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Abstract
We consider Bayesian analysis on high-dimensional
spheres with angular central Gaussian priors. These pri-
ors model antipodally symmetric directional data, are
easily defined in Hilbert spaces and occur, for instance,
in Bayesian density estimation and binary level set inver-
sion. In this paper we derive efficient Markov chain
Monte Carlo methods for approximate sampling of pos-
teriors with respect to these priors. Our approaches rely
on lifting the sampling problem to the ambient Hilbert
space and exploit existing dimension-independent sam-
plers in linear spaces. By a push-forward Markov ker-
nel construction we then obtain Markov chains on the
sphere which inherit reversibility and spectral gap prop-
erties from samplers in linear spaces. Moreover, our
proposed algorithms show dimension-independent effi-
ciency in numerical experiments.
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1 INTRODUCTION

The Markov chain Monte Carlo (MCMC) method is a standard tool for computational probability
and recent years have seen increasing interest in dimension-independent MCMC schemes, that is,
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2 LIE et al.

those whose statistical efficiency and mixing rates do not degenerate to zero as the dimension of
the sample space tends to infinity. We mention here the preconditioned Crank–Nicolson (pCN)
scheme of Cotter et al. (2013)—see also Neal (1999, equation (15)) and Beskos et al. (2008)—and
the elliptical slice sampler (ESS) of Murray et al. (2010), both of which rely on a Gaussian reference
or prior measure. Recently, the pCN scheme has been combined with geometric MCMC methods
(Beskos et al., 2017; Rudolf & Sprungk, 2018) and extended to classes of non-Gaussian priors
(Chen et al., 2018), and for the ESS geometric ergodicity was shown by Natarovskii et al. (2021a).

In this work, we study whether these dimension-independent sampling schemes could also
be modified for Bayesian analysis on high-dimensional manifolds. As a starting point we focus on
Bayesian inference on high-dimensional spheres (Watson, 1983). We then consider the case of the
unit sphere in a general Hilbert space. We formulate some results in more generality, for example,
by replacing the ambient Hilbert space and the unit sphere with a pair of topological spaces that
are related by a measurable mapping. This allows us to extend some of our results to manifolds
that are more general than the unit sphere. Our choice of the sphere is further motivated by par-
ticular inverse problems on function spaces such as level set inversion—more precisely, binary
classification—where one is essentially interested only in recovering the pointwise sign of a func-
tion u ∶ D → R on some domain D. Thus, u and 𝛼u for 𝛼 > 0 yield equivalent classifications and,
hence, it is natural to consider the inverse problem just on some unit sphere of functions.

Previous works on MCMC methods on manifolds—such as those of Brubaker et al. (2012),
Byrne and Girolami (2013), Diaconis et al. (2013), Mangoubi and Smith (2018), and Zappa
et al. (2018)—derive algorithms which are based on the Hausdorff or surface measure as reference
measure. However, despite their use of geometric structure, the performance of such methods
typically still degrades as the dimension of the sample space increases to infinity—one reason
being the degeneration of the target density with respect to the Hausdorff measure.

1.1 Contribution

In this paper, we aim to construct dimension-independent MCMC methods in order to sample
efficiently from target measures on high-dimensional spheres. We identified the angular cen-
tral Gaussian (ACG) distribution as a suitable reference measure for this purpose. The ACG
models antipodally symmetric directional data and is an alternative to the Bingham distribu-
tion (Tyler, 1987). ACG distributions and their mixtures have been applied in finite-dimensional
directional-statistical problems such as geomagnetism (Tyler, 1987, section 8), imaging in neu-
roscience (Tabelow et al., 2012), and materials science (Franke et al., 2016, section 4). ACG
distributions have been generalized to the projected normal distribution, for which the initial
Gaussian distribution may have nonzero mean (Wang & Gelfand, 2013).

The ACG distribution is defined as the radial projection onto the sphere of a centered Gaus-
sian measure on the ambient Hilbert space and thus yields a well-defined reference measure
even in infinite-dimensional Hilbert spaces. Moreover, the ACG distribution can be applied in an
acceptance-rejection method for sampling from several families of distributions on spheres and
similar manifolds (Kent et al., 2018). Thus, we anticipate that our proposed methods could also be
exploited for dimension-independent MCMC for posteriors with other priors, for example, Bing-
ham, Fisher–Bingham, or von Mises–Fisher priors. However, we leave this question for future
research, and focus on posteriors given with respect to the ACG prior in this paper.

The particular structure of the ACG prior allows us to lift the sampling problem to the ambient
Hilbert space. Thus, we can exploit existing dimension-independent MCMC algorithms on linear
spaces, for example, the pCN algorithm mentioned earlier. In order to obtain Markov chains on
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LIE et al. 3

the sphere, we use push-forward Markov kernels as introduced by Rudolf and Sprungk (2022). This
approach then yields specific MCMC algorithms that first draw from a suitable distribution a point
on the ray defined by the current position on the sphere, and then take a step using a dimension-
independent transition kernel. The resulting state is finally “reprojected” to the sphere.

In summary, our contributions are as follows:

(1) We propose two easily implementable MCMC algorithms that generate reversible Markov
chains on high-dimensional spheres, where the chains have as their invariant distribution a
given posterior with respect to an ACG prior;

(2) We prove uniform ergodicity of the suggested Markov chains in finite-dimensional settings;
(3) We provide theoretical and numerical evidence for dimension-independent statistical effi-

ciency of the proposed algorithms.

Moreover, our numerical experiments show that some other existing MCMC methods
for sampling on manifolds—see Section 1.3 for an overview—exhibit decreasing statistical
efficiency as the state space dimension increases. Thus, we provide a first contribution to
dimension-independent MCMC on manifolds, and thereby demonstrate the feasibility of efficient
Bayesian analysis on high-dimensional spheres.

1.2 Outline

The remainder of this paper is structured as follows. Section 1.3 overviews some related work in
this area and Section 1.4 sets out some basic notation. In Section 2 we recall two basic MCMC
algorithms that are valid in infinite-dimensional Hilbert spaces. Basic definitions and properties
related to MCMC, in particular the Metropolis–Hastings (MH) and slice sampling paradigms, are
provided in Appendix B for completeness. In Section 3 we make our main theoretical contribu-
tions by developing a general framework for obtaining dimension-independent MCMC methods
on manifolds. In particular, we derive and analyse two sampling methods on the sphere. These
methods are subjected to numerical tests, in the context of Bayesian binary classification and
density estimation, in Section 4. Some closing remarks are given in Section 5. In the appendix we
further recall some key facts about Gaussian and ACG measures (Appendix A), describe related
existing MCMC algorithms on the sphere (Appendix C) and provide technical auxiliary results
(Appendix D).

1.3 Overview of related work

Classical references that treat statistical inference on the sphere include those of Watson (1983),
who focuses exclusively on spheres in finite-dimensional Euclidean spaces, and Mardia and
Jupp (2000), who focus on circular data but also treat spheres, Stiefel and Grassmann manifolds,
and general manifolds. Special manifolds such as the Stiefel and Grassmann manifolds have also
been studied by Chikuse (2003). A recent treatment that focuses on modern developments in
directional statistics is given by Ley and Verdebout (2017). Srivastava and Jermyn (2009) consider
the infinite-dimensional unit sphere of diffeomorphisms in the context of computer vision, and
then apply a Bayesian method for shape identification. However, none of the cited works treat
MCMC sampling methods or Bayesian inference on high-dimensional manifolds.

Regarding sampling on embedded manifolds, Hamiltonian Monte Carlo methods are con-
sidered by Brubaker et al. (2012) and Byrne and Girolami (2013), for instance, and Diaconis
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4 LIE et al.

et al. (2013) propose a Gibbs sampler. Moreover, Mangoubi and Smith (2018) study the so-called
“geodesic walk” algorithm and establish Wasserstein contraction under the assumption that
the manifold has bounded, positive curvature. The geodesic walk algorithm of Mangoubi and
Smith (2018) chooses a random element uniformly from the unit sphere in the tangent space
and moves a fixed time or step size along the corresponding geodesic. This could be used as a
proposal in an MH algorithm. Similarly, Zappa et al. (2018) developed an MH algorithm on man-
ifolds where the proposed point is generated by a normally distributed tangential move into the
ambient Euclidean space which is then suitably projected back to the manifold. We will com-
pare our algorithms particularly to that of Zappa et al. (2018) and the geodesic walk algorithm
of Mangoubi and Smith (2018). For the specific problem of designing MCMC samplers on the
sphere, Lan et al. (2014) considered Hamiltonian Monte Carlo for distributions that undergo sev-
eral transformations in order to be defined on the unit sphere. Their approach has been used
by Holbrook et al. (2020) to perform Bayesian nonparametric density estimation based on the
Bingham distribution as the prior.

We also mention the work of Yang et al. (2022), which considers high-dimensional MCMC
methods for sampling from heavy-tailed distributions. Their work uses stereographic projection
to the sphere to prove desirable mixing properties for the resulting MCMC samplers as the dimen-
sion increases. Two important differences between their work and our work are that they focus on
sampling from heavy-tailed distributions on Euclidean spaces, while we consider sampling from
the sphere in general Hilbert spaces and focus on the ACG prior.

1.4 Preliminaries and notation

Throughout, (Ω,,P) will be a fixed probability space, which we assume to be rich enough to
serve as a common domain of definition for all random variables under consideration.

Given a topological space X, (X) denotes the space of probability measures on the Borel
𝜎-algebra(X) of X. Given another topological space Y, T

♯
𝜇 ∈ (Y) denotes the push-forward or

image measure of 𝜇 ∈ (X) under a measurable map T ∶ X → Y, that is,

(T
♯
𝜇)(E) ∶= 𝜇(T−1(E)) ≡ 𝜇({x ∈ X|T(x) ∈ E}) for each E ∈ (Y). (1)

The range of a map T is denoted ran(T). Throughout this paper, we use ‘measurability’ to refer to
Borel measurability of a mapping between topological spaces or Borel measurability of a subset.

The absolute continuity of one measure 𝜇 ∈ (X) with respect to another measure 𝜈 will be
denoted by 𝜇 ≪ 𝜈.

We denote the s-dimensional Hausdorff measure by s. If E is an s-dimensional measurable
set, thenE denotes the restriction ofs to E.

We denote the uniform distribution on a bounded subset G ⊂ Rd by U[G] and the normal
distribution with mean element m and covariance operator C by N(m,C). For the convenience of
the reader we provide a short overview of Gaussian measures on Hilbert spaces in Appendix A.1.

2 MCMC IN HILBERT SPACES

We consider the case in which X is a separable Hilbert space H and the target or posterior dis-
tribution 𝜈 ∈ (H) is determined by a density with respect to a mean-zero Gaussian reference or
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LIE et al. 5

Algorithm 1. pCN-MH algorithm on H

1: Given: prior 𝜈0 = N(0,C) and target 𝜈 as in (2)
2: Initial: step size s ∈ (0, 1] and state x0 ∈ H

3: for k ∈ N0 do
4: Draw a sample wk of N(0,C) and set yk+1 ∶=

√
1 − s2xk + swk

5: Compute 𝛼 ∶= min{1, exp (Φ(xk) − Φ(yk+1))}
6: Draw a sample u of U[0, 1]
7: if u ⩽ 𝛼 then
8: Set xk+1 = yk+1
9: else

10: Set xk+1 = xk
11: end if
12: end for

prior measure 𝜈0 = N(0,C) with covariance operator C via

d𝜈
d𝜈0

(x) ∝ exp(−Φ(x)), 𝜈0-a.e. x ∈ H, (2)

with measurable Φ ∶ H → R satisfying

∫
H

exp(−Φ(x)) 𝜈0(dx) < ∞.

In this setting we state two popular approaches for generating 𝜈-reversible Markov chains (Xk)k∈N.
The first is the pCN-MH algorithm (Algorithm 1; Cotter et al., 2013; Neal, 1999).

Here a possible new state yk+1 of the Markov chain given the current state Xk = xk is drawn
according to the pCN-MH proposal kernel Q(xk, ⋅) where

Q(x, dy) ∶= N
(√

1 − s2x, s2C
)

,

with s ∈ (0, 1] denoting a step size parameter. The state yk+1 is accepted as the new state Xk+1 only
with probability 𝛼(xk, yk+1), where the acceptance probability function 𝛼 is given by

𝛼(x, y) ∶= min {1, exp(Φ(x) − Φ(y))} ;

otherwise, the Markov chain remains at Xk+1 ∶= xk. Algorithm 1 describes how to realise a
Markov chain with pCN-MH transition kernel.

Next, we consider the ESS algorithm suggested by Murray et al. (2010). In this refer-
ence it is stated in a finite-dimensional setting, but the ESS algorithm can be lifted also to
infinite-dimensional settings. Given Xk = xk we first choose a slice Ht ∶= {x ∈ H ∶ exp(−Φ(x)) ⩾
t} at random by drawing t according to t ∼ U[0, exp(−Φ(xk))]. We then sample a new state Xk+1 = y
where y ∈ Ht according to the restriction of 𝜈0 = N(0,C) to Ht. In order to achieve the second step
in an approximate way, the ESS employs a certain transition mechanism using randomly drawn
ellipses in H and a shrinkage procedure. We state this transition in Algorithm 3, which we call
shrink-ellipse (x, t). Thus, the ESS sampler is a hybrid slice sampler. Its algorithmic realisation is
described in Algorithm 2.
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6 LIE et al.

Algorithm 2. ESS algorithm on H

1: Given: prior 𝜈0 = N(0,C) and target 𝜈 as in (2)
2: Initial: state x0 ∈ H

3: for k ∈ N0 do
4: Draw sample t ∼ U[0, exp(−Φ(xk))]
5: Set xk+1 = shrink-ellipse(xk, t) (see Algorithm 3)
6: end for

Algorithm 3. Elliptical shrinkage (shrink-ellipse(x, t))

1: Input: state x ∈ H and level t ∈ (0,∞)
2: Output: state y in level set Ht
3: Draw a sample w ∼ N(0,C)
4: Draw a sample 𝜃 ∼ U[0, 2𝜋]
5: Set 𝜃min = 𝜃 − 2𝜋 and 𝜃max = 𝜃
6: while exp(−Φ(y)) < t do
7: if 𝜃 < 0 then
8: Set 𝜃min = 𝜃
9: else

10: Set 𝜃max = 𝜃
11: end if
12: Draw a sample 𝜃 ∼ U[𝜃min, 𝜃max]
13: Set y = cos(𝜃)x + sin(𝜃)w
14: end while

It can be shown that the transition kernel of the ESS sampler has 𝜈 as its invariant distribution;
see Murray et al. (2010) and Hasenpflug et al. (2023, theorem 3.2) for further details. For
a more comprehensive introduction to MCMC and the MH and slice sampling approaches,
see Appendix B.

Remark 1. As noted by Murray et al. (2010), both the ESS algorithm and the pCN
algorithm draw proposal states from ellipses that are accepted or rejected. In the pCN
algorithm, the random proposal X ′ satisfies X ′ =

√
1 − s2x + sW , where W ∼ N(0,C).

For a fixed realization w of W and for varying s ∈ (0, 1), the set {
√

1 − s2x + sw|s ∈
(0, 1)} is half of the ellipse passing through x and w centred at the origin, since
√

1 − s2x + sw = cos(𝜃)x + sin(𝜃)w for 𝜃 = arcsin(s). In the elliptical slice sampling
algorithm, a full ellipse instead of a half ellipse is used, thus providing a larger set
of potential proposal states. Moreover, one never remains at the current state. Intu-
itively, using a larger set of potential proposal states might lead to faster convergence,
as measured by the number of Markov chain steps.

3 MCMC ON THE SPHERE
In this section, we construct and analyse MCMC algorithms for approximate sampling from a
probability distribution 𝜇 on a high-dimensional unit sphere Sd−1

⊂ Rd where 𝜇 admits a density
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LIE et al. 7

with respect to an ACG reference or prior measure 𝜇0. The ACG measure is given as follows.
Consider the unit sphere S ∶= {x ∈ H| ‖x‖ = 1} of a separable and possibly infinite-dimensional
Hilbert space H as well as a centred Gaussian measure N(0,C) on H. Furthermore, letΠS ∶ H → S

denote the radial projection to the sphere

ΠS ∶ H → S, ΠS(x) ∶=

{ x
‖x‖
, if x ≠ 0,

z, if x = 0,
(3)

with a fixed but arbitrary z ∈ S. Then we call the probability measure

𝜇0 ∶= ΠS

♯

N(0,C),

the angular central Gaussian measure with parameter C and denote it by 𝜇0 = ACG(C). In the
case where H = Rd with the usual Euclidean norm and C ∈ Rd×d being symmetric and positive
definite, one can show that the density 𝜌 ∶ Sd−1 → [0,∞) of 𝜇0 = ACG(C)with respect to the (d −
1)-dimensional Hausdorff measure on the sphere is

𝜌(x) =
Γ(d∕2)

2𝜋d∕2
√

det C
‖
‖x‖‖

−d
C ;

see Appendix A.2 for details, including the definition (A4) of ‖‖x‖‖C. We shall write bars over
symbols to distinguish elements of S from elements of H. Thus, x ∈ H, while x ∈ S.

Consider a given target or posterior measure 𝜇 ∈ (S) which is absolutely continuous with
respect to an ACG reference or prior measure 𝜇0 ∶= ACG(C), that is,

d𝜇
d𝜇0

(x) ∝ exp(−Φ(x)), x ∈ S, (4)

where Φ ∶ S → R denotes a measurable function that satisfies

∫
S

exp(−Φ(x)) 𝜇0(dx) < ∞.

The ACG prior allows us to define an equivalent sampling problem in the ambient Hilbert space.

Lifting to ambient Hilbert space

Define the measurable function Φ ∶ H → R by

Φ(x) ∶= Φ(ΠS(x)), x ∈ H, (5)

where ΠS ∶ H → S is the radial projection to the sphere from (3), and define a target measure
𝜈 ∈ (H) via

d𝜈
d𝜈0

(x) ∝ exp(−Φ(x)), 𝜈0-a.e. x ∈ H, (6)
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8 LIE et al.

where 𝜈0 = N(0,C). Using 𝜇0 = ACG(C) = ΠS

♯

𝜈0 and using the construction of Φ, we obtain 𝜇 =
ΠS

♯

𝜈. We show this result in a slightly more general form, that is, for an arbitrary measurable
map T ∶ X → Y between two arbitrary topological spaces X and Y. In particular, one can apply
Proposition 1 to more general manifolds in Hilbert spaces, provided that these manifolds can be
expressed as the images of a measurable mapping.

Proposition 1. Let 𝜈0 ∈ (X) and T ∶ X → Y be measurable. Let Φ ∶ Y → R be a
measurable function that satisfies Z = ∫

Y
exp(−Φ(T(x))) 𝜈0(dx) < ∞. Define 𝜈 by

d𝜈
d𝜈0

(x) = 1
Z

exp(−Φ(T(x))), 𝜈0-a.e. x ∈ X.

Then

dT
♯
𝜈

dT
♯
𝜈0
(x) = 1

Z
exp(−Φ(x)), T

♯
𝜈0-a.e. x ∈ Y.

Proof. Let A ∈ (Y). We shall show that

(T
♯
𝜈)(A) = 1

Z ∫A
exp(−Φ(x)) T

♯
𝜈0(dx). (7)

To this end, let X ∼ 𝜈0 and X ∶= T(X), i.e., X ∼ T
♯
𝜈0, be random variables on the

underlying probability space (Ω,,P) that we fixed in Section 1.4. Then

(T
♯
𝜈)(A) = 1

Z ∫T−1(A)
exp(−Φ(T(x))) 𝜈0(dx)

= 1
Z ∫X−1(T−1(A))

exp(−Φ(T(X(𝜔)))) P(d𝜔) since 𝜈0 = P◦X−1

= 1
Z ∫X

−1
(A)

exp(−Φ(X(𝜔))) P(d𝜔) since X ∶= T(X)

= 1
Z ∫A

exp(−Φ(x)) T
♯
𝜈0(dx) since X ∼ T

♯
𝜈0,

which establishes (7) and completes the proof. ▪

The idea of sampling the push-forward 𝜇 = T
♯
𝜈 of a measure 𝜈 defined on the ambient Hilbert

space H is crucial for the construction of the following algorithms. In particular, we shall exploit
suitable transition kernels for sampling from 𝜈 ∈ (H) in order to construct Markov chains on S

with invariant distribution T
♯
𝜈, where T = ΠS. To this end, we use the framework of push-forward

transition kernels, which we describe in Section 3.3. Before describing this framework, we first
discuss two simpler approaches for generating 𝜇-invariant Markov chains on the sphere S based
on transition kernels K in the ambient space H, and explain why they are unsuitable.

3.1 Naïve approaches and their shortcomings

Given a Markov chain (Xn)n∈N with 𝜈-reversible transition kernel K, one can also consider
(T(Xn))n∈N as a sequence of random variables on Y. In our prototypical setting where Y = S, the
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LIE et al. 9

stochastic process (T(Xn))n∈N is simply the projection of the Markov chain (Xn)n∈N onto S via
T = ΠS. Hence, one can think of this as a simple projection approach. If the law P◦(Xn)−1 of Xn
converges to 𝜈 in the total variation norm as n → ∞, then the law P◦(T(Xn))−1 of T(Xn) will also
converge to T

♯
𝜈 in the total variation norm, since

‖
‖P◦(T(Xn))−1 − T

♯
𝜈
‖
‖TV ⩽ ‖‖P◦(Xn)−1 − 𝜈‖‖TV ,

due to

‖
‖T

♯
𝜌 − T

♯
𝜈
‖
‖TV = sup

A∈(S)
|𝜌(T−1(A)) − 𝜈(T−1(A))| = sup

A∈𝜎(T)
|𝜌(A) − 𝜈(A)| ⩽ ‖𝜌 − 𝜈‖TV

with P◦(T(Xn))−1 = T
♯
𝜌 and P◦(Xn)−1 = 𝜌, where 𝜎(T) denotes the Borel 𝜎-algebra generated

by T. However, the sequence (T(Xn))n∈N fails, in general, to be a Markov chain (Glover &
Mitro, 1990). In particular, we provide an explicit counterexample in the case of T = ΠS in
Appendix D. More generally, Rosenblatt (1966, theorem 3) considers general Markov processes
(Xi)i∈I , which may be discrete or continuous in time or space, and gives sufficient and necessary
conditions on a measurable mapping T such that (T(Xi))i∈I is again a Markov process.

Another related approach can be constructed as follows. One could simply define the transi-
tion kernel

K(x,A) ∶= K(x,T−1(A)) ∀x ∈ Y,A ∈ (Y). (8)

We shall refer to the transition kernel K in (8) as the “naïve reprojection kernel.” We call K “naïve”
because it does not perform averaging with respect to the regular conditional distribution 𝜈|T(x, ⋅)
of X ∼ 𝜈 given T(X) = x. In (11) below, we describe a kernel—the so-called ‘push-forward transi-
tion kernel’—that does perform this averaging. In the setting where the topological spaces X and
Y satisfy Y ⊂ X, one realizes y with respect to K(x, ⋅) by first choosing y according to K(x, ⋅) and
then setting y ∶= T(y), as illustrated in Figure 1. That is, one first transitions from x ∈ Y to a state
y in the ambient space X, and then “reprojects” this state y into y ∈ Y using the mapping T.

F I G U R E 1 Illustration of the steps for drawing states using the naïve reprojection kernel K in (8) for
X = H, Y = S, and T = ΠS in (3). Starting from x, an intermediate state y ∈ H is drawn from the 𝜈-reversible
transition kernel K(x, ⋅) on H. The next state drawn from the naïve reprojection kernel K(x, ⋅) is then
y ∶= T(y) = ΠS(y). Solid arrows indicate deterministic maps, whereas dashed arrows indicate randomized maps,
that is, draws from transition kernels.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12653 by T

est, W
iley O

nline L
ibrary on [27/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 LIE et al.

Unlike the projection approach described earlier, this method yields a Markov chain. How-
ever, as numerical experiments show, the naïve reprojection kernel K does not have 𝜇 as its
stationary distribution, even if K is 𝜈-invariant or 𝜈-reversible. To see why, recall that 𝜇 = T

♯
𝜈.

Hence, K is 𝜇-invariant if and only if

∫
Y

K(x,A) 𝜇(dx) =
∫

Y

K(x,T−1(A)) 𝜇(dx) =
∫

X

K(T(x),T−1(A)) 𝜈(dx) = 𝜈(T−1(A)),

for all A ∈ (Y). If K is 𝜈-invariant, then by definition 𝜈(T−1(A)) = ∫
X

K(x,T−1(A)) 𝜈(dx). This
yields the following necessary and sufficient condition for the 𝜇-invariance of K:

∫
X

K(x,T−1(A)) 𝜈(dx) =
∫

X

K(T(x),T−1(A)) 𝜈(dx), ∀A ∈ (Y).

Based upon numerical experiments, we argue that this condition is not necessarily satisfied in
the setting where X = H, Y = S, and T = ΠS. Let H = R3, 𝜈 = N(0,C) with covariance matrix
C ∈ R3×3, and consider the 𝜈-reversible pCN proposal kernel

K(x) = N
(√

1 − s2x, s2C
)

, with s = 0.7 and C =
⎛
⎜
⎜
⎜
⎝

1.25 0.33 −1.62
0.33 0.42 −0.09
−1.62 −0.09 2.85

⎞
⎟
⎟
⎟
⎠

.

We now estimate and compare the probability density function of the marginals of 𝜇 = ΠS

♯

𝜈 and
𝜇K by kernel density estimation based on 106 independent samples of 𝜇 and 𝜇K, respectively.
Each sample was generated according to the following procedure: (1) Draw a sample x from 𝜈 and
set x ∶= ΠS(x), so that x is a sample draw from 𝜇; (2) draw another sample w from 𝜈 and set y ∶=
√

1 − s2x + sw, so that y = ΠS(y) is a sample draw from 𝜇K. The results are displayed in Figure 2.
The important observation is that the marginals of 𝜇 (dashed yellow line) and 𝜇K (dotted blue
line) differ. Hence, K is not 𝜇-invariant in this case. Note that the marginals of 𝜇 (dashed yellow
line) coincide with the marginals of 𝜇(ΠS

♯

K) (solid red line). Here, ΠS

♯

K is the reprojection kernel
T
♯
K that performs averaging with respect to the regular conditional distribution of X ∼ 𝜈 given

T(X) = x, for T = ΠS. In Section 3.3 below, we define T
♯
K in (11) for general measurable mappings

T between Polish spaces and show, among other things, that it is 𝜇-reversible for 𝜇 = T
♯
𝜈 and

𝜈-reversible K.
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F I G U R E 2 Comparison of marginals of 𝜇 = ΠS

♯

𝜈 (target), 𝜇K (naïve reprojection) with K as in (8) with
preconditioned Crank–Nicolson proposal kernel K and T = ΠS, and 𝜇(ΠS

♯

K) (reprojection) with ΠS

♯

K as in (11)
for the same K and T.
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LIE et al. 11

3.2 The reprojection method

We present now a simple method for defining a𝜇-reversible Markov chain (Xn)n∈N on S, by using a
𝜈-reversible transition kernel K on H. The method employs the concept of push-forward transition
kernels which we explain for the general setting of Polish spaces X,Y connected via a measurable
mapping T ∶ X → Y. For more details of this approach we refer to (Rudolf & Sprungk, 2022). For
the particular algorithms that we consider later, we focus on the specific case of Y = S, X = H,
and T the radial projection map T = ΠS given in (3).

Given a 𝜈-invariant transition kernel K on X and a measurable map T ∶ X → Y, we define the
push-forward transition kernel T

♯
K on Y as follows:

T
♯
K(x,A) ∶= E

[
K(X ,T−1(A))|T(X) = x

]
, X ∼ 𝜈, (9)

where x ∈ Y and A ∈ (Y). If T is bijective, then

T
♯
K(x,A) = K(T−1(x),T−1(A)).

In the following, we also use the shorter notation K = T
♯
K. Below, we summarise some impor-

tant properties of push-forward transition kernels that are inherited from the original transition
kernel.

Lemma 1 (Rudolf & Sprungk, 2022). Let X and Y be Polish spaces, T ∶ X → Y be a
measurable mapping, K be a 𝜈-invariant transition kernel on X, and 𝜇 ∶= T

♯
𝜈.

(a) If K is reversible with respect to 𝜈, then T
♯
K is reversible with respect to 𝜇.

(b) If K has an L2
𝜈
-spectral gap, then T

♯
K has an L2

𝜇
-spectral gap and

gap
𝜇
(T

♯
K) ⩾ gap

𝜈
(K).

(c) If K is an MH kernel with proposal kernel Q ∶ X × (X) → [0, 1] and acceptance proba-
bility 𝛼 ∶ X ×X → [0, 1] such that

𝛼(x, y) = 𝛼(T(x),T(y)) ∀x, y ∈ X,

for a measurable 𝛼 ∶ Y ×Y → [0, 1], then T
♯
K is an MH kernel with acceptance proba-

bility 𝛼 and proposal kernel Q given by

Q(x,A) ∶=
∫

X

Q(x,T−1(A)) 𝜈|T(x, dx), ∀x ∈ Y, A ∈ (Y),

where 𝜈|T(x, ⋅) denotes the regular conditional distribution of X ∼ 𝜈 given T(X) = x.

See Appendix B.1 for the definition of the spectral gap of a transition kernel K.
The last item in the above lemma also shows that one can simulate push-forward transition

kernels by exploiting the regular conditional distribution 𝜈|T ∶ Y × (X) → [0, 1] of X ∼ 𝜈 given
T(X) = x. We recall that 𝜈|T possesses the properties of a transition kernel and satisfies

𝜈|T(T(X),A) = P

(

X ∈ A ||
|

T(X)
)

P-almost surely, (10)
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12 LIE et al.

F I G U R E 3 Illustration of the steps in the reprojection method from Section 3.3. The reprojection method
defines a 𝜇-reversible transition kernel on S in terms of a 𝜈-reversible transition kernel K on the ambient space
H, where S ∶= T(H), 𝜇 ∶= T

♯
𝜈, 𝜈|T(x, ⋅) is the regular conditional distribution of X ∼ 𝜈 given T(X) = x, and

T = ΠS. Solid arrows indicate deterministic maps, whereas dashed arrows indicate randomized maps, that
is, draws from transition kernels.

for any A ∈ (X). Given this regular conditional distribution, the disintegration theorem yields
the representation

T
♯
K(x,A) =

∫
X

K(x,T−1(A)) 𝜈|T(x, dx), (11)

for general transition kernels K. Thus, the push-forward transition kernel T
♯
K can be realised by

the following mechanism.

Transition Mechanism 1. Given the current state x ∈ Y one obtains the next state
y ∈ Y as follows:

(1) Draw X ∼ 𝜈|T(x, ⋅) and call the realisation x ∈ X;
(2) Draw Y ∼ K(x, ⋅), call the realisation y ∈ X and return y ∶= T(y) ∈ Y.

We now consider the specific case of X = H being a Hilbert space, Y = S its unit sphere and
T = ΠS being the radial projection defined in (3). In order to obtain a𝜇-reversible Markov chain on
S, we can consider the push-forward transition kernels K = T

♯
K of 𝜈-reversible transition kernels

K on the ambient Hilbert space H—such as the pCN-MH kernel or the ESS kernel—provided
that we can also simulate the regular conditional distribution 𝜈|T for the lifted target 𝜈 in (6).
The resulting algorithm is illustrated in Figure 3. In particular, by going randomly from x to x
in the ambient space, performing a transition from x to y by using K, and then by “reprojecting”
deterministically from y to y = ΠS(y), we end up on the sphere S. Since this is performed at each
iteration of the Markov chain, we name this the reprojection method.

Next, we derive the regular conditional distribution 𝜈
|ΠS for Gaussian measures 𝜈 = N(0,C)

on H = Rd, and state the resulting reprojected pCN-MH algorithm as well as the reprojected ESS
algorithm.

Simulating the conditional distribution 𝝂|𝚷S

We first prove a proposition about the regular conditional distributions 𝜈|T in the more general
setting of Polish spaces X,Y. We then apply this proposition to derive an explicit description for
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LIE et al. 13

𝜈
|ΠS . One can modify this procedure for manifolds in Hilbert spaces that are more general than the

unit sphere S, for example, manifolds that can be described by a measurable mapping T ∶ H → H,
by replacing ΠS with T.

Proposition 2. Let X and Y be Polish spaces equipped with a measurable
mapping T ∶ X → Y and 𝜈0 ∈ (X). Let Φ ∶ Y → R be measurable with Z ∶=
∫

Y
exp(−Φ(T(x))) 𝜈0(dx) <∞, defineΦ ∶ X → R byΦ(x) ∶= Φ(T(x)) for x ∈ X, and let

𝜈 ∈ (X) be given by

d𝜈
d𝜈0

(x) = 1
Z

exp(−Φ(x)), 𝜈0-a.e. x ∈ X.

Furthermore, let 𝜈0|T be the regular conditional distribution of X0 ∼ 𝜈0 given T(X0), and
let 𝜈|T be the regular conditional distribution of X ∼ 𝜈 given T(X). Then

𝜈|T(T(x), ⋅) = 𝜈0|T(T(x), ⋅),

for 𝜈0-a.e. x ∈ X.

The hypotheses of the proposition differ from the hypotheses of Proposition 1 only in the
additional assumption that X and Y are Polish spaces. This assumption ensures that we may
apply the disintegration theorem to obtain regular conditional distributions. We can weaken the
assumption by requiring that X and Y be merely Radon spaces.

Proof of Proposition 2. The regular conditional distribution 𝜈0|T ∶ Y × (X)→ [0, 1]
of X0 given T(X0) is defined as a Markov kernel satisfying for every A ∈ (X) and
B ∈ (Y),

P(X0 ∈ A, T(X0) ∈ B) =
∫B
𝜈0|T(y,A) T

♯
𝜈0(dy) =

∫T−1(B)
𝜈0|T(T(x),A) 𝜈0(dx).

Moreover, given the regular conditional distribution 𝜈0|T we can express the condi-
tional expectation of g(X0) given T(X0) for any measurable g ∶ X → R as

E
[
g(X0)|T(X0)

]
=
∫

X

g(x) 𝜈0|T(T(X0), dx) P-almost surely. (12)

We ask now for the regular conditional distribution 𝜈|T of X ∼ 𝜈 given T(X). Analo-
gously, this is a Markov kernel 𝜈|T ∶ Y × (X) → [0, 1] satisfying

P(X ∈ A, T(X) ∈ B) =
∫B
𝜈|T(y,A) T

♯
𝜈(dy) =

∫T−1(B)
𝜈|T(T(x),A) 𝜈(dx),

for every A ∈ (X) and B ∈ (Y). Since P(X ∈ A, T(X) ∈ B) = 𝜈(A ∩ T−1(B)), the
statement follows if

𝜈(A ∩ T−1(B)) =
∫T−1(B)

𝜈0|T(T(x),A) 𝜈(dx) ∀A ∈ (X) ∀B ∈ (Y), (13)

because 𝜈0|T is then a valid regular conditional distribution of X ∼ 𝜈 given T(X). For
A ∈ (X) and B ∈ (Y),
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14 LIE et al.

𝜈(A ∩ T−1(B)) =
∫

X

1A(x) 1B(T(x))
1
Z

e−Φ(x) 𝜈0(dx) = E

[ 1
Z

e−Φ(X0) 1A(X0) 1B(T(X0))
]

,

where X0 ∼ 𝜈0. Using the law of total expectation and the hypothesis that Φ(x) =
Φ(T(x)) for every x ∈ X, we obtain

𝜈(A ∩ T−1(B)) = E

[

E

[ 1
Z

e−Φ(X0) 1A(X0) 1B(T(X0))
|
|
|

T(X0)
]]

= E

[ 1
Z

e−Φ(X0) 1B(T(X0)) E [1A(X0)|T(X0)]
]

.

Applying now (12) to g(x) = 1A(x) yields E [1A(X0)|T(X0)] = 𝜈0|T(T(X0),A) and, thus,

𝜈(A ∩ T−1(B)) = E

[ 1
Z

e−Φ(X0) 1B(T(X0)) 𝜈0|T(T(X0),A)
]

=
∫T−1(B)

1
Z

e−Φ(x) 𝜈0|T(T(x),A) 𝜈0(dx)

=
∫T−1(B)

𝜈0|T(T(X0),A) 𝜈(dx),

which shows (13). ▪

We now turn to the setting of a finite dimensional sphere, where X = Rd, Y = Sd−1, and
T = ΠS. In order to implement the reprojection method, it suffices by Proposition 2 to sim-
ulate the regular conditional distribution of X0 ∼ N(0,C) given ΠS(X0) = x. In the following
result Gam(a, b) denotes the Gamma distribution with shape parameter a > 0 and inverse scale
parameter b > 0.

Proposition 3. Let 𝜈0 = N(0,C) be given on Rd and let 𝜈0|ΠS(x, ⋅) denote the condi-
tional distribution of X0 ∼ 𝜈0 given ΠS(X0) = x. Then, for a nonnegative real-valued
random variable R satisfying R2 ∼ Gam

(
d
2
,

1
2

x⊤C−1x
)

,

Rx ∼ 𝜈0|ΠS(x, ⋅).

Proof. We can write X0 ∼ 𝜈 = N(0,C) as X0 = RX0, X0 ∶= ΠS(X0), R ∶= ‖X0‖. Thus,
the condition of ΠS(X0) = x yields the following conditional density of R:

fR|ΠS(X0)=x(r) ∝ rd−1 exp
(

−1
2
(x⊤C−1x)r2

)

= rd−1
(

exp
(

−1
2

x⊤C−1x
))r2

.

By the change of variables r → r2 =∶ r2 we obtain the following probability density
for R2 given ΠS(X0) = x:

fR2|ΠS(X0)=x(r2) ∝
r(d−1)∕2

2

2r1∕2
2

(

e−
1
2

x⊤C−1x
)r2

∝ rd∕2−1
2 e−

(
1
2

x⊤C−1x
)

r2
.

Thus, R2 conditioned on ΠS(X0) = x is distributed according to Gam( d
2
,

1
2

x⊤C−1x), as
desired.

▪
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LIE et al. 15

Algorithm 4. Reprojected pCN-MH algorithm on Sd−1

1: Given: ACG prior 𝜇0 = ACG(C) and target 𝜇 as in (4)
2: Initial: step size s ∈ (0, 1] and state x̄0 ∈ Sd−1

3: for k ∈ N0 do
4: Draw a sample r2

k of Gam
(

d∕2, 1
2

x̄⊤k C−1x̄k

)

and set xk = rkx̄k

5: Draw a sample wk of N(0,C) and set yk+1 ∶=
√

1 − s2xk + swk
6: Set ȳk+1 ∶= yk+1∕ ‖yk+1‖

7: Compute a ∶= min{1, exp
(
Φ̄(x̄k) − Φ̄(ȳk+1)

)
}

8: Draw a sample u of U[0, 1]
9: if u ⩽ a then

10: Set x̄k+1 = ȳk+1
11: else
12: Set x̄k+1 = x̄k
13: end if
14: end for

Algorithm 5. Reprojected ESS algorithm on Sd−1

1: Given: ACG prior 𝜇0 = ACG(C) and target 𝜇 as in (4)
2: Initial: state x̄0 ∈ Sd−1

3: for k ∈ N0 do
4: Draw a sample t ∼ U[0, exp(−Φ̄(x̄k))]
5: Draw a sample r2

k of Gam
(

d∕2, 1
2

x̄⊤k C−1x̄k

)

and set xk = rkx̄k

6: Set xk+1 = shrink-ellipse(xk, t) (see Algorithm 3)
7: Set x̄k+1 = xk+1∕ ‖xk+1‖

8: end for

Resulting algorithms

We now provide two explicit algorithms for approximate sampling of target measures 𝜇 on Sd−1 as
given in (4). Algorithms 4 and 5 result from applying the push-forward transition kernel approach
to the pCN-MH algorithm and the ESS algorithm on H, respectively. The pCN-MH algorithm
and the ESS algorithm on H were stated in Algorithms 1 and 2. According to Lemma 1(c),
Algorithm 4 yields an MH algorithm on Sd−1. Its acceptance probability is simply 𝛼(x, y) =
min{1, exp

(

Φ(y) − Φ(x)
)

}, for x, y ∈ Sd−1, and its proposal kernel Q ∶ Sd−1 × (Sd−1) → [0, 1]
admits a proposal density q ∶ Sd−1 × Sd−1 → (0,∞)with respect to the Hausdorff measure on Sd−1

given by

q(x, y) =
∫

∞

0 ∫

∞

0
q(rx, r′y) fx(r) (r′)d−1 dr dr′ > 0, x, y ∈ S

d−1
, (14)

where q denotes the proposal density of the pCN proposal kernel Q(x, ⋅) = N(
√

1 − s2x, s2C),
x ∈ Rd, and fx(r) denotes the conditional density of R = ‖X‖ for X ∼ N(0,C) given ΠS(X) = x.
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16 LIE et al.

According to the proof of Proposition 3, the density fx(r) takes the form

fx(r) ∶=
1
cx

rd−1 exp
(

− r2

2
x⊤C−1x

)

, cx ∶=
∫

∞

0
rd−1 exp

(

− r2

2
x⊤C−1x

)

dr. (15)

Remark 2. Due to the generality of the pushforward Markov kernel approach, it is also
possible to combine the reprojection methodology that we proposed with other com-
mon MH algorithms, such as the dimension-independent Hamiltonian Monte Carlo
(HMC) algorithm of Beskos et al. (2011). However, an extensive investigation of a
reprojected HMC algorithm that shows advantages and disadvantages, for example, in
comparison to the work of Lan et al. (2014), is beyond the scope of this paper.

3.3 Uniform and geometric ergodicity

We investigate the exponential convergence behaviour of the transition kernels that correspond
to the Markov chains that are realised either by Algorithm 4 or 5. Since the underlying state
space Sd−1 is compact, we aim for uniform ergodicity. The associated transition kernel K ∶ Sd−1 ×
(Sd−1)→ [0, 1] is said to be uniformly ergodic, if there are 𝜅 ∈ [0, 1) and c < ∞ such that

‖
‖
‖

K
n
(x) − 𝜇‖‖

‖TV
⩽ c 𝜅n ∀x ∈ S

d−1
. (16)

It is well known (Meyn & Tweedie, 2009, theorem 16.0.2) that uniform ergodicity of a Markov
chain is equivalent to the smallness of the whole state space. A set B ∈ (Sd−1) is called small
with respect to a transition kernel K if there exists some m ∈ N and a nonzero measure 𝜙 on
(Sd−1

,(Sd−1)) such that

K
m
(x,A) ⩾ 𝜙(A) ∀A ∈ (Sd−1), x ∈ B. (17)

In particular, if (17) holds for B = Sd−1, then Meyn and Tweedie (2009, theorem 16.2.4) yield that

‖
‖
‖

K
n
(x) − 𝜇‖‖

‖TV
⩽ (1 − 𝜙(Sd−1))n∕m−1

. (18)

By exploiting the particular structure (11) of push-forward transition kernels, we obtain the
following result.

Theorem 1. Let Φ ∶ Sd−1 → R be uniformly bounded. Then the transition kernels
corresponding to the Markov chains realised by Algorithms 4 and 5 are uniformly
ergodic.

Proof. The idea of the proof is to show that, in both cases, the state space is small.
We first consider the reprojected pCN-MH kernel K. The boundedness of Φ, that

is, c ⩽ Φ(x) ⩽ c, yields the following lower bound on the acceptance probability:

𝛼(x, y) = min
{

1, exp
(

Φ(y) − Φ(x)
)}

⩾ exp(c − c) > 0.

Hence, by the corresponding MH form of the reprojected pCN-MH kernel K stated in
Lemma 1, for any A ∈ (Sd−1) and any x ∈ Sd−1,

K(x,A) ⩾
∫A
𝛼(x, y) Q(x, dy) ⩾ exp(c − c) Q(x,A).

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12653 by T

est, W
iley O

nline L
ibrary on [27/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LIE et al. 17

Recall that Q possesses the density q given in (14). Note that x → x⊤C−1x is bounded
on Sd−1, such that there exists for every r > 0 a lower bound f (r) > 0 satisfying fx(r) ⩾
f (r) > 0 for every x ∈ Sd−1. Moreover, the density q(⋅, y) of the pCN proposal kernel

Q(x, ⋅) = N(
√

1 − s2x, s2C) is continuous. Therefore, q(x, y) is uniformly bounded away
from zero for any x, y ∈ Rd with ‖x‖ , ‖y‖ ⩽ 1. Hence, there exists some 𝜖 > 0 such
that, for every x, y ∈ Sd−1, q(x, y) in (14) satisfies q(x, y) ⩾ 𝜖. This implies that Q(x,A) ⩾
𝜖Sd−1(A), for the Hausdorff measure Sd−1 on Sd−1. Thus, Sd−1 is small with respect
to K with 𝜙(A) ∶= 𝜖 exp(c − c)Sd−1(A).

Next, we consider the reprojected ESS kernel. Since Φ on H = Rd is constructed
from Φ on S by (5), the boundedness of Φ implies the boundedness of Φ. Hence, any
compact set B ⊂ Rd is small with respect to the ESS transition kernel K. The measure
with respect to which the smallness property holds is 𝜙 = 𝜖B𝜆B, where 𝜖B > 0 denotes
a constant and 𝜆B is the Lebesgue measure restricted to a compact set B with positive
d-dimensional Lebesgue measure; see Natarovskii et al. (2021a, lemma 3.4). We now
use this fact in order to show the smallness of Sd−1 with respect to the reprojected
ESS transition kernel K for the measure 𝜙 = 𝜖Sd−1 for appropriately chosen 𝜖 > 0,
see below. To this end, we apply the representation (11) with X = Rd, Y = Sd−1 and
T = ΠS:

K(x,A) =
∫

∞

0
K(rx,T−1(A))fx(r) dr,

with fx as in (15). Again, since x → x⊤C−1x is bounded on Sd−1, there exists for
every r > 0 a lower bound f (r) > 0 such that, for every x ∈ Sd−1, fx(r) ⩾ f (r) >
0. Now fix B ∶= B1(0) = {x ∈ Rd| ‖x‖ ⩽ 1} and note that B is small with respect
to K. Thus

K(x,A) ⩾
∫

1

0
K(rx,T−1(A))f (r) dr ⩾ 𝜖B𝜆B(T−1(A))

∫

1

0
f (r) dr = 𝜖Sd−1(A)

where 𝜖 ∶= 𝜖B∫
1

0 f (r) dr ∫ 1
0 ud−1 du, since 𝜆B(T−1(A)) = ∫A ∫

1
0 ud−1du Sd−1(dx). ▪

The boundedness assumption onΦ in Theorem 1 is rather mild. It is satisfied ifΦ ∶ Sd−1 → R

is continuous. For example, in the Bayesian level set inversion and Bayesian density estimation
problems considered in Section 4, the corresponding Φ is bounded.

Theorem 1 yields uniform ergodicity in finite dimension. In the last paragraph of the proof
of Theorem 1, we considered the measure 𝜙 ∶= 𝜖 exp(c − c)Sd−1 for the reprojected pCN-MH
kernel K and the measure 𝜙 ∶= 𝜖Sd−1 for the reprojected ESS kernel. Supposing that the pref-
actors 𝜖 and 𝜖 exp(c − c) do not grow in d and substituting these choices of 𝜙 in (18) we observe
that the corresponding 𝜅 = (1 − 𝜙(Sd−1))1∕m in (16), with c = (1 − 𝜙(Sd−1))−1, converges expo-
nentially quickly to 1 as d →∞. This is because the (d − 1)-dimensional Hausdorff measure
of Sd−1 is given by 2𝜋d∕2

Γ(d∕2)
, where Γ(⋅) is the Gamma function, and because of the asymptotic

behavior of Γ(⋅).
In the subsequent section, we present a dimension-independent convergence behavior, but in

the context of geometric ergodicity as in (B5), and not in the context of uniform ergodicity as in
(16).
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18 LIE et al.

Dimension-independent geometric ergodicity

In order to study the geometric ergodicity of Markov chains generated by the reprojected
pCN-MH and reprojected ESS algorithms, we can exploit Lemma 1. This lemma states that
the spectral gaps of the reprojected transition kernels K of Algorithms 4 and 5 are at least
as large as the spectral gaps of the transition kernels K of Algorithms 1 and 2, respectively.
In order to describe a dimension-independent spectral gap, we introduce the following nota-
tion: Given 𝜇0 = ACG(C) with nondegenerate, trace-class covariance operator C ∶ H → H on an
infinite-dimensional separable Hilbert space H, let {ej|j ∈ N} be a complete orthonormal system
in H consisting of the eigenvectors of C. We now construct finite-dimensional approximations to
the infinite-dimensional setting as follows: For d ∈ N, let 𝜇(d)0 = ACG(Cd) denote the ACG mea-
sure on Sd−1 resulting from the marginal of N(0,C) on span {e1,…, ed} and consider the target
measure 𝜇(d) on Sd−1 given by

d𝜇(d)

d𝜇(d)0

(x) ∝ exp(−Φ(x)), x ∈ S
d−1
. (19)

In order to apply Φ to x ∈ Sd−1, we view Sd−1 as the “equatorial” subsphere {x1e1 +…+ xded ∈
H ∶ x = (x1,…, xd) ∈ Sd−1} of S ⊂ H. Let

d𝜈(d)

d𝜈(d)0

(x) ∝ exp(−Φ(x)), x ∈ R
d
, (20)

where 𝜈(d)0 = N(0,Cd) andΦ(x) ∶= Φ(ΠS(x)) for x ∈ H, as in (5). In order to applyΦ to x ∈ Rd, we
view Rd as the subspace {x1e1 +…+ xded ∈ H ∶ x = (x1,…, xd) ∈ Rd} of H.

For a reminder of the definition of gap
𝜇
(K) for a given measure 𝜇 and transition kernel K we

refer to (B4). By Lemma 1 we obtain the following result.

Proposition 4. Let 𝜇(d) and 𝜈(d) be as in (19) and (20), respectively. Let K(d) denote the
pCN-MH transition kernel targeting 𝜈(d) using a step size s ∈ (0, 1] in the proposal. If
there exists a 𝛽 > 0 such that

inf
d∈N

gap
𝜈
(d)

(
K(d)) ⩾ 𝛽, (21)

then the reprojected pCN-MH transition kernel K
(d)
∶= (ΠS)

♯
K(d) targeting 𝜇(d) on Sd−1

satisfies

inf
d∈N

gap
𝜇
(d)

(

K
(d))

⩾ 𝛽. (22)

The same statement holds for the reprojected ESS transition kernel K
(d)
∶= (ΠS)

♯
K(d).

Dimension independence of the spectral gap of the ESS transition kernel has been demon-
strated in the literature by numerical experiments (Natarovskii et al., 2021a). However, to the
best of our knowledge, no theoretical proof is available. Therefore, we focus on the pCN-MH
algorithm, for which (21) was shown by Hairer et al. (2014) under certain assumptions onΦ. For
convenience, we summarise their result:
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LIE et al. 19

Theorem 2. Let K(d) denote the pCN-MH transition kernel targeting 𝜈(d) using the step
size s ∈ (0, 1] in the proposal. Suppose the following conditions hold:

(a) There exist some R > 0 and 𝛼 ∈ R such that, for all x ∈ H with ‖x‖ > R,

Φ(y) < Φ(x) − _𝛼 for all y ∈ H with ‖‖
‖

y −
√

1 − s2x‖‖
‖
⩽ 1

2

(

1 −
√

1 − s2
)

||x||.

(b) The function e−Φ is integrable with respect to 𝜈0 = N(0,C).
(c) For every 𝛾 > 0 there exists some C𝛾 <∞ such that

|Φ(x) − Φ(y)| ⩽ C𝛾e𝛾r for all x, y ∈ H with ||x||, ||y|| ⩽ r.

Then there exists a 𝛽 > 0 such that (21) holds.
The conditions of Theorem 2 are satisfied for constant Φ. Thus, the pCN-MH transition ker-

nel exhibits a dimension-independent spectral gap when targeting the prior 𝜈 = 𝜈0 = N(0,C). By
means of results by Vollmer (2015) and Rudolf and Sprungk (2018), this can then be lifted to
bounded perturbations of the prior measure, such as 𝜇 as in (5) for bounded Φ. This yields our
final result.

Theorem 3. Let Φ ∶ Sd−1 → R be uniformly bounded. Then the transition kernel cor-
responding to the Markov chain realized by Algorithm 4 has a dimension-independent
spectral gap in the sense of (22).

Proof. Let K(d) denote the pCN-MH transition kernel in Rd for an arbitrary step size
s ∈ (0, 1] and dimension d ∈ N with target 𝜈(d), and let K(d)

0 denote the pCN-MH tran-
sition kernel that targets the prior 𝜈(d)0 . Note that K(d)

0 coincides with the corresponding
proposal kernel. By Theorem 2 we know that there exists a 𝛽 > 0 such that

inf
d∈N

gap
𝜈
(d)
0

(

K(d)
0

)

⩾ 𝛽.

By Rudolf and Sprungk (2018, theorem 11) the transition operator K(d) is positive, and
hence,

gap
𝜈
(d)
0

(

K(d)
0

)

= 1 − Λ
𝜈
(d)
0

(

K(d)
0

)

, gap
𝜈
(d)

(
K(d)) = 1 − Λ

𝜈
(d)
(

K(d))
,

where Λ𝜇(K) denotes the supremum of the spectrum of the restriction of a
𝜇-invariant transition operator K to L2

0,𝜇, where L2
0,𝜇 ∶= {f ∈ L2(𝜇)| ∫ f (u)𝜇(du) =

0}, and L2(𝜇) ∶= {f ∶ H → R| ‖f‖L2
𝜇

∶= ∫ |f |2𝜇(du) < ∞}. In the reversible case,

Λ𝜇(K) = supf∈L2
0,𝜇
⟨Kf , f ⟩L2

𝜇

∕ ‖f‖L2
𝜇

. Now, if Φ is bounded, then so is Φ. A comparison
result (Vollmer, 2015, theorem 3.3) states that

1 − Λ
𝜈
(d)
(

K(d)) ⩾ exp
(

4 inf Φ − 4 supΦ
)(

1 − Λ
𝜈
(d)
0

(

K(d)
0

))

.

Applying this comparison result yields

inf
d∈N

gap
𝜈
(d)

(
K(d)) ⩾ exp

(

4 inf Φ − 4 supΦ
)

𝛽 > 0,

which by Proposition 4 yields the statement. ▪
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20 LIE et al.

4 NUMERICAL ILLUSTRATIONS

We now demonstrate the dimension-independent performance of the reprojected pCN-MH
algorithm and the reprojected ESS algorithm on two applications. We state these algorithms
in Algorithm 4 and Algorithm 5, respectively. Section 4.1, rooted in inverse problems, treats
an application to Bayesian binary classification or level set inversion. Section 4.4 has a more
statistical flavour and considers an application to Bayesian density estimation. Readers whose
main interest is in the second application may proceed directly to Section 4.4 but may wish to
recall the definition (30) of the root mean square jump distance with respect to the Rieman-
nian metric on the sphere. We will use these applications to illustrate the dimension-dependent
performance of the geodesic random walk-MH algorithm of Mangoubi and Smith (2018) and
the MH algorithm of Zappa et al. (2018), which we state in Algorithm 6 and Algorithm 7,
respectively.

4.1 Bayesian binary level set inversion

For the convenience of the reader, we give a self-contained description of (Bayesian) binary level
set inversion, following the presentation of Iglesias et al. (2016). Readers who are interested in
technical details concerning the random fields perspective of level set inversion may consult
appendix 2 of that paper. For simplicity, we focus on the single-phase Darcy flow model or ground-
water flow problem on a bounded domain D ⊂ Rk, k = 1, 2, 3, with closure D and boundary 𝜕D.
This problem is described by the elliptic partial differential equation (PDE)

−∇ ⋅ (eu∇p) = f in D, (23a)

p = 𝜅 on 𝜕D, (23b)

where p denotes a fluid pressure field, f describes sources and sinks, and u is the log-permeability
parameter. Let  ∶= L∞(D) and  ∶= {p̃ ∈ H1(D)|p̃ = 𝜅 on 𝜕D}, where H1(D) is the Sobolev
space of functions in L2(D) whose first-order weak derivatives have finite L2(D) norm. If u ∈  ,
then eu ∈ L∞(D), and given a suitable boundary condition 𝜅 and source term f ∈ L2(D), a unique
weak solution p ∈  of (23) exists. Denote the solution map that maps the log-permeability u
to the corresponding solution p by Υ ∶  →  . Then Υ is locally Lipschitz continuous, see for
example, Bonito et al. (2017).

We assume now that the domain D is divided into two disjoint regions D0,D1 ⊂ D, that is, D =
D0 ∪ D1. The subdomains Di describe the location of different materials, for example, background
and abnormal material, with different constant log-permeabilities u0,u1 ∈ R. In particular, in
binary level set inversion we assume that u takes the form

u(t) = u01D0(t) + u11D1(t), t ∈ D, (24)

where 1Di denotes the indicator function of Di and where the values u0,u1 are known a priori.
The goal is then to infer the location of D1 and, hence, D0 = D ⧵ D1 based on noisy observations
of p, that is,

y = O◦Υ(u) + 𝜂, (25)
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LIE et al. 21

where O ∶  → RJ denotes for some J ∈ N a bounded linear observation operator and 𝜂 describes
observational noise. We assume that 𝜂 ∼ N(0,Σ) with known covariance Σ ∈ RJ×J .

In the level set approach we then introduce a so-called level set function g ∈ S(L2(D)) ∩ C(D)
as well as the level set map  ∶ C(D) →  defined by

g → (g) ∶= u01D0(g) + u11D1(g), D1(g) ∶= {t ∈ D|g(t) ⩾ 0}, (26)

and D0(g) = {t ∈ D|g(t) < 0}, respectively. We can formulate the level set inverse problem as the
problem of inferring the data-generating level set function g, given the model that the observations
y = O◦Υ◦(g) + 𝜂 are generated by a unique g ∈ S(L2(D)) ∩ C(D). We argue that the unit sphere
in the function space L2(D) or C(D) is an advantageous setting for the level set inverse problem:
if we considered the problem in the ambient space g ∈ C(D), then g becomes nonidentifiable,
because (𝛼g) = (g) for any 𝛼 > 0. For computational convenience, below we choose to work
with the unit sphere in the Hilbert space L2(D) instead of the unit sphere in the Banach space
C(D) ⊂ L2(D).

For the Bayesian approach to level set inversion, we use a prior for the level set function g in
the form of a series expansion

g = g(X) =
∞∑

i=1
Xi𝜙i, (27)

where the 𝜙i ∈ C(D) are given and form an orthonormal system in L2(D), and the Xi are ran-
dom coefficients such that X = (Xi)i∈N ∈ S(𝓁2) almost surely; see for example Iglesias et al. (2016)
and Dunlop et al. (2017). Then we have g(X) ∈ S(L2(D)) almost surely. A common choice for
the system {𝜙i|i ∈ N} are the eigenfunctions of a covariance operator C ∶ L2(D) → L2(D) given
by C𝜙(t) = ∫D c(s, t) 𝜙(s) ds and a continuous covariance function c ∈ C(D × D). The latter then
yields 𝜙i ∈ C(D) for every i ∈ N, and by Mercer’s theorem we have g(X) ∈ C(D) almost surely. In
summary, we obtain a reformulation of the original level set inverse problem, as the problem of
inferring the sequence x ∈ S(𝓁2) that corresponds to the data-generating level set function g(x),
given the noisy data y = O◦Υ◦(g(x)) + 𝜂. For the prior 𝜇0 on S(𝓁2) in (4) we consider the ACG
measure 𝜇0 = ACG(Λ) where Λ = diag(𝜆i ∶ i ∈ N) involves the eigenvalues (𝜆i)i∈N of the covari-
ance operator C, that is, C𝜙i = 𝜆i𝜙i. The associated distribution of g(X), X ∼ ACG(Λ), on S(L2(D))
is then ACG(C).

Remark 3 (Boundedness of Φ). Given that 𝜂 ∼ N(0,Σ), the negative log-likelihood
Φ for Bayesian level set inversion on S takes the form

Φ(x) ∶= 1
2
‖
‖
‖
Σ−1∕2 (y − O◦Υ◦(g(x))

)‖
‖
‖

2
.

Since the range of  is bounded in L∞(D), i.e. ‖(g)‖L∞(D) ⩽ maxi |ui|, and since Υ
and O are locally Lipschitz continuous and bounded respectively, we obtain that also
Φ is bounded on S(𝓁2). Thus, the setting of Bayesian level set inversion satisfies
the assumptions of Theorem 1 and Theorem 3. In particular, for finite-dimensional
approximations of the Bayesian level set inversion problem that are obtained by
truncating the expansion (27) after d terms, Algorithms 4, 5, and 7 yield uniformly
ergodic Markov chains on Sd−1 targeting the corresponding posterior 𝜇(d). Here, the
corresponding posterior 𝜇(d) on Sd−1 may be obtained according to (19) or (20). To the
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22 LIE et al.
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best of our knowledge, uniform ergodicity on Sd−1 of the Markov chain generated by
Algorithm 6 has not been established.

Problem setting

We consider the elliptic problem (23) on D = [0, 1] with Dirichlet boundary conditions p(0) = 0
and p(1) = 2. For u we assume a form as in (24) based on a decomposition of D into two subregions
D0,D1 with corresponding values u0 = −2 and u1 = 2.

For the level set function g such that u = (g)we assume a series expansion (27) based on the
eigensystem of the covariance function

c(s, t) =
(

1 +
√

3
|t − s|

0.1

)

exp
(

−
√

3
|t − s|

0.1

)

, (28)

that is, a Whittle–Matérn covariance with variance 𝜎2 = 1, correlation length 𝜌 = 0.1 and smooth-
ness 𝜈 = 1.5. For computational reasons we truncate the representation (27) after d terms and
then infer the d coefficients x1,…, xd given noisy observations of p(0.2), p(0.4), p(0.6), and p(0.8).

The assumed noise model is 𝜂 ∼ N(0,Σ) where Σ = diag(𝜎2
1 ,…, 𝜎

2
4 ) and 𝜎

2
i = p†(0.2i)∕10

where p† denotes the “true” solution resulting from the “true” coefficient vector x† =
(1, 2, 3, 4, 5, 1, 1, 1, 0,…, 0) in the Karhunen–Loève expansion (27) of g†. For an illustration of g†,
u† and p†, see Figure 4.

Given 𝜂 ∼ N(0,Σ) the negative log-likelihood for observed data y ∈ R4 is then

Φ(x) ∶= 1
2

4∑

j=1
𝜎
−2
j
|
|yj − Fj(x)||

2
, x ∈ R

d
,

where Fj denotes the forward mapping x = (xi)di=1 → g → u → p → p(0.2j). As described in the
previous subsection, Fj(𝛼x) = Fj(x) for every x ∈ Rd and 𝛼 > 0. Thus, Φ is invariant under the
radial projection map ΠS, that is,Φ◦ΠS = Φ, and we can consider Bayesian level set inversion on
the sphere Sd−1 with corresponding prior

𝜇0 = ACG(Λd), Λd = diag(𝜆1,…, 𝜆d).
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LIE et al. 23

F I G U R E 5 Prior, likelihood and posterior for dimension d = 3; the red spot indicates the (projected)
truth x†.

The posterior 𝜇 then takes the form (4) with Φ(x) = Φ(x). Figure 5 illustrates the prior, the
likelihood and the resulting posterior for dimension d = 3.

Remark 4. The eigenpairs (𝜆j, 𝜙j) of the covariance operator C associated to c in
(28) are computed numerically via a discretization of D and C using a grid size of
length 𝛿t = 10−3. The elliptic problem (23) is solved numerically using the same dis-
cretization. Note that the solution p of (23) on D = [0, 1] is given by Υ(u)(t) = p(t) =
2St(e−u)∕S1(e−u) with St(f ) = ∫

t
0 f (s)ds. We evaluate St using the trapezoidal rule on

the given grid.

MCMC on the sphere

We now apply the four MCMC algorithms described in Section 3 in order to sample approximately
from the posterior 𝜇 in various dimensions d. In particular, we aim to compute the posterior
expectation of the following quantity of interest:

f (x) =
(

∫D
exp(−u(t, x)) dt

)−1

, (29)

where u(⋅, x) = (g(x)). We may interpret f (x) as the effective homogenized permeability field over
the one-dimensional domain D; see for example Alexanderian (2015, section 2).

First, we show in Figure 6 the thinned realizations x100k, k = 1,…, 100 of the Markov chains
generated by the reprojected pCN-MH algorithm, the geodesic random walk-MH algorithm
based on Mangoubi and Smith (2018), and the MH algorithm of Zappa et al. (2018) for d = 3,
subsampled every 100 steps.

All three MH algorithms were tuned to an average acceptance rate of roughly 23%. We ran
the algorithms for another 106 iterations after a burn-in period of 5 ⋅ 104 iterations. All three runs
yielded similar estimates for the posterior expectation of f . We provide the corresponding estimate
plus/minus the half-length of a 95% confidence interval based on asymptotic variance estimates
via the empirical autocorrelation functions of (f (xk))k:

reprojected pCN-MH: 0.420 ± 1.299 ⋅ 10−3

geodesic random walk-MH: 0.419 ± 1.271 ⋅ 10−3

MH by Zappa et al.: 0.420 ± 1.478 ⋅ 10−3
.
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24 LIE et al.

F I G U R E 6 Thinned realizations x100k, k = 1,…, 100 of the Markov chains generated by Algorithms 4, 6,
and 7 (left, centre, and right, respectively) for d = 3, subsampled every 100 steps.

All three estimates exhibit similar accuracies. Recall the root mean squared jump distance with
respect to the Riemannian metric on the sphere given by

RMSJD ∶=

√
√
√
√ 1

n − 1

n−1∑

k=1
d2

S
(xk, xk+1). (30)

In dimension d = 3, the three MH algorithms yielded similar estimates for the root mean squared
jump distance:

reprojected pCN-MH: 0.202
geodesic random walk-MH: 0.234

MH by Zappa et al.: 0.185.

Next, we tested all four algorithms, including now the reprojected ESS algorithm, for increasing
dimensions d = 10, 20, 40, 80, 160, 320, 640. In particular, we display the following quantities in
Figure 7:

(i) the estimated posterior expectation of f given by the arithmetic mean of (f (xk))k;
(ii) the estimated integrated autocorrelation time of the (approximately stationary) time series

(f (xk))k as a measure for the MCMC error for computing the posterior expectation of f ;
(iii) the root mean squared jump distance as a measure of how well the Markov chain explores

the sphere.

An important observation from Figure 7 is that the two reprojected MCMC methods show
dimension-independent efficiency in terms of integrated autocorrelation time and root mean
squared jump distance. In contrast, the two MH algorithms relying on the surface measure as
reference measure—namely, the geodesic random walk-MH algorithm based on Mangoubi and
Smith (2018) and the MH algorithm of Zappa et al. (2018)—shows a clear decrease in efficiency
as the dimension d of the state space increases. In particular, these methods lead to less accurate
estimates of the posterior mean; see the left plot in Figure 7. While it seems that the ESS algorithm
yields a higher efficiency, the higher efficiency comes at an increased cost: on average, the ESS
algorithm required ≈ 3.8 tries until it hit the level set. Thus, the computational cost of the ESS
algorithm was roughly four times higher than the computational cost of the pCN algorithm.
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F I G U R E 7 Estimated posterior mean (left), integrated autocorrelation time (middle) for f as in (29) and
root mean squared jump distance (right) for Algorithms 4, 5, 6, and 7 as applied to the Bayesian level set inverse
problem.

4.2 Bayesian density estimation

We now consider a second application of Bayesian inference on high-dimensional spheres. We fol-
low the approach of Holbrook et al. (2020) to nonparametric Bayesian density estimation: Given
data y1,…, yn ∈ D, for D a bounded smooth domain in Rk, we infer the Lebesgue probability
density function p of the data, where p belongs to

P ∶=
{

p ∶ D → [0,∞) ||
| ∫D

p(y) dy = 1
}

.

The set P is the unit simplex in the Banach space L1(D). Instead of inferring p directly, we instead
infer the square root g =

√
p of p, where g belongs to

Q ∶=
{

g ∶ D → R
|
|
| ∫D

g2(y) dy = 1
}

.

The set Q coincides with the unit sphere of the function space L2(D).

Data

We use the British coal mine disaster dataset that was studied in Holbrook et al. (2020). This
dataset consists of the dates of 191 disasters recorded between March 1851 and March 1962
which can be found in Hand et al. (1994, data set 204). We aim to estimate the underlying
probability density between the years 1850 and 1965. However, for computations and sim-
plicity, we scale the data to lie within D = [0, 1] by a suitable affine transformation. Thus,
we would like to infer a square root density g ∈ S = Q, where S denotes the unit sphere
of L2([0, 1]).

Prior and posterior

For numerical discretization and constructing a prior model for g, we expand g with respect to
a suitable orthonormal system {𝜙i|i ∈ N} in L2(D), D = [0, 1]. Here, we choose the same system
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as in Holbrook et al. (2020). which is based on a mean-zero Gaussian process model for g with a
Whittle–Matérn covariance (cf. (28)):

g = g(X) =
∞∑

i=1
Xi 𝜙i, 𝜙1 ≡ 1, 𝜙i(y) =

√
2 cos(𝜋 (i − 1) y), i > 1, (31)

where X = (Xi)i∈N are suitable random coefficients almost surely belonging to the unit sphere in
𝓁2, such that the resulting g = g(X) belongs to the unit sphere in L2([0, 1]). Here, we assume as
prior for X that X ∼ ACG(Λ)where Λ = diag(𝜆i ∶ i ∈ N)with 𝜆i = 𝜎2(𝜅 + 𝜋2(i − 1)2)−r, i ⩾ 1. We
choose 𝜎 = 0.5, 𝜅 = 0.1 and r = 1 for our experiments. We chose these parameter values because
of their similarity to the values used by Holbrook et al. (2020). The resulting prior for g is then
ACG(C) where C ∶ L2(D)→ L2(D) denotes the covariance operator Cv(y) = ∫D c(y, y′)v(y′) dy′
using the corresponding covariance function

c(y, y′) =
∞∑

i=0
𝜆i 𝜙i(y) 𝜙i(y′).

Given g ∈ Q, the likelihood L(y; g) for observing the data y = (y1,…, yn) ∈ Dn is

L(y; g) =
n∏

i=1
g2(yi) = exp

( n∑

j=1
log(g2(yj))

)

= exp

(

2
n∑

j=1
log(|g(yj)|)

)

.

Thus, using the series representation in (31), we obtain as likelihood for y given coefficients x in
the unit sphere of 𝓁2,

L(y; x) = exp
(

−Φ(x)
)

, Φ(x) ∶= −2
n∑

j=1
log

(
|
|
|
|
|

∞∑

i=0
xi 𝜙i(yj)

|
|
|
|
|

)

.

Note that Φ ∶ 𝓁2 → R is bounded. Given the data y, the resulting posterior for the coefficients X
follows the form (4) with 𝜇0 = ACG(Λ), and the assumptions of Theorem 1 are satisfied.

A quantity of interest for this problem is the posterior expectation for the probability mass
of p between 0.435 and 0.574. This quantity of interest is the probability of a coal mine disaster
between the years 1900 and 1916. It can be written as

f (x) ∶=
∫

0.574

0.435
g2(y, x) dy =

( ∞∑

i,k=1
wi,kxi xk

)2

, (32)

where wi,k ∶= ∫
0.574

0.435 𝜙i(y) 𝜙k(y) dy, i.e., f is a quadratic function of x.

MCMC simulations

We truncated the expansion in (31) after d terms for d = 10, 20, 30, 40, 50, 100, 200, 400, and
800 and sampled approximately from the resulting truncated posterior 𝜇(d) on Sd−1 for the coef-
ficients x(d) = (x1,…, xd) using the prior 𝜇(d)0 = ACG(Λd) with Λd ∶= diag(𝜆1,…, 𝜆d). To this end,
we applied Algorithms 4, 5, 6, and 7 and used them to compute the expectation of the quantity
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F I G U R E 8 Estimated posterior mean and pointwise posterior quantiles for the density p based on
truncation of (31) to the first d = 30 summands (left), estimated integrated autocorrelation time for quantity of
interest f as in (32) (middle), and root mean squared jump distance (right) for Algorithms 4, 5, 6, and 7 as applied
to the Bayesian density estimation problem.

f in (32) with respect to the truncated posterior 𝜇(d). After a burn-in period of 105 iterations,
we ran the algorithms for 106 iterations and compared their efficiency. We quantified their
efficiency in terms of the estimated integrated autocorrelation time for f and the root mean
squared jump distance. We display the results in Figure 8. As in Figure 7, the results exhibit
dimension-independent efficiency of the two reprojected MCMC methods, whereas the geodesic
random walk-MH algorithm and the MH algorithm of Zappa et al. (2018) show a clear and
drastic deterioration of efficiency as d increases.

5 CLOSING REMARKS

In this paper, we proposed efficient MCMC algorithms for sampling target measures on
high-dimensional spheres that are absolutely continuous with respect to an ACG prior. Our algo-
rithms exploit the structure of the ACG prior by lifting the sampling problem on the sphere to
a sampling problem in the ambient Hilbert space. This allows us to apply existing MCMC algo-
rithms on linear spaces—such as the pCN-MH algorithm—for which there are theoretical results
concerning dimension-independent efficiency.

Using the technique of push-forward Markov kernels, we then obtained transition kernels on
the sphere that inherit many properties of the transition kernels in the ambient Hilbert space, for
example, reversibility with respect to the desired target measure. Under fairly mild conditions,
we showed the uniform ergodicity of Markov chains generated by our algorithms, and provided
theoretical arguments for the dimension independence of their spectral gaps.

Using binary classification and Bayesian density estimation as test problems, we compared
the performance of our methods to that of MH algorithms based on the geodesic random walk
proposal of Mangoubi and Smith (2018) and the approach of Zappa et al. (2018). Our results
illustrated the robustness of our algorithms as the dimension of the state space increased. In com-
parison, the statistical efficiency of the two other existing algorithms decreased as the dimension
of the state space increased.

Based on our work, several interesting questions for future research remain. A theoretical
analysis of the dimension independence of the (reprojected) ESS transition kernel remains an
open issue. Here Markov chain comparison techniques—as have been developed by, for example,
Peskun (1973), Andrieu and Vihola (2016), and Rudolf and Sprungk (2018)—may be useful for
establishing the inheritance of a spectral gap from the pCN-MH transition kernel to the ESS
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28 LIE et al.

transition kernel. Additionally, it seems promising to modify our algorithms so that they can be
applied to sample from target measures with respect to other common priors such as Bingham
distributions, by using the acceptance-rejection approach of Kent et al. (2018), for example.
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APPENDIX A. GAUSSIAN MEASURES AND ANGULAR CENTRAL
GAUSSIAN MEASURES

A.1 Gaussian measures on Hilbert spaces
We first briefly recall some basic notions related to measures, especially Gaussian measures, on
Hilbert spaces. A standard reference in this area is the book of Bogachev (1998).

In the following, we consider a separable Hilbert space H with norm ‖⋅‖ and inner product
⟨⋅, ⋅⟩. Suppose𝜇 ∈ (H)with finite second moment ∫

H
‖x‖2

𝜇(dx) is given. Then the mean element
a ∈ H and covariance operator C ∶ H → H of 𝜇 are determined by

0 =
∫

X

⟨v, x − a⟩ 𝜇(dx) for all v ∈ H, (A1)

⟨Cu, v⟩ =
∫

X

⟨u, x − a⟩⟨v, x − a⟩ 𝜇(dx) for all u, v ∈ H. (A2)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12653 by T

est, W
iley O

nline L
ibrary on [27/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/sjos.12653
https://doi.org/10.1111/sjos.12653


LIE et al. 31

When a = 0, the measure 𝜇 is said to be centred.
In this paper, we focus on Gaussian measures 𝜇 = N(a,C) on H. Such measures are equiva-

lently determined by the property that every one-dimensional linear image is Gaussian on R, that
is, identifying 𝓁 ∈ H with the continuous linear functional H → R, x → ⟨𝓁, x⟩,

𝜇 = N(a,C) ∈ (H)⇔ ∀𝓁 ∈ H,𝓁
♯
𝜇 = N(⟨𝓁, a⟩, ⟨C𝓁,𝓁⟩) ∈ (R);

or by the form of the characteristic function, that is,

𝜇 = N(a,C) ∈ (H) ⇔ ∀v ∈ H,
∫

X

exp(i⟨v, x⟩) 𝜇(dx) = exp
(

i⟨v, a⟩ − 1
2
⟨Cv, v⟩

)

.

The covariance operator C of a probability measure on H is always self-adjoint and positive
semi-definite, and so its eigenvalues are all real and nonnegative. Furthermore, the assumption
of finite second moment implies that these eigenvalues are summable, that is, C is a trace-class
operator.

Given any self-adjoint and positive-definite operator C ∶ H → H, we define for x, y ∈ ran(C1∕2)
the weighted inner product and norm

⟨x, y⟩C ∶= ⟨C−1∕2x,C−1∕2y⟩, (A3)

‖x‖C ∶=
√
⟨x, x⟩C, (A4)

If C is the covariance operator of a Gaussian measure 𝜇 = N(a,C), then ran(C1∕2) is the
Cameron–Martin space of 𝜇, and (A3) and (A4) are often called the precision inner product and
norm, respectively.

The topological support of N(0,C)—that is, the smallest closed set of full measure—is the
closure in H of ran(C) (Bogachev, 1998, theorem 3.6.1). A sufficient condition for the density of
ran(C) in H is the strict positivity of C, that is, that it has no null eigenvalue. The containments
ran(C) ⊆ ran(C1∕2) ⊆ H always hold, and are strict when the Cameron–Martin space ran(C1∕2)
has infinite dimension.

A.2 Angular central Gaussian measures on spheres in Hilbert spaces
We consider the unit sphere S ∶= {x ∈ H| ‖x‖ = 1} in a separable Hilbert space H. For H = Rd,
we emphasise the dimension and denote the unit sphere by Sd−1. The sphere S is equipped with
the following metric dS ∶ S × S → [0, 𝜋]:

dS(x, y) ∶= arccos
(
⟨x, y⟩

)
= 2 arcsin

(1
2
‖
‖x − y‖‖

)

x, y ∈ S, (A5)

where the second identity follows from elementary trigonometry. The definition of dS by the
arcsine function also extends to the unit sphere S in general Banach spaces. Moreover, it yields
the Lipschitz equivalence—and hence the topological equivalence—of dS and the metric on S

induced by the norm ‖⋅‖ of the ambient space H:

‖
‖x − y‖‖ ⩽ dS(x, y) ⩽

𝜋

2
‖
‖x − y‖‖ ∀x, y ∈ S, (A6)

since g(r) = 2 arcsin
(

1
2

r
)

∕r varies between 1 and 𝜋∕2 for r ∈ [0, 2]. Thus, the metric dS is
topologically equivalent to the norm of the ambient space on S. We record this result in Lemma 2
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below. According to Kechris (1995, proposition 3.3(ii)), a closed subset of a Polish space is always
itself Polish in the relative (subspace) topology. Thus, (S, dS) is a Polish space and (S) = {B ∩
S|B ∈ (H)}.

Lemma 2. The topology on S generated by dS coincides with the relative topology on S

generated by the norm ‖⋅‖ of H.

Proof. This is a consequence of the Lipschitz equivalence of the metrics (A6). ▪

Fix an arbitrary z ∈ S. Recall the radial projection to the sphere defined in (3),

ΠS ∶ H → S, ΠS(x) ∶=

{ x
‖x‖
, if x ≠ 0,

z, if x = 0.

The choice of z is not important in what follows, but we fix z in order to ensure that ΠS is a
measurable mapping from H into S.

Recall that the ACG measure on S associated to a centred Gaussian measure N(0,C) on H is
given by

𝜇 ∶= ΠS

♯

N(0,C),

and denoted by 𝜇 = ACG(C). In other words, under ACG(C), each E ∈ (S) is assigned the Gaus-
sian N(0,C)-measure of the cone {𝛼u ∈ H|𝛼 > 0,u ∈ E}. Note that ACG(C) = ACG(𝜆C) for 𝜆 ≠ 0
and so it can sometimes be useful to fix a normalization for C, for example, by taking its leading
eigenvalue to be unity.

Corollary 1. Let CE ∶= {𝛼e ∈ H|𝛼 > 0, e ∈ E} denote the cone spanned by a subset
E ⊆ S. The set E is open in (S, dS) if and only if CE is open in (H, ‖⋅‖).

Proof. Suppose that CE is open in H. Then E = CE ∩ S is, by Lemma 2, open in (S, dS).
LetΠS|H⧵{0} be the restriction of the radial projectionΠS defined in (3) to H ⧵ {0}.

For E in (S, dS), (ΠS|H⧵{0})−1(E) = CE. Equip H ⧵ {0}with the subspace topology. Then
ΠS|H⧵{0} is continuous, and if E is open, then CE is open in (H ⧵ {0}, ‖⋅‖), and hence
in (H, ‖⋅‖). ▪

Whenever N(0,C) has support equal to H, Corollary 1 immediately implies that the induced
ACG(C) measure has support equal to S; thus, in view of Appendix A.1, ACG(C) is a strictly
positive measure on S whenever C is positive definite.

In the case where H = Rd with the usual Euclidean norm and C ∈ Rd×d is symmetric
and positive definite, 𝜇 = ACG(C) admits a density 𝜌 ∶ Sd−1 → [0,∞) with respect to the (d −
1)-dimensional Hausdorff measure on the sphere. This density is given by

𝜌(x) =
∫

∞

0

exp
(

− 1
2
(rx) ⋅ C−1(rx)

)

√
det(2𝜋C)

rd−1 dr

=
Γ(d∕2)

2
(

1
2
‖
‖x‖‖

2
C

)d∕2√
det(2𝜋C)
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LIE et al. 33

=
Γ(d∕2)

2𝜋d∕2
√

det C
‖
‖x‖‖

−d
C .

In the second equation, we used the fact that, for a > 0 and n ∈ N, ∫ ∞0 a−r2 rn−1 dr = Γ(n∕2)
2(log a)n∕2

(Tyler, 1987, equation (1)).

Remark 5. The above definitions and properties can be readily adapted to the image
of a centred Gaussian measure on a projective space, that is, the quotient of H by the
equivalence relation u ∼ v ⇔ u = 𝜆v for some 𝜆 ≠ 0, that is, S with antipodal points
identified. Note that, while ACG(C) on S is always a multimodal distribution with at
least two modes, its image on the projective space can be unimodal, which may be
desirable in applications.

APPENDIX B. MARKOV CHAIN MONTE CARLO

Markov chain methods provide a standard tool for approximate sampling of complicated distri-
butions, such as posterior distributions appearing in the Bayesian analysis of data. We recall here
notions related to MCMC on a general state space X equipped with a target probability measure
𝜇 ∈ (X), the MH and slice sampling paradigms, and make some particular points about MCMC
on infinite-dimensional Hilbert spaces.

B.1 General notions
By a Markov kernel on a topological space X we mean a function K ∶ X × (X) → [0, 1] such that
K(x, ⋅) ∈ (X) for each x ∈ X, and K(⋅,A) is a measurable function for each A ∈ (X). A sequence
of random variables (Xn)n∈N, mapping from (Ω,,P) to X, is a (time-homogeneous) Markov chain
with transition kernel K on X if

P(Xn+1 ∈ A|X1,…,Xn) = P(Xn+1 ∈ A|Xn) = K(Xn,A), n ∈ N, A ∈ (X),

where K is a Markov kernel. In this paper, we shall distinguish between Markov kernels and tran-
sition kernels. A transition kernel is a Markov kernel associated to a time-homogeneous Markov
chain. We abuse notation and also use K to denote the transition operator induced by the kernel
K; the transition operator acts on functions f ∶ X → R via

(Kf )(x) ∶=
∫

X

f (y) K(x, dy) = E
[
f (Xn+1)|Xn = x

]
for x ∈ X. (B1)

The idea of MCMC is to construct a Markov chain (Xn)n∈N with transition kernel K such that
the distribution of Xn converges to 𝜇 as n → ∞. Ideally, this convergence will be “fast” and the
correlation between successive random variables Xn and Xn+1 will also be weak.

A necessary condition for a transition kernel K to have 𝜇 as a limiting distribution is that 𝜇 is
an invariant distribution of K, that is,

𝜇(A) = 𝜇K(A) ∶=
∫

X

K(x,A) 𝜇(dx), for all A ∈ (X). (B2)
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34 LIE et al.

Reversibility (or detailed balance) of a transition kernel K on X with respect to 𝜇 refers to the
property that

K(x, dy)𝜇(dx) = K(y, dx)𝜇(dy), (B3)

that is, that the measure K(x, dy)𝜇(dx) on X ×X is symmetric. If (B3) holds we say that K is
𝜇-reversible. Reversibility of a transition kernel K with respect to 𝜇 implies that K has 𝜇 as an
invariant distribution, although the converse is generally false.

If 𝜇 is an invariant distribution of K, and if some nonrestrictive regularity conditions such as
𝜑-irreducibility and Harris recurrence hold, then a strong law of large numbers holds, that is,

lim
n→∞

1
N

N∑

n=1
f (Xn) =

∫
X

f (x) 𝜇(dx) P-a.s.,

for any 𝜇-integrable f ∶ X → R (Asmussen & Glynn, 2011; Meyn & Tweedie, 2009). This
shows that the “MCMC-time average” 1

N

∑N
n=1f (Xn) can be used to approximate the mean of

f with respect to the distribution of interest 𝜇. For more quantitative statements the spec-
tral gap of a Markov chain (or its transition kernel) is a crucial quantity. For a transition
kernel K that is reversible with respect to 𝜇 (inducing the transition operator K via (B1))
we define

gap
𝜇
(K) ∶= 1 − ‖K‖L2

0,𝜇→L2
0,𝜇
, (B4)

where we recall that L2
0,𝜇 ∶= {f ∈ L2(𝜇)| ∫ f (u) 𝜇(du) = 0} and where ‖K‖L2

0,𝜇→L2
0,𝜇

denotes the
norm of the operator K, which we view as an element of the space of bounded linear oper-
ators from L2

0,𝜇 to itself. An L2
𝜇

-spectral gap, that is, gap
𝜇
(K) > 0, leads to desirable proper-

ties of a Markov chain (Xn)n∈N with transition kernel K. For instance, it implies a central
limit theorem, see for example Douc et al. (2018, section 22.5) and the relevant references
therein. In particular, an explicit lower bound on gap

𝜇
(K) leads to an estimate of the total

variation distance and a mean squared error bound of the time average 1
N

∑N
n=1f (Xn). More

precisely, it is well known, for example, by virtue of Novak and Rudolf (2014, lemma 2 and
lemma 3), that

‖𝜉Kn − 𝜇‖TV ⩽ (1 − gap
𝜇
(K))n

‖
‖
‖
‖

d𝜉
d𝜇

− 1
‖
‖
‖
‖L2

𝜇

, (B5)

where ‖𝜉Kn − 𝜇‖TV ∶= supA∈(X) |𝜉Kn(A) − 𝜇(A)| denotes the total variation distance between
𝜉Kn = PXn+1 and 𝜇, 𝜉 ∶= PX1 , and ‖f‖p

Lp
𝜇

∶= ∫
X
|f |p d𝜇 for f ∶ X → R. Furthermore, Rudolf (2012)

shows that, for every p > 2, there exists an explicit constant cp such that, for f ∈ Lp(𝜇) with
‖f‖p

Lp
𝜇

⩽ 1,

E

⎡
⎢
⎢
⎣

|
|
|
|
|
|

1
N

N∑

n=1
f (Xn) −

∫
X

f d𝜇
|
|
|
|
|
|

2⎤
⎥
⎥
⎦

⩽ 2
N ⋅ gap

𝜇
(K)

+
cp
‖
‖
‖

d𝜉
d𝜇
− 1‖‖
‖∞

N2 ⋅ gap
𝜇
(K)2

.
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LIE et al. 35

There are also other non-asymptotic bounds that consider different convergence assumptions on
the Markov chain and the underlying error criterion. For details we refer to (Fan et al., 2021;
Łatuszyński et al., 2013; Łatuszyński & Niemiro, 2011; Paulin, 2015; Rudolf & Schweizer, 2015)
and the references therein.

In the following we briefly discuss two popular methods for the construction of a transition
kernel K that is reversible with respect to 𝜇.

B.2 MH algorithms
Probably the most popular method for constructing a transition kernel that is reversible with
respect to 𝜇 is given by the MH algorithm. Given a Markov kernel Q on X which serves as a
proposal mechanism, that is, a “proposal kernel,” and given a function 𝛼 ∶ X ×X → [0, 1] which
provides acceptance probabilities and depends on 𝜇 and Q, a transition from a state x to a state y
in the MH algorithm proceeds as follows.

Transition Mechanism 2. Let Q be a proposal kernel and 𝛼 ∶ X ×X → [0, 1] be an
acceptance probability function. Given the current state x ∈ X, one obtains the next
state y ∈ X as follows:

(1) Draw X ′ ∼ Q(x, ⋅) and U ∼ U[(0, 1)] independently and denote the realisations by x′
and u respectively;

(2) If u < 𝛼(x, x′), return y ∶= x′, otherwise return y ∶= x.

The algorithm above can be rewritten as a transition kernel:

K(x, dy) = 𝛼(x, y)Q(x, dy) + r(x)𝛿x(dy), r(x) ∶= 1 −
∫

X

𝛼(x, y) Q(x, dy), (B6)

where 𝛿x denotes the Dirac measure on X at x ∈ X and the function r is called the “rejection
probability.” It remains to specify 𝛼. Let 𝜎+, 𝜎− ∈ (X ×X) with

𝜎
+(dx, dx′) ∶= Q(x, dx′)𝜇(dx),
𝜎
−(dx, dx′) ∶= 𝜎+(dx′, dx) = Q(x′, dx)𝜇(dx′), (B7)

and set

𝛼(x, x′) ∶= min
{

1, d𝜎−
d𝜎+

(x, x′)
}

.

Then the transition kernel K defined in (B6) is reversible with respect to 𝜇 (Tierney, 1998).
Of course, the Radon–Nikodym derivative d𝜎−

d𝜎+
(x, x′) does not necessarily exist. In the

finite-dimensional Euclidean setting where X = Rd, the derivative d𝜎−

d𝜎+
is often just the ratio of

Lebesgue densities. However, in infinite-dimensional spaces the absolute continuity 𝜎− ≪ 𝜎
+

requires the choice of a suitable proposal kernel Q.
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36 LIE et al.

B.3 Slice sampling
Suppose that a 𝜎-finite reference measure 𝜇0 on X is given that satisfies 𝜇 ≪ 𝜇0. Additionally, we
assume that the probability density function d𝜇

d𝜇0
satisfies

d𝜇
d𝜇0

(x) ∝ exp(−Φ(x)), 𝜇0-a.e. x ∈ X,

for a measurable functionΦ ∶ X → R such that exp(−Φ) is integrable with respect to 𝜇0. For some
s > 0, define

Xs ∶= {x ∈ X| exp(−Φ(x)) ⩾ s}, (B8)

to be the super-level set of exp(−Φ) to level s. Let ‖exp(−Φ)‖∞ ∶= 𝜇0-esssupx∈X
| exp(−Φ(x))| and

note that 𝜇0(Xs) ∈ (0,∞) for s ∈ (0, ‖exp(−Φ)‖∞). Here,

𝜇0-esssup
x∈X

f (x)

denotes the essential supremum with respect to 𝜇0 of f ∶ X → R. Define the probability measure
𝜇0,s ∈ (X) by

𝜇0,s(A) ∶=
𝜇0(A ∩Xs)
𝜇0(Xs)

, A ∈ (X),

that is, 𝜇0,s is the normalised restriction of 𝜇0 to Xs. In the idealised slice sampling algorithm, a
transition from a state x to a state y proceeds as follows.

Transition Mechanism 3 (Idealised slice sampling). Given the current state x ∈
X one obtains the next state y ∈ X as follows:

(1) Draw S ∼ U[(0, exp(−Φ(x)))] and let s be the realization.
(2) Draw Y ∼ 𝜇0,s and let the state y be the realization of Y .

The corresponding transition kernel takes the form

K(x, dy) = 1
exp(−Φ(x))∫

exp(−Φ(x))

0
𝜇0,s(dy) ds,

and it can be readily shown that K is reversible with respect to 𝜇.

Remark 6. In the case that X = Rd and𝜇0 is the Lebesgue measure,𝜇0,s coincides with
the uniform distribution on Xs. In that setting the corresponding method is known as
simple (uniform) slice sampling and recent results (Natarovskii et al., 2021b, theorem
3.10) concerning the spectral gap indicate under which conditions robust convergence
behavior with respect to the dimension is present.

However, the main issue with the idealised slice sampling algorithm is that the second step in
Transition Mechanism 3 may be difficult to implement, because the implicit assumption of being
able to draw samples from 𝜇0,s for an arbitrary level s may be very restrictive. Whenever one is
not able to sample from a distribution exactly, one can try to use a suitable Markov chain step.
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LIE et al. 37

Namely, one substitutes the second step of Transition Mechanism 3 by performing a transition,
depending on x and s, which (at least) has stationary distribution 𝜇0,s. Such approaches are known
as hybrid slice sampling strategies; see for example, Łatuszyński and Rudolf (2014) for some the-
ory and comparison results. There are several different methods in the literature that are feasible
in finite-dimensional settings, and can—from an algorithmic perspective—be lifted to infinite-
dimensional scenarios; see for example, (Li & Walker, 2023; Murray et al., 2010; Neal, 2003).

APPENDIX C. TWO RANDOM WALK-LIKE MCMC ALGORITHMS ON
MANIFOLDS

We describe now two MH algorithms from the literature. These algorithms use random
walk-like proposals that are defined on general, finite-dimensional manifolds M. We compare the
algorithms described in Section 3.3 with these algorithms on numerical examples in Section 4. In
the following paragraphs we first describe the corresponding MH algorithm for a general mani-
fold M and then provide the particular algorithm for the case of sampling on a sphere M = Sd−1.
Throughout, we assume that M admits a Hausdorff measure M and that the target probability
measure 𝜇 on M is given by an unnormalized density 𝜌 with respect toM, that is,

d𝜇
dM

(x) ∝ 𝜌(x), x ∈ M. (C1)

When M = Sd−1 and 𝜇 is a posterior measure with respect to an ACG prior 𝜇0 = ACG(C) as in (4),

𝜌(x) =
exp(−Φ(x))
‖
‖x‖‖

d
C

.

C.1 Geodesic random walk-MH algorithm
Assume that M(M) < ∞. Then the uniform measure U(M) on M is defined via U(M)(A) ∶=
M(A)∕M(M) for A ∈ (M). The geodesic random walk as described in Mangoubi and
Smith (2018) yields a Markov chain (Xk)k∈N on M with U(M) as its limit distribution. For any
x ∈ M, denote the tangent space at x by xM, and for any vector v ∈ xM, denote by 𝛾x,v the unique
geodesic 𝛾x,v ∶ [0,∞) → M on M that satisfies 𝛾x,v(0) = x and 𝛾 ′

x,v
(0) = v, where 𝛾 ′ denotes the first

derivative.
Next, we present how a transition from a state x to a state y proceeds in the geodesic random

walk algorithm.

Transition Mechanism 4 (Geodesic random walk). Given the current state x ∈
M one obtains the next state y ∈ M for fixed t > 0 as follows:

(1) Draw from the uniform distribution on the unit sphere in xM and call the result v;
(2) Set y = 𝛾x,v(t).

Hence, in order to sample approximately from 𝜇 as in (C1), we can employ the geodesic ran-
dom walk kernel as a proposal kernel in an MH algorithm. The resulting acceptance probability
𝛼 involves ratios of the unnormalized density 𝜌 in (C1). In Goyal and Shetty (2019, theorem
27)—and, in a more general setting, Habeck et al. (2023, section 2.5)—it is shown that the corre-
sponding geodesic random walk transition kernel is reversible with respect to U(M). Therefore,
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38 LIE et al.

Algorithm 6. Geodesic random walk-MH on Sd−1 (Mangoubi & Smith, 2018)

1: Given: time t ∈ (0, 𝜋
2
] and initial state x̄0 ∈ Sd−1

2: for k ∈ N0 do
3: Compute ONB matrix Ux̄k ∈ Rd×(d−1) of x̄⟂k according to Remark 7
4: Draw a sample wk from U(Sd−2) and set vk ∶= Ux̄k wk
5: Set ȳk+1 ∶= cos(t)x̄k + sin(t)vk
6: Compute a ∶= min{1, 𝜌(ȳk+1)∕𝜌(x̄k)}
7: Draw a sample u from U([0, 1])
8: if u ⩽ a then
9: Set x̄k+1 = ȳk+1

10: else
11: Set x̄k+1 = x̄k
12: end if
13: end for

the resulting algorithm for realizing the Metropolized geodesic random walk on M = Sd−1 is given
as in Algorithm 6.

Remark 7. In order to sample from the uniform distribution on the unit sphere in
xM we can use the tools outlined by Zappa et al. (2018) for the case of constrained
m-dimensional manifolds embedded into Rd, d > m, via

M =
{

x ∈ R
d ||
|

qi(x) = 0 ∀i = 1,…,L
}

, L ⩾ d −m, (C2)

where qi ∶ R → R are smooth functions. In particular, an orthonormal basis (ONB)
of xM can be obtained by a QR decomposition of the Jacobian of Q(x) ∶=
(q1(x),…, qL(x)) evaluated at x = x. Let us denote such a basis by u1,…,um ∈ Rd and
store the vectors in the columns of Ux = [u1|…|um] ∈ Rd×m. Drawing a sample w
from U(Sm−1) and setting v = Uxw yields a sample according to the uniform distribu-
tion on the sphere in xM. If M = Sd−1, then there is only one constraint function,
that is, q1(x) = ‖x‖2 − 1. Hence, the tangent space xM coincides with the orthogonal
complement x⊥ of span{x}.

Remark 8 (Ergodicity). In Mangoubi and Smith (2018, theorem 7.1) it is shown that
the geodesic random walk, that is, the proposal kernel of Algorithm 6, possesses a
mixing time with respect to a Wasserstein distance that depends only on the pos-
itive curvature of the manifold M, given a suitably small integration time t. Thus,
in case of the sphere M = Sd−1, the mixing time is independent of the dimension
d for any t ∈ (0, 𝜋

2
]. However, this statement solely holds for the proposal chain. As

we see in Section 4, the MH algorithm based on the geodesic random walk proposal
shows deteriorating efficiency as d →∞. Besides that, also the uniform ergodicity of
Algorithm 6, or the geodesic random walk itself, is not obvious and left open for future
research.
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LIE et al. 39

C.2 MH algorithm by Zappa et al. (2018).
The MH algorithm presented in Zappa et al. (2018) shows some similarities with our method, in
the sense that it first proposes a new state in the ambient Euclidean space which is then projected
to the manifold M. The manifold M is assumed to be of the form (C2). Given a current state x ∈ M,
we first draw a tangent vector v ∈ xM, but this time with respect to an isotropic multivariate
Gaussian measure N(0, s2Id−m). Here, we can employ again the technique explained in Remark 7,
by using an ONB matrix Ux ∈ Rd×(d−m) of xM, drawing w from N(0, s2Id−m), and defining the
resulting sample v = Uxw. We then consider x ∶= x + v ∈ Rd, and project x to some y ∈ M by

y ∶= x + w with suitable w ∈ (xM)⊥.

In general, computing w and y requires solving a nonlinear system; see Zappa et al. (2018, equation
(2.5)). For M = Sd−1 the situation is rather easy: Since (xM)⊥ = span

{
x
}

, w = ax for some a ∈ R

satisfying ‖‖y‖‖ = ‖‖(1 + a)x + v‖‖ = 1. Since x⊥v, if ‖v‖2 ⩽ 1, then

y =
√

1 − ‖v‖2x + v.

If ‖v‖2
> 1, then x cannot be projected back to the sphere along span

{
x
}

. In this case, x is rejected
and the Markov chain remains at its current state, that is, in the kth iteration it is realized as
xk+1 = xk. In case of a successful proposal y we still require a Metropolis step, where the correct
acceptance probability for y also requires the ingredients of the reverse move from y to x. That is,
we require ṽ ∈ yM such that

x = y + ṽ + w̃, w̃ ∈ (yM)⊥.

The acceptance probability in the MH algorithm targeting 𝜇 as in (C1) is then given by

𝛼(x, y) = min
{

1,
𝜌(y) p(y, ṽ)
𝜌(x) p(x, v)

}

,

where p(y, ṽ) ∝ exp
(

−‖‖
‖

U⊤

y
ṽ‖‖
‖

2
∕2s2
)

denotes the proposal density for the tangential moves. Since

Uy is orthonormal, ‖‖
‖

U⊤

y
ṽ‖‖
‖
= ‖ṽ‖. Moreover, for M = Sd−1, the vector ṽ ∈ yM for going from

y =
√

1 − ‖v‖2x + v back to x can be computed easily by projecting x − y onto yM = (y)⊥, which
yields

ṽ = x − y − ⟨x − y, y⟩y = ‖v‖2x −
√

1 − ‖v‖2v.

In particular, since x⊥v, we obtain that ‖ṽ‖ = ‖v‖. Hence, for M = Sd−1 the acceptance probability
is just 𝛼(x, y) = min

{
1, 𝜌(y)∕𝜌(x)

}
. We summarize the resulting MH algorithm in Algorithm 7.

Remark 9 (Ergodicity). As stated in Zappa et al. (2018, section 2.1), their proposed
MH algorithm yields uniform ergodicity for compact M and continuous 𝜌. This fol-
lows by standard arguments for MH algorithms with continuous proposal densities
bounded away from zero on compact state spaces, see, for example, Douc et al. (2018,
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40 LIE et al.

Algorithm 7. MH algorithm on Sd−1 (Zappa et al., 2018)

1: Given: step size s > 0 and initial state x̄0 ∈ Sd−1

2: for k ∈ N0 do
3: Compute ONB matrix Ux̄k ∈ Rd×(d−1) of x̄⟂k according to Remark 7
4: Draw a sample wk of N(0, s2Id−1) and set vk ∶= Ux̄k wk
5: if ‖v‖ > 1 then
6: Set x̄k+1 = x̄k
7: else
8: Set ȳk+1 ∶=

√
1 − ‖v‖2x̄k + vk

9: Compute a ∶= min{1, 𝜌(ȳk+1)∕𝜌(x̄k)}
10: Draw a sample u of U[0, 1]
11: if u ⩽ a then
12: Set x̄k+1 = ȳk+1
13: else
14: Set x̄k+1 = x̄k
15: end if
16: end if
17: end for

example 15.3.2). In particular, Algorithm 7 yields uniformly ergodic Markov chains
under the conditions of Theorem 1.

APPENDIX D. COUNTEREXAMPLE FOR THE MARKOVIANITY OF
(𝚷S(Xn))n∈N

Let H = Rd, d > 1, and ΠS be the radial projection onto the unit sphere in H as in (3), where we
have fixed z = ed = (0,…, 0, 1)⊤. Moreover, let (Xn)n∈N denote a Markov chain on H with transition
kernel K.

If (ΠS(Xn))n∈N were again a Markov chain, then we would have for the “upper half” of the
sphere Hd ∶= {x = (x1,…, xd)⊤ ∈ S|xd ⩾ 0} that

P(ΠS(X2) ∈ Hd | ΠS(X1) = ed) = P(ΠS(X2) ∈ Hd | ΠS(X1) = ed,ΠS(X0) = ed),

or, P(ΠS(Xn+2) ∈ Hd | ΠS(Xn+1) = ed) = P(ΠS(Xn+2) ∈ Hd | ΠS(Xn+1) = ed,ΠS(Xn) = ed) for any
n ∈ N. By definition of ΠS, this is equivalent to

P(X2,d > 0,X1,d > 0)
P(X1,d > 0)

=
P(X2,d > 0,X1,d > 0,X0,d > 0)

P(X1,d > 0,X0,d > 0)
,

where Xn = (Xn,1,…,Xn,d)⊤ denotes the state vector of the Markov chain. Consider now a Markov
chain (Xn)n∈N with initial distribution X0 ∼ N(0, I) and Gaussian random walk transition kernel
K(x, ⋅) = N(x, s2I) for a fixed step size s > 0. Then each component of the states is a Markov chain
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LIE et al. 41

independent of the other components. Hence,

P(X2,d > 0,X1,d > 0)
P(X1,d > 0)

= P(W0 + sW1 + sW2 > 0,W0 + sW1 > 0)
P(W0 + sW1 > 0)

,

for W0,W1,W2
iid∼N(0, 1) and, analogously,

P(X2,d > 0,X1,d,X0,d > 0)
P(X1,d > 0,X0,d > 0)

= P(W0 + sW1 + sW2 > 0,W0 + sW1 > 0,W0 > 0)
P(W0 + sW1 > 0,W0 > 0)

.

The expressions for these probabilities are difficult to evaluate exactly. Therefore, we perform a
Monte Carlo integration using 108 samples and obtain the following estimates for s = 1:

P(W0 + sW1 + sW2 > 0,W0 + sW1 > 0)
P(W0 + sW1 > 0)

≈ 0.8041,

P(W0 + sW1 + sW2 > 0,W0 + sW1 > 0,W0 > 0)
P(W0 + sW1 > 0,W0 > 0)

≈ 0.8333.

We now show that the above observation is not restricted to the random walk transition
kernel. Consider a stationary Markov chain generated by the pCN proposal kernel Q(x, ⋅) =
N(
√

1 − s2x, s2I) and initial distribution X0 ∼ N(0, I). We again obtain independent scalar Markov
chains in each component:

P(X2,d > 0,X1,d > 0)
P(X1,d > 0)

= P((1 − s2)W0 + s
√

1 − s2W1 + sW2 > 0,
√

1 − s2W0 + sW1 > 0)

P(
√

1 − s2W0 + sW1 > 0)
,

as well as

P(X2,d > 0,X1,d,X0,d > 0)
P(X1,d > 0,X0,d > 0)

= P((1 − s2)W0 + s
√

1 − s2W1 + sW2 > 0,
√

1 − s2W0 + sW1 > 0,W0 > 0)

P(
√

1 − s2W0 + sW1 > 0,W0 > 0)
,

where W0,W1,W2
iid∼N(0, 1). Monte Carlo integration with the stationary pCN-generated Markov

chain, s = 0.5, and 108 samples yields

P(X2,d > 0,X1,d > 0)
P(X1,d > 0)

≈ 0.8333,
P(X2,d > 0,X1,d,X0,d > 0)

P(X1,d > 0,X0,d > 0)
≈ 0.8620.

Thus, these Markov chains serve as counterexamples to the claim that (ΠS(Xn))n∈N is again a
Markov chain.
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