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Abstract

Activity-based models have seen a significant increase in research focus in the past decade.
Based on the fundamental assumption that travel demand is derived from the need to do activities
and time and space constraints (Hägerstraand, 1970, Chapin, 1974). ABM offer a more flexible
and behaviourally centred alternative to traditional trip-based approaches. Econometric — or
utility-based — activity-based models (e.g., Adler and Ben-Akiva, 1979, Bowman and Ben-
Akiva, 2001) postulate that the process of activity generation and scheduling can be modelled as
discrete choices. Individuals derive a utility from performing activities, and they schedule them
as to maximise the total utility of the schedule. In classical discrete choice model applications,
the parameters of the utility functions can be estimated by deriving their maximum likelihood
estimators. As the likelihood function is defined over a full enumeration of the alternatives
in the choice set, this approach is limited for activity-based applications: the set of possible
activities and their spatio-temporal sequence is combinatorial and not fully observed by either
the decision-maker or the modeller. While discrete choice models can be estimated over samples
of alternatives (e.g., Guevara and Ben-Akiva, 2013) an appropriate definition of such sample
is as crucial as it is challenging. This paper presents a methodology to sample a choice set
of full daily schedules for a given individual and a list of activities. The Metropolis-Hastings
algorithm allows us to explore the space efficiently and draw both high and lower probability
alternatives for consistent estimation of the parameters. The methodology is tested on a sample
of individuals from the 2015 Swiss Mobility and Transport Microcensus (Office fédéral de la
statistique and Office fédéral du développement Territorial, 2017).
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1 Introduction

Activity-based models stem from the fundamental assumption that travel demand is derived
from the needs of individuals to perform activities (Bowman and Ben-Akiva, 2001) and that this
need is influenced by space and time constraints (Chapin, 1974, Hägerstraand, 1970). There
exist many examples of activity-based models, which fall within two main categories: rule-
based models and econometric models. Rule-based, or computational process, models (e.g.
Golledge et al., 1994, Timmermans, 2003, Arentze and Timmermans, 2000) use decision rules
to derive feasible solutions. Econometric models postulate that scheduling can be explained with
econometric processes such as random utility maximisation. Advanced econometric techniques
such as discrete choice models are used to explain and predict the activity-travel behaviour of
individuals. Sequential discrete choice models (e.g. Adler and Ben-Akiva, 1979, Bowman and
Ben-Akiva, 2001) consider a series of choices done consecutively with varying amounts of
feedback between each step. Joint models (e.g. Ettema et al., 2007, Nurul Habib, 2018, Charypar
and Nagel, 2005) also integrate correlations between each aspect of the scheduling decision by
evaluating them simultaneously.

Using discrete choice models and concepts such as random utility maximisation in an activity-
based context implies the derivation of choice probabilities, and the calibration of maximum
likelihood estimators of the parameters of the utility functions. This requires the modeller to
assume a finite and enumerable choice set, and universal across the population. This assumption
is difficult to justify in the context of activity-based models: if one considers as schedule
to be a discrete alternative subject to choice, then the choice set comprised of all possible
combinations of this schedule is huge. For example, a daily schedule discretised in t blocks of
time (e.g. 5 minutes intervals), and a possibility to perform n different activities at each block, at
l possible locations and a choice between m modes of transportation, then the full choice set
contains

(
n·l·m+t−1

t

)
combinations. For n = 2 activities, l = 2 possible locations, m = 2 modes

of transportation and t = 24 blocks of 1h, we are dealing with more than 2 million possible
schedules. It is evident that individuals do not consider the entirety of the choice set when they
make decisions for their schedules of activities. They are only aware of a fraction of it, and
out of these alternatives that they can think of, they would discard many as unfeasible because
they do not fit an arbitrary and context-dependent set of requirements and constraints. The
challenge for modellers is therefore to generate a choice set that is both realistic and appropriate
to estimate parameters.

In this paper, we present a methodology based on the Metropolis-Hastings algorithm to strategi-
cally sample alternatives across time and space, to estimate the parameters of the utility functions
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of econometric activity-based models. This methodology is an extension of the process de-
veloped by Flötteröd and Bierlaire (2013) for sampling of alternatives in route choice models,
and its application to activity networks by Danalet and Bierlaire (2015). Section 2 presents a
brief review of current approaches to estimate choice sets, with an emphasis on applications in
utility-based ABMs. We describe the methodology in Section 3, and a practical application in
Section 4, using the optimisation framework for activity scheduling described by Pougala et al.

(2021). Note that this paper is merely a proof of concept of the sampling methodology applied to
an activity-based framework where scheduling and mobility choices are regarded simultaneously.
As such, we discuss in Section 5 leads for future work and important considerations to take into
account and to investigate to make the concept operational for implementation.

2 Literature review

Activity-based models originally emerged in the 1970s as a response to the shortcomings of
traditional 4-step models (Vovsha et al., 2005, Castiglione et al., 2014), namely:

1. trips are the unit of analysis and are assumed independent, meaning that correlations
between different trips made by the same individual are not accounted for properly within
the model;

2. models tend to suffer from biases due to unrealistic aggregations in time, space, and within
the population; and

3. space and time constraints are usually not included.

The early works of Hägerstraand (1970) and Chapin (1974) established the fundamental assump-
tion of activity-based models, that the need to do activities drives the travel demand in space
and time. Consequently, mobility is modelled as a multidimensional system rather than a set of
discrete observations. Unlike traditional trip-based models, ABMs focus on overall behavioural
patterns: decisions are analysed at the level of the household as opposed to seemingly inde-
pendent individuals, and dependencies between events are taken into account (Timmermans,

2003, Pas, 1985). Specifically, modellers are interested in the link between activities and travel,
often considered within a given timeframe. Typically, a single day is used as the unit of analysis.
The resulting goal of studies in the literature is therefore to replicate as accurately as possible
the interactions and considerations involved in the development of a daily schedule by an
individual.

While the scheduling process is central to the activity-based research, there is no clear consensus
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on the representation and modelling of the daily scheduling process in utility-based frameworks.
Typically, individuals are assumed to schedule activities by maximising the utility they can
expect to gain. The timeframe is often introduced as a time budget that constrains the overall
time expenditure. The scheduling decisions can be modelled as discrete choices: sequential
discrete choice models consider a series of choices done consecutively with varying amounts of
feedback between each step. On the other hand, joint models also integrate correlations between
each aspect of the scheduling decision by evaluating them simultaneously. Other models do
not consider the choice as fully discrete, but an hybrid consumption of discrete and continuous
"goods".

Little work in the field of activity-based modelling specifically tackles choice set generation
for estimation of model parameters. While precise choice generation methodologies have not
been greatly explored in activity-based models, it is an issue that has seen more focus in spatial
applications such as route, destination or residential choice modelling. Two main types of
approaches can be found in the literature: deterministic and stochastic choice set generation
models (Pagliara and Timmermans, 2009). Models who use a deterministic approach will
typically include a choice set predefined by the modeller, or samples of alternatives obtained
with decision rules reflecting the domain knowledge. On the other hand, stochastic approaches
do not assume that the choice set is universal and known, but rather model the uncertainty
associated with it.

In addition to the assumption that choice sets are not universal (i.e. homogeneous across the
population) and fully known to the modeller, realistic choice set generation implies considering
dynamic choice sets (i.e. that evolve with time and additional endogenous or exogenous
information), that may not be fully known to the decision-makers themselves. This is especially
true in spatio-temporal applications, which often involve combinatorial spaces. Shocker et al.

(1991) distinguishes three different sets:

1. the awareness set, the set of alternatives within the universal set that the consumer knows
of and which are appropriate to satisfy their goals,

2. the consideration set, which is the set of alternatives from the awareness set that are
accessible at a particular point in time,

3. the choice set, which is the set that the consumer considers immediately before making a
choice.

As the awareness and consideration sets are not always available in traditional data sources (e.g.
time use surveys, travel diaries), it is important to develop a strategy to generate them in an
efficient and realistic way.
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In route choice modelling, Flötteröd and Bierlaire (2013) describe a methodology to sample
paths from a given distribution in a network, which produces a choice set that meets these
requirements. They use the Metropolis-Hastings algorithm (Hastings, 1970) to explore the
solution space in an efficient way:

1. First, they propose an initial shortest path between an origin and a destination,
2. they perform random modifications on the path with a known probability, and accept or

reject the change based on an acceptance probability defined by the modeller. The process
is carried until the defined Markov chain reaches stationarity.

In the paper, the changes to the current state are applied using operators: the splice operator, the
shuffle operator, and the combination of both. Splicing the path consists in randomly drawing
an insertion node with a given probability, then recomputing the shortest path. In the shuffle
operation, the order of the existing nodes in the path is changed with a given probability, and the
shortest path is recomputed.

Danalet and Bierlaire (2015) have adapted and applied the methodology proposed by Flötteröd
and Bierlaire (2013) to sample alternatives in an activity-based context. The alternatives are
activity schedules, which are represented as paths in a defined network. The nodes of the
network are activities potentially performed for a unit of time, and the edges connecting them
represent successful performance and succession between activities. They therefore consider a
network with KT + 2 nodes and 2K + K2T − 1 edges, where K is the number of activity types,
and T the number of time units in the given temporal horizon. As they want to include attractive
alternatives in their choice set, they define an attractivity measure for each node based on their
frequency of observation and the frequency of the length of activity-episodes in the network.
They validate the method on a synthetic network and on a real dataset describing pedestrian
behaviour, and by calibrating the parameters of a discrete choice model with a utility associated
to each activity path. They find that importance sampling with the Metropolis-Hastings algorithm
provides a better model fit than randomly sampling the choice model.

In this paper, we extend the works of Flötteröd and Bierlaire (2013) and Danalet and Bierlaire
(2015) by proposing an application of the model to estimate the parameters of the activity-based
optimisation framework described in Pougala et al. (2021). The key difference with Danalet and
Bierlaire’s work is the representation of the schedule: while they consider activity paths which
are only time dependent, we integrate additional choice dimensions such as location and mode
choice. These dimensions are also considered simultaneously within the framework, with the
aim to capture trade-offs and interrelations between choices.
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Expanding on the idea of generating neighbouring states with small changes, we introduce new
operators that can modify specific aspects of the schedule, over each of the choice dimensions.

3 Methodology

3.1 Definitions

Following the framework developed and presented in Pougala et al. (2021), we introduce several
fundamental definitions to set up the context of the problem.

• Time: we assume time to be discretised in time blocks of equal length t, with T the time
horizon (e.g. T = 24h),

• Space: space is discretised in a finite set of locations L. Each location is associated to at
least one activity.

• Activity: for each individual n, an activity a is uniquely defined as an action taking place
in a physical location `a ∈ L, having a start time xa and a duration τa. The sequence of
activities {a, a + 1} generates a trip from location `a to `a+1, that can be performed using
mode ma ∈ M. M is the set of modes of transportation that are available to the individual.
Note that, if the next activity takes place at the same location, the duration of the trip is
simply zero.

• Schedule: a schedule S is the outcome of the individual’s decisions with respect to
activity participation, activity location, activity scheduling, transportation mode choice,
and any other dimension added at the discretion of the modeller (e.g. route choice). More
specifically, a schedule S is a sequence of S activities (a0, . . . , aS ), starting with a dummy
activity a0 called “dawn”, and finishing with a dummy activity aS called “dusk”, both of
which take place at home.
A schedule is valid if

– it spans the whole time horizon, that is if

τdawn + τdusk +

N−1∑
n=1

(
τan + ρ(`an , `an+1 ,man)

)
= T, (1)

– it does not exceed the maximum budget, that is if

N−1∑
n=1

(
can + κ(`an , `an+1 ,man)

)
≤ B, (2)
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– each activity starts when the trip following the previous activity is finished, that is

xan+1 = xan + τan + ρ(`an , `an+1 ,man),∀n = 0, . . . ,N − 1, (3)

– the duration of each activity is valid, that is if

τan ≥ τ
min
a . (4)

– all mandatory activities are included,
– only one activity from a set of considered duplicates (i.e. same activity with different

associated locations or modes) is included in the schedule.
Each valid schedule S is associated with a time-dependent utility function, which is the
sum over the utilities of each activity a ∈ S. These utilities include components such as
the utility of participating to the activity, the (dis)utility of travelling, or of deviating from
a preferred schedule. An example of specification of US is presented in section 3.2.2.

• Choice set: We adopt a definition similar to the one proposed by Shocker et al. (1991),
discussed in section 2. An entire schedule (including activity participation, timings,
locations and modes of transportation) is defined as one alternative, that an individual
can choose. The choice set therefore contains several distinct alternatives. We call
feasible set F n the ensemble of valid schedules. This is the full choice set of the problem,
which is combinatorial and therefore cannot be enumerated. Out of all possible schedule
alternatives, the individual is only aware of a sample that defines the considered set Cn.
This set, while finite, is not readily available to the modeller, which instead has to rely
on the schedule that was actually chosen and recorded to infer behaviour. The realised

schedule is the chosen alternative.
Figure 1 illustrates the definition of the choice sets, and how they relate to each other.

Figure 1: Definition of choice sets
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3.2 Strategic generation with Metropolis-Hastings algorithm

Intuitively, we want the choice set that we generate for each individual to be as close as possible
to what they would actually consider, meaning that it contains alternatives with high probability
of being chosen. However, estimating a model with such a choice set would lead to very
biased model parameters, which would, in turn, decrease the accuracy and realism of the model
predictions. On the other hand, the solution space (i.e. the feasible set) is so large that by
randomly sampling alternatives we risk selecting only meaningless schedules.

The strategy to build the choice set must therefore generate an ensemble of high probabil-
ity schedules, to estimate significant and meaningful parameters, while still containing low
probability alternatives to decrease the model bias. (Bierlaire and Krueger, 2020).

Extending the methodology developed by Flötteröd and Bierlaire (2013) and its application to
activity-based contexts by Danalet and Bierlaire (2015), we model the choice set generation as a
Markov process. The topology of the network in the activity-based context is very complex, and
requires an appropriate methodology to efficiently explore the solution space.

We define Xt the state at time t. Xt is a 24 hour schedule, discretised in blocks of duration
τ ∈ [τmin, 24 − τmin] (with τmin the minimum block duration). The choice set is generated by
exploring the neighbouring schedules of the state Xt. Two schedules are considered neighbours

if they only differ in one element of one dimension (among time, space, or activity participation).
Figure 2 shows an example of neighbouring schedules.

Figure 2: Example of neighbouring schedules. The schedules differ in the duration of the time
spent at home during lunch time.

A new state Xt+1 is proposed by using a set of operators Ω. These operators are heuristics that
modify the current state to create a neighbour, with a probability Pω. Examples of operators are
described in section 3.2.3. A crucial requirement for each operator is that they must generate a
state that meets the validity constraints described in 3.1.
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The goal is to repeat this process until the chain reaches stationarity. At this point, we can
assume that the generated schedules are draws from the distribution of schedules across the
choice set.

3.2.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) generates a random walk with an accep-
tance/rejection rule to converge to a specified target distribution (Gelman et al., 1995). The
procedure is summarised in algorithm 1.

Algorithm 1 Metropolis-Hastings algortihm (Gelman et al., 1995)
Choose starting point X0 from starting distribution p(X0)
for t = 1, 2, ... do

Sample a candidate point X∗ from a transition distribution q(X ∗ |Xt−1)
Compute acceptance probability α(Xt−1, X∗) = min

(
p(X∗)q(Xt−1 |X∗)

p(Xt−1)q(X∗ |Xt−1)

)
With probability α(Xt−1, X∗), Xt ← X∗, else Xt ← Xt−1

end for

3.2.2 Target distribution

The objective is to generate a choice set with attractive alternatives in order to estimate consistent
parameters. Using the choice model to define the weights of the target distribution (i.e., setting
b(Xt) = U(Xt)) is a convenient way to define the attractiveness of each drawn alternative. We use
the same utility specification as Pougala et al. (2021) (Equation (5)), which is time-dependent
and linear in parameters.

US = U +

A−1∑
a=0

(U1
a + U2

a + U3
a +

A−1∑
b=0

(U4
a,b + U5

a,b)). (5)

Its components and the associated assumptions are defined as follows:

1. A generic utility U that captures aspects of the schedule that are not associated with any
activity. For instance, the agent may prefer that all shopping activities take place in the
afternoon, or may dislike days with too many activities.
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2. The utility U1
a associated with the participation of the activity a, irrespective of its starting

time and duration. This term may include any variable such as level of service, cost, etc.
It may also include an error term, capturing the unobserved variables.

U1
a = βcost ∗ ca + ε1 (6)

3. the utility U2
a associated with starting time. This term captures the perceived penalty

created by deviations from the preferred starting time. We define it as a deterministic
(dis)utility:

U2
a = V2

a (7)

with:

V2
a = θe

ak
max(0, x−a − xa) + θ`ak

max(0, xa − x+
a ), (8)

where θe
ak
≤ 0 and θ`ak

≤ 0 are unknown parameters. The first (resp. second) term captures
the disutility of starting the activity earlier (resp. later) than the preferred starting time.
The index k captures the level of flexibility with respect to the scheduling of the activity,
such that k ∈ {Flexible, Moderately Flexible, Not Flexible}.

4. the utility U3
a associated with duration. This term captures the perceived penalty created

by deviations from the preferred duration. We define it as a deterministic (dis)utility:

U3
a = V3

a (9)

with:

V3
a = βe

aa,k
max(0, τ−ak

− τa) + β`ak
max(0, τa − τ

+
a ), (10)

where βe
ak
≤ 0 and β`ak

≤ 0 are unknown parameters. Similarly to the specification of start
time, the first (resp. second) term captures the disutility of performing the activity for a
shorter (resp. longer) duration than the preferred one,

5. For each pair of locations (`a, `b), respectively the locations of activities a and b with
a , b, the utility U4

a,b associated with the trip from `a to `b, irrespective of the travel time.
This term may include variables such as cost, level of service, etc. It may also include an
error term, capturing the unobserved variables.

U4
a,b = βt,cost ∗ ct + ε4 (11)
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6. For each pair of locations (`a, `b), the utility U5
a,b, which captures the penalty associated

with the travel time from `a to `b. We assume a deterministic specification:

U5
a,b = V5

a,b (12)

with

V5
a,b = θtρab, (13)

where θt is an unknown parameter, and ρab is the travel time to the next location.

3.2.3 Operators

This list describes examples of operators that can be implemented in the defined problem set-up.
Note that this list is not exhaustive, as many other operators can be created according to the
modeller’s needs and specifications.

The selected operators must meet the following requirements:

• Each iteration of the Metropolis-Hastings algorithm must be irreducible, meaning that
each state of the chain can be reached in a single step:

Q(Xt|Xt−1) > 0 ∀Xt, Xt−1 (14)

For this reason, each operator should apply single changes, or the combination of operators
should lead to a state that can only be reached with this combination.

• Each iteration of the Metropolis-Hastings algorithm must be reversible, i.e. the forward
probability (probability to do the change) and backward probability (probability to undo
the change and go back to the previous state) must be strictly positive.

Q(Xt|Xt−1) > 0 ∀Xt, Xt−1 (15)

Q(Xt−1|Xt) > 0 ∀Xt, Xt−1 (16)

Defining single change operators is interesting for the tractability of these quantities.
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• The proposal state Xt+1 resulting from the action of the operator or combination of
operators should be feasible, i.e. it should meet the validity requirements described
in section 3.1. As the target weights are defined based on the choice problem, invalid
schedules cannot be accepted.

The following operators meet these requirements. We illustrate their effect on an example
schedule, shown in Figure 3. In its initial state, we assume time to be discretised in 24 blocks of
length δ = 1h. We consider two activities: work and leisure, each associated with a start time xw

and xl, a duration τw and τl, and locations `w, `l. Considering that home is at location `h (and
`h , `w , `l), the individual travels to the other activities using modes mw and ml.

Figure 3: Initial schedule

Block The block operator ωblock modifies the time discretisation with a given probability Pblock,
by changing the length δ of the schedule blocks (e.g. from δ = 30 to δ = 15 minutes). The
possible discretisations are set to: δ = {1min, 5min, 15min, 30min, 60min}. This change does not
affect the activity sequence, but allows to change the scale of the potential modifications of the
other operators.

The transition probability associated with this change is the probability of selecting one of the
possible discretisations.

Q(Xt|Xt−1) = Q(Xt−1|Xt) =
1
Nδ

(17)

Figure 4 illustrates an example of modification applied by the block operator on the previously
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introduced initial schedule.

Figure 4: Change applied by the block operator

Assign With given probability Passign, the assign operator ωassign assigns an activity j ∈ A to
a given block of duration δ, which was previously assigned to activity i. A is a set of N possible
activities. The assignment is done with replacement, which means that P(i = j) > 0. To respect
validity requirements, the resulting schedule must always start and end at home. Considering bp

the block at position p, with p = (0, ...,T − δ,T ), the transition probabilities of the change can
therefore be defined as the product of the probability of choosing a valid block multiplied by the
probability of choosing one of the N activities:

Q(Xt|Xt−1) = Q(Xt−1|Xt) =

Passign
T−2δ
NTδ , if bi < {b0, bT }

0, otherwise
(18)

Figure 5 illustrates an example of modification applied by the assign operator on the initial
schedule.

Figure 5: Change applied by the assign operator

Swap The operator ωswap randomly swaps two adjacent blocks with probability Pswap. A block
at position p bp is randomly selected, then is swapped with the following block. In order to
respect the validity requirements, the resulting schedule must always start and end at home.
Considering bp the block at position p, with p = (0, ...,T − δ,T ), then b0, bT−δ and bT being

12
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selected would lead to an infeasible schedule. The transition probabilities of the change can
therefore be defined as :

Q(Xt|Xt−1) = Q(Xt−1|Xt) =

Pswap
T−3δ
NTδ , if bi < {b0, bT−δ, bT }

0, otherwise
(19)

Figure 6 illustrates an example of modification applied by the swap operator on the initial
schedule.

Figure 6: Change applied by the swap operator

Inflate/Deflate The inflate/deflate operator ωinf/def allows to perform a shift of the schedule by
randomly inflating the duration (i.e. adding one block of length δ) of an activity i and deflating
the duration (i.e. removing one block of length δ) of an activity j of the schedule. The direction
of the inflation and deflation (affecting the previous or following block of the selected one) is
randomly chosen, with probability Pdirection. If i = j, the operator only shifts the start time of
the activity, while maintaining its duration. This operator allows to modify durations without
generating infeasible schedules (e.g. schedules with a total duration that is different than the
time budget). In order to ensure the validity constraint that the schedule must start and end at
home, the first and last time block of the schedule cannot be modified. This yields the following
transition probabilities:

Q(Xt|Xt−1) = Q(Xt−1|Xt) =

PinfdefPdirection
2(T−2δ)

NTδ , if bi < {b0, bT }

0, otherwise
(20)

Figure 7 illustrates an example of modification applied by the translate operator on the initial
schedule.
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Figure 7: Change applied by the translate operator

Location The location operator ωloc changes the location `i of a randomly selected activity i,
with probability Ploc. The new location is selected from a set of location L that is considered
known. The travel times following this change are recomputed, and any excess or shortage of
time as compared to the available time budget is absorbed by the time at home. For this reason,
and to remain compliant with validity constraints, the resulting change cannot go over the time
budget by more than the minimum time at home (i.e. 2δ). In addition, the home location `h

cannot be changed. The selection of a location must therefore be done according to a distribution
P`(ρ) which is conditional on the travel times ρ. We assume that this distribution is exogenous
to the choice-set generation algorithm. The transition probabilities are defined as the probability
to select one location out of L multiplied by the probability to select a valid block:

Q(Xt|Xt−1) = Q(Xt−1|Xt) =

PlocP`
T−2δ
NTδ , if bi < {b0, bT }

0, otherwise
(21)

Figure 8 illustrates an example of modification applied by the location operator on the initial
schedule.

Figure 8: Change applied by the location operator

Mode Similarly to the location operator, the mode operator ωmode changes the mode m of the
outbound trip of a randomly selected activity i, with probability Pmode. The new mode is selected
from a set of modesM that is considered known. The travel times following this change are
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recomputed, and any excess or shortage of time as compared to the available time budget is
absorbed by the time at home. For this reason, and to remain compliant with validity constraints,
the resulting change cannot go over the time budget by more than the minimum time at home
(i.e. 2δ). The selection of a mode must therefore be done according to a distribution Pm(ρ)
which is conditional on the travel times ρ. We assume that this distribution is exogenous to the
choice-set generation algorithm. As the last home activity is not linked to an outbound trip, it
cannot be selected for a mode change. The transition probabilities associated with this change
are defined as the probability to select one mode out ofM multiplied by the probability to select
a valid block.

Q(Xt|Xt−1) = Q(Xt−1|Xt) =

PmodePm
T−2δ
NTδ , if bi < {b0, bT }

0, otherwise
(22)

Figure 9 illustrates an example of modification applied by the mode operator on the initial
schedule.

Figure 9: Change applied by the mode operator

Combination This meta-operator ωcomb combines n distinct operators from the previously
defined list, and is applied with probability Pcomb. n is an arbitrary number such that n ∈ 2, ...,Nop,
with Nop the number of available operators. The transition probabilities of the change are the
combined forward (resp. backward) probabilities of the selected operators. Combining operators
through a meta-operator instead of randomly selecting them “on the fly" during the random walk
process offers the advantage of making it easier for the modeller to track the behaviour of the
process. Specifically, the impact of each operator, whether applied individually or in conjunction
with others, can be evaluated.
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3.2.4 Random walk

One step of the random walk moves from state Xt to Xt+1 with acceptance probability α(Xt, Xt+1).
At each iteration, a candidate state X∗ is drawn by applying changes from one or more arbitrarily
chosen operators. The procedure is detailed in Algorithm 2.

Algorithm 2 Choice set generation
n← 0, initialise state with random schedule Xn ← S 0

while n ≤ niter do
Choose operator ω
With probability Pω, X∗ ← Operator(Xn)

Compute acceptance probability α(Xn, X∗) = min
(

b(X∗)q(Xn |X∗)
b(Xn)q(X∗ |Xn)

)
With probability α(Xn, X∗), Xn+1 ← X∗, else Xn+1 ← Xn

end while

3.2.5 Implementation notes

Selection probabilities for operators The probabilities of selecting and applying an op-
erator are arbitrary and to be defined by the modeller. An iterative approach to the choice set
generation might highlight an imbalance in the rate of accepted schedules per generating operator.
In this case, an equilibrium can be achieved by fine-tuning the operator choice probabilities, e.g.
by selecting fewer times the operators that are more likely to produce accepted changes.

Schedule feasibility As described in section 3.1, the states generated by the process must
meet validity criteria such as starting and ending at home, or having consistent timings between
consecutive activities. One risk when defining operators is that they change a current feasible
schedule into an infeasible state. For example, changing the duration of an activity may lead to
a total duration that differs from the available time budget. One solution, as done in this paper,
is to define operators that do not inherently induce infeasibility. This provides the advantage of
making the transition probabilities easier to compute, but limits the possible changes that can be
applied. On the other hand, allowing for infeasibility in the operators results can lead to more
varied results. An operator that restores feasibility at the end of the process (e.g. modifying the
time spent at home to absorb timing gaps or excesses in the schedule). However, as these changes
would be dependent on the current state, computing the associated transition probabilities would
prove more difficult.
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Target weights The target weights for each state Xt are defined as the utility function evalu-
ated at Xt. However, the function evaluation is conditional on the values of its parameters, that
we attempt to estimate with the random walk. Lemp and Kockelman (2012) proposes an iterative
process to compute the weights in importance sampling, by updating the weights with models
estimated at the previous iterations. For example, Danalet (2015) use parameters calibrated on a
randomly generated choice set as a starting point for their Metropolis-Hastings process.

Initial schedule The methodology requires the initialisation of starting point, which is arbi-
trarily chosen. A randomly generated schedule can be used for this task, but for the sake of model
efficiency and realism of the resulting choice, starting with a known high-probability schedule
(e.g. a daily schedule that was recorded in a travel survey) can be considered. This allows to
select more efficiently alternatives that are likely to be considered by the individual. However,
as discussed previously, one must be careful to also include lower probability alternatives. The
parameters of the random walk (e.g. acceptance ratio) must thus be adjusted to avoid such
biases.

4 Empirical investigation

The Mobility and Transport Microcensus is a Swiss nationwide survey gathering insights on
the mobility behaviours of local residents (Office fédéral de la statistique and Office fédéral du
développement Territorial, 2017). Respondents provide their socio-economic characteristics
(e.g. age, gender, income) and those of the other members of their household. Information on
their daily mobility habits and detailed records of their trips during a reference period (1 day)
are also available. The 2015 edition of the Microcensus contains 57’090 individuals, and 43’630
trip diaries.

We use the Metropolis-Hastings algorithm to generate a choice set for the student population
of Lausanne (236 schedules). They are individuals who have declared being full-time stu-
dents, which means that the education activity is expected to be one of the main out-of-home
activities.
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4.1 Initialisation

The initial parameters of the model, used to evaluate the weights characterising the target
distribution, are calibrated on the full sample of Lausanne residents (students and non-students),
with 1118 diaries. Table 1 gives the values of the significant estimated parameters. This
calibration was performed by estimating the parameters using a choice set of size N = 100, with
99 randomly generated schedules, and the chosen schedule that was recorded in the survey. Note
that home is chosen as the reference alternative. Consistently with random utility theory, the
constants of the other activities can therefore be interpreted as the utility gained from performing
out-of-home activities as opposed to staying at home, all else being equal.

Table 1: Parameters calibrated on randomly generated model.
NS: Not significant

Activity Constant Duration [h] Start time[h] Penalty: early Penalty: late Penalty: short Penalty: long

Business trip 3.34 13.29 7.44 -2.65 -0.29 -0.25 -38.35

Education 5.78 5.97 6.00 -1.92 -0.22 -1.17 -0.22

Errands, services 2.61 NS 17.56 -0.0087 -1.15 NS -0.75

Escort 3.90 NS 11.99 -0.32 -0.36 NS -0.91

Home - 23.98 - - - -0.30 -266

Leisure 4.29 0.51 8.46 -1.55 -0.21 0 NS

Shopping 34.67 NS 8.42 -2.50 -0.24 0.12 -0.98

Work 7.33 11.22 6.49 -1.97 -0.54 -0.69 -1.25

We initialise the following operators for the random walk: Block, Assign, Swap, Inflate/Deflate
and Combination. For the sake of simplicity, we omit the travel dimension and assume that each
activity takes place at the same location. We therefore only focus on the scheduling aspect. We
also assume equal probability of selecting the aforementioned operators.

There are 8 activities that can be scheduled: home (not including mandatory start and end of the
schedule), work, education, shopping, errands or use of services, business trip (e.g. work activity
outside of the typical workplace), leisure and escort (e.g. accompanying someone to an activity).
These categories are a simplification made by the authors of the original classification reported
in the dataset. We have assumed that the probability of scheduling a type of activity (specifically
for the assign operator) was not equal across types. Instead, we have used the frequency of each
activity type a ∈ A in the sample of 236 students as a proxy for the probability of choosing to
perform it at a given time. The frequency is defined as the number of schedules in the sample in
which the activity is present. The values are reported in table 2.
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Table 2: Frequency values in sample, per activity

Home Leisure Education Shopping Escort Errands, services Work Business trip

Frequency [%] 38.8 23.0 20.6 8.7 2.8 2.8 2.5 0.82

4.2 Examples

The first example is a choice set generated for one individual, randomly selected in the sample.
We run 10’000 iterations of the algorithm, and keep 20 accepted schedules after a warm-up
period. Figure 10 shows the initial schedule used as input of the procedure, and 4 generated
schedules. As the selected schedules were consecutive, we can visualise the result of each
accepted change. Visually, most of the accepted moves seem to be assigning new activities.
Schedule 4 (Figure 10(e)) is interesting: it does not appear to be a reasonable schedule, with
many splits of activities and short durations. This result indicates that the process is able to
generate both attractive schedules (with respect to the utility function) such as Fig 10(b)-10(c),
and alternatives with lower choice probabilities.

We repeated the procedure for all the individuals in the sample. We ran 10’000 iterations of
the algorithm, and sampled accepted schedules after a warm-up period. We generated 5’000
schedules across the population. Figure 11 shows the distribution of start times for the different
activity types across all the generated alternatives. For most activities, the start times appear
to have been uniformly scheduled during day. On the other hand, education and leisure have
more defined peaks. Looking at the frequency of scheduling of each activity (Figure 12), we
notice that they are the two activities who are present in every generated schedule. This result is
not surprising, as they are the most frequent out-of-home activities among Lausanne students
(Table 2), and the observed schedules were used as starting points of the random walk.

We are interested in understanding the impact of each operator on the acceptance of a generated
schedule. Figure 13 illustrates the proportion of each operators among accepted moves. In the
current set-up, and considering an equal probability of selecting one of the operators at each
iteration, combining multiple changes (meta-operator) seems the most promising to achieve a
schedule that will be accepted, followed by the assign operator. This makes sense: because
the constants for participating in each activity type are positive and often larger in scale than
the penalties for schedule deviations (Table 1), adding activities is more favourable in terms of
utility gain than the other operations. The block operator applied alone does not produce any
accepted schedule. This also makes sense, as this operator does not fundamentally change the
current state, and therefore needs to be applied in conjunction with other operators.
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(a) Initial schedule

(b) Schedule 1

(c) Schedule 2

(d) Schedule3

(e) Schedule 4

Figure 10: Example alternatives from choice set

Taking a closer look to the combinations of operators (meta-operators), we can note that longer
combinations (up to 4 operators) are more likely to produce accepted schedules (Figure 14).
Figure 15 shows the prevalence of each operator in the accepted meta-operator combinations.
The assign operator is the most frequent, especially when drawn multiple times. The swap

operator is the second most combined operator, specifically in combination with InflateDeflate

or applied multiple times in a row. Note that the map is not symmetric: for instance, applying
the Block operator after InflateDeflate is a combination that is less present among accepted
schedules than the other way around.
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Figure 11: Distribution of start times in the generated choice sets
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Figure 12: Frequency of activity types in the generated choice sets

Figure 13: Frequency of operator types in accepted schedules

Figure 14: Typical lengths of combinations for accepted meta-operators
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Figure 15: Frequency of pairs in accepted meta-operators. y-axis: first operator, x-axis: second
operator
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5 Conclusion and future work

In this paper, we have extended the alternative sampling methodology developed by Flötteröd
and Bierlaire (2013) and Danalet and Bierlaire (2015) to generate choice sets for activity-based
models where the alternatives are full activity schedules. We include choice dimensions such as
activity participation, timings, location and mode choice. The Metropolis-Hastings algorithm is
used to explore the combinatorial solution space. At each iteration, a new state (or neighbour
schedule) is constructed with the use of operators which induce a single change in one of the
dimensions of the schedule.

We have shown an example of application on an observed schedule as a proof of concept. Future
work will be focused on validating the approach, and applying it on larger-scale samples. The
validation can be performed by estimating parameters with the sampled choice set, and measure
their bias with metrics such as the mean absolute error (as proposed by Lemp and Kockelman
(2012)). These statistics can be compared to those obtained with randomly generated choice
sets to evaluate the gain of information and accuracy. A synthetic population can be used to
validate the parameter estimates against control values. The performance of the model can also
be evaluated by considering metrics of quality of the choice set: for instance, indicators such as
the degree of similarity (Flötteröd and Bierlaire, 2013) can be used to control the generation
process.

A sensitivity analysis must be performed to understand the impact of different features and
parameters of the algorithm. For example, parameters such as the probabilities to select certain
operators or combinations of operators can be adjusted depending on their influence on the
acceptance ratios. Similarly, the target weights guide the algorithm through the space; it is
therefore crucial that they penalise or reward specific behaviours. An investigation on the effect
of different utility functions (i.e. different proposals for target distributions) on the random walk
will be performed. For instance, the examples presented in section 4 seem to indicate that a
different relationship between constants and penalty parameters would lead to differences in
accepted moves or operators.

Finally, we will focus on improving the performance of the algorithm by considering the
convergence of the Markov chain. This will require the development of convergence metrics
(Flötteröd and Bierlaire (2013) propose a measure of distance between generated paths) to
monitor mixing and stationarity (Gelman et al., 1995).
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