelLocation� then
 . GPU

20: IntegratedFrame½PixelLocation�  PixelValue
 . GPU

21: end if
 . GPU

22: end if
23: end for
24: end for
25: end for
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